Закон силы в физиологии – закон силы для одиночных клеток, закон силы для группы клеток, закон соотношения силы и времени, закон градиента. — КиберПедия

Законы раздражения возбудимых тканей. Нормальная физиология

Законы раздражения возбудимых тканей

Эти законы отражают определенную зависимость между действием раздражителя и ответной реакцией возбудимой ткани. К законам раздражения относятся: закон силы, закон «все или ничего», закон раздражения Дюбуа-Реймона (аккомодации), закон силы-времени (силы-длительности), закон полярного действия постоянного тока, закон физиологического электротона.

Закон силы: чем больше сила раздражителя, тем больше величина ответной реакции. В соответствии с этим законом функционирует скелетная мышца. Амплитуда ее сокращений постепенно увеличивается с увеличением силы раздражителя вплоть до достижения максимальных значений. Это обусловлено тем, что скелетная мышца состоит из множества мышечных волокон, имеющих различную возбудимость. На пороговые раздражители отвечают только волокна, имеющие самую высокую возбудимость, амплитуда мышечного сокращения при этом минимальна. Увеличение силы раздражителя приводит к постепенному вовлечению волокон, имеющих меньшую возбудимость, поэтому амплитуда сокращения мышцы усиливается. Когда в реакции участвуют все мышечные волокна данной мышцы, дальнейшее повышение силы раздражителя не приводит к увеличению амплитуды сокращения.

Закон «все или ничего»: подпороговые раздражители не вызывают ответной реакции («ничего»), на пороговые раздражители возникает максимальная ответная реакция («все»). По закону «все или ничего» сокращаются сердечная мышца и одиночное мышечное волокно. Закон «все или ничего» не абсолютен. Вопервых, на раздражители подпороговой силы не возникает видимой ответной реакции, но в ткани происходят изменения мембранного потенциала покоя в виде возникновения местного возбуждения (локального ответа). Во-вторых, сердечная мышца, растянутая кровью, реагирует по закону «все или ничего», но амплитуда ее сокращения будет больше по сравнению с таковой при сокращении нерастянутой сердечной мышцы.

Закон раздражения Дюбуа-Реймона (аккомодации): стимулирующее действие постоянного тока зависит не только от абсолютной величины силы тока, но и от скорости нарастания тока во времени. При действии медленно нарастающего тока возбуждение не возникает, так как происходит приспособление возбудимой ткани к действию этого раздражителя, что получило название аккомодации. Аккомодация обусловлена тем, что при действии медленно нарастающего раздражителя в мембране происходит повышение критического уровня деполяризации. При снижении скорости нарастания силы раздражителя до некоторого минимального значения ПД не возникает, так как деполяризация мембраны является пусковым стимулом к началу двух процессов: быстрого, ведущего к повышению натриевой проницаемости и тем самым обусловливающего возникновение потенциала действия, и медленного, приводящего к инактивации натриевой проницаемости и как следствие этого – к окончанию потенциала действия. При быстром нарастании стимула повышение натриевой проницаемости успевает достичь значительной величины прежде, чем наступит инактивация натриевой проницаемости. При медленном нарастании тока на первый план выступают процессы инактивации, приводящие к повышению порога генерации ПД. Способность к аккомодации различных структур неодинакова. Наиболее высокая она у двигательных нервных волокон, а наиболее низкая у сердечной мышцы, гладких мышц кишечника, желудка.

Исследования зависимости силы-длительности показали, что она имеет гиперболический характер. Ток меньше некоторой минимальной величины не вызывает возбуждение, как бы длительно он не действовал, и чем короче импульсы тока, тем меньшую раздражающую способность они имеют. Причиной такой зависимости является мембранная емкость. Очень «короткие» токи не успевают разрядить эту емкость до критического уровня деполяризации. Минимальная величина тока, способная вызвать возбуждение при неограниченно длительном его действии, называется реобазой. Время, в течение которого ток, равный реобазе, вызывает возбуждение, называется полезным временем.

Закон силы-времени: раздражающее действие постоянного тока зависит не только от его величины, но и от времени, в течение которого он действует. Чем больше ток, тем меньше времени он должен действовать на возбудимые ткани, чтобы вызвать возбуждение (рис.3).

Закон полярного действия постоянного тока: при замыкании тока возбуждение возникает под катодом, а при размыкании – под анодом. Прохождение постоянного электрического тока через нервное или мышечное волокно вызывает изменение мембранного потенциала. Так, в области приложения катода положительный потенциал на наружной стороне мембраны уменьшается, возникает деполяризация, которая быстро достигает критического уровня и вызывает возбуждение. В области же приложения анода положительный потенциал на наружной стороне мембраны возрастает, происходит гиперполяризация мембраны и возбуждение не возникает. Но при этом под анодом критический уровень деполяризации смещается к уровню потенциала покоя. Поэтому при размыкании цепи тока гиперполяризация на мембране исчезает, и потенциал покоя, возвращаясь к исходной величине, достигает смещенного критического уровня и возникает возбуждение.

Закон физиологического электротона: действие постоянного тока на ткань сопровождается изменением ее возбудимости. При прохождении постоянного тока через нерв или мышцу порог раздражения под катодом и в соседних с ним участках понижается вследствие деполяризации мембраны (возбудимость повышается). В области приложения анода происходит повышение порога раздражения, т. е. снижение возбудимости вследствие гипериоляризации мембраны. Эти изменения возбудимости под катодом и анодом получили название электротона (электротоническое изменение возбудимости). Повышение возбудимости под катодам называется катэлектротоном, а снижение возбудимости иод анодом – анэлектротоном.

При дальнейшем действии постоянного тока первоначальное повышение возбудимости под катодом сменяется ее понижением, развивается так называемая католическая депрессия. Первоначальное же снижение возбудимости под анодом сменяется ее повышением – анодная экзальтация. При этом в области приложения катода – инактивация натриевых каналов, а в области действия анода происходит снижение калиевой проницаемости и ослабление исходной инактивации натриевой проницаемости.

