Уравнение с синусом – Подготовка школьников к ЕГЭ и ОГЭ в учебном центре «Резольвента» (Справочник по математике — Тригонометрия

Содержание

Формулы для решения простейших тригонометрических уравнений

Равенство, содержащее неизвестную под знаком тригонометрической функции (`sin x, cos x, tg x` или `ctg x`), называется тригонометрическим уравнением, именно их формулы мы и рассмотрим дальше.

Содержание статьи:

Простейшие тригонометрические уравнения

Простейшими называются уравнения `sin x=a, cos x=a, tg x=a, ctg x=a`, где `x` — угол, который нужно найти, `a` — любое число. Запишем для каждого из них формулы корней.

1. Уравнение `sin x=a`.

При `|a|>1` не имеет решений.

При `|a| \leq 1` имеет бесконечное число решений.

Формула корней: `x=(-1)^n arcsin a + \pi n, n \in Z`

Таблица арксинусов

2. Уравнение `cos x=a`

При `|a|>1` — как и в случае с синусом, решений среди действительных чисел не имеет.

При `|a| \leq 1` имеет бесконечное множество решений.

Формула корней: `x=\pm arccos a + 2\pi n, n \in Z`

Таблица арккосинусов

Частные случаи для синуса и косинуса в графиках.

3. Уравнение `tg x=a`

Имеет бесконечное множество решений при любых значениях `a`.

Формула корней: `x=arctg a + \pi n, n \in Z`

Таблица арктангенсов

4. Уравнение `ctg x=a`

Также имеет бесконечное множество решений при любых значениях `a`.

Формула корней: `x=arcctg a + \pi n, n \in Z`

Таблица арккотангенсов

Формулы корней тригонометрических уравнений в таблице

Для синуса:Для косинуса:Для тангенса и котангенса:Формулы решения уравнений, содержащих обратные тригонометрические функции:

Методы решения тригонометрических уравнений

Решение любого тригонометрического уравнения состоит из двух этапов:

  • с помощью тригонометрических формул преобразовать его до простейшего;
  • решить полученное простейшее уравнение, используя выше написанные формулы корней и таблицы.

Рассмотрим на примерах основные методы решения.

Алгебраический метод.

В этом методе делается замена переменной и ее подстановка в равенство.

Пример. Решить уравнение: `2cos^2(x+\frac \pi 6)-3sin(\frac \pi 3 — x)+1=0`

Решение. Используя формулы приведения, имеем:

`2cos^2(x+\frac \pi 6)-3cos(x+\frac \pi 6)+1=0`,

делаем замену: `cos(x+\frac \pi 6)=y`, тогда `2y^2-3y+1=0`,

находим корни: `y_1=1, y_2=1/2`, откуда следуют два случая:

1. `cos(x+\frac \pi 6)=1`, `x+\frac \pi 6=2\pi n`, `x_1=-\frac \pi 6+2\pi n`.

2. `cos(x+\frac \pi 6)=1/2`, `x+\frac \pi 6=\pm arccos 1/2+2\pi n`, `x_2=\pm \frac \pi 3-\frac \pi 6+2\pi n`.

Ответ: `x_1=-\frac \pi 6+2\pi n`, `x_2=\pm \frac \pi 3-\frac \pi 6+2\pi n`.

Разложение на множители.

Пример. Решить уравнение: `sin x+cos x=1`.

Решение. Перенесем влево все члены равенства: `sin x+cos x-1=0`. Используя формулы двойного угла, преобразуем и разложим на множители левую часть:

`sin x — 2sin^2  x/2=0`,

`2sin  x/2 cos  x/2-2sin^2  x/2=0`,

`2sin  x/2 (cos  x/2-sin  x/2)=0`,

  1. `sin  x/2 =0`,  `x/2 =\pi n`,  `x_1=2\pi n`.
  2. `cos  x/2-sin  x/2=0`, `tg  x/2=1`, `x/2=arctg 1+ \pi n`, `x/2=\pi/4+ \pi n`, `x_2=\pi/2+ 2\pi n`.

Ответ: `x_1=2\pi n`, `x_2=\pi/2+ 2\pi n`.

Приведение к однородному уравнению

Вначале нужно данное тригонометрическое уравнение привести к одному из двух видов:

`a sin x+b cos x=0` (однородное уравнение первой степени) или `a sin^2 x + b sin x cos x +c cos^2 x=0` (однородное уравнение второй степени).

