В соответствии с гипотезой а опарина – 1)жизнь переносится с планеты на планету 2)жизнь посвилась одновременно с появлением земли 3) жизнь зародилась на, беларуская мова

Содержание

Опарина теория

Теория Опарина. Отсутствие в атмосфере кислорода, вероятно, было необходимым условием для возникновения жизни. Лабораторные опыты показали, что органические вещества (основа живых организмов) значительно легче синтезируются (создаются) в восстановительной среде, чем в присутствии кислорода.[ …]

Общепризнанной теорией происхождения жизни является теория, впервые предложенная в 1924 г. А. И. Опариным (1894-1980) в его книге «Происхождение жизни». В дальнейшем эта теория подвергалась неоднократным уточнениям со стороны ее автора. Большой вклад в ее развитие внесли и многие другие ученые. В соответствии с теорией А. И. Опарина жизнь является результатом исторического односторонне направленного развития в виде постепенного усложнения органических субъединиц и развития их в сложные системы, обладающие свойствами живого (рис. 161).[ …]

В соответствии с теорией А. И. Опарина жизнь возникла в несколько стадий. На первой стадии в древней атмосфере сформировались простейшие углеводороды. Предполагают, что необиогенез начался 3-3,5 млрд лет назад.[ …]

Имея ряд доказательств, теория А. И. Опарина в наше время оказалась фундаментальной основой в формировании дальнейших представлений о происхождении жизни. С ней не согласны лишь «научные» креационисты, которые считают, что Земля возникла 10 000 лет назад и имеет сверхъестественное происхождение. Они считают также, что 10 000 лет назад появились растения и животные в современном виде и что их происхождение является тоже сверхъестественным. Однако, как и всякая другая научная теория, теория А. И. Опарина непрерывно подвергается совершенствованию. В частности, в последнее годы стали появляться новые научные данные, на основе которых сложилось представление о том, что жизнь возникла не в океане и не в мелководье, как полагали А. И. Опарин и Н. Г. Холодный, а в геотермальных источниках в раннем периоде (в архее) истории Земли и что первым полимером были молекулы РНК. Понимание РНК в качестве первого биологического полимера (по времени возникновения) означает совершенно новое представление, а именно: жизнь началась с РНК. Предполагают, что местами абиогенной поликонденсации азотистых оснований РНК (формирования цепей РНК) могли служить такие минералы, как цеолиты, характеризующиеся трехмерной сетчатой структурой. Эти минералы могли быть катализаторами (катализирующими свойствами обладала их поверхность), сходными с бел-ками-ферментами, появившимися значительно позднее. Поэтому, располагаясь в трещинах вулканических пород вблизи геотермальных источников, цеолиты «плавали» в горячих растворах (40°С) с высоким содержанием метана, аммиака, фосфатов и pH порядка 8,0, катализируя при этом сборку олигонуклеотидов в РНК. В последующем молекулы РНК развились в самореплицирующиеся структуры, которые затем стали изолированными от цеолитов. Наконец, они объединились с липидами, что способствовало подготовке их к жизни в океане, где завершалось образование первичных жизненных форм.[ …]

Подтвержденная экспериментально теория Опарина завоевала широкое признание, однако наиболее тонким звеном в ней (проблемой, не решенной до настоящего времени окончательно) является переход от сложных органических веществ к простым живым организмам. Предлагается лишь относительно приемлемая общая схема, и отсутствует единое мнение о деталях этого процесса.[ …]

Происхождение и эволюция микробов. Согласно теории академика Опарина о происхождении жизни на земле, первичными живыми капельками на поверхности планеты были коа-церваты. Коацерваты постепенно усложнялись, структура их совершенствовалась и появились микробы.[ …]

Приведенная гипотеза происхождения жизни А. И. Опарина — одна из самых признанных. Однако мысль о том, что живое возникло только лишь как результат вышеописанных случайных взаимодействий молекул, по выражению астронома Ф. Хойла, «столь же нелепа и неправдоподобна, как утверждение, что ураган, проносясь над мусорной свалкой, может привести к сборке «Боинга 747». Труднее всего по данной теории объяснить, как именно появилась способность живых существ к самовоспроизведению. Существующие гипотезы малоубедительны, и это никак не подтверждено экспериментально.[ …]

Облигатные анаэробы представляют собой, очевидно, пример ранних анаэробных форм жизни. Это согласуется с теорией происхождения жизни на Земле, по которой первичными организмами нашей планеты были анаэробы. Сравнительный биохимический анализ приводит к выводу, что в основе энергетического обмена всех без исключения организмов лежат одни и те же поразительно сходные между собой цепи реакций, не связанных с потреблением свободного кислорода,— реакции, которые происходят в клетках современных анаэробов (по А. И. Опарину).[ …]