Поделитесь на страничке

Следующая глава >

med.wikireading.ru

Законы раздражения возбудимых тканей.

Законы раздражения отражают определенную зависимость между действием раздражителя и ответной реакцией возбудимой ткани. К законам раздражения относятся, закон силы, закон «все или ничего», закон аккомодации (Дюбуа-Реймона), закон силы-времени (силы-длительности), закон полярного действия постоянного тока, закон физиологического электротона.

Закон силы: чем больше сила раздражителя, тем больше величина ответной реакции. В соответствии с этим законом функционируют сложные структуры, например, скелетная мышца. Амплитуда ее сокращений от минимальных (пороговых) величин постепенно увеличивается с увеличением силы раздражителя до субмаксимальных и максимальных значений. Это обусловлено тем, что скелетная мышца состоит из множества мышечных волокон, имеющих различную возбудимость. Поэтому на пороговые раздражители отвечают только те мышечные волокна, которые имеют самую высокую возбудимость, амплитуд, мышечного сокращения при этом минимальна. С увеличением силы раздражителя в реакцию вовлекается все большее количество мышечных волокон, и амплитуда сокращения мышц все время увеличивается. Когда в реакцию вовлечены все мышечные волокна, составляющие данную мышцу, дальнейшее увеличение силы раздражителя не приводит к увеличению амплитуды сокращения.

Закон «все или ничего»: подпороговые раздражители не вызывают ответной реакции («ничего»), на пороговые раздражители возникает максимальная ответная реакция («все»). По закону «все или ничего’ сокращаются сердечная мышца и одиночное мышечное волокно. Закон «все или ничего» не абсолютен. Во-первых, на раздражители подпороговой силы не возникает видимой ответной реакции, но в ткани происходят изменения мембранного потенциала покоя в виде возникновения местного возбуждения (локального ответа). Во-вторых, сердечная мышца, растянутая кровью, при наполнении ею камер сердца, реагирует по закону «все или ничего», но амплитуда ее сокращений будет больше по сравнению с сокращением сердечной мышцы, не растянутой кровью.

Закон раздражения — Дюбуа-Реймона (аккомодации) раздражающее действие постоянного тока зависит не только от абсолютной величины силы тока или его плотности, но и от скорости нарастания тока во времени. При действии медленно нарастающего раздражителя возбуждение не возникает, так как происходит приспосабливание возбудимой ткани к действию этого раздражителя, что получило название аккомодации. Аккомодация обусловлена тем, что при действии медленно нарастающего раздражителя в мембране возбудимой ткани происходит повышение критического уровня деполяризации. При снижении скорости нарастания силы раздражителя до некоторого минимального значения потенциал действия вообще не возникает. Причина заключается в том, что деполяризация мембраны является пусковым стимулом к началу двух процессов: быстрого, ведущего к повышению натриевой проницаемости, и тем самым обусловливающего возникновение потенциала действия, и медленного, приводящего к инактивации натриевой проницаемости и как следствие этого — окончанию потенциала действия. При быстром нарастании стимула повышение натриевой проницаемости успевает достичь значительной величины прежде, чем наступит инактивация натриевой проницаемости. При медленном нарастании тока на первый план выступают процессы инактивации, приводящие к повышению порога или ликвидации возможности генерировать ПД вообще. Способность к аккомодации различных структур неодинакова. Наиболее высокая она у двигательных нервных волокон, а наиболее низкая у сердечной мышцы, гладких мышц кишечника, желудка.

Закон силы-дительности: раздражающее действие постоянного тока зависит не только от его величины, но и от времени, в течение которого он действует. Чем больше ток, тем меньше времени он должен действовать для возникновения возбуждения.

Исследования зависимости силы-длительности показали, что последняя имеет гиперболический характер (рис. 3). Из этого следует, что ток ниже некоторой минимальной величины не вызывает возбуждение, как бы длительно он не действовал, и чем короче импульсы тока, тем меньшую раздражающую способность они имеют. Причиной такой зависимости является мембранная емкость. Очень «короткие» токи просто не успевают разрядить эту емкость до критического уровня деполяризации. Минимальная величина тока, способная вызвать возбуждение при неограниченно длительном его действии, называется реобазой. Время, в течение которого действует ток, равный реобазе,и вызывает возбуждение, называется полезным временем.

В связи с тем, что определение этого времени затруднено, было введено понятие хронаксия — минимальное время, в течение которого ток, равный двум реобазам, должен действова.ть на ткань, чтобы вызвать ответную реакцию. Определение хронаксии — хронаксиметрия — находит применение в клинике. Электрический ток, приложенный к мышце, проходит через как мышечные, так и нервные волокна и их окончания, находящиеся в этой мышце. Так как хронаксия нервных волокон значительно меньше хронаксии мышечных волокон, то при исследовании хронаксии мышцы практически получают хронаксию нервных волокон. Если нерв поврежден или произошла гибель соответствующих мотонейронов спинного мозга (это имеет место при полиомиелите и некоторых других заболеваниях), то поисходит перерождение нервных волокон и тогда определяется хронаксия уже мышечных волокон, которая имеет большую величину, чем нервных волокон.

Закон полярного действия постоянного тока: при замыкании тока возбуждение возникает под катодом, а при размыкании — под анодом. Прохождение постоянного электрического тока через нервное или мышечное волокно вызывает изменение мембранного потенциала покоя. Так, в области приложения к возбудимой ткани катода положительный потенциал на наружной стороне мембраны уменьшается, возникает деполяризация, которая быстро достигает критического уровня и вызывает возбуждение. В области же приложения анода положительный потенциал на наружной стороне мембраны возрастает, происходит гиперполяризация мембраны и возбуждение не возникает. Но при этом под анодом критический уровень деполяризации смещается к уровню потенциала покоя. Поэтому при размыкании цепи тока гиперполяризация на мембране исчезает, и потенциал покоя, возвращаясь к исходной величине, достигает смещенного критического уровня и возникает возбуждение.

