Уравнения с модулями решение – Видеотека. Решение простейших уравнений с модулем. – Репетитор по математике
Решение уравнения с модулем
Решение уравнений с модулем. В этой статье я покажу алгоритм решения уравнений, которые содержат несколько выражений под знаком модуля, на примере решения уравнения уровня С1, а затем вы посмотрите ВИДЕОУРОК с подробным разбором тригонометрического уравнения с модулем.
Давайте решим уравнение:
Вспомним, что модуль раскрывается по такому правилу:
Говоря человеческим языком, модуль выражения равен самому выражению, если оно неотрицательно, и выражению с противоположным знаком, если оно меньше нуля.
Таким образом, перед нами стоит задача раскрыть все модули в соответствии со знаками подмодульных выражений.
Будем следовать такому алгоритму:
1. Определим, в каких точках каждое подмодульное выражение меняет знак. Для этого приравняем каждое подмодульное выражение к нулю:
,
,
Мы получили три точки.
2. Нанесем их на числовую ось:
Эти три числа разбили числовую ось на четыре промежутка:
, , ,
Обратите внимание, что мы включили крайние точки промежутков в оба промежутка. Ничего страшного не случится, если мы эти точки учтем два раза, главное, о них не забыть.
3. Теперь рассмотрим знаки подмодульных выражений на каждом промежутке:
Выражение меняет знак в точке . Слева от этой точки оно отрицательно, а справа положительно. Отметим это в таблице:
Выражение меняет знак в точке . Слева от этой точки оно отрицательно, а справа положительно. Отметим это в таблице:
Выражение меняет знак в точке . Слева от этой точки оно отрицательно, а справа положительно. Отметим это в таблице:
Мы получили знаки всех подмодульных выражений на каждом промежутке. Теперь раскроем модули на каждом промежутке с учетом этих знаков.
Наше уравнение «распадается» на четыре уравнения по количеству числовых промежутков.
4. Решим уравнение на каждом промежутке:
1.
Решение уравнения на первом промежутке
2.Раскроем модули на втором промежутке:
Мы получили, что второе уравнение системы является тождеством, то есть второе равенство верно при любом действительном значении . Следовательно, решением системы будут те значения неизвестного, которые удовлетворяют первому неравенству:
.
3. Раскроем модули на третьем промежутке:
Решение уравнения на третьем промежутке:
4. Раскроем модули на четвертом промежутке:
Решение уравнения на четвертом промежутке:
Заметим, что решения нашего уравнения на каждом промежутке принадлежали этому промежутку, то есть удовлетворяли неравенству каждой системы. Однако, так бывает не всегда, и если корень уравнения не удовлетворяет неравенству, значит, соответствующая система не имеет решений.
5. Теперь объединим полученные решения, и запишем ответ:
Ответ: -6≤х≤0, х=12
А сейчас я предлагаю вам посмотреть ВИДЕУРОК с подробным решением уравнения уровня С3:
И.В. Фельдман, репетитор по математике.
ege-ok.ru
Уравнения с модулем
Модулем (абсолютной величиной) числа называется неотрицательное число:
(9)
Геометрическая интерпретация модуля: это расстояние от точки 0 до точки на координатной оси.
Свойства модуля :
1) ; 2) ; 3) ;
4) ; 5) ; 6) ;
Пусть – некоторое алгебраическое выражение. Тогда, используя определение модуля (9) при соответствующих предположениях, можно раскрыть знак абсолютной величины данного выражения:
Уравнение, содержащее выражение с неизвестной х под знаком модуля, называется уравнением с модулем.
Рассмотрим основные типы уравнений с модулем и методы их решения.
Пусть далее , , – некоторые выражения с переменной х, и .
I тип:
, (10)
где а – число, – некоторое выражение с неизвестной х.
1. Если , уравнение (10) решений не имеет.
2. Если , уравнение (10) равносильно уравнению .