При изучении реакций и процессов, происходящих в живой клетке, не всегда можно использовать результаты исследований, полученные при работе с очищенными ферментами. Длительное время оставалось неясным, каким образом в живой клетке находятся в близком соседстве, не приходя во взаимодействие, ферменты и вещества, на которые они могут действовать. Очевидно, в клетке имеется какое-то пространственное разделение ферментов и веществ, поэтому они не взаимодействуют друг с другом. Академик А. И. Опарин в 1934 г. дал объяснение этому явлению. По его мнению, ферменты в живых клетках могут адсорбироваться на поверхностях макрогетерогенных систем, например на белковых веществах протоплазмы клетки, теряя при этом свою гидролитическую способность. Но она может возвратиться в том •случае, если ферменты опять перейдут в раствор. Подтверждением правильности этой теории является наличие большого фактического материала. Можно привести следующий пример: А. И. Опарин и А. Л. Курсанов показали, что при адсорбции ферментов на дубильных веществах теряется их гидролитическая активность, но это связано не с изменением самих ферментов, а только лишь с переходом их из раствора в осадок. Если такие ферменты перевести опять в раствор, то активность их восстанавливается.[ …]

ru-ecology.info

Гипотеза А. И. Опарина

Гипотеза А. И. Опарина

Пик исследований А. И. Опарина и его соавторов приходился на 50-60-е годы, хотя его книга «Происхождение жизни» была опубликована еще в 1924 году.

С самого начала этот процесс был связан с геологической эволюцией. В настоящее время принято считать, что возраст нашей планеты составляет примерно 4,3 млрд. лет. В далеком прошлом Земля была очень горячей (4000-8000 °С). По мере остывания образовывалась земная кора, а из воды, аммиака, двуокиси углерода и метана — атмосфера. Такая атмосфера называется «восстановительной», поскольку не содержит свободного кислорода. При падении температуры на поверхности Земли ниже 100°С образовались первичные водоемы. Под действием электрических разрядов, тепловой энергии, ультрафиолетовых лучей на газовые смеси происходил синтез органических веществ-мономеров, которые локально накапливались и соединялись друг с другом, образуя полимеры. Можно допустить, что тогда же одновременно с полимеризацией шло образование надмолекулярных комплексов-мембран.

По однотипным правилам синтезировались в «первичном бульоне» гидросферы Земли полимеры всех типов: аминокислоты, полисахариды, жирные кислоты, нуклеиновые кислоты, смолы, эфирные масла и др. Это предположение было проверено экспериментально в 1953 году на установке Стэнли Миллера. Ему удалось получить многие вещества, имеющие важное биологическое значение, в том числе ряд аминокислот, аденин и простые сахара. Позднее в сходном эксперименте были синтезированы нуклеотидные цепи длиной в шесть мономерных единиц (простые нуклеиновые кислоты).

Органические вещества скапливались в сравнительно неглубоких водоемах, прогреваемых Солнцем. Солнечное излучение доносило до поверхности Земли ультрафиолетовые лучи, которые в наше время сдерживаются озоновым слоем атмосферы. Так энергией обеспечивалось протекание химических реакций между органическими соединениями и синтез поли­меров.

Молекулы воды, смачивая только гидрофильные концы молекул жиров, ставили их как бы «на голову», гидрофобными концами вверх. Таким способом создавался комплекс упорядоченных молекул жиров, которые за счет прибавления к ним новых молекул постепенно отграничивали от всей окружающей среды некоторое пространство, которое и стало первичной клеткой, или коацерватом — пространственно обособившейся целостной системой. Коацерваты оказались способными поглощать из внешней среды различные органические вещества, что обеспечивало возможность первичного обмена веществ со средой.

Таким образом, первичная клеточная структура, по Опарину, представляла собой открытую химическую микроструктуру, которая была наделена способностью к первичному обмену веществ, но еще не имела системы для передачи генетической информации на основе нуклеиновых кислот. Такие системы, черпающие из окружающей среды вещества и энергию, могут противостоять нарастанию энтропии и способствовать ее уменьшению в процессе своего роста и развития, что является характерным признаком всех живых систем.

Концепция А. И. Опарина в научном мире весьма популярна. Сильной ее стороной является точное соответствие теории химической эволюции, согласно которой зарождение жизни — закономерный результат. Аргументом в пользу этой концепции служит возможность экспериментальной проверки ее основных положений в лабораторных условиях.

Слабой стороной концепции А. И. Опарина является допущение возможности самовоспроизведения коацерватных структур в отсутствие систем, обеспечивающих генетическое кодирование. В рамках концепции Опарина не решена главная проблема — о движущих силах саморазвития химических систем и перехода от химической эволюции к биологической, о причине таинственного скачка от неживой материи к живой.


Спорные вопросы концепций происхождения жизни

Что было первичным — белки или нуклеиновые кислоты?

Если предположить, что эти классы полимеров возникли не одновременно, то как и когда произошло их объединение в единую систему передачи генетической информации?