Закон физиологического электротона: действие постоянного тока на ткань сопровождается изменением ее возбудимости. При прохождении постоянного тока через нерв или мышцу порог раздражения под катодом и соседних с ним участках понижается вследствие деполяризации мембраны — возбудимость повышается. В области приложения анода происходит повышение порога раздражения, т. е. снижение возбудимости вследствие гиперполяризации мембраны. Эти изменения возбудимости под катодом и анодом получили название электротона (электротоническое изменение возбудимости). Повышение возбудимости под катодом называется катэлектротоном, а снижение возбудимости под анодом – анэлектротоном.

При дальнейшем действии постоянного тока первоначальное повышение возбудимости под катодом сменяется ее понижением, развивается так называемая католическая депрессия. Первоначальное же снижение возбудимости под анодом сменяется ее повышением анодная экзальтация. При этом в области приложения катода происходит инактивация натриевых каналов, а в области действия анода происходит снижение калиевой проницаемости и ослабление исходной инактивации натриевой проницаемости.

studfiles.net

Закон «все или ничего»

Зависимость величины ответной реакции от силы раздражителя характеризуется несколькими законами раздражения: закон «все или ничего» и «правило силовых отношений».

Закон «все или ничего»

Согласно этому закону, подпороговые раздражения не вызывают возбуждения («ничего»), при пороговых и надпороговых стимулах возбуждение сразу приобретает максимальную величину («все») и уже не увеличивается при дальнейшем усилении раздражения. По этому закону функционируют структурные единицы – мышечное волокно, нервное волокно.

Эта закономерность первоначально была открыта Г. Боудичем в 1876 году при исследовании сердца, а в дальнейшем подтверждена и на других возбудимых тканях. Так, в 1945 году Като провел эксперимент на изолированной системе. Он изолировал мышечное волокно и действовал раздражителями различной силы. В качестве раздражителя использовал электрический ток. При действии раздражителей подпороговой величины 1, 2, 3, 4 мВ мышечное волокно не сокращалось. Пороговый раздражитель силой 5 мВ вызывал сокращение изолированного волокна и дальнейшее увеличение силы тока не вызывало усиления амплитуды сокращения.

В живой клетке существуют процессы, активно приостанавливающие этот процесс. Если на нервное или мышечное волокно действовать веществами, уменьшающими проницаемость для ионов натрия (кокаин, новокаин, уретан), это приведет к понижению возбуждения в исследуемом волокне, и, наоборот, влияние стимулов, приводящих к уменьшению проницаемости для ионов калия, способствует увеличению амплитуды возбуждения.

Закон силовых отношений

Функциональная единица (мышца, нерв) реагируют на изменение силы раздражителя по закону силовых отношений. Чем сильнее ток, тем сильнее реакция. Эта закономерность на раздражение выражается законом градуальности (силовых отношений).

В1876 году Боудич, а затем в 1905 году Люкас провел эксперимент на межпальцевой мышце лягушки, состоящей из 5 мышечных волокон. При действии подпороговых раздражителей (1, 2, 3 мВ) сокращения мышцы не происходило. Раздражитель пороговой силы (4 мВ) вызывал сокращение целой мышцы. Увеличение силы раздражителя (5, 6, 7, 8 мВ) вызывало увеличение амплитуды сокращения мышцы, пока сокращение не достигало максимальной величины (оптимум). После этого, дальнейшая стимуляция возрастающим по силе электрическим током (9, 10, 11, 12, 13 мВ) приводило к уменьшению амплитуды сокращения (пессимум).

Почему же это происходит?

Природа закона силовых отношений.

Мышца состоит из отдельных мышечных волокон, причем каждое волокно имеет различную возбудимость. При действии раздражителя пороговой силы возбуждаются более возбудимые мышечные волокна (пороговое сокращение). По мере увеличения силы тока в процесс возбуждения вовлекаются менее возбудимые мышечные волокна (резерв или субмаксимальные сокращения). В момент сокращения всех волокон регистрируется максимальное сокращение (предел). После этого наступает пессимум— ослабление реакции на очень сильное и очень частое возбуждение. Развивается тормозной ответ.

Закон силовых отношений имеет несколько свойств:

1) каждая возбудимая ткань имеет свой функциональный резерв;

2) каждая возбудимая ткань имеет свой функциональный предел (оптимум).

Лекция 2

studfiles.net

8. Раздражимость и возбудимость…

Возбуждение — процесс, который возникает только при действии раздражителя.

Раздражители— факторы, которые воздействуют на биологические клетки.

Качественно (по природе) раздражители делятся на:

физические(электромагнитные волны, электрический ток, механические воздействия, температура),

химические.

По биологической значимости:

адекватные(присущи для восприятия данному виду рецептора)

неадекватные(не являются естественными с точки зрения природы или силы раздражения).

Все раздражители (по силе) делятся на: пороговые, подпороговые, надпороговые

Порог раздражителя— та минимальная сила, при действии которой возникает возбуждение.

Законы раздражения

Действие раздражителя описывается несколькими законами:

1. Закон силы раздражения:

Чем больше сила раздражения, тем, до известных пределов, сильнее ответная реакция.

Раздражители имеют нижний предел — подпороговоераздражение не вызывает ответной реакции. Возбудимые ткани работают только на пороговых и надпороговых раздражителях.

Но есть сила раздражения для любого биологического раздражителя, которая способна вызывать max эффект — оптимальная сила (оптимум частоты и силы раздражения).

Если сила больше, чем оптимальная, то ответная реакция ниже — пессимум частоты или силы раздражения.