3. Если , уравнение (10) равносильно совокупности уравнений:
II тип:
,
где , – некоторые выражения с неизвестной х.
Решать это уравнение можно несколькими способами.
1-й способ – используя определения модуля:
2-й способ – используя подход к решению, как к уравнениям I типа с дополнительным условием на знак выражения :
Замечание: 1-й или 2-й способ решения таких уравнений выбирают в зависимости от того, какое из неравенств или решается легче.
1) найти те значения х, для которых
2) нанести полученные значения х на числовую ось;
3) определить знаки для каждого из полученных интервалов;
4) нарисовать кривую знаков;
5) решить уравнение на каждом промежутке в отдельности, раскрывая модуль согласно рисунку;
6) для каждого конкретного промежутка проверить, принадлежат ли полученные корни этому промежутку;
7) в ответе указать совокупность всех полученных корней.
III тип:уравнения, содержащие несколько модулей. Если их два, то это уравнение вида:
, (11)
где , , , – некоторые выражения с неизвестной х.
1-й способ – можно использовать определения модуля и рассматривать 4 случая возможных знаков , . Этот способ, как правило, не является рациональным.
2-й способ –метод интервалов.Необходимо нарисовать столько числовых осей и кривых знаков, сколько модулей в уравнении. Для уравнения (11) рисуют две оси, располагая их одна под другой (одна ось для , вторая – для ). Для каждого выражения и следует изобразить кривую знаков на соответствующей оси. Затем раскрывают модули, используя рисунок, и решают уравнение отдельно на каждом промежутке. Подходят только те корни, которые принадлежат рассматриваемому промежутку. В ответе необходимо указать совокупность полученных корней.
IV тип:
(12)
где , .
1-й способ – решение уравнения (12) сводится к решению к совокупности уравнений:
2-й способ – метод интервалов (не рационально).
3-й способ – после возведения уравнения в квадрат и использования свойства модуля уравнение сводится к равносильному:
Полученное уравнение решается в зависимости от его типа.
V тип:уравнения, решаемые заменой переменной, например
По свойству модуля оно записывается в виде
Вводят замену и решают полученное квадратное уравнение относительно неизвестной у. Затем необходимо вернуться к старой переменной. В случае 2-х различных корней квадратного уравнения это будет совокупность уравнений I типа:
если корень единственный, то остается решить уравнение
Необходимо помнить, что в случае отрицательного значения уравнение с модулем не имеет решений.
Решение.
Это уравнение I типа. Его ОДЗ: .
Уравнение записывается в виде
. На ОДЗ можно сократить и получаем
, откуда
т.е.
Получаем корни
которые подходят по ОДЗ.
Пример 2.Решить уравнение .
Решение.
Это уравнение II типа. Его ОДЗ: . Оно имеет решение, если , т.е. при . Таким образом, для получаем
(13)
Решим отдельно полученные дробно-рациональные уравнения. Первое уравнение сводится к виду имеем
, откуда .
Это квадратное уравнение решений не имеет, т.к. .
Из второго уравнения совокупности (13) получаем
, т.е. .
Квадратное уравнение имеет корни:
Однако, т.е. первый корень не принадлежит множеству , на котором решали уравнение, ответом является только .
Пример 3.Решить уравнение
Решение.
Имеем уравнение II типа, которое решим по определению модуля.
(14)
Решаем первую систему совокупности (14):
;
Решаем вторую систему совокупности (14):
Получили ответ .
Пример 4.Решить уравнение .
Решение.
Поскольку , то уравнение записывается в виде
.
Это уравнение относится к III типу уравнений.
Его ОДЗ: . Решим методом интервалов.
Нулями выражений, стоящих под модулем, являются:
и .
Эти значения разбивают числовую ось на три промежутка.
Раскрыв модули на каждом из полученных промежутков, с учетом их знаков, получим совокупность систем:
Решим отдельно системы.
I.
II.
.
III.
Решением данного уравнения являются значения и .
Пример 5.Решить уравнение .