Белки в организме служат катализаторами протекающих биохимических реакций и являются клеточными структурными элементами. Они представляют собой цепочки аминокислот, удерживающихся пептидными связями. Из огромного арсенала аминокислот для образования животных и растительных белков природа использовала 20 типов. Разнообразие белков определяется различными аминокислотами и последовательностью их расположения в белковых цепях. Даже при полной

Одним из наиболее сложных вопросов, связанных с происхождением жизни, является характеристика особенностей доклеточного предка.

идентичности состава и последовательности расположения аминокислот различия в пространственной структуре белков приводят к разнице в их физико-химических свойствах. Белки живого происхождения имеют одинаковую изомерию, тогда как абиогенно полученные белки содержат равное количество возможных пространственных структур.

Нужный в данный момент белок синтезируется клеткой из запасенного материала с помощью системы воспроизведения, которая содержит в закодированном виде необходимую информацию. Свои функции система воспроизведения осуществляет при помощи полимерных соединений дезоксирибонуклеиновой кислоты (ДНК) и рибонуклеиновой кислоты (РНК). ДНК является хранительницей генетической информации, заложенной в последовательность оснований, расположенных вдоль ее цепи. РНК способна считывать хранимую в ДНК информацию, она переносит ее в среду с исходными для синтеза белка материалами и строит из них нужные белковые молекулы.

Существует одно важное и пока не нашедшее объяснения различие в свойствах живого и неживого веществ.

Концепция А. И. Опарина относится к группе голобиоза, поскольку исходит из идеи первичности структур типа клеточной, наделенной способностью к элементарному обмену веществ при участии ферментного механизма. Нуклеиновые кислоты при таком механизме появляются на завершающем этапе.

Примером иной точки зрения служит концепция Дж. Холдейна, согласно которой первичной была не структура, способная к обмену веществ с окружающей средой, а макромолекулярная система, подобная гену и способная к саморепродукции, и потому названная им «голым геном». Подобную группу концепций называют генобиозом или информационной гипотезой.

Позиции гипотезы генобиоза заметно укрепились к 1970-м годам, а в 1980-е годы в представлениях о доклеточном предке она стала доминирующей. Общее признание в рамках этой гипотезы получила идея, согласно которой хирально чистыми молекулярными «блоками», составившими основу для зарождения живого, были макромолекулы ДНК или РНК.


Современные представления о происхождении жизни: проблемы и решения

Оказалось, что РНК наделена такой же генетической памятью, как и ДНК, и вопреки устоявшейся генетической догме возможен перенос генетической информации от РНК к ДНК при участии фермента, открытого в начале 1970-х годов. Была установлена способность РНК к саморепродукции в отсутствии белковых ферментов, то есть автокаталитическая функция.

Гипотеза о механизме зарождения макромолекул, необходимых для строительства белка, высказана Эйгеном в работе «Самоорганизация материи в ходе химической эволюции» (1971). Эйген распространил на процессы, которые должны были происходить при эволюционном скачке, принцип дарвиновского отбора и ввел понятие конкуренции гиперциклов, или циклов химических реакций, которые приводят к образованию белковых молекул. Циклы, работающие быстрее и эффективнее остальных, выживают и побеждают в конкурентной борьбе. Пищей служат молекулы мономеров, которые поглощаются при полимеризации или в ходе циклов реакций. В «первичном бульоне» присутствуют и катализаторы химических реакций, которые образуются в них как промежуточные продукты, то есть возникает автокаталитическая самоорганизующаяся система.

По существу, это главный способ роста всех живых тканей, в соответствии с которым с матричных молекул ДНК или РНК считывается наследственная информация и на ее основе строится новая молекула. Можно считать, что второй кинетический предел является пределом добиологической химической эволюции, то есть с достижением способности к самовоспроизведению завершается наивысший этап химической эволюции сложных каталитических систем. Аристотель, позже поддерживали Галилей, Декарт, Ламарк, Гегель. Однако еще в 1688 году итальянский биолог Франческо Реди, живший во Флоренции, серией опытов с открытыми и закрытыми сосудами доказал, что появляющиеся в гниющем мясе маленькие черви — это личинки мух, и сформулировал свой принцип: все живое из живого (концепций биогенеза). В 1860 году Луи Пастер доказал, что бактерии вездесущи и могут заражать неживые вещества, для избавления от них необходима стерилизация. Пастер доказал справедливость теории биогенеза и окончательно опроверг теорию спонтанного зарождения.

Практически одновременно с работами Пастера (в 1865 году) на стыке космогонии и физики ученым Г. Рихтером разрабатывается гипотеза занесения живых существ на Землю из космоса — концепция панспермии. Согласно этой идее зародыши простых организмов могли попасть в земные условия вместе с метеоритами и космической пылью и дать начало эволюции живого, то есть жизнь могла возникнуть в разное время в разных частях Галактики и была перенесена на Землю тем или иным способом. Подобные мысли разделяли крупнейшие ученые конца XIX — начала XX века: Либих, Кельвин, Гельмгольц и др. В 1908 году шведский химик Сванте Аррениус поддержал гипотезу происхождения жизни из космоса. Он описывал, как с населенных другими существами планет уходят в мировое пространство частички вещества, пылинки и живые споры микроорганизмов. Частицы жизни, носящиеся в бескрайних просторах космоса, переносились давлением света от звезд, оседали на планеты с подходящими условиями для жизни и начинали новую жизнь на таких планетах. Эти идеи поддерживали выдающиеся русские ученые академики С. П. Костычев, Л. С. Берг, П. П. Лазарев.