2. Закон длительности раздражения:

Чем длительнее раздражение, необходимое для возникновения возбуждения, тем сильнее, до известных пределов, ответная реакция живых систем.

Есть зависимость между силой раздражения и временем, в течение которого этот раздражитель должен действовать, чтобы вызвать ответную реакцию. Зависимость выражается гиперболой, следовательно, даже сильные раздражители, действуя кратковременно, либо не способны вызвать ответную реакцию, либо — слабую ответную реакцию и наоборот.

График «сила-время»

Особенно чётко зависимость между силой и временем в прослеживается в диапазоне промежуточных величин.

3. Закон градиента силы:

Величина ответной реакции и её характер зависят ещё и от интенсивности/крутизны/ нарастания действия силы.

Более интенсивное нарастание силы раздражения вызывает больший ответ. При этом длительное действие раздражителей одной и той же по величине силы, приводит к развитию аккомодации— явления, которое выражается в понижении чувствительности ткани к раздражению, уменьшению возбудимости ткани. Механизм этого явления бкдет рассмотрен в следующей лекции.

4. Закон «всё или ничего»:

Если раздражитель меньше пороговой силы, он никогда не вызовет ПД (потенциал действия) — «ничего». Но какой бы силы ни был надпороговый раздражитель, он всегда будет вызывать max для данного состояния электрическую реакцию, т.е. max пик ПД — «всё».

Ответная реакция, её характер зависят от скорости химических процессов обеспечивающих ответные реакции, так называемые скорости активационных и инактивационных /восстановительных/ процессов. Введенский назвал свойство клеток, тканей, связанное со скорость активационных и инактивационных процессов — лабильность(функциональная подвижность)-свойство клетки, ткани, отражающее их максимальные возможности.

Мера лабильности— этомаксимальная частота, которую способна воспроизвести ткань или клетка. Характеризуется способностью ткани отвечать ПД на каждое раздражение. У каждой тканилабильность различна: в синапсах — 40-50 раз в сек., в периферических нервах — до 20000 раз в сек.

Если лабильность ткани превышена, то ткань отвечает либо снижением ответной реакции, либо, если Вы долго будете принуждать ткань работать в режиме большем, чем лабильность — гибелью (это своего рода защитная реакция). Вот почему раздражение выше — по силе или по частоте — чем то, которое вызывает максимальный ответ — вызывает снижение ответа — пессимум(то, о чем мы говорили чуть раньше — при разборе закона силы — вот почему сверхсильные раздражители не дают сверхсильной реакции — они дают в здоровом организме снижение эффекта — это своеобразная защитная реакция).Частота раздраженияблизкая илисовпадающая с величиной лабильностивызывает максимальный ответ, т.е.является оптимальной/ оптимум частоты раздражения/

ВОЗБУДИМОСТЬ

Под возбудимостью понимают способность отвечать на раздражение формированием электрической активности /потенциалом действия/. У различных тканей возбудимость различна. У одной ткани возбудимость может изменяться в процессе жизнедеятельности, возбудимость у живой возбудимой ткани есть всегда, в не зависимости от действия раздражителя. Возбуждение это состояние, это реализованная возбудимость.

Меры возбудимости.

Для оценки возбудимости в каждой лаборатории функциональной диагностики существует специальный аппарат, называемый хронаксиметром(от слова — “хронос” — время). Это — прибор, который позволяет оценить возбудимость.

Итак, к мерам возбудимости относятся:

1. Порог раздражения— первая базисная мера раздражителя любой природы. Порог раздражения — см. выше.

Но для количественной оценки возбудимости в медицине используют не любой раздражитель, а используют электрический ток. Именно с помощью электрического тока тестируют мышцы, нервы, синапсы.

Электрический ток точно дозируется— электрический ток можно легко дозировать, при чем по двум показателям:по силеипо времени действия.

С другими раздражителями иначе: например, химический — можно дозировать по силе (концентрации), но нельзя — по длительности, так как для его отмывания нужно время.

С помощью электрического тока получены еще 3 меры возбудимости, одна из которых используется в медицине.

1. Базисная мера — это реобаза.

Это — минимальная сила постоянного тока, которая, действуя длительное, но определенное время, способна вызвать ответную реакцию. Недостаток этой меры — определение времени трудно определимо — оно расплывчато.

2. Полезное время — то время, которое должна действовать сила тока в 1 реобазу, чтобы вызвать ответную реакцию. Но и эта мера возбудимости не нашла своего применения в медицинской практике, потому что, как показывает график, она находится на очень пологой части кривой «сила — время» и любая неточность (небольшая неточность) вела к большой ошибке.

3. Поэтому в практику была введена еще одна мера — хронаксия.

Это — минимальное время, в течение которого должна действовать сила тока в 2 реобазы, чтобы вызвать ответную реакцию. На графике — это тот участок кривой, где зависимость между силой и временем точно прослеживается. Посредством хронаксии определяют возбудимость нервов, мышц, синапсов. Этим методом определяют, где же наступило поражение нервно-мышечной системы: на уровне мышцы, нервов, синапсов или центральных образований.

Нормальная возбудимостьв покое принимается за 100 %. Возбудимостьхарактеризуется разностью между потенциалом мембраны и КУДом.

Период начального изменения возбудимости при формировании ПД называется периодом супернормальной возбудимости. В момент достижения КУД наступает максимальная проницаемость мембраны для натрия. В этот момент натрий потоком идет в клетку. Если в момент пика нанести новое раздражение на клетку, то клетка на нее не ответит, каким бы сильным раздражителем не пользовались. Натрий потоком идет в клетку, и нет таких сил, чтобы это остановить, выкачать натрий из клетки и снова его закачать. В этот момент возбудимость у клетки будет равнанулю (фаза абсолютной рефрактерности). По мере реполяризации будет происходить процесс восстановления возбудимости. Это называетсяфазой относительной рефрактерности(клетку могут возбудить только чрезвычайно сильные раздражители). Отрицательный следовой потенциал обусловлен гиперполяризацией мембраны. А раз поляризация избыточна, то возбудимость будет пониженной — этофаза субнормальной возбудимости(ниже нормальной возбудимости).

ПАРАБИОЗ

Парабиоз— означает «около жизни». Он возникает при действии на нервыпарабиотических раздражителей(аммиак, кислота, жирорастворители, КClи т.д.), этот раздражительменяет лабильность, снижает ее. Причем снижает ее фазно, постепенно.

Фазы парабиоза:

1. Сначала наблюдается уравнительная фазапарабиоза. Обычно сильный раздражитель дает сильный ответ, а меньший — меньший. Здесь наблюдаются одинаково слабые ответы на различные по силе раздражители( Демонстрация графика).

2. Вторая фаза — парадоксальная фазапарабиоза. Сильный раздражитель дает слабый ответ, слабый — сильный ответ.

3. Третья фаза — тормозная фазапарабиоза. И на слабый и на сильный раздражитель ответа нет. Это связано с изменением лабильности.

Первая и вторая фаза — обратимые, т.е. при прекращении действия парабиотического агента ткань восстанавливается до нормального состояния, до исходного уровня.

Третья фаза — не обратимая, тормозная фаза через короткий промежуток времени переходит в гибель ткани.

Механизмы возникновения парабиотических фаз

1. Развитие парабиоза обусловлено тем, что под действием повреждающего фактора происходит снижение лабильности, функциональной подвижности. Это лежит в основе ответов, которые называютфазы парабиоза.

2. В нормальном состоянии ткань подчиняется закону силы раздражения. Чем больше сила раздражения, тем больше ответ. Существует раздражитель, который вызывает максимальный ответ. И эту величину обозначают как оптимум частоты и силы раздражения.

Если эту частоту или силу раздражителя превысить, то ответная реакция снижается. Это явление — пессимум частоты или силы раздражения.

3. Величина оптимума совпадает с величиной лабильности. Т.к. лабильность — это максимальная способность ткани, максимально большой ответ ткани. Если лабильность меняется, то величины, на которых вместо оптимума развивается пессимум, сдвигаются. Если изменить лабильность ткани, то та частота, которая вызывала оптимум ответа, теперь будет вызывать пессимум.

Биологическое значение парабиоза

Открытие Введенским парабиоза на нервно-мышечном препарате в лабораторных условиях имело колоссальные последствия для медицины:

1. Показал, что явление смерти не мгновенно, существует переходный период между жизнью и смертью.

2. Этот переход осуществляется пофазно.

3. Первая и вторая фазы обратимы, а третьяне обратимая.

Эти открытия привели в медицине к понятиям — клиническая смерть, биологическая смерть.

Клиническая смерть— это обратимое состояние.

Биологическая смерть— необратимое состояние.

Как только сформировалось понятие «клиническая смерть», то появилась новая наука — реаниматология(«ре» — возвратный предлог, «анима» — жизнь).

studfiles.net

8. Раздражимость и возбудимость…

Возбуждение — процесс, который возникает только при действии раздражителя.

Раздражители— факторы, которые воздействуют на биологические клетки.

Качественно (по природе) раздражители делятся на:

физические(электромагнитные волны, электрический ток, механические воздействия, температура),

химические.

По биологической значимости:

адекватные(присущи для восприятия данному виду рецептора)

неадекватные(не являются естественными с точки зрения природы или силы раздражения).

Все раздражители (по силе) делятся на: пороговые, подпороговые, надпороговые

Порог раздражителя— та минимальная сила, при действии которой возникает возбуждение.

Законы раздражения

Действие раздражителя описывается несколькими законами:

1. Закон силы раздражения:

Чем больше сила раздражения, тем, до известных пределов, сильнее ответная реакция.

Раздражители имеют нижний предел — подпороговоераздражение не вызывает ответной реакции. Возбудимые ткани работают только на пороговых и надпороговых раздражителях.

Но есть сила раздражения для любого биологического раздражителя, которая способна вызывать max эффект — оптимальная сила (оптимум частоты и силы раздражения).

Если сила больше, чем оптимальная, то ответная реакция ниже — пессимум частоты или силы раздражения.

2. Закон длительности раздражения:

Чем длительнее раздражение, необходимое для возникновения возбуждения, тем сильнее, до известных пределов, ответная реакция живых систем.

Есть зависимость между силой раздражения и временем, в течение которого этот раздражитель должен действовать, чтобы вызвать ответную реакцию. Зависимость выражается гиперболой, следовательно, даже сильные раздражители, действуя кратковременно, либо не способны вызвать ответную реакцию, либо — слабую ответную реакцию и наоборот.

График «сила-время»

Особенно чётко зависимость между силой и временем в прослеживается в диапазоне промежуточных величин.

3. Закон градиента силы:

Величина ответной реакции и её характер зависят ещё и от интенсивности/крутизны/ нарастания действия силы.

Более интенсивное нарастание силы раздражения вызывает больший ответ. При этом длительное действие раздражителей одной и той же по величине силы, приводит к развитию аккомодации— явления, которое выражается в понижении чувствительности ткани к раздражению, уменьшению возбудимости ткани. Механизм этого явления бкдет рассмотрен в следующей лекции.

4. Закон «всё или ничего»:

Если раздражитель меньше пороговой силы, он никогда не вызовет ПД (потенциал действия) — «ничего». Но какой бы силы ни был надпороговый раздражитель, он всегда будет вызывать max для данного состояния электрическую реакцию, т.е. max пик ПД — «всё».

Ответная реакция, её характер зависят от скорости химических процессов обеспечивающих ответные реакции, так называемые скорости активационных и инактивационных /восстановительных/ процессов. Введенский назвал свойство клеток, тканей, связанное со скорость активационных и инактивационных процессов — лабильность(функциональная подвижность)-свойство клетки, ткани, отражающее их максимальные возможности.