Решение.
Запишем уравнение в виде
.
Оно относится к IV типу. Возведем обе его части в квадрат:
. После упрощения имеем
, т.е.
. Получаем корень.
Пример 6.Решить уравнение .
Решение. ОДЗ: , т.е. .
Преобразуем данное уравнение к виду:
Заменяем: .
Уравнение приобретает вид
.
Решаем его как дробно-рациональное и получаем
.
Последнее квадратное уравнение имеет корни
Возвращаясь к переменной х, получаем:
Второе уравнение совокупности решений не имеет, т.к. слева положительное выражение, а справа – отрицательное.
Первое уравнение совокупности сводится к I типу уравнений с модулем и равносильно совокупности при условии :
;
.
Приходим к совокупности
т.е.
Решение имеет только второе уравнение совокупности. его корни
Оба они подходят по ОДЗ.
Пришли к ответу .
Пример 7.Решить уравнение
Решение.
ОДЗ:
С учетом ОДЗ данное уравнение равносильно уравнению:
.
Используя свойства модуля (имеем сумму двух неотрицательных величин), получаем:
т.е. – решение полученной системы, оно подходит по ОДЗ.
Получили ответ: .
Похожие статьи:
poznayka.org
Решение модульных уравнений
Для того, чтобы научиться решать уравнения с модулем, надо вспомнить и выучить определение модуля.
Из определения видно, что модуль любого числа неотрицателен. Кроме того, определение показывает как можно избавляться от знака модуля в уравнении.
На практике это делается так:
1) Находят значения переменной, при которых выражения стоящие под знаком модуля обращаются в нуль.
2) Отмечают все нули на числовой прямой. Они разобьют эту прямую на лучи и промежутки, на которых все подмодульные выражения имеют постоянный знак.
3) Определяем знаки подмодульных выражений на каждом промежутке и раскрываем все модули (заменяя их подмодульными выражениями со знаком плюс или со знаком минус в зависимости от знака подмодульного выражения).
4) Решаем получившиеся уравнения на каждом промежутке (сколько промежутков, столько и уравнений).Обратите внимание, что обязательно выбираем только те решения, которые находятся в данном промежуток (полученные решения могут и не принадлежать промежутку).
Хватит уже теории, пора на примерах посмотреть как решаются уравнения с модулем. Начнем с более простого.
Решение уравнений с модулями
Пример 1. Решить уравнение .
Решение. Так как , то . Если , то , и уравнение принимает вид .
Отсюда получаем .
Ответ: .
Пример 2. Решить уравнение .
Решение. Из уравнения следует, что .
Поэтому , , , и уравнение принимает вид или .
Так как , то исходное уравнение корней не имеет.
Ответ: корней нет.
Пример 3. Решить уравнение .
Решение. Перепишем уравнение в равносильном виде .
Полученное уравнение относится к уравнениям типа .
Известно, что уравнение такого типа равносильно неравенству . Следовательно, здесь имеем или .
Ответ: .
Думаю, как решать такого вида уравнения с модулем вы уже разобрались. Попробуем разобраться с более сложным уравнением.
Пример 4. Решить уравнение: |x2 + 2x| – |2 – x| = |x2 – x|
Находим нули подмодульных выражений:
х2 + 2х = 0, х(х + 2) = 0, х = 0 или х = ‒ 2. При этом парабола у = х2 + 2х положительна на промежутках (–∞; –2 ) и (0; +∞), а на промежутке (–2; 0 ) она отрицательна (см. рисунок).
х2 ‒ х = 0, х(х – 1) =0, х = 0 или х = 1. Эта парабола у = х2 ‒ х положительна на промежутках (–∞; 0 ) и (1; +∞), а на промежутке (0; 1) она отрицательна (см. рисунок).
2 – х = 0, х = 2, модуль положителен на промежутке (–∞; 0) и принимает отрицательные значения на промежутке (2; +∞) (см. рисунок).
Теперь решаем уравнения на промежутках:
1) х ≤ ‒2: х2 + 2х – (2 – х) = х2 ‒ х, х2 + 2х – 2 + х = х2 ‒ х, 4х = 2, х = 1/2 (не входит в рассматриваемый промежуток)
2) –2 ≤ x <0: ‒(х2 + 2х) – (2 – х) = х2 ‒ х, ‒х2 ‒ 2х – 2 + х = х2 ‒ х, ‒2 х2 = 2, х2 = ‒1, решений нет.
3) 0 ≤ x <1: х2 + 2х ‒ (2 – х) = ‒ (х2 ‒ х), х2 + 2х ‒ 2 + х = ‒х2 + х, 2х2 + 2х – 2 = 0, х2 + х – 1 = 0, √D = √5,
х1 = (‒1 ‒ √5)/2 и х2 = (‒1 + √5)/2.
Так как первый корень отрицательный, то он не принадлежит нашему промежутку, а второй корень больше нуля и меньше единицы это и есть наше решение на данном промежутке.
4) 1 ≤ x <2: х2 + 2х – (2 – х) = х2 ‒ х, х2 + 2х – 2 + х = х2 ‒ х, 4х = 2, х= 1/2 (не входит в рассматриваемый промежуток)
5) х ≥ 2: х2 + 2х –(‒(2 – х)) = х2 ‒ х, х2 + 2х + 2 ‒ х = х2 ‒ х, 2х = ‒ 2, х = ‒1 (не входит в рассматриваемый промежуток).
Ответ: (‒1 + √5)/2.
Вы заметили, что решается это уравнение также как и предыдущие, отличие в количестве промежутков. Так как под модулем стоят квадратные выражения то корней получилось больше, а соответственно и больше промежутков.
А как же решать уравнение в котором модуль стоит под модулем? Давайте посмотрим на примере.
Пример 5. Решите уравнение |3 – |x – 2|| = 1
Подмодульное выражение может принимать значение либо 1 либо – 1. Получаем два уравнения:
3 ‒ |х ‒ 2|= ‒1 или 3 ‒ |х ‒ 2|= 1
Решаем каждое уравнение отдельно.
1) 3 ‒ |х ‒ 2|= ‒1, ‒|х ‒ 2|= ‒1 – 3, ‒|х ‒ 2|= ‒4, |х ‒ 2|= 4,
х ‒ 2= 4 или х ‒ 2= ‒ 4, откуда получаем х1 = 6, х2 = ‒2.
2) 3 ‒ |х ‒ 2|= 1, ‒|х ‒ 2|= 1 ‒ 3, ‒|х – 2|= ‒2, |х – 2|= 2,
х – 2 = 2 или х – 2 = ‒2,
х3 = 4 , х4 = 0.
Надеюсь, после изучения данной статьи вы будете успешно решать уравнения с модулем. Если остались вопросы, записывайтесь ко мне на уроки. Репетитор Валентина Галиневская.
© blog.tutoronline.ru, при полном или частичном копировании материала ссылка на первоисточник обязательна.
blog.tutoronline.ru
Решение уравнений с модулем
Решение уравнений и неравенств с модулем часто вызывает затруднения. Однако, если хорошо понимать, что такое модуль числа, и как правильно раскрывать выражения, содержащие знак модуля, то наличие в уравнении выражения, стоящего под знаком модуля, перестает быть препятствием для его решения.
Немного теории. Каждое число имеет две характеристики: абсолютное значение числа, и его знак.
Например, число +5, или просто 5 имеет знак «+» и абсолютное значение 5.
Число -5 имеет знак «-» и абсолютное значение 5.
Абсолютные значения чисел 5 и -5 равны 5.
Абсолютное значение числа х называется модулем числа и обозначается |x|.
Как мы видим, модуль числа равен самому числу, если это число больше или равно нуля, и этому числу с противоположным знаком, если это число отрицательно.