Несколько иную позицию занимал крупнейший русский ученый академик В. И. Вернадский. Он разделял идею вечности жизни, но не в плане ее космического перераспределения между планетами, а в смысле неразрывности материи и жизни. Жизнь и материя, по Вернадскому, взаимосвязаны и между ними нет временной разделенности.

Для обоснования панспермии обычно используют наскальные рисунки с изображением предметов, похожих на ракеты или космонавтов, а также появление НЛО. При изучении вещества метеоритов и комет были обнаружены многие «предшественники живого» — органические соединения, синильная кислота, вода, формальдегид, цианогены. В 1975 году предшественники аминокислот найдены в лунном грунте и метеори­тах. Сторонники гипотезы занесения жизни из космоса считают их «семенами», посеянными на Земле.

Тем не менее, пока эта гипотеза полного научного обоснования не получила. При всей широте спектра возможных условий существования живых организмов считается, что они должны погибнуть в космосе под действием излучения. Космические исследования до настоящего времени позволяют считать, что вероятность обнаружить жизнь в пределах Солнечной системы очень мала. Доводы в пользу нахождения в метеоритах объектов, напоминающих примитивные формы жизни, пока выглядят малоубедительными. К тому же теория панспермии не предлагает никакого механизма для объяснения первичного возникновения жизни, а переносит проблему возникновения жизни в какое-то другое место Вселенной.

Сторонники теории вечного существования жизни считают, что Земля никогда не возникала, а существовала вечно. При этом она всегда была способна поддерживать жизнь, причем некоторые виды при изменениях условий на планете резко меняли численность или вымирали. Большая часть доводов в пользу этой теории связана с такими неясными аспектами эволюции, как значение разрывов в палеонтологической летописи, с все более высокими оценками возраста Земли, с обнаружением некоторых видов животных, которые считались ранее вымершими.

Современные представления о происхождении жизни восходят к гипотезам советского академика А. И. Опарина (1923 год) и английского естествоиспытателя Джона Скотта Холдейна (1929 год). В 20-е годы XX века русский академик Опарин предположил, что в растворах высокомолекулярных соединений могут самопроизвольно образовываться зоны повышенной концентрации. Эти зоны, которые относительно отделены от внешней среды и могут поддерживать обмен с ней. Он назвал это теорией Коацерватных каплей, или просто коацерватов.

В 1953 г. американский биолог Стэнли Миллер решил проверить гипотезу Опарина и воспроизвёл в специальной установке природные условия древней Земли. В стеклянном сосуде находились нагретая вода («океан») и смесь газов — аммиака, метана и водорода («первичная атмосфера»). Через «атмосферу» проскакивали искры — «молнии». Опыт продолжался в течение недели. Через неделю «первичный бульон» проанализировали и нашли в нём многие органические вещества, в том числе 5 аминокислот. В другой раз в результате такого же опыта были обнаружены даже нуклеиновые кислоты — цепочки, длиной до шести звеньев. Согласно одной гипотезе, содержание органических веществ выше всего было в высыхающих лужах, остававшихся на берегу океана после отлива. Здесь образовывались цепочки белков и нуклеиновых кислот. При этом, чем длиннее была цепочка, тем она была устойчивее. Она закручивалась в клубок, который разрушался уже не так легко.


В 1953 году Стэнли Миллером экспериментально была успешно осуществлёна попытка синтеза аминокислот и других органических веществ в условиях, якобы бы воспроизводящих условия первобытной Земли. Это было преподнесено как «создание жизни в экспериментальной пробирке». Несмотря на успех абиогенного синтеза, условия, в которых были созданы аминокислоты, являются искусственно подобранным сочетанием факторов, что в реальности не было бы возможным.

Подробности опыта С. Миллера:



Предположение для начала

Реальность

Атмосфера Земли состояла из метана и аммиака, опыт проводится в специальной атмосфере, содержащий только аммиак и метан

В атмосфере Земли, не могло быть много аммиака (разлагается под действие ультрафиолета) и метана (следы не найдены в осадочных породах)

В ходе опыта весь кислород был откачан, так как он разрушает результирующее вещество

На максимально доступных глубинах Земли находят следы большого количества кислорода (окислителя всего). Кислород был в атмосфере Земли всегда

Использовалась электрическая искра для соединения молекул газа

Искра не только соединяет молекулы газа, но и является разрушителем такой связи, причём последнее происходит гораздо чаще

Будут получены только левозакрученные аминокислоты (L-формы), составляющие протеины в живых организмах

Получена токсичная смесь:

  1. Основной продукт опыта — дёготь (85%), являющийся помехой для течения органических реакции, и несущий смерть всему живому

  2. Получены как левозакрученные (L) так и правозакрученные аминокислоты (D), причём наличие последних полностью перечёркивает возможность образование протеинов

Результат опыта:

  • Неверные начальные вещества

  • неверные условия

  • отсутствие желаемого результата (строительный материал клетки, протеины, не могут быть созданы).

Стэнли Миллер, не отвечает на критику собственного опыта, что косвенно свидетельствует о том, что он и сам признал собственные ошибки.

Опарин считал, что главная роль в превращении неживого в живое принадлежала белкам. В «первичном бульоне» образовывались «сгустки» белка (коацерваты). Они могли вбирать в себя новые питательные вещества, разбиваться на более мелкие капельки. Конечно, они ещё не были живыми .По словам Опарина, расстояние от этих «сгустков» до самых примитивных бактерий ничуть не меньше, чем от амёбы до человека. Главное, что отличало «сгустки» от клеток, — неспособность точно воспроизводить самих себя. Чтобы «штамповать» одинаковые белки, нужна матрица. В ныне живущих организмах (от бактерий и вирусов до человека) этой матрицей служат нуклеиновые кислоты (РНК, ДНК).

В какой момент белковые «сгустки» «перешагнули » порог живого? Тогда, когда включили в себя нуклеиновые кислоты, которые позволили создавать хотя бы грубые, приблизительные копии уже имеющихся белков. Это были уже зачатки примитивных клеток.

Вещества, подобные тем, которые были получены С.Миллером в его опыте, образуются и в настоящее время, когда газообразные продукты извержения вулканов и лава вступают в реакцию с водой. Кроме того, различные органические соединения обнаруживаются также в метеоритах и в атмосфере других планет. Всё это подтверждает, что органические вещества могли образоваться на первобытной Земле без участия живых организмов. В отсутствии кислорода, который мог бы их разрушить, а также бактерий и грибов, которые использовали бы их в качестве пищи, эти вещества должны были накапливаться в первобытном океане до тех пор, пока весь он не превратился, по выражению Холдейна, в «тёплый разбавленный бульон».

Следующим шагом было образование более крупных полимеров из малых органических мономеров. Для образования полимеров требовалась энергия. Кроме того, нужно было, чтобы воды при этом было не слишком много, т.к. она служит исходным соединением для более быстрой обратной реакции. А это реакция расщепления полимеров на мономеры. Чтобы сохранить стабильность, смесь короткоцепочечных полимеров должна содержать как можно меньше воды.

Сидней Фокс подверг нагреванию сухую смесь аминокислот и получил таким образом – с помощью тепловой энергии – цепи из аминокислот, которые были названы протеиноидами (т.е. белковоподобными веществами). На первобытной Земле образование таких протеиноидов могло происходить в лужах, оставшихся после отлива, когда в жаркие солнечные дни вода в них испарялась. Некоторые протеиноиды способны, подобно ферментам, катализировать определённые химические реакции; возможно, именно эта способность была главной чертой, определяющей их последующую эволюцию вплоть до возникновения настоящих ферментов. Другие исследователи также получали полимеры посредством реакций, в которых катализаторами служили глины.

Короткоцепочечные полимеры в высшей степени нестабильны и при добавлении воды обычно снова распадаются на мономеры. Более длинные цепи стремятся свёртываться и стабилизируются благодаря притяжению между отдельными частями молекулы; дождь или прилив, уносивший такие длинноцепочечные полимеры в море, уже, вероятно, не могли разрушить их.

Действительно, если смешать в воле различные виды полимеров, то они могут объединиться и образовать более крупные структуры. Какими свойствами должен обладать подобный агрегат, чтобы он мог превратиться в клетку?

Мы знаем три главных свойства всех современных клеток, и ясно, что предшественники настоящих клеток должны были обладать хотя бы зачатками этих свойств. Они должны иметь:


  1. Липидно-белковую мембрану, отделяющую клетку от окружающей среды и осуществляющую обмен различными веществами между клеткой и средой.

  2. Белки, способствующие этому обмену со средой, выполняющие роль структурных компонентов и катализирующие бесчисленные химические реакции клетки.

  3. Нуклеиновые кислоты, содержащие информацию для синтеза совершенно определённых белков.