Потом разделить обе части на `cos x \ne 0` — для первого случая, и на `cos^2 x \ne 0` — для второго. Получим уравнения относительно `tg  x`:  `a  tg  x+b=0` и `a  tg^2 x + b  tg  x +c =0`, которые нужно решить известными способами.

Пример. Решить уравнение: `2 sin^2 x+sin x cos x — cos^2 x=1`.

Решение. Запишем правую часть, как `1=sin^2 x+cos^2 x`:

`2 sin^2 x+sin x cos x — cos^2 x=` `sin^2 x+cos^2 x`,

`2 sin^2 x+sin x cos x — cos^2 x -` ` sin^2 x — cos^2 x=0`

`sin^2 x+sin x cos x — 2 cos^2 x=0`.

Это однородное тригонометрическое уравнение второй степени, разделим его левую и правую части на `cos^2 x \ne 0`, получим:

`\frac {sin^2 x}{cos^2 x}+\frac{sin x cos x}{cos^2 x} — \frac{2 cos^2 x}{cos^2 x}=0`

`tg^2 x+tg x — 2=0`. Введем замену `tg x=t`, в результате `t^2 + t — 2=0`. Корни этого уравнения: `t_1=-2` и `t_2=1`. Тогда:

  1. `tg x=-2`, `x_1=arctg (-2)+\pi n`, `n \in Z`
  2. `tg x=1`, `x=arctg 1+\pi n`, `x_2=\pi/4+\pi n`, ` n \in Z`.

Ответ. `x_1=arctg (-2)+\pi n`, `n \in Z`, `x_2=\pi/4+\pi n`, `n \in Z`.

Переход к половинному углу

Пример. Решить уравнение: `11 sin x — 2 cos x = 10`.

Решение. Применим формулы двойного угла, в результате: `22 sin (x/2) cos (x/2) -` `2 cos^2 x/2 + 2 sin^2 x/2=` `10 sin^2 x/2+10 cos^2 x/2`

`4 tg^2 x/2 — 11 tg x/2 +6=0`

Применив описанный выше алгебраический метод, получим:

  1. `tg x/2=2`, `x_1=2 arctg 2+2\pi n`, `n \in Z`,
  2. `tg x/2=3/4`, `x_2=arctg 3/4+2\pi n`, `n \in Z`.

Ответ. `x_1=2 arctg 2+2\pi n, n \in Z`, `x_2=arctg 3/4+2\pi n`, `n \in Z`.

Введение вспомогательного угла

В тригонометрическом уравнении `a sin x + b cos x =c`, где a,b,c — коэффициенты, а x — переменная, разделим обе части на `sqrt {a^2+b^2}`:

`\frac a{sqrt {a^2+b^2}} sin x +` `\frac b{sqrt {a^2+b^2}} cos x =` `\frac c{sqrt {a^2+b^2}}`.

Коэффициенты в левой части имеют свойства синуса и косинуса, а именно сумма их квадратов равна 1 и их модули не больше 1. Обозначим их следующим образом: `\frac a{sqrt {a^2+b^2}}=cos \varphi`, ` \frac b{sqrt {a^2+b^2}} =sin \varphi`, `\frac c{sqrt {a^2+b^2}}=C`, тогда:

`cos \varphi sin x + sin \varphi cos x =C`.

Подробнее рассмотрим на следующем примере:

Пример. Решить уравнение: `3 sin x+4 cos x=2`.

Решение. Разделим обе части равенства на `sqrt {3^2+4^2}`, получим:

`\frac {3 sin x} {sqrt {3^2+4^2}}+` `\frac{4 cos x}{sqrt {3^2+4^2}}=` `\frac 2{sqrt {3^2+4^2}}`

`3/5 sin x+4/5 cos x=2/5`.

Обозначим `3/5 = cos \varphi` , `4/5=sin \varphi`. Так как `sin \varphi>0`, `cos \varphi>0`, то в качестве вспомогательного угла возьмем `\varphi=arcsin  4/5`. Тогда наше равенство запишем в виде:

`cos \varphi sin x+sin \varphi cos x=2/5`

Применив формулу суммы углов для синуса, запишем наше равенство в следующем виде:

`sin (x+\varphi)=2/5`,

`x+\varphi=(-1)^n arcsin  2/5+ \pi n`, `n \in Z`,

`x=(-1)^n  arcsin  2/5-` `arcsin  4/5+ \pi n`, `n \in Z`.

Ответ. `x=(-1)^n arcsin  2/5-` `arcsin  4/5+ \pi n`, `n \in Z`.

Дробно-рациональные тригонометрические уравнения

Это равенства с дробями, в числителях и знаменателях которых есть тригонометрические функции.