Это же касается любых выражений, которые стоят под знаком модуля.
Правило раскрытия модуля выглядит так:
|f(x)|= f(x), если f(x) ≥ 0, и
|f(x)|= — f(x), если f(x) < 0
Например |x-3|=x-3, если x-3≥0 и |x-3|=-(x-3)=3-x, если x-3<0.
Чтобы решить уравнение , содержащее выражение, стоящее под знаком модуля, нужно сначала раскрыть модуль по правилу раскрытия модуля.
Тогда наше уравнение или неравенство преобразуется в два различных уравнения, существующих на двух различных числовых промежутках.
Одно уравнение существует на числовом промежутке, на котором выражение, стоящее под знаком модуля неотрицательно.
А второе уравнение существует на промежутке, на котором выражение, стоящее под знаком модуля отрицательно.
Рассмотрим простой пример.
Решим уравнение:
|x-3|=-x2+4x-3
1. Раскроем модуль.
|x-3|=x-3, если x-3≥0, т.е. если х≥3
|x-3|=-(x-3)=3-x, если x-3<0, т.е. если х<3
2. Мы получили два числовых промежутка: х≥3 и х<3.
Рассмотрим, в какие уравнения преобразуется исходное уравнение на каждом промежутке:
А) При х≥3 |x-3|=x-3, и наше уранение имеет вид:
x-3=-x2+4x-3
Внимание! Это уравнение существует только на промежутке х≥3!
Раскроем скобки, приведем подобные члены:
x2 -3х=0
и решим это уравнение.
Это уравнение имеет корни:
х1=0, х2=3
Внимание! поскольку уравнение x-3=-x2+4x-3 существует только на промежутке х≥3, нас интересуют только те корни, которые принадлежат этому промежутку. Этому условию удовлетворяет только х2=3.
Б) При x<0 |x-3|=-(x-3) = 3-x, и наше уравнение приобретает вид:
3-x=-x2+4x-3
Внимание! Это уравнение существует только на промежутке х<3!
Раскроем скобки, приведем подобные члены. Получим уравнение:
x2-5х+6=0
х1=2, х2=3
Внимание! поскольку уравнение 3-х=-x2+4x-3 существует только на промежутке x<3, нас интересуют только те корни, которые принадлежат этому промежутку. Этому условию удовлетворяет только х1=2.
Итак: из первого промежутка мы берем только корень х=3, из второго — корень х=2.
Ответ: х=3, х=2
ege-ok.ru
Решение линейных уравнений с модулем
Уравнение — это равенство, содержащее букву, значение которой надо найти.Корень уравнения — это значение буквы, при котором из уравнения получается верное числовое равенство.
Рассмотрим уравнение вида |kx + b| = c, где x — неизвестная величина, k ≠ 0.Если c<0, то уравнение не имеет решений, так как модуль числа не может принимать отрицательные значения.
Если c = 0, то уравнение принимает вид kx + b = 0. Оно имеет единственный корень x = −b/k.
Если же c>0, то выражение под знаком модуля может принимать значения c и −c. Значит, возможны два случая:kx + b = c, то есть x = (c−b) / k.
kx + b = −c, то есть x=( −c−b) / k
Рассмотрим теперь уравнение вида |ax+b| = |cx+d|, где a, b, c, d – некоторые числа.
Решите уравнение: |2x−5| = |3x+6|.
РЕШЕНИЕ
Согласно определению модуля, указанное равенство возможно в следующих случаях:
2x−5 = 3x+6, то есть x=−11;
2x−5 = −(3x+6), то есть x=−0,2.
Ответ. {−11;−0,2}.
Алгоритм решения уравнений с модулями:1. Найти в уравнении все выражения, содержащиеся под знаком модуля.
2. Найти, при каких значениях переменной они обращаются в нуль.
3. Разбить найденными значениями числовую прямую на непересекающиеся промежутки.
4. Определить для каждого числового промежутка, чему равно значение каждого модуля: самому выражению, содержащемуся под знаком модуля, или противоположному ему.