Агрегаты действительно обнаруживаю, какие – то следы всех упомянутых признаков. В силу своих особых химических свойств, присутствующие в смеси липиды образуют на поверхности агрегатов оболочки. Агрегаты (даже если они и не имеют липидной оболочки) избирательно поглощают вещества из окружающей воды. Так что многие малые молекулы накапливаются в них в весьма значительной концентрации. Некоторые агрегаты легко поглощают полимеры, состоящие из нуклеотидов (предшественников нуклеиновых кислот, которые являются носителями генетической информации в современных клетках). Кроме того, агрегаты проявляют способность катализировать различные химические реакции, в том числе и объединение малых молекул в полимеры. Свои внутренние полимеры они стабилизируют, снижая их склонность к распаду на мономерные звенья. Накапливая в себе различные вещества, агрегаты, в конце концов, достигают слишком больших размеров и распадаются на отдельные фрагменты. Все эти свойства очень интересны, но следует помнить о той пропасти, которая отделяет эти простые молекулярные агрегаты от настоящих живых клеток. Как писал А.И.Опарин, путь, пройденный природой от этих исходных систем протобионтов до наиболее примитивных бактерий… ничуть не короче и не проще, чем путь от амёбы до человека.

www.klevoz.ru

Гипотеза А.И. Опарина

Наиболее существенная черта гипотезы А.И. Опарина – постепенное усложнение химической структуры и морфологического облика предшественников жизни на пути к живым организмам. Согласно этой теории процесс, приведший к возникновению жизни на Земле, может быть разделен на три этапа:

1. Возникновение органических веществ;

2. Возникновение белков;

3. Возникновение белковых тел.

Это говорит о том, что средой возникновения жизни могли быть прибрежные районы морей и океанов. Здесь, на стыке моря, суши и воздуха, создавались благоприятные условия для образования сложных органических соединений. В концентрированных растворах белков, нуклеиновых кислот могут образовываться сгустки, подобные сгусткам желатина в водных растворах. Такие сгустки называют коацерватными каплями или коацерватами.

Коацерваты – это еще не живые существа. Они претерпели очень длительный отбор на устойчивые структуры. Устойчивость была достигнута вследствие создания ферментов, контролирующих синтез тех или иных соединений. Наиболее важным этапом в происхождении жизни было возникновение механизма воспроизведения себе подобных и наследования свойств предыдущих поколений. Это стало возможным благодаря образованию сложных комплексов нуклеиновых кислот и белков. Так возникло главное свойство, характерное для жизни – способность к воспроизведению подобных себе молекул. Живые существа представляю собой так называемые открытые системы, то есть системы, в которых энергия поступает. Без поступления энергии жизнь существовать не может. По способам потребления энергии организмы делятся на две большие группы: автовторные и гетеротрофные.

С момента возникновения жизни геологическая и геохимическая история Земли неотделима от биологических процессов. Историю живых организмов на Земле изучают по сохранившимся в осадочных горных породах остаткам, отпечаткам и другим следам их жизнедеятельности. Эти занимается наука палеонтология. Для удобства изучения и описания вся история Земли разделена на отрезки времени. В геологической летописи эти отрезки времени соответствуют разным слоям осадочных пород с включенными в них ископаемыми останками. Чем глубже расположен слой осадочных пород, тем древнее находящиеся там ископаемые. Такое определение возраста находок является относительным. Названия этих отрезков времени греческого происхождения. Самые крупные такие подразделения – зоны, их две – криптозой (скрытая жизнь) и фенорозой (явная жизнь). Зоны делятся на эры. В криптозое две эры – архей (древнейший) и протерозой (первичная жизнь). Фенорозой включает в себя три эры палеозой (древняя жизнь), мезозой (средняя жизнь) и кайнозой (новая жизнь). В свою очередь, эры разделены на периоды, периоды иногда делят на более мелкие части. Для того чтобы выяснить, какие реальные промежутки времени соответствуют эрам и периодам, определяют содержание изотопов различных химических элементов в горных породах и остатках организмов.

Криптозой. По мнению ученых, планета Земля формировалась 4,5 – 7 млрд лет назад. Около 4 млрд. лет назад стала остывать и затвердела земная кора. На земле возникали условия, позволившие развиваться живым организмам.

Архей. Архей – самая древняя эра, начался более 3,5 млрд лет назад и продолжался около 1 млрд лет. В это время на Земле были уже довольно многочисленны цианобактнрии, окаменевшие продукты жизнедеятельности которых – стромаотлиты – найдены в значительных количествах. В Архее существовало своеобразная «прокариотическая биосфера». Цианобактериям обычно для жизнедеятельности нужен кислород. Кислорода в атмосфере еще не было, однако им, по-видимому, хватало кислорода, который выделялся при химических реакциях, протекавших в земной коре. Какие именно организмы являлись первыми фотосинтетиками? Самым ранним свидетельством существования фотосинтеза являются содержащие углерод материалы с таким соотношением изотопов, которое характерно именно для углерода, прошедшего через процесс фотосинтеза. Возникновение фотосинтеза имело огромное значение для дальнейшего развития жизни на Земле. Биосфера получила неиссякаемый источник энергии, а в атмосфере начал накапливаться кислород.

Протерозой. Протерозойская эра – самая длинная в истории Земли. Она продолжалась около 2 млрд. лет. Примерно через 600 млн. лет после начала протерозоя, около 2 млрд. лет назад, содержание кислорода достигло так называемой «точки Пастера» – около 1% от его содержания в атмосфере, современной нам. Медленное, но постоянное увеличение содержания кислорода в атмосфере способствовало совершенствованию клеточного дыхания. Накопление кислорода в атмосфере привело к формированию озонового экрана в стратосфере, что сделало принципиально возможной жизнь на суше, защитив её от смертоносного жесткого ультрафиолета. Прокариоты – бактерии и синезеленые жили, по-видимому, и на суше, в пленках воды между минеральными частицами в зонах частичного затопления вблизи водоемов. Результатом их жизнедеятельности стало образование почвы. Не менее важным событием было и возникновение эукариот. Когда оно произошло, неизвестно, так как зафиксировать его очень трудно. Исследования на молекулярном уровне дали основание некоторым ученым предположить, что эукариоты могут быть столь же древними как и прокариоты. Первые эукариоты были одноклеточными организмами. Важнейшим этапом в развитии жизни явилось возникновение многоклеточности. Это событие дало мощный толчок увеличению разнообразия живых организмов, их эволюции. Многоклеточность делает возможным специализацию клеток в пределах одного организма, возникновение тканей и органов, в том числе органов чувств, активное добывание пищи, передвижение.

Примерно 680 млн. лет назад, ознаменовался мощной вспышкой разнообразия многоклеточных организмов и появлением животных. Возникшая в конце протерозоя фауна получила название эдиакарской, где в середине ХХв. в слоях возрастом 650 – 700 млн. лет были обнаружены первые отпечатки животных. Эти находки послужили причиной выделения в протерозое особого периода, получившего название венд . Венд продолжался примерно 110 млн. лет. За это короткое по сравнению с предыдущими эпохами время возникло и достигло значительного разнообразия большое количество видов многоклеточных животных. Ученые предполагают, что в конце протерозоя наша планета претерпевала значительные потрясения. Была очень высокой гидротермальная активность, шло горообразование, оледенения сменялись потеплением климата. Кончался криптозой, зон «скрытой жизни», охватывающий более 85% всего времени существования жизни на Земле, начинался новый этап – фонерозой.

Палеозойская эра значительно короче предыдущих, она продолжалась около 340 млн. лет. К началу палеозоя у некоторых животных образовался внешний органический и минеральный скелет. Его остатки сохранились в осадочных породах.

Кембрий. Климат кембрия был умеренным, материки – низменными. Быстрым распространением представителей новых типов беспозвоночных животных, многие из которых имели известковый или фосфатный скелет. Ученые связывают это с появлением хищничества. Среди одноклеточных животных были многочисленны фораминиферы – представители простейших, имевших известковую или склеенную из песчинок раковину. Весьма разнообразны были губки. Наряду с сидячими придонными животными развиваются разнообразные подвижные организмы: двустворчатые, брюхоногие и головоногие моллюски, кольчатые черви, от которых в кембрии уже произошли членистоногие – трилобиты.

Ордовик. В ордовике значительно увеличивается площадь морей. В морях ордовика весьма разнообразны зеленые, бурые и красные водоросли. Идет интенсивный процесс образования рифов кораллами.

Силур. Отмечено большое иссушение климата. В конце силура наблюдается развитие своеобразных членистоногих – ракоскорпионов. К ордовику и силуру относится расцвет в морях головоногих моллюсков. Появляются новые представители беспозвоночных – иглокожие. В силурийских морях начинается массовое распространение первых настоящих позвоночных – панцирных бесчелюстных. В конце силура – начале девона начинается интенсивное развитие наземных растений. Первые наземные растения были лишены настоящих листьев, их строение напоминает строение многоклеточных зеленых водорослей, от которых они произошли.

Девон. В морях обитали настоящие рыбы, вытеснившие панцирных бесчелюстных. Среди них были хрящевые рыбы, появились и рыбы с костным скелетом. В мелководных водоемах жили двоякодышащие рыбы, у которых наряду с жаберным дыханием возникло и легочное. Кистеперые рыбы возникшие в девоне, обладали парными плавниками. На суше появляются первые леса из гигантских папоротников, хвощей и плаунов. Новые группы животных начинают завоевывать сушу.

Карбон – каменноугольный период. Происходит заметное потепление и увлажнение климата. В жарких, тропического вида болотистых лесах произрастают громадные (до 40 м) папоротники, хвощи и плауны. Начинают распространяться голосеменные растения, семя было покрыто оболочкой. Размножение с помощью семян сделало этот процесс независимым от водной среды.

Пермь. Дальнейшее поднятие суши привело к развитию засушливого климата и похолоданию. Сухость климата способствовала исчезновению земноводных – стегоцефалов. Зато значительного разнообразия достигают древнейшие пресмыкающиеся, возникшие еще в конце карбона. Пресмыкающиеся, как известно, откладывают яйца, которые имеют специальную прослойку из жидкости, защищающую зародыш от высыхания. Благодаря этим приспособлениям пресмыкающиеся смогли широко расселиться по суше. Они были самой высокоорганизованной группой животных в перми. Выход на сушу сопровождался у растений, членистоногих и позвоночных рядом сходных изменений в строении тела, размножении, дыхании. Эти изменения были связаны с приобретением принципиально новых черт организации, с эволюцией по пути морфофизического прогресса. В конце палеозоя происходит горообразование, вызвавшее поднятие суши. Все это приводит к дальнейшему усилению засушливости климата, начавшемуся в Перми. Мезозой называют эрой пресмыкающихся.

Триас. В триасе сильно сокращаются площади внутриконтинентальных водоемов, развиваются пустынные ландшафты. Вымирает большинство земноводных, почти полностью исчезают древовидные папоротники, хвощи и плауны. Среди растений сильного развития достигают голосеменные, среди животных – пресмыкающиеся. Из триасовых пресмыкающихся дожили до наших дней черепахи, крокодилы, гаттерии. В морях развиваются костистые рыбы, тогда как разнообразие хрящевых и кистеперых рыб постепенно сокращается. Все более разнообразными становятся головоногие моллюски. Наряду с несомненными прогрессивными чертами в организации пресмыкающихся имеется одна весьма существенная несовершенная черта – непостоянная температура тела. При понижении температуры среды пресмыкающиеся становятся вялыми, оцепеневают. В течении всего сравнительно теплого мезозоя непостоянная температура тела пресмыкающихся не была слишком большим отрицательным свойством.

Юра. В юре происходит некоторое расширение площадей тепловодных морей. Весьма разнообразны морские пресмыкающиеся. Помимо ихтиозавров, в морях появляются плезиозавры – животные с широким туловищем, длинными ластами и змеевидной шеей. Плезиозавры охотились на мелководьях прибрежной зоны, а ихтиозавры – в открытом море. Пресмыкающиеся начали осваивать и воздушную среду. Разнообразие летающих насекомых создавало условия для развития насекомоядных летающих ящеров. Одновременно с этим получили распространение археоптериксы, причудливо сочетавшие признаки пресмыкающихся и птиц. Голова археоптерикса напоминала голову ящерицы, на крыльях сохранились пальцы с когтями, имелся длинный хвост. Но наряду с этими примитивными признаками они обладали и сходством с настоящими птицами: тело было покрыто перьями, возникшими из видоизмененной чешуи. Среди растений в этот период сохраняется господство голосеменных. Некоторые из них, например секвойи, дожили до наших дней.

Мел. Меловой период назван в связи с образование мела в морских отложениях того времени. Он возник из остатков раковинок простейших животных – фораминифер. Пресмыкающиеся были представлены в мелу новыми динозаврами. Весьма разнообразны были летающие ящеры. Птицы еще сохраняли зубы, но в остальном существенно не отличались от современных птиц. Во второй половине мела увеличивается разнообразие млекопитающих. Непостоянная температура тела и откладка яиц ставили пресмыкающихся в большую зависимость от колебаний температуры среды, ограничивали возможность их проникновения в приполярные районы. Широкое распространение насекомых и появление первых покрытосеменных растений привело со временем к связи между ними. У покрытосеменных возник цветок – орган размножения, привлекающий насекомых окраской, запахом и запасами нектара. Насекомые, питаясь нектаром, стали переносчиками пыльцы. В условиях резко континентального климата и общего похолодания исключительные преимущества получили теплокровные – птицы и млекопитающие, чей расцвет относится к следующей эре – кайнозою.

Кайнозойская эра – это расцвет цветковых растений, насекомых, птиц и млекопитающих. Кайнозой делится на три периода – палеоген, неоген и антропоген.

В палеогене – млекопитающие заменили пресмыкающихся, заняв их экологические ниши на земле, птицы стали господствовать в воздухе.

В неогене климат стал более холодным и сухим. Тропические и саванновые леса, росшие в умеренной зоне, сменяются степями.

Антропоген – это тот геологический период, в котором живем и мы. В антропогене выделяют два века – плейстоцен и голоцен. В начале плейстоцена, еще было довольно тепло, сохранялся субтропический климат. В течении плейстоцена наблюдались очень сильные изменения климата – произошли четыре гигантских оледенения, сменявших отступлением ледников. Отрицательные температуры в зоне оледенения приводили к тому, что пары воды конденсировались в виде снега, а таянье льдов и снегов ежегодно давало меньше воды, чем выпадало снега. К началу голоцена, когда началось глобальное потепление и таянье ледников, вымерли многие крупные млекопитающие – мамонты, шерстистые носороги, пещерный медведь. Около 10 тыс. лет назад в умерено теплых областях земли наступила «неолитическая революция», связанная с переходом человека от собирательства и охоты к земледелию и скотоводству. Началось одомашнивание животных и введение растений в культуру. Все это определило тот видовой состав органического мира, который существует в настоящее время, повлияло на современное географическое распространение организмов, создало их современные общества.

botanim.ru