Мера лабильности— этомаксимальная частота, которую способна воспроизвести ткань или клетка. Характеризуется способностью ткани отвечать ПД на каждое раздражение. У каждой тканилабильность различна: в синапсах — 40-50 раз в сек., в периферических нервах — до 20000 раз в сек.

Если лабильность ткани превышена, то ткань отвечает либо снижением ответной реакции, либо, если Вы долго будете принуждать ткань работать в режиме большем, чем лабильность — гибелью (это своего рода защитная реакция). Вот почему раздражение выше — по силе или по частоте — чем то, которое вызывает максимальный ответ — вызывает снижение ответа — пессимум(то, о чем мы говорили чуть раньше — при разборе закона силы — вот почему сверхсильные раздражители не дают сверхсильной реакции — они дают в здоровом организме снижение эффекта — это своеобразная защитная реакция).Частота раздраженияблизкая илисовпадающая с величиной лабильностивызывает максимальный ответ, т.е.является оптимальной/ оптимум частоты раздражения/

ВОЗБУДИМОСТЬ

Под возбудимостью понимают способность отвечать на раздражение формированием электрической активности /потенциалом действия/. У различных тканей возбудимость различна. У одной ткани возбудимость может изменяться в процессе жизнедеятельности, возбудимость у живой возбудимой ткани есть всегда, в не зависимости от действия раздражителя. Возбуждение это состояние, это реализованная возбудимость.

Меры возбудимости.

Для оценки возбудимости в каждой лаборатории функциональной диагностики существует специальный аппарат, называемый хронаксиметром(от слова — “хронос” — время). Это — прибор, который позволяет оценить возбудимость.

Итак, к мерам возбудимости относятся:

1. Порог раздражения— первая базисная мера раздражителя любой природы. Порог раздражения — см. выше.

Но для количественной оценки возбудимости в медицине используют не любой раздражитель, а используют электрический ток. Именно с помощью электрического тока тестируют мышцы, нервы, синапсы.

Электрический ток точно дозируется— электрический ток можно легко дозировать, при чем по двум показателям:по силеипо времени действия.

С другими раздражителями иначе: например, химический — можно дозировать по силе (концентрации), но нельзя — по длительности, так как для его отмывания нужно время.

С помощью электрического тока получены еще 3 меры возбудимости, одна из которых используется в медицине.

1. Базисная мера — это реобаза.

Это — минимальная сила постоянного тока, которая, действуя длительное, но определенное время, способна вызвать ответную реакцию. Недостаток этой меры — определение времени трудно определимо — оно расплывчато.

2. Полезное время — то время, которое должна действовать сила тока в 1 реобазу, чтобы вызвать ответную реакцию. Но и эта мера возбудимости не нашла своего применения в медицинской практике, потому что, как показывает график, она находится на очень пологой части кривой «сила — время» и любая неточность (небольшая неточность) вела к большой ошибке.

3. Поэтому в практику была введена еще одна мера — хронаксия.

Это — минимальное время, в течение которого должна действовать сила тока в 2 реобазы, чтобы вызвать ответную реакцию. На графике — это тот участок кривой, где зависимость между силой и временем точно прослеживается. Посредством хронаксии определяют возбудимость нервов, мышц, синапсов. Этим методом определяют, где же наступило поражение нервно-мышечной системы: на уровне мышцы, нервов, синапсов или центральных образований.

Нормальная возбудимостьв покое принимается за 100 %. Возбудимостьхарактеризуется разностью между потенциалом мембраны и КУДом.

Период начального изменения возбудимости при формировании ПД называется периодом супернормальной возбудимости. В момент достижения КУД наступает максимальная проницаемость мембраны для натрия. В этот момент натрий потоком идет в клетку. Если в момент пика нанести новое раздражение на клетку, то клетка на нее не ответит, каким бы сильным раздражителем не пользовались. Натрий потоком идет в клетку, и нет таких сил, чтобы это остановить, выкачать натрий из клетки и снова его закачать. В этот момент возбудимость у клетки будет равнанулю (фаза абсолютной рефрактерности). По мере реполяризации будет происходить процесс восстановления возбудимости. Это называетсяфазой относительной рефрактерности(клетку могут возбудить только чрезвычайно сильные раздражители). Отрицательный следовой потенциал обусловлен гиперполяризацией мембраны. А раз поляризация избыточна, то возбудимость будет пониженной — этофаза субнормальной возбудимости(ниже нормальной возбудимости).

ПАРАБИОЗ

Парабиоз— означает «около жизни». Он возникает при действии на нервыпарабиотических раздражителей(аммиак, кислота, жирорастворители, КClи т.д.), этот раздражительменяет лабильность, снижает ее. Причем снижает ее фазно, постепенно.

Фазы парабиоза:

1. Сначала наблюдается уравнительная фазапарабиоза. Обычно сильный раздражитель дает сильный ответ, а меньший — меньший. Здесь наблюдаются одинаково слабые ответы на различные по силе раздражители( Демонстрация графика).

2. Вторая фаза — парадоксальная фазапарабиоза. Сильный раздражитель дает слабый ответ, слабый — сильный ответ.

3. Третья фаза — тормозная фазапарабиоза. И на слабый и на сильный раздражитель ответа нет. Это связано с изменением лабильности.

Первая и вторая фаза — обратимые, т.е. при прекращении действия парабиотического агента ткань восстанавливается до нормального состояния, до исходного уровня.

Третья фаза — не обратимая, тормозная фаза через короткий промежуток времени переходит в гибель ткани.

Механизмы возникновения парабиотических фаз

1. Развитие парабиоза обусловлено тем, что под действием повреждающего фактора происходит снижение лабильности, функциональной подвижности. Это лежит в основе ответов, которые называютфазы парабиоза.

2. В нормальном состоянии ткань подчиняется закону силы раздражения. Чем больше сила раздражения, тем больше ответ. Существует раздражитель, который вызывает максимальный ответ. И эту величину обозначают как оптимум частоты и силы раздражения.

Если эту частоту или силу раздражителя превысить, то ответная реакция снижается. Это явление — пессимум частоты или силы раздражения.

3. Величина оптимума совпадает с величиной лабильности. Т.к. лабильность — это максимальная способность ткани, максимально большой ответ ткани. Если лабильность меняется, то величины, на которых вместо оптимума развивается пессимум, сдвигаются. Если изменить лабильность ткани, то та частота, которая вызывала оптимум ответа, теперь будет вызывать пессимум.

Биологическое значение парабиоза

Открытие Введенским парабиоза на нервно-мышечном препарате в лабораторных условиях имело колоссальные последствия для медицины:

1. Показал, что явление смерти не мгновенно, существует переходный период между жизнью и смертью.

2. Этот переход осуществляется пофазно.

3. Первая и вторая фазы обратимы, а третьяне обратимая.

Эти открытия привели в медицине к понятиям — клиническая смерть, биологическая смерть.

Клиническая смерть— это обратимое состояние.

Биологическая смерть— необратимое состояние.

Как только сформировалось понятие «клиническая смерть», то появилась новая наука — реаниматология(«ре» — возвратный предлог, «анима» — жизнь).

studfiles.net

Законы раздражения возбудимых тканей.

Законы раздражения отражают определенную зависимость между действием раздражителя и ответной реакцией возбудимой ткани. К законам раздражения относятся, закон силы, закон «все или ничего», закон аккомодации (Дюбуа-Реймона), закон силы-времени (силы-длительности), закон полярного действия постоянного тока, закон физиологического электротона.

Закон силы: чем больше сила раздражителя, тем больше величина ответной реакции. В соответствии с этим законом функционируют сложные структуры, например, скелетная мышца. Амплитуда ее сокращений от минимальных (пороговых) величин постепенно увеличивается с увеличением силы раздражителя до субмаксимальных и максимальных значений. Это обусловлено тем, что скелетная мышца состоит из множества мышечных волокон, имеющих различную возбудимость. Поэтому на пороговые раздражители отвечают только те мышечные волокна, которые имеют самую высокую возбудимость, амплитуд, мышечного сокращения при этом минимальна. С увеличением силы раздражителя в реакцию вовлекается все большее количество мышечных волокон, и амплитуда сокращения мышц все время увеличивается. Когда в реакцию вовлечены все мышечные волокна, составляющие данную мышцу, дальнейшее увеличение силы раздражителя не приводит к увеличению амплитуды сокращения.

Закон «все или ничего»: подпороговые раздражители не вызывают ответной реакции («ничего»), на пороговые раздражители возникает максимальная ответная реакция («все»). По закону «все или ничего’ сокращаются сердечная мышца и одиночное мышечное волокно. Закон «все или ничего» не абсолютен. Во-первых, на раздражители подпороговой силы не возникает видимой ответной реакции, но в ткани происходят изменения мембранного потенциала покоя в виде возникновения местного возбуждения (локального ответа). Во-вторых, сердечная мышца, растянутая кровью, при наполнении ею камер сердца, реагирует по закону «все или ничего», но амплитуда ее сокращений будет больше по сравнению с сокращением сердечной мышцы, не растянутой кровью.

Закон раздражения — Дюбуа-Реймона (аккомодации) раздражающее действие постоянного тока зависит не только от абсолютной величины силы тока или его плотности, но и от скорости нарастания тока во времени. При действии медленно нарастающего раздражителя возбуждение не возникает, так как происходит приспосабливание возбудимой ткани к действию этого раздражителя, что получило название аккомодации. Аккомодация обусловлена тем, что при действии медленно нарастающего раздражителя в мембране возбудимой ткани происходит повышение критического уровня деполяризации. При снижении скорости нарастания силы раздражителя до некоторого минимального значения потенциал действия вообще не возникает. Причина заключается в том, что деполяризация мембраны является пусковым стимулом к началу двух процессов: быстрого, ведущего к повышению натриевой проницаемости, и тем самым обусловливающего возникновение потенциала действия, и медленного, приводящего к инактивации натриевой проницаемости и как следствие этого — окончанию потенциала действия. При быстром нарастании стимула повышение натриевой проницаемости успевает достичь значительной величины прежде, чем наступит инактивация натриевой проницаемости. При медленном нарастании тока на первый план выступают процессы инактивации, приводящие к повышению порога или ликвидации возможности генерировать ПД вообще. Способность к аккомодации различных структур неодинакова. Наиболее высокая она у двигательных нервных волокон, а наиболее низкая у сердечной мышцы, гладких мышц кишечника, желудка.

Закон силы-дительности: раздражающее действие постоянного тока зависит не только от его величины, но и от времени, в течение которого он действует. Чем больше ток, тем меньше времени он должен действовать для возникновения возбуждения.

Исследования зависимости силы-длительности показали, что последняя имеет гиперболический характер (рис. 3). Из этого следует, что ток ниже некоторой минимальной величины не вызывает возбуждение, как бы длительно он не действовал, и чем короче импульсы тока, тем меньшую раздражающую способность они имеют. Причиной такой зависимости является мембранная емкость. Очень «короткие» токи просто не успевают разрядить эту емкость до критического уровня деполяризации. Минимальная величина тока, способная вызвать возбуждение при неограниченно длительном его действии, называется реобазой. Время, в течение которого действует ток, равный реобазе,и вызывает возбуждение, называется полезным временем.

В связи с тем, что определение этого времени затруднено, было введено понятие хронаксия — минимальное время, в течение которого ток, равный двум реобазам, должен действова.ть на ткань, чтобы вызвать ответную реакцию. Определение хронаксии — хронаксиметрия — находит применение в клинике. Электрический ток, приложенный к мышце, проходит через как мышечные, так и нервные волокна и их окончания, находящиеся в этой мышце. Так как хронаксия нервных волокон значительно меньше хронаксии мышечных волокон, то при исследовании хронаксии мышцы практически получают хронаксию нервных волокон. Если нерв поврежден или произошла гибель соответствующих мотонейронов спинного мозга (это имеет место при полиомиелите и некоторых других заболеваниях), то поисходит перерождение нервных волокон и тогда определяется хронаксия уже мышечных волокон, которая имеет большую величину, чем нервных волокон.

Закон полярного действия постоянного тока: при замыкании тока возбуждение возникает под катодом, а при размыкании — под анодом. Прохождение постоянного электрического тока через нервное или мышечное волокно вызывает изменение мембранного потенциала покоя. Так, в области приложения к возбудимой ткани катода положительный потенциал на наружной стороне мембраны уменьшается, возникает деполяризация, которая быстро достигает критического уровня и вызывает возбуждение. В области же приложения анода положительный потенциал на наружной стороне мембраны возрастает, происходит гиперполяризация мембраны и возбуждение не возникает. Но при этом под анодом критический уровень деполяризации смещается к уровню потенциала покоя. Поэтому при размыкании цепи тока гиперполяризация на мембране исчезает, и потенциал покоя, возвращаясь к исходной величине, достигает смещенного критического уровня и возникает возбуждение.

Закон физиологического электротона: действие постоянного тока на ткань сопровождается изменением ее возбудимости. При прохождении постоянного тока через нерв или мышцу порог раздражения под катодом и соседних с ним участках понижается вследствие деполяризации мембраны — возбудимость повышается. В области приложения анода происходит повышение порога раздражения, т. е. снижение возбудимости вследствие гиперполяризации мембраны. Эти изменения возбудимости под катодом и анодом получили название электротона (электротоническое изменение возбудимости). Повышение возбудимости под катодом называется катэлектротоном, а снижение возбудимости под анодом – анэлектротоном.

При дальнейшем действии постоянного тока первоначальное повышение возбудимости под катодом сменяется ее понижением, развивается так называемая католическая депрессия. Первоначальное же снижение возбудимости под анодом сменяется ее повышением анодная экзальтация. При этом в области приложения катода происходит инактивация натриевых каналов, а в области действия анода происходит снижение калиевой проницаемости и ослабление исходной инактивации натриевой проницаемости.

studfiles.net

Закон «все или ничего»

Зависимость величины ответной реакции от силы раздражителя характеризуется несколькими законами раздражения: закон «все или ничего» и «правило силовых отношений».

Закон «все или ничего»

Согласно этому закону, подпороговые раздражения не вызывают возбуждения («ничего»), при пороговых и надпороговых стимулах возбуждение сразу приобретает максимальную величину («все») и уже не увеличивается при дальнейшем усилении раздражения. По этому закону функционируют структурные единицы – мышечное волокно, нервное волокно.

Эта закономерность первоначально была открыта Г. Боудичем в 1876 году при исследовании сердца, а в дальнейшем подтверждена и на других возбудимых тканях. Так, в 1945 году Като провел эксперимент на изолированной системе. Он изолировал мышечное волокно и действовал раздражителями различной силы. В качестве раздражителя использовал электрический ток. При действии раздражителей подпороговой величины 1, 2, 3, 4 мВ мышечное волокно не сокращалось. Пороговый раздражитель силой 5 мВ вызывал сокращение изолированного волокна и дальнейшее увеличение силы тока не вызывало усиления амплитуды сокращения.

В живой клетке существуют процессы, активно приостанавливающие этот процесс. Если на нервное или мышечное волокно действовать веществами, уменьшающими проницаемость для ионов натрия (кокаин, новокаин, уретан), это приведет к понижению возбуждения в исследуемом волокне, и, наоборот, влияние стимулов, приводящих к уменьшению проницаемости для ионов калия, способствует увеличению амплитуды возбуждения.

Закон силовых отношений

Функциональная единица (мышца, нерв) реагируют на изменение силы раздражителя по закону силовых отношений. Чем сильнее ток, тем сильнее реакция. Эта закономерность на раздражение выражается законом градуальности (силовых отношений).

В1876 году Боудич, а затем в 1905 году Люкас провел эксперимент на межпальцевой мышце лягушки, состоящей из 5 мышечных волокон. При действии подпороговых раздражителей (1, 2, 3 мВ) сокращения мышцы не происходило. Раздражитель пороговой силы (4 мВ) вызывал сокращение целой мышцы. Увеличение силы раздражителя (5, 6, 7, 8 мВ) вызывало увеличение амплитуды сокращения мышцы, пока сокращение не достигало максимальной величины (оптимум). После этого, дальнейшая стимуляция возрастающим по силе электрическим током (9, 10, 11, 12, 13 мВ) приводило к уменьшению амплитуды сокращения (пессимум).

Почему же это происходит?

Природа закона силовых отношений.

Мышца состоит из отдельных мышечных волокон, причем каждое волокно имеет различную возбудимость. При действии раздражителя пороговой силы возбуждаются более возбудимые мышечные волокна (пороговое сокращение). По мере увеличения силы тока в процесс возбуждения вовлекаются менее возбудимые мышечные волокна (резерв или субмаксимальные сокращения). В момент сокращения всех волокон регистрируется максимальное сокращение (предел). После этого наступает пессимум— ослабление реакции на очень сильное и очень частое возбуждение. Развивается тормозной ответ.

Закон силовых отношений имеет несколько свойств:

1) каждая возбудимая ткань имеет свой функциональный резерв;

2) каждая возбудимая ткань имеет свой функциональный предел (оптимум).

Лекция 2

studfiles.net