5. Для каждого числового промежутка записать и решить исходное уравнение без знаков модуля.
6. Оставить только те решения, которые соответствуют числовому промежутку, и записать их в ответе.
ПРИМЕР 2
Решите уравнение: |x−3| − |2x+4| = 5.
Точки −2 и 3 разбивают ось на три непересекающихся промежутка: (−∞;−2) (−∞;−2), [−2;3) [−2;3), [3;∞)[3;∞). Решим уравнение на каждом из них:
Решение уравнения
−(x−3) + (2x+4) = 5
x+7=5
x =−2
Учет промежутка
x∈∅
Второй Промежуток x∈[−2;3)Решение уравнения
−(x−3) − (2x+4) = 5
−3x−1 = 5
x = −2
Учет промежутка
x = −2
Третий Промежуток x∈[3;∞)
Решение уравнения
(x−3) − (2x+4) = 5
−x−7 = 5
x = −12
Учет промежутка
x∈∅
Ответ: x = −2
ПРИМЕР 3
Решите уравнение |x−1| = 3.Решение задачи
Если |x−1| = 3, то x−1 = ±3. То есть либо x = 3+1 = 4, либо x = −3+1 = −2.
ПРИМЕР 4
Найдите количество целых решений уравнения 5x+|5x| = 0 на отрезке [−2015;2015].Решение задачи
Заметим, то так как модуль — величина неотрицательная, а из уравнения получаем, что 5x ≤ 0 или x ≤ 0. Поэтому |5x| =−5x и уравнение примет вид 5x−5x = 0. Следовательно, x≤0 — это множество решений уравнения. Тогда количество целых решений на отрезке [−2015;2015] равно 2016.
ПРИМЕР 5
Решите уравнение |||x|−2|−2|=2. В ответе укажите произведение всех решений.Решение задачи
Будем последовательно раскрывать каждый из модулей и разбирать каждый случай отдельно.
По условию |||x|−2|−2|=2, поэтому ||x|−2|−2=−2 или ||x|−2|−2=2.
Случай 1:
||x|−2|−2=−2.
Из первого равенства: ||x|−2|=0, тогда |x|−2=0 или |x|=2. Следовательно, x=−2 или x=2.
Случай 2:
||x|−2|−2=2.
Из второго равенства: ||x|−2|=4. Значит, случай разбивается на два: |x|−2=4 или |x|−2=−4.
Случай 2(а):
|x|−2=4.
Из первого равенства: |x|=6. Следовательно, x=−6 или x=6.
Случай 2(б):
|x|−2=−4.
Из второго равенства: |x|=−2. Но модуль есть величина неотрицательная, поэтому в этом случае решений нет.
В итоге мы получили 4 различных решения — −2,2,−6,6. Их произведение равно 144.
spishy-u-antoshki.ru
Модуль в модуле
Среди примеров на модули часто встречаются уравнения где нужно найти корни модуля в модуле, то есть уравнение вида
||a*x-b|-c|=k*x+m.
Если k=0, то есть правая сторона равна постоянной (m) то проще искать решение уравнения с модулями графически. Ниже приведена методика раскрытия двойных модулей на распространенных для практики примерах. Хорошо разберите алгоритм вычисления уравнений с модулями, чтобы не иметь проблем на контрольных, тестах, и просто, чтобы знать.
Пример 1. Решить уравнение модуль в модуле |3|x|-5|=-2x-2.
Решение: Всегда начинают раскрывать уравнения с внутреннего модуля
|x|=0 <-> x=0.
В точке x=0 уравнения с модулем разделяется на 2.
При x < 0 подмодульная функция отрицательная, поэтому при раскрытии знак меняем на противоположный
|-3x-5|=-2x-2.
При x>0 или равно, раскрывая модуль получим
|3x-5|=-2x-2.
Решим уравнение для отрицательных переменных (x < 0). Оно разлагается на две системы уравнений. Первое уравнение получаем из условия, что функция после знака равенства неотрицательна. Второе — раскрывая модуль в одной системе принимаем, что подмодульная функция положительная, в иной отрицательная — меняем знак правой или левой части (зависит от методики преподавания).
Из первого уравнения получим что решение не должно превышать (-1), т.е.
Это ограничение полностью принадлежит области в которой решаем. Перенесем переменные и постоянные по разные стороны равенства в первой и второй системе
и найдем решение
Оба значения принадлежат промежутку что рассматривается, то есть являются корнями.
Рассмотрим уравнение с модулями при положительных переменных
|3x-5|=-2x-2.
Раскрывая модуль получим две системы уравнений
Из первого уравнения, которое является общим для двух сиcтем, получим знакомое условие
которое в пересечении с множеством, на котором ищем решение дает пустое множество (нет точек пересечения). Итак единственными корнями модуля с модулем являются значения
x=-3; x=-1,4.
Пример 2. Решить уравнение с модулем ||x-1|-2|=3x-4.
Решение: Начнем с раскрытия внутреннего модуля
|x-1|=0 <=> x=1.
Подмодульная функция меняет знак в единице. При меньших значениях она отрицательная, при больших — положительная. В соответствии с этим при раскрытии внутреннего модуля получим два уравнения с модулем
x |-(x-1)-2|=3x-4;
x>=1 -> |x-1-2|=3x-4.
Обязательно проверяем правую сторону уравнения с модулем, она должна быть больше нуля.
3x-4>=0 -> x>=4/3.
Это означает, что первое из уравнений нет необхидноcти решать, поcкольку оно выпиcано для x< 1,что не соответствует найденному условию. Раскроем модуль во втором уравнении
|x-3|=3x-4 ->
x-3=3x-4 или x-3=4-3x;
4-3=3x-x или x+3x=4+3;
2x=1 или 4x=7;
x=1/2 или x=7/4.
Получили два значения, первое из которых отвергаем, поскольку не принадлежит нужному интервалу. Окончательно уравнение имеет одно решение x=7/4.
Пример 3. Решить уравнение с модулем ||2x-5|-1|=x+3.
Решение: Раскроем внутренний модуль
|2x-5|=0 <=> x=5/2=2,5.
Точка x=2,5 разбивает числовую ось на два интервала. Соответственно, подмодульная функция меняет знак при переходе через 2,5. Выпишем условие на решение с правой стороны уравнения с модулем.
x+3>=0 -> x>=-3.
Итак решением могут быть значения, не меньше (-3). Раскроем модуль для отрицательного значения внутреннего модуля
|-(2x-5)-1|=x+3;
|-2x+4|=x+3.
Этот модуль также при раскрытии даст 2 уравнения
-2x+4=x+3 или 2x-4=x+3;
2x+x=4-3 или 2x-x=3+4;
3x=1; x=1/3 или x=7.
Значение x=7 отвергаем, поскольку мы искали решение на промежутке [-3;2,5]. Теперь раскрываем внутренний модуль для x>2,5. Получим уравнение с одним модулем
|2x-5-1|=x+3;
|2x-6|=x+3.
При раскрытии модуля получим следующие линейные уравнения
-2x+6=x+3 или 2x-6=x+3;
2x+x=6-3 или 2x-x=3+6;
3x=3; x=1 или x=9.
Первое значение x=1 не удовлетворяет условие x>2,5. Так что на этом интервале имеем один корень уравнения с модулем x=9, а всего их два (x=1/3).Подстановкой можно проверять правильность выполненных вычислений
Ответ: x=1/3; x=9.
Пример 4. Найти решения двойного модуля ||3x-1|-5|=2x-3.
Решение: Раскроем внутренний модуль уравнения
|3x-1|=0 <=> x=1/3.
Точка x=2,5 делит числовую ось на два интервала, а заданное уравнение на два случая. Записываем условие на решение, исходя из вида уравнения с правой стороны
2x-3>=0 -> x>=3/2=1,5.
Отсюда следует, что нас интересуют значения >=1,5. Таким образом модульное уравнения рассматриваем на двух интервалах
[1,5; 2,5], [2,5; +бесконечность).
Раскроем модуль при отрицательных значениях внутреннего модуля [1,5; 2,5]
|-(3x-1)-5|=2x-3;
|-3x-4|=2x-3.
Полученный модуль при раскрытии делится на 2 уравнения
-3x-4=2x-3 или 3x+4=2x-3;
2x+3x=-4+3 или 3x-2x=-3-4;
5x=-1; x=-1/5 или x=-7.
Оба значения не попадают в промежуток [1,5; 2,5], то есть не являются решениями уравнения с модулями. Далее раскроем модуль для x>2,5. Получим следующее уравнение
|3x-1-5|=2x-3;
|3x-6|=2x-3.
Раскрывая модуль, получим 2 линейные уравнения
3x-6=2x-3 или –(3x-6)=2x-3;
3x-2x=-3+6 или 2x+3x=6+3;
x=3 или 5x=9; x=9/5=1,8.
Второе значение из найденных не соответствует условию x>2,5, его мы отвергаем.
Наконец имеем один корень уравнения с модулями x=3.
Выполняем проверку
||3*3-1|-5|=2*3-3 3=3.
Корень уравнения с модулем вычислено правильно.
Ответ: x=1/3; x=9.
Примеров с модулями где есть один или несколько вложенных модулей в интернете или методичке можно найти немало. Схема их вычислений ничем не отличается от приведенной выше. Для проверки знаний прошу решить следующие задачи.
Равнение на модуль в модуле:
- ||3x-3|-2|=5-2x;
- ||5x-3|-3|=3x-1;
- ||2x-7|-4|=x-2;
- ||5x-4|-8|=x+4;
- ||2x-2|-3|=1;
- ||x-2|-3|=4-x.
Похожие материалы:
yukhym.com
Уравнения и неравенства с модулем
Автор Сергей
Суббота, Август 18, 2012
Репетитору по математике часто приходится сталкиваться с отсутствием у старшеклассников навыков решения простейших уравнений и неравенств с модулем. Между тем среди заданий С3 или С5 из ЕГЭ по математике таковые могут встретиться. Даже если их не будет на экзамене в явном виде, в процессе выполнения некоторых задач из ЕГЭ вам, возможно, придется столкнуться с решением того или иного задания с модулем. Поэтому научиться решать уравнения и неравенства с модулем должен каждый выпускник средней школы. В данной статье рассмотрены некоторые способы их решения. Присутствует также видеоразбор решения одного уравнения, содержащего модуль.
Считается, что чем больше способов решения существует у задачи, тем она интереснее с математической точки зрения. Уравнения и неравенства с модулями можно поэтому смело назвать интересными. Рассмотрим пример.
Решите уравнение:
Решение. Постараемся найти как можно большее количество решений данного уравнения. Подробное объяснение решений смотрите в видеоуроке.
Способ №1. Решение возведением в квадрат. Просто возводим обе части уравнения в квадрат. При этом не забываем, что подобное преобразование не является равносильным. Из-за этого могут появиться посторонние корни, поэтому полученные решения необходимо будет проверить прямой подстановкой в исходное уравнение.
Путем прямой подстановки полученных решений в исходное уравнение убеждаемся, что посторонних корней среди них нет. На самом деле в данном конкретном задании отсутствует необходимость проверки корней. Возведение обеих частей этого уравнения в квадрат не может привести к приобретению посторонних решений. Подумайте самостоятельно, почему это так.
Способ №2. Метод интервалов. Не совсем верное название, но мы его здесь употребим, поскольку в методической литературе оно встречается. Для решения нам потребуется найти значение переменной при котором подмодульное выражение обращается в ноль:
yourtutor.info