Пример. Решить уравнение. `\frac {sin x}{1+cos x}=1-cos x`.

Решение. Умножим и разделим правую часть равенства на `(1+cos x)`. В результате получим:

`\frac {sin x}{1+cos x}=` `\frac {(1-cos x)(1+cos x)}{1+cos x}`

`\frac {sin x}{1+cos x}=` `\frac {1-cos^2 x}{1+cos x}`

`\frac {sin x}{1+cos x}=` `\frac {sin^2 x}{1+cos x}`

`\frac {sin x}{1+cos x}-` `\frac {sin^2 x}{1+cos x}=0`

`\frac {sin x-sin^2 x}{1+cos x}=0`

Учитывая, что знаменатель равным быть нулю не может, получим `1+cos x \ne 0`, `cos x \ne -1`, ` x \ne \pi+2\pi n, n \in Z`.

Приравняем к нулю числитель дроби: `sin x-sin^2 x=0`, `sin x(1-sin x)=0`. Тогда `sin x=0` или `1-sin x=0`.

  1. `sin x=0`, `x=\pi n`, `n \in Z`
  2. `1-sin x=0`, `sin x=-1`, `x=\pi /2+2\pi n, n \in Z`.

Учитывая, что ` x \ne \pi+2\pi n, n \in Z`, решениями будут `x=2\pi n, n \in Z` и `x=\pi /2+2\pi n`, `n \in Z`.

Ответ. `x=2\pi n`, `n \in Z`, `x=\pi /2+2\pi n`, `n \in Z`.

Тригонометрия, и тригонометрические уравнения в частности, применяются почти во всех сферах геометрии, физики, инженерии. Начинается изучение в 10 классе, обязательно присутствуют задания на ЕГЭ, поэтому постарайтесь запомнить все формулы тригонометрических уравнений — они вам точно пригодятся!

Впрочем, даже запоминать их не нужно, главное понять суть, и уметь вывести. Это не так и сложно, как кажется. Убедитесь сами, просмотрев видео.

Материалы по теме:

Поделиться с друзьями:

Загрузка…

matemonline.com

Решение тригонометрических уравнений

В данной статье остановимся кратко на решении задач C1 из ЕГЭ по математике. Эти задания представляют собой уравнения, которые требуется, во-первых, решить (то есть найти их решения, причем все), во-вторых, осуществить отбор решений по тому или иному ограничению. В последние годы на ЕГЭ по математике в заданиях C1 школьникам предлагаются для решения тригонометрические уравнения, поэтому в данной статье разобраны только они. Примеры структурированы по методам решения уравнений, от самых элементарных, до достаточно сложных.

Прежде чем перейти к разбору конкретных тригонометрических уравнений, вспомним основные формулы тригонометрии. Приведем их здесь в справочном виде.

Основные тригонометрические формулы

Решение простейших тригонометрических уравнений

Решение простейших тригонометрических уравнений

Пример 1. Найдите корни уравнения

   

принадлежащие промежутку

Решение. Используем вторую формулу на рисунке. Здесь и далее полагаем (на всякий случай, эта запись означает, что числа и принадлежат множеству целых чисел):

   

Другими словами, нам нужно подобрать такое число из промежутка косинус которого был бы равен Это число Используя это, получаем:

   

Вообще, значения тригонометрических функций от основных аргументов нужно знать. Их совсем чуть-чуть:

Таблица значений тригонометрических функций

Хотя на самом деле запоминать их вовсе не обязательно. Существует очень простой алгоритм, используя который, можно в уме легко вычислять значения тригонометрических функций всех основных аргументов. Просто у каждого он свой. Придумайте его и для себя. Просто посмотрите на эту таблицу. Числа в ней расположены не случайным образом, определенная закономерность есть, постарайтесь ее найти.

Итак, вернемся к нашему заданию. Из полученных серий выбираем только те ответы, которые принадлежат промежутку  Воспользуемся для этого методом двойных неравенств. Вы помните, что и — целые числа:

1)

2)

Задача для самостоятельного решения №1. Найдите корни уравнения принадлежащие промежутку

Показать ответОтвет:

Решение линейных тригонометрических уравнений

Пример 2. Найдите корни уравнения

   

принадлежащие промежутку

yourtutor.info

Простейшие тригонометрические уравнения и их решение

К простейшим тригонометрическим уравнениям относятся уравнения вида

   

Решение простейших тригонометрических уравнений

Рассмотрим подробнее каждое из этих уравнений и их решение.

Уравнение вида . Так как для любого x, то при и уравнение не имеет корней. При , корни этого уравнения находятся по формуле

   

Особые случаи

Примеры решения задач

Уравнение вида . Так как для любого x, то при и уравнение корней не имеет. При , корни этого уравнения находятся по формуле

   

Особые случаи:

ПРИМЕР 4




ЗаданиеРешить уравнение —
РешениеКосинус – функция ограниченная и лежит в пределах , поэтому данное равенство не имеет смысла.
ОтветРешений нет.

Простейшие тригонометрические уравнения с тангенсами и котангенсами

Уравнение вида . Для любого действительного a на промежутке существует единственный угол , для которого . Это угол . Учитывая периодичность функции , получим формулы для нахождения корней уравнения :

   

ПРИМЕР 5




ЗаданиеРешить уравнение
РешениеВыразим из этого равенства тангенс

   

   

В последнем равенстве положив , получим простейшее тригонометрическое уравнение , корни которого вычисляются по формуле

   

Тогда

   

   

Сделаем обратную замену

   

и выразим из полученного уравнения x:

   

   

поделим обе части последнего равенства на 2, тогда окончательно получим

   

Ответ

Уравнение вида . Для любого действительного a на промежутке существует единственный угол , для которого . Это угол . Учитывая периодичность функции , получим формулы для нахождения корней уравнения :

   

ПРИМЕР 6




ЗаданиеРешить уравнение

   

РешениеВедем замену , тогда исходное уравнение преобразуется в простейшее тригонометрическое уравнение , корни которого вычисляются по формуле

   

Тогда

   

Сделаем обратную замену

   

и выразим из полученного уравнения x:

   

   

поделим обе части последнего равенства на 5, тогда окончательно получим

   

Ответ

Приведение тригонометрических уравнений к простейшим

Примеры тригонометрических уравнений, которые приводятся к простейшим тригонометрическим уравнениям с помощью элементарных преобразований или тригонометрических формул.

ПРИМЕР 8




ЗаданиеРешить уравнение
РешениеПрименим к правой части заданного уравнения формулу суммы синусов:

   

   

или

   

Последнее равенство равносильно совокупности простейших уравнений

   

Ответ



Понравился сайт? Расскажи друзьям!



ru.solverbook.com

решение уравнений с косинусами и синусами

Примеры решаемых уравнений

Примеры решаемых уравнений (простых)

Система не умеет решать абсолютно все уравнения из ниже перечисленных, но вдруг Вам повезет 🙂
Решение Алгебраических (по алгебре): Квадратных, кубических и других степеней уравнений x^4-x=0
Решение Тригонометрих уравнений sin(2*x)=1

Правила ввода уравнений

В поле ‘Уравнение’ можно делать следующие операции:

Правила ввода функций

В функции f можно делать следующие операции:

Действительные числа
вводить в виде 7.5, не 7,5
2*x
— умножение
3/x
— деление
x^3
— возведение в степень
x + 7
— сложение
x — 6
— вычитание

Функция f может состоять из функций (обозначения даны в алфавитном порядке):

absolute(x)
Функция — абсолютное значение x (модуль x или |x|)
arccos(x)
Функция — арккосинус от x
arccosh(x)
Функция — арккосинус гиперболический от x
arcsin(x)
Функция — арксинус от x
arcsinh(x)
Функция — арксинус гиперболический от x
arctan(x)
Функция — арктангенс от x
arctanh(x)
Функция — арктангенс гиперболический от x
e
Функция — e это то, которое примерно равно 2.7
exp(x)
Функция — экспонента от x (тоже самое, что и e^x)
floor(x)
Функция — округление x в меньшую сторону (пример floor(4.5)==4.0)
log(x) or ln(x)
Функция — Натуральный логарифм от x
(Чтобы получить log7(x), надо ввести log(x)/log(7) (или, например для log10(x)=log(x)/log(10))
pi
Число — «Пи», которое примерно равно 3.14
sign(x)
Функция — Знак x
sin(x)
Функция — Синус от x
cos(x)
Функция — Косинус от x
sinh(x)
Функция — Синус гиперболический от x
cosh(x)
Функция — Косинус гиперболический от x
sqrt(x)
Функция — Корень из от x
x^2
Функция — Квадрат x
tan(x)
Функция — Тангенс от x
tanh(x)
Функция — Тангенс гиперболический от x

www.kontrolnaya-rabota.ru

Тригонометрические уравнения и их решение

Простейшие тригонометрические уравнения

К простейшим тригонометрическим уравнениям относятся уравнения вида

   

Рассмотрим подробнее каждое из этих уравнений и их решение.

Уравнение вида . При и уравнение корней не имеет. При , корни этого уравнения находятся по формуле

   

Особые случаи:

   

   

   

Уравнение вида . При и уравнение корней не имеет. При , корни этого уравнения находятся по формуле

   

Особые случаи:

   

   

   

Замечание. .

Уравнение вида . Корни этого уравнения находятся по формуле

   

Уравнение вида . Корни этого уравнения находятся по формуле

   

Тригонометрические уравнения, приводящиеся к квадратным уравнениям

Это тригонометрические уравнения, которые после замены тригонометрической функции, которая входит в уравнение, становится квадратным.

Уравнение вида, где . Такие уравнения решают с помощью введения дополнительного угла. Считая, что , поделим обе части исходного уравнения на , получим

   

Для полученных коэффициентов при синусе и косинусе справедливы следующие соотношения

   

Тогда можно утверждать, что существует угол , такой что, например

   

Таким образом, последнее уравнение примет вид

   

По формуле суммы для тригонометрических функций, последнее уравнение сводится к простейшему тригонометрическому уравнению

   

откуда достаточно легко найти x.

Однородные тригонометрические уравнения

Однородные тригонометрические уравнения – это уравнения вида

   

где – действительные числа, . Такое уравнение легко приводится к уравнению относительно , если все его члены поделить на . При этом, если , то деление не приведет к потере корней. Действительно, если , то первоначальное уравнение примет вид , откуда , что не возможно, так как и одновременно не могут быть равны нулю.

Дробно-рациональные тригонометрические уравнения

Основной сложностью решения таких уравнений является отбор корней уравнения для формирования ответа.

ru.solverbook.com

Решение тригонометрических уравнений | Математика, которая мне нравится

Простейшие тригонометрические уравнения

Уравнение при решений не имеет,

при имеет решения ,

при  имеет решения ,

при имеет решения ,

при всех остальных имеет решения .

Уравнение при решений не имеет,

при имеет решения ,

при  имеет решения >,

при имеет решения ,

при всех остальных имеет решения .

Уравнение имеет решения .

Уравнение имеет решения .

Приемы решения тригонометрических уравнений

1. Сведение к одной функции

1. заменяем на , — на .

Пример 1.

   

   

Пример 2.

   

2. заменяем на , — на , — на .

Пример 1.

   

1) 2) ,
В первом случае решений нет, во втором .

Пример 2.

   

   

Пример 3.

   

3. Однородные уравнения относительно .

   

Если , то деля обе части уравнения на или на , получаем равносильные уравнения. Действительно, пусть — корень уравнения и . Подставляя в уравнение, получаем, что и , а это невозможно.

Пример.

   

4. Уравнения, приводящиеся к однородным

а) Домножение на

Пример.

   

б) Переход к половинному аргументу

Пример.

   

   

5. Использование формулы

Пример.

   

6. Замена .
Пример.

   

   

Разложение на множители

1. Формулы преобразования суммы в произведение

2. Формулы

   

Пример 1.

   

Ответ. .

Пример 2.

   

   

,  решений нет,

   

Ответ. , .

Понижение степени

Использование формул

   

Сравнение левой и правой части

Пример 1.

   

что невозможно.

Ответ. .
Пример 2.

   

Ответ. .
Пример 3.

   

Пусть

   

Подставляем во второе уравнение:

   

Ответ. .

Пример 4.

   

или

   

Если , то . Если , то .

   

Ответ. .

hijos.ru

Формулы тригонометрических уравнений

Для удобной работы все формулы для решения простейших тригонометрических уравнений, включая частные случаи, а также таблицы арксинусов, арккосинусов, арктангенсов и арккотангенсов собраны на одной странице.

I. sin x =a

При │a│>1 это уравнение решений не имеет.

При │a│не превосходящем 1 уравнение имеет бесконечное множество решений:

   

Таблица арксинусов

   

   

II. cos x=a

При │a│>1 это уравнение решений не имеет.

При │a│не превосходящем 1 уравнение имеет бесконечное множество решений:

   

Таблица арккосинусов

   

   

Частные случаи синуса и косинуса:

III. tg x=a

Уравнение имеет бесконечное множество решений при любых значениях a.

   

Таблица арктангенсов

   

   

IV. ctg x = a

Уравнение имеет бесконечное множество решений при любых значениях a.

   

Таблица арккотангенсов

   

   

 

www.uznateshe.ru