Свойства мышечной ткани являются – Какими свойствами обладает мышечная ткань — Справочник потребителя | Справочник потребителя

виды, свойства, особенности строения и функции

Мышечные ткани — это ткани, отличающиеся по структуре и происхождению, но имеют общую способность к сокращению. Состоят из миоцитов — клеток, которые могут воспринимать нервные импульсы и отвечать на них сокращением.

Свойства и виды мышечной ткани

Морфологические признаки:

  • Вытянутая форма миоцитов;
  • продольно размещены миофибриллы и миофиламенты;
  • митохондрии находятся вблизи сократительных элементов;
  • присутствуют полисахариды, липиды и миоглобин.

Свойства мышечной ткани:

  • Сократимость;
  • возбудимость;
  • проводимость;
  • растяжимость;
  • эластичность.

Выделяют следующие виды мышечной ткани в зависимости от морфофункциональных особенностей:

  1. Поперечнополосатая: скелетная, сердечная.
  2. Гладкая.

Гистогенетическая классификация делит мышечные ткани на пять видов в зависимости от эмбрионального источника:

  • Мезенхимные — десмальный зачаток;
  • эпидермальные — кожная эктодерма;
  • нейральные — нервная пластинка;
  • целомические — спланхнотомы;
  • соматические — миотом.

Из 1-3 видов развиваются гладкомышечные ткани, 4, 5 дают поперечнополосатые мышцы.

Строение и функции гладкой мышечной ткани

Cостоит из отдельных мелких веретеновидных клеток. Эти клетки имеют одно ядро и тонкие миофибриллы, которые тянутся от одного конца клетки к другому. Гладкие мышечные клетки объединяются в пучки, состоящие из 10-12 клеток. Это объединение возникает благодаря особенностям иннервации гладкой мускулатуры и облегчает прохождение нервного импульса на всю группу гладких мышечных клеток. Сокращается гладкая мышечная ткань ритмично, медленно и на протяжении длительного времени, способна при этом развивать большую силу без значительных затрат энергии и без утомления.

У низших многоклеточных животных из гладкой мышечной ткани состоят все мышцы, тогда как у позвоночных животных она входит в состав внутренних органов (кроме сердца).

Сокращения этих мышц не зависят от воли человека, т. е. происходят непроизвольно.

Функции гладкой мышечной ткани:

  • Поддерживание стабильного давления в полых органах;
  • регуляция уровня кровяного давления;
  • перистальтика пищеварительного тракта, перемещения по нему содержимого;
  • опорожнение мочевого пузыря.

Строение и функции скелетной мышечной ткани

Скелетная мышечная ткань

Cостоит из длинных и толстых волокон длиной 10-12 см. Скелетная мускулатура характеризуется произвольным сокращением (в ответ на импульсы, идущие из коры головного мозга). Скорость ее сокращения в 10-25 раз выше, чем в гладкой мышечной ткани.

Мышечное волокно поперечнополосатой ткани покрыто оболочкой — сарколеммой. Под оболочкой находится цитоплазма с большим количеством ядер, расположенных по периферии цитоплазмы, и сократительными нитями — миофибриллами. Состоит миофибрилла из последовательно чередующихся темных и светлых участков (дисков), обладающих разным коэффициентом преломления света. С помощью электронного микроскопа установлено, что миофибрилла состоит из протофибрилл. Тонкие протофибриллы построены из белка — актина, аболее толстые — из миозина.

При сокращении волокон происходит возбуждение сократимых белков, тонкие протофибриллы скользят по толстым. Актин реагирует с миозином, и возникает единая актомиозиновая система.

Функции скелетной мышечной ткани:

  • Динамическая — перемещение в пространстве;
  • статическая — поддержание определенной позиции частей тела;
  • рецепторная — проприорецепторы, воспринимающие раздражение;
  • депонирующая — жидкость, минералы, кислород, питательные вещества;
  • терморегуляция — расслабление мышц при повышении температуры для расширения сосудов;
  • мимика — для передачи эмоций.

Строение и функции сердечной мышечной ткани

Сердечная мышечная ткань

Миокард построен из сердечной мышечной и соединительной ткани, с сосудами и нервами. Мышечная ткань относится к поперечнополосатой мускулатуре, исчерченность которой также обусловлена наличием разных типов миофиламентов. Миокард состоит из волокон, которые связаны между собой и формируют сетку. Эти волокна включают одно или двухъядерные клетки, что расположены в виде цепочки. Они получили название сократительных кардиомиоцитов.

Сократительные кардиомиоциты длиной от 50 до 120 микрометров, шириной — до 20 мкм. Ядро здесь располагается в центре цитоплазмы, в отличие от ядер поперечно полосатых волокон. Кардиомиоциты имеют больше саркоплазма и меньше миофибрилл, в сравнении со скелетными мышцами. В клетках сердечной мышцы находится много митохондрий, так как непрерывные сердечные сокращения требуют много энергии.

Вторая разновидность клеток миокарда — это проводящие кардиомиоциты, которые формируют проводящую систему сердца. Проводящие миоциты обеспечивают передачу импульса к сократительным мышечным клеткам.

Функции сердечной мышечной ткани:

  • Насосная;
  • обеспечивает ток крови в кровеносном русле.

Компоненты сократительной системы

Особенности строения мышечной ткани обусловлены выполняемыми функциями, возможностью принимать и проводить импульсы, способностью к сокращению. Механизм сокращения заключается в согласованной работе ряда элементов: миофибрилл, сократительных белков, митохондрий, миоглобина.

В цитоплазме мышечных клеток имеются особые сократительные нити — миофибриллы, сокращение которых возможно при содружественной работе белков — актина и миозина, а также при участии ионов Са. Митохондрии снабжают все процессы энергией. Также энергетические запасы образуют гликоген и липиды. Миоглобин необходим для связывания O2 и формирование его запаса на период сокращения мышцы, так как во время сокращения идет сдавление кровеносных сосудов и снабжение мышц O2 резко снижается.

Таблица. Соответствие между характеристикой мышечной ткани и ее видом

Вид тканиХарактеристика
ГладкомышечнаяВходит в состав стенок кровеносных сосудов
Структурная единица – гладкий миоцит
Сокращается медленно, неосознанно
Поперечная исчерченность отсутствует
СкелетнаяСтруктурная единица – многоядерное мышечное волокно
Свойственна поперечная исчерченность
Сокращается быстро, осознанно

Где находится мышечная ткань?

Гладкие мышцы являются составной частью стенок внутренних органов: желудочно-кишечного тракта, мочеполовой системы, сосудов. Входят в состав капсулы селезенки, кожных покровов, сфинктера зрачка.

Скелетная мускулатуразанимают около 40% от массы тела человека, с помощью сухожилий крепятся к костям. Из этой ткани состоят скелетные мышцы, мышцы рта, языка, глотки, гортани, верхнего участка пищевода, диафрагмы, мимическая мускулатура. Также поперечно полосатые мышцы находится в миокарде.

Чем мышечное волокно скелетной мышцы отличается от гладкой мышечной ткани?

Волокна поперечнополосатых мышц намного длиннее (до 12см), чем клеточные элементы гладкомышечной ткани (0,05-0,4мм). Также скелетные волокна имеют поперечную исчерченность благодаря особому расположению нитей актина и миозина. Для гладких мышц это не характерно.

В мышечных волокнах находится много ядер, а сокращение волокон сильное, быстрое и осознанное. В отличие от гладких мышц, клетки гладкомышечной ткани одноядерные, способны сокращаться в медленном темпе и неосознанно.

animals-world.ru

Мышечная ткань

Мышечными тканями (лат. textus muscularis) называют ткани, различные по строению и происхождению, но сходные по способности к выраженным сокращениям. Мышечные ткани состоят из вытянутых клеток, которые принимают раздражение от нервной системы и отвечают на него сокращением. Они обеспечивают перемещения в пространстве организма в целом, его движение органов внутри организма (сердце, язык, кишечник и др.) и состоят из мышечных волокон. Свойством изменения формы обладают клетки многих тканей, но в мышечных тканях эта способность становится главной функцией.

Основные морфологические признаки элементов мышечных тканей: удлиненная форма, наличие продольно расположенных миофибрилл и миофиламентов — специальных органелл, обеспечивающих сократимость, расположение митохондрий рядом с сократительными элементами, наличие включений гликогена, липидов и миоглобина.

Специальные сократительные органеллы — миофиламенты или миофибриллы обеспечивают сокращение, которое возникает при взаимодействии в них двух основных фибриллярных белков — актина и миозина — при обязательном участии ионов кальция. Митохондрии обеспечивают эти процессы энергией. Запас источников энергии образуют гликоген и липиды. Миоглобин — белок, обеспечивающий связывание кислорода и создание его запаса на момент сокращения мышцы, когда сдавливаются кровеносные сосуды (поступление кислорода при этом резко падает).

 

Свойства мышечной ткани:

  • Возбудимость
  • Проводимость
  • Сократимость
  • Лабильность

 

Виды мышечной ткани:

1. Гладкая мышечная ткань

Гладкая мышечная ткань состоит из одноядерных клеток — миоцитов веретеновидной формы длиной 20—500 мкм. Их цитоплазма в световом микроскопе выглядит однородно, без поперечной исчерченности. Эта мышечная ткань обладает особыми свойствами: она медленно сокращается и расслабляется, обладает автоматией, является непроизвольной (то есть ее деятельность не управляется по воле человека). Входит в состав стенок внутренних органов: кровеносных и лимфатических сосудов, мочевыводящих путей, пищеварительного тракта (сокращение стенок желудка и кишечника).

 

2. Поперечно-полосатая скелетная мышечная ткань

Состоит из миоцитов, имеющих большую длину (до нескольких сантиметров) и диаметр 50—100 мкм; эти клетки многоядерные, содержат до 100 и более ядер; в световом микроскопе цитоплазма выглядит как чередование тёмных и светлых полосок. Свойствами этой мышечной ткани является высокая скорость сокращения, расслабления и произвольность (то есть её деятельность управляется по воле человека). Эта мышечная ткань входит в состав скелетных мышц, а также стенки глотки, верхней части пищевода, ею образован язык, глазодвигательные мышцы. Волокна длиной от 10 до 12 см.

 

3. Поперечно-полосатая сердечная мышечная ткань

Состоит из 1 или 2-х ядерных кардиомиоцитов, имеющих поперечную исчерченность цитоплазмы(по периферии цитолеммы). Кардиомиоциты разветвлены и образуют между собой соединения — вставочные диски, в которых объединяется их цитоплазма.Существует также другой межклеточный контакт- аностамозы(впячивание цитолеммы одной клетки в цитолемму другой) Этот вид мышечной ткани образует миокард сердца. Развивается из миоэпикардальной пластинки (висцерального листка спланхнотома шеи зародыша) Особым свойством этой ткани является автоматия — способность ритмично сокращаться и расслабляться под действием возбуждения, возникающего в самих клетках(типичные кардиомиоциты). Эта ткань является непроизвольной(атипичные кардиомиоциты). Существует 3-й вид кардиомиоцитов- секреторные кардиомиоциты (в них нет фибрилл) Они синтезируют гормон тропонин, понижающий АД и расширяющий стенки кровеносных сосудов.

Мышечная оболочка сердца (миокард) — образована мышечными полостными клетками, которые с помощью вставочных дисков соеденяются в мышечные комплексы или сердечные мышечные волокна. Мышечная ткань имеет свойства восстанавливаться, она защищена соеденительной тканью, образующий рубец.

< Предыдущая   Следующая >

poznajvse.com

Особенности строения гладкой мышечной ткани. Мышечная ткань.

textus muscularis ) называют ткани, различные по строению и происхождению, но сходные по способности к выраженным сокращениям. Состоят из вытянутых клеток, которые принимают раздражение от нервной системы и отвечают на него сокращением. Они обеспечивают перемещения в пространстве организма в целом, его движение органов внутри организма (сердце, язык, кишечник и др.) и состоят из мышечных волокон. Свойством изменения формы обладают клетки многих тканей, но в мышечных тканях эта способность становится главной функцией.

Основные морфологические признаки элементов мышечных тканей: удлиненная форма, наличие продольно расположенных миофибрилл и миофиламентов — специальных органелл, обеспечивающих сократимость, расположение митохондрий рядом с сократительными элементами, наличие включений гликогена, липидов и миоглобина.

Специальные сократительные органеллы — миофиламенты или миофибриллы обеспечивают сокращение, которое возникает при взаимодействии в них двух основных фибриллярных белков — актина и миозина — при обязательном участии ионов кальция. Митохондрии обеспечивают эти процессы энергией.Запас источников энергии образуют гликоген и липиды. Миоглобин — белок, обеспечивающий связывание кислорода и создание его запаса на момент сокращения мышцы, когда сдавливаются кровеносные сосуды (поступление кислорода при этом резко падает).

Первоначальные исследования изображений зависят от расположения опухоли

Саркома матки может вызвать кровотечение, воспаление или боль в области таза. Диагностические и промежуточные системы. Из-за того, что саркомы редки, многие врачи не консультировались с пациентами с саркомой или ухаживали за ними. Когда подозревается саркома, важно проконсультироваться с медицинской бригадой, знакомой с саркомой.

Для установления диагноза и наблюдения за типом саркомы жизненно важно сделать двухпозицию. Успешная биопсия требует знаний о саркомах и их лечении, и это лучше всего делать хирургу, который знаком с саркомой, и экзамен будет проводиться патологоанатомом, который имеет опыт работы с типами саркомы.

Свойства мышечной ткани

  1. Сократимость

Виды мышечной ткани

Гладкая мышечная ткань

Состоит из одноядерных клеток — миоцитов веретеновидной формы длиной 20-500 мкм. Их цитоплазма в световом микроскопе выглядит однородно, без поперечной исчерченности. Эта мышечная ткань обладает особыми свойствами: она медленно сокращается и расслабляется, обладает автоматией, является непроизвольной (то есть ее деятельность не управляется по воле человека). Входит в состав стенок внутренних органов: кровеносных и лимфатических сосудов, мочевыводящих путей, пищеварительного тракта (сокращение стенок желудка и кишечника).

Бифиз может выполняться посредством открытой процедуры или закрытой процедуры с использованием большой иглы для удаления ткани. Биопсию следует делать правильно, чтобы собрать достаточное количество ткани для получения диагноза, но не так много ткани, чтобы скомпрометировать окончательную резекцию опухоли. Как правило, предпочтительным методом является наименее инвазивный метод, позволяющий патологу дать окончательный диагноз.

Эта постановка также основана на размере опухоли следующим образом. В дополнение к этой официальной постановке, врачи также рассматривают другие функции, которые указывают на высокую вероятность рецидива. Пациенты с такими характеристиками считаются «высоко рискованными» и могут рассматриваться более агрессивно.

Поперечно-полосатая скелетная мышечная ткань

Состоит из миоцитов, имеющих большую длину (до нескольких сантиметров) и диаметр 50-100 мкм; эти клетки многоядерные, содержат до 100 и более ядер; в световом микроскопе цитоплазма выглядит как чередование тёмных и светлых полосок. Свойствами этой мышечной ткани является высокая скорость сокращения, расслабления и произвольность (то есть её деятельность управляется по воле человека). Эта мышечная ткань входит в состав скелетных мышц, а также стенки глотки, верхней части пищевода, ею образован язык, глазодвигательные мышцы. Волокна длиной от 10 до 12 см.

Лечение саркомы мягких тканей. Учитывая редкость саркомы мягких тканей, лучше всего обращаться с пациентами в специализированном лечебном центре. Шведское исследование показало, что частота рецидивов в 2 раза выше у пациентов, которые не лечатся в специализированных центрах. Кроме того, исследования показали плохие результаты у пациентов, прибывших в специализированные медицинские центры после начальной операции. Конкретное лечение зависит от размера и местоположения опухоли, степени опухоли, независимо от ее распространения.

Вот краткий обзор лечения, но каждый случай должен обсуждаться с медицинской бригадой. К сожалению, из-за того, что большинство опухолей появляются в конечностях, это может означать ампутацию пораженных конечностей. Хирургические методы развивались в последнее время, поэтому сегодня только 10% пациентов нуждаются в ампутации. Значительное улучшение за последние годы. Обычно, помимо опухоли, хирург удаляет, когда это возможно, 2 см площади нормальной ткани вокруг области, где была опухоль. Радикальное иссечение с запасом безопасности, окружающим биопсию, является стандартной хирургической процедурой локализованного заболевания.

Поперечно-полосатая сердечная мышечная ткань

Состоит из 1 или 2-х ядерных кардиомиоцитов, имеющих поперечную исчерченность цитоплазмы(по периферии цитолеммы). Кардиомиоциты разветвлены и образуют между собой соединения — вставочные диски, в которых объединяется их цитоплазма.Существует также другой межклеточный контакт- аностамозы(впячивание цитолеммы одной клетки в цитолемму другой) Этот вид мышечной ткани образует миокард сердца. Развивается из миоэпикардальной пластинки (висцерального листка спланхнотома шеи зародыша) Особым свойством этой ткани является автоматия — способность ритмично сокращаться и расслабляться под действием возбуждения, возникающего в самих клетках(типичные кардиомиоциты). Эта ткань является непроизвольной(атипичные кардиомиоциты). Существует 3-й вид кардиомиоцитов- секреторные кардиомиоциты (в них нет фибрилл) Они синтезируют гормон тропонин, понижающий АД и расширяющий стенки кровеносных сосудов.

Существует низкий риск распространения на лимфатические узлы, поэтому рассечение лимфатических узлов не проводится в обычном режиме. Однако в некоторых подтипах лимфатическое поражение лимфатических узлов встречается гораздо чаще. У этих пациентов, если подозревается повреждение лимфатических узлов, удаление этих лимфатических узлов может иметь лечебный эффект. Для пациентов с опухолями низкого риска с низким риском рекомендуется хирургическое вмешательство. Однако большинству пациентов также потребуется лучевая терапия.

Лучевая терапия может быть выполнена до или после операции или во время операции с использованием брахитерапии. Исследования показали, что лучевая терапия предотвращает рецидив больше, чем если бы была сделана операция. Исследователи еще не могли признать, что профилактика рецидивов повышает выживаемость. До этой даты они не увеличивали выживаемость с помощью лучевой терапии.

Функции мышечной ткани

Двигательная. Защитная. Теплообменная. Так же можно выделить еще одну функцию — мимическую (социальную). Мышцы лица, управляя мимикой, передают информацию окружающим.

Прим

artremstroi.ru

Свойства мышечной ткани

  1. Возбудимость

  2. Проводимость

  3. Сократимость

  4. Лабильность

Виды мышц.

  • Гладкие мышцы

  • Сердечную мышцу.

  • Скелетные мышцы

Сокращения мышц

В процессе сокращения нити актина проникают глубоко в промежутки между нитями миозина, причем длина обеих структур не меняется, а лишь сокращается общая длина актомиозинового комплекса — такой способ сокращения мышц называется скользящим. Скольжение актиновых нитей вдоль миозиновых нуждается в энергии, энергия, необходимая для сокращения мышц, освобождается в результате взаимодействия актомиозина с АТФ с расщеплением последнего на АДФ и h4PO4.’ Кроме АТФ важную роль в сокращении мышц играет вода, а также ионы кальция и магния. Скелетная мышца состоит из большого количества мышечных волокон — чем их больше, тем сильнее мышца.

Различают два типа мышечных сокращений. Если оба конца мышцы неподвижно закреплены, происходит изометрическое сокращение, и при неизменной длине напряжение увеличивается. Если один конец мышцы свободен, то в процессе сокращения длина мышцы уменьшится, а напряжение не изменяется — такое сокращение называют изотоническим; в организме такие сокращения имеют большее значение для выполнения любых движений.

Из гладких мышц (гладкой мышечной ткани) состоят внутренние органы, в частности, стенки пищевода, кровеносные сосуды, дыхательные пути и половые органы. Гладкие мышцы отличаются так называемым автоматизмом, то есть способностью приходить в состояние возбуждения при отсутствии внешних раздражителей. И если сокращение скелетных мышц продолжается около 0,1 сек, то более медленные сокращения гладких мышц продолжается от 3 до 180 сек. В пищеводе, половых органах и мочевом канале возбуждение передаётся от одной мышечной клетки к следующей. Что касается сокращения гладких мышц, находящихся в стенках кровеносных сосудов и в радужной оболочке глаза, то оно не переносится с клетки на клетку; к гладким мышцам подходят симпатические и парасимпатические нервы автономной нервной системы.

Говоря о сердечной мышце (миокарде), следует отметить, что при нормальной работе она затрачивает на сокращение около 1 сек, а при увеличении нагрузки скорость сокращений увеличивается. Уникальная особенность сердечной мышцы — в ее способности ритмично сокращаться даже при извлечении ее из организма.

2. Кровь — жидкая соединительная ткань, наполняющая сердечно-сосудистую систему позвоночных животных, в том числе человека и некоторых беспозвоночных.

Функции

2. Транспортную — в ней выделяют ряд подфункций:

  • Дыхательная — перенос кислорода от лёгких к тканям и углекислого газа от тканей к лёгким;

  • Питательная — доставляет питательные вещества к клеткам тканей;

  • Экскреторная (выделительная) — транспорт ненужных продуктов обмена веществ к легким и почкам для их экскреции (выведения) из организма;

  • Терморегуляторная — регулирует температуру тела, перенося тепло;

  • Регуляторная — связывает между собой различные органы и системы, перенося сигнальные вещества (Гормоны), которые в них образуются;

2. Защитную — обеспечение клеточной и гуморальной защиты от чужеродных агентов.

3. Гомеостатическую — поддержание постоянства внутренней среды организма.

Кол-во

Общее количество крови от массы тела 6,5—7 %

studfiles.net

особенности строения. Свойства гладкой мышечной ткани

Животные ткани выполняют очень важную функцию в организмах живых существ — формируют и выстилают все органы и их системы. Особое значение среди них имеет именно мышечная, так как ее значение в формировании наружной и внутренней полости всех структурных частей тела приоритетная. В данной статье рассмотрим, что собой представляет гладкая мышечная ткань, особенности строения ее, свойства.

Разновидности данных тканей

В составе животного организма имеется немного типов мышц:

  • поперечно полосатая;
  • гладкая мышечная ткань.

Обе они имеют свои характеристические черты строения, выполняемые функции и проявляемые свойства. Кроме того, их легко различить между собой. Ведь и та и другая имеют свой неповторимый рисунок, формирующийся благодаря входящим в состав клеток белковым компонентам.

Поперечнополосатая также подразделяется на два основных вида:

  • скелетная;
  • сердечная.

Само название отражает основные области расположения в организме. Ее функции чрезвычайно важны, ведь именно эта мускулатура обеспечивает сокращение сердца, движение конечностей и всех остальных подвижных частей тела. Однако, и гладкая мускулатура не менее значима. В чем заключаются ее особенности, рассмотрим дальше.

В целом можно заметить, что только слаженная работа, которую выполняет гладкая и поперечнополосатая мышечные ткани, позволяет всему организму успешно функционировать. Поэтому определить более или менее значимую из них невозможно.

Основные необычные черты рассматриваемой структуры заключаются в строении и составе ее клеток — миоцитов. Как и любая другая, эта ткань образована группой клеток, схожих по строению, свойствам, составу и выполняемым функциям. Общие особенности строения можно обозначить в нескольких пунктах.

  1. Каждая клетка окружена плотным сплетением соединительнотканных волокон, что выглядит, словно капсула.
  2. Каждая структурная единица плотно прилегает к другой, межклетники практически отсутствуют. Это позволяет всей ткани быть плотноупакованной, структурированной и прочной.
  3. В отличие от поперечнополосатой коллеги, данная структура может включать в свой состав неодинаковые по форме клетки.

Это, конечно, не вся характеристика, которую имеет гладкая мышечная ткань. Особенности строения, как уже оговаривалось, заключаются именно в самих миоцитах, их функционировании и составе. Поэтому ниже этот вопрос будет рассмотрен подробнее.

Миоциты гладкой мускулатуры

Миоциты имеют разную форму. В зависимости от локализации в том или ином органе, они могут быть:

  • овальными;
  • веретеновидными удлиненными;
  • округлыми;
  • отростчатыми.

Однако в любом случае общий состав их сходен. Они содержат такие органоиды, как:

  • хорошо выраженные и функционирующие митохондрии;
  • комплекс Гольджи;
  • ядро, чаще вытянутое по форме;
  • эндоплазматический ретикулум;
  • лизосомы.

Естественно, и цитоплазма с обычными включениями также присутствует. Интересен факт, что миоциты гладкой мускулатуры снаружи покрыты не только плазмолеммой, но и мембраной (базальной). Это обеспечивает им дополнительную возможность для контакта друг с другом.

Эти места соприкосновения составляют особенности гладкой мышечной ткани. Места контактов именуются нексусами. Именно через них, а также через поры, которые в этих местах имеются в мембране, происходит передача импульсов между клетками, обмен информацией, молекулами воды и другими соединениями.

Есть еще одна необычная черта, которую имеет гладкая мышечная ткань. Особенности строения ее миоцитов в том, что не все из них имеют нервные окончания. Поэтому настолько важны нексусы. Чтобы ни одна клетка не осталась без иннервации, и импульс мог передаться через соседнюю структуру по ткани.

Существует два основных типа миоцитов.

  1. Секреторные. Их основная функция заключается в выработке и накоплении гранул гликогена, сохранении множества митохондрий, полисом и рибосомальных единиц. Свое название эти структуры получили из-за белков, содержащиеся в них. Это актиновые филаменты и сократительные фибриновые нити. Данные клетки чаще всего локализуются по периферии ткани.
  2. Гладкие мышечные волокна. Имеют вид веретеновидных удлиненных структур, содержащих овальное ядро, смещенное к середине клетки. Другое название лейомиоциты. Отличаются тем, что имеют более крупные размеры. Некоторые частицы маточного органа достигают 500 мкм! Это достаточно значительная цифра на фоне всех остальных клеток в организме, больше разве что яйцеклетка.

Функция гладких миоцитов состоит также в том, что они синтезируют следующие соединения:

  • гликопротеиды;
  • проколлаген;
  • эластаны;
  • межклеточное вещество;
  • протеогликаны.

Совместное взаимодействие и слаженная работа обозначенных типов миоцитов, а также их организация обеспечивают строение гладкой мышечной ткани.

Происхождение данной мускулатуры

Источник образования данного типа мускулатуры в организме не один. выделяют три основных варианта происхождения. Именно этим и объясняется различия, которые имеет строение гладкой мышечной ткани.

  1. Мезенхимное происхождение. такое имеет большая часть гладких волокон. Именно из мезенхими образуются практически все ткани, выстилающие внутреннюю часть полых органов.
  2. Эпидермальное происхождение. Само название говорит о местах локализации — это все кожные железы и их протоки. Именно они образованы гладкими волокнами, имеющими такой вариант появления. Потовые, слюнные, молочные, слезные — все эти железы выделяют свой секрет, благодаря раздражению клеток миоэпителиоцитов — структурных частичек рассматриваемого органа.
  3. Нейральное происхождение. Такие волокна локализуются в одном определенном месте — это радужка, одна из оболочек глаза. Сокращение или расширение зрачка иннервируется и управляется именно этими клетками гладкой мускулатуры.

Несмотря на разное происхождение, внутренний состав и выполняемые свойства всех типов клеток в рассматриваемой ткани остаются примерно одинаковыми.

Основные свойства данной ткани

Свойства гладкой мышечной ткани соответствуют таковым и для поперечнополосатой. В этом они едины. Это:

  • проводимость;
  • возбудимость;
  • лабильность;
  • сократимость.

При этом существует и одна достаточно специфичная особенность. Если поперечнополосатая скелетная мускулатура способна быстро сокращаться (это хорошо иллюстрирует дрожь в теле человека), то гладкая может долго удерживаться в сжатом состоянии. Кроме того, ее деятельность не подчиняется воле и разуму человека. Так как иннервирует ее вегетативная нервная система.

Очень важным свойством является способность к длительному медленному растяжению (сокращению) и такому же расслаблению. Так, на этом основана работа мочевого пузыря. Под действием биологической жидкости (ее наполнением) он способен растягиваться, а затем сокращаться. Стенки его выстланы именно гладкой мускулатурой.

Белки клеток

Миоциты рассматриваемой ткани содержат много разных соединений. Однако наиболее важными из них, обеспечивающими выполнение функций сокращения и расслабления, являются именно белковые молекулы. Из них здесь содержатся:

  • миозиновые нити;
  • актин;
  • небулин;
  • коннектин;
  • тропомиозин.

Эти компоненты обычно располагаются в цитоплазме клеток изолированно друг от друга, не образуя скоплений. Однако в некоторых органах у животных формируются пучки или тяжи, именуемые миофибриллами.

Расположение в ткани этих пучков в основном продольное. Причем как миозиновых волокон, так и актиновых. В результате образуется целая сеть, в которой концы одних сплетаются с краями других белковых молекул. Это важно для быстрого и правильного сокращения всей ткани.

Само сокращение происходит так: в составе внутренней среды клетки есть пиноцитозные пузырьки, в которых обязательно содержатся ионы кальция. Когда поступает нервный импульс, говорящий о необходимости сокращения, этот пузырек подходит к фибрилле. В результате ион кальция раздражает актин и он продвигается глубже между нитями миозина. Это приводит к затрагиванию плазмалеммы и в результате миоцит сокращается.

Гладкая мышечная ткань: рисунок

Если говорить о поперечнополосатой ткани, то ее легко узнать по исчерченности. Но вот что касается рассматриваемой нами структуры, то такого не происходит. Почему гладкая мышечная ткань рисунок имеет совсем иной, нежели близкая ей соседка? Это объясняется наличием и расположением белковых компонентов в миоцитах. В составе гладкой мускулатуры нити миофибрилл разной природы локализуются хаотично, без определенного упорядоченного состояния.

Именно поэтому рисунок ткани просто отсутствует. В поперечнополосатой нити актина последовательно сменяются поперечным миозином. В результате возникает рисунок — исчерченность, благодаря которой ткань и получила свое название.

Под микроскопом гладкая ткань выглядит очень ровной и упорядоченной, благодаря плотно прилегающим друг к другу продольно расположенным вытянутым миоцитам.

Области пространственного расположения в организме

Гладкая мышечная ткань образует достаточно большое количество важных внутренних органов в животном теле. Так, ей образованы:

  • кишечник;
  • половые органы;
  • кровеносные сосуды всех типов;
  • железы;
  • органы выделительной системы;
  • дыхательные пути;
  • части зрительного анализатора;
  • органы пищеварительной системы.

Очевидно, что места локализации рассматриваемой ткани крайне разнообразны и важны. Кроме того, следует заметить, что такая мускулатура формирует в основном те органы, которые подвержены автоматии в управлении.

Способы восстановления

Гладкая мышечная ткань образует достаточно важные структуры, что иметь способность к регенерации. Поэтому для нее характерны два основных пути восстановления при повреждениях различного рода.

  1. Митотическое деление миоцитов до образования нужного количества ткани. Самый распространенный простой и быстрый способ регенерации. Так происходит восстановление внутренней части любого органа, образованного гладкой мускулатурой.
  2. Миофибробласты способны трансформироваться в миоциты гладкой ткани при необходимости. Это более сложный и редко встречаемый путь регенерации данной ткани.

Иннервация гладкой мускулатуры

Гладкая мышечная ткань функции свои выполняет независимо от желания или нежелания живого существа. Это происходит оттого, что ее иннервацию осуществляет вегетативная нервная система, а также отростки нервов ганглиев (спинальных).

Примером этому и доказательством может служить сокращение или увеличение размеров желудка, печени, селезенки, растяжение и сокращение мочевого пузыря.

Функции гладкой мышечной ткани

Каково же значение этой структуры? Зачем нужна гладкая мышечная ткань? Функции ее следующие:

  • длительное сокращение стенок органов;
  • выработка секретов;
  • способность отвечать на раздражения и воздействия возбудимостью.

fb.ru

Основные свойства мышц

Мышцы, как любая живая ткань, обладают способностью переходить в состояние возбуждения при раздражении. Эта особенность мышц называется возбудимость. Возбуждение — это состояние активности мышцы, характеризующийся изменением процессов обмена в нем и возникновением потенциала действия. Возбуждение мышцы распространяется по нему благодаря такой физиологической свойства, как проводимость. Возбуждение проявляется деятельностью мышцы — сокращением. Таким образом, третьей физиологической свойством мышцы является сократимость.

В основе мышечного сокращения лежит взаимное скольжение актиновых и миозиновых белковых нитей, из которых состоят мышечные волокна. Причиной скольжения является химическое взаимодействие между актином и миозином в присутствии ионов Са2 + и энергии АТФ. Наблюдается химическое «зубчатое колесо», которое будто протягивает одну группу нитей по другой. Актино-миозиновые поперечные мостики играют роль соединительных звеньев, которые обеспечивают взаимодействие актиновых центров белков.

В ответ на одиночное раздражение пороговой силы возникает одиночное сокращение. Получив через нерв один импульс, мышца сокращается один раз и снова расслабляется. Одиночное сокращение состоит из трех периодов: 1) латентного; 2) сокращение и 3) расслабление.

Латентный период начинается с момента нанесения раздражения до начала сокращения мышцы. В это время мышца находится в локальном возбуждении, которое не способно распространяться. Период сокращения длится от видимого сокращения до максимума, а период расслабления — от максимума до выходного равной. Продолжительность одиночного сокращения неодинакова для различных мышц человека. Например, у мышц, приспособленных к быстрым движениям (глазодвигательные), это сокращение продолжается 0,01 с, в Камбалообразные — 0,1 с. Продолжительность и выраженность одиночного сокращения зависит также от усталости мышцы, температуры окружающей среды.

В нормальных условиях из центральной нервной системы к мышцам поступает не один импульс, а целая их серия. Когда мышца получает ряд импульсов, поступающих с большой частотой один за другим, то единичные сокращения добавляются и возникают длительные сокращения мышцы — тетанические сокращения или тетанус. Обязательным условием для возникновения тетануса является нанесение следующего раздражение тогда, когда сокращение, вызванное предыдущим раздражением, еще не закончилось. Различают зубчатый и гладкий (сплошной) тетанус. Зубчатый тетанус возникает в случае действия следующего раздражение в период расслабления, а гладкий — когда следующее раздражение поступает в период сокращения.

Тетанические сокращения сильнее одиночных. Физиолог Н.Е. Введенский объяснил это тем, что каждое последующее раздражение приходит к мышце, который находится в фазе повышенной возбудимости — фазе экзальтации.

В целостном организме тетануса сокращаются скелетные мышцы. Мышцы сердца присущи лишь единичные сокращения, а тетанические в норме для него невозможны. Это объясняется рефрактерностью миокарда — большим периодом абсолютной невозбудимости. Если в этот период поступает дополнительное раздражение, мышца не способен возбуждаться, а значит, и сокращаться.

Общая характеристика возбудимых тканей

Любой живой ткани (нервная, мышечная, железистая) присуща возбудимость. Возбудимость — основные физиологическое свойство ткани, которая заключается в способности приходить в состояние возбуждения при действии раздражителя. Раздражителем может быть любое изменение внешней или внутренней среды. Возбудимость различных тканей — разная. Нервная ткань более возбудим, чем мышечная или железистая. Одна и та же ткань в разных функциональных состояниях может иметь разнообразную возбудимость.

Возбуждение — это физиологический процесс, который развивается в возбудимой ткани при воздействии раздражителя и заключается в изменении течения процессов обмена веществ в ткани, вызывает характерную для данной ткани деятельность. Например, мышца начинает сокращаться, железа секретировать.

Если ткань не проявляет своей функции, то в данный момент она находится в состоянии относительного покоя. В это время в ткани проходят биохимические процессы, но небольшой интенсивности, которая является недостаточной для обеспечения специфической деятельности ткани.

Потенциал действия

Потенциал покоя. Возбуждающая ткань постоянно генерирует электрический ток. Все живые клетки имеют поляризованную клеточную мембрану, то есть в состоянии покоя ее внешняя поверхность имеет положительный заряд, а внутренняя отрицательную. Между внутренней и внешней поверхностями клеточной мембраны в состоянии покоя всегда возникает электрический ток, который называется мембранным потенциалом покоя. В разных клетках он колеблется от 50 до 90 мВ.

Потенциал действия — это быстрое колебание мембранного потенциала, возникающего при возбуждении клеток. Главной причиной развития потенциала действия является изменение проницаемости мембраны для ионов. Возникнув в месте раздражения, потенциал действия распространяется вдоль нервного или мышечного волокна, благодаря чему происходит передача информации в нервной системе. В мышечных клетках потенциал действия приводит к сокращению мышцы. Потенциал действия имеет несколько фаз, при которых изменяется его величина: деполяризации, реполяризации, следовых потенциалов.

Изменение возбудимости. Возбуждение, возникшее в нерве или мышце, распространяется по ткани. Во время возбуждения изменяется возбудимость ткани. При максимального развития возбуждения ткань на некоторое время становится незбудливою. Этот период невозбудимости ткани называется рефрактерным периодом. Различают абсолютную и относительную рефрактерность.

В фазу абсолютной рефрактерности раздражение любой силы, действующей в данный момент на мышцу или нерв, не может вызвать никакого эффекта.

Вслед за относительной рефрактерностью возбудимость ткани повышается и достигает максимума — фаза экзальтации или супернормальнои возбудимости. Пороговые раздражители вызывают в этой фазе возбуждения ткани. После фазы экзальтации возбудимость ткани снова знижуеться.У мере снижения возбуждения ткани, ее возбудимость повышается. Наступает фаза относительной рефрактерности. Раздражение пороговой силы (порог раздражения — это минимальная сила, вызывающая возбуждение) в эту фазу неэффективно, но раздражение большей силы способно вызвать возбуждение.

Теги: Анатомия человека, Биология, Костно-мышечная система, органы Костно-мышечной системы, природа, строение человека, Физиология человека, функции Костно-мышечной системы

bagazhznaniy.ru

Какими свойствами обладает мышечная ткань — Справочник потребителя | Справочник потребителя

Животные организмы отличаются от растительных тем, что имеют внутри и снаружи разное строение. Какими свойствами обладает мышечная ткань, которая является одной из основных в белковой форме жизни. Поэтому ее свойства и свойства различных видов мышечной ткани важно знать как для себя, так и для тех, кто учится или только собирается стать медиком. Строение и функции мышечной ткани позволяют живым организмом передвигаться различными способами, а внутренним органам сокращаться и расширяться.

Какими свойствами обладают клетки мышечной ткани

Всего в организме каждого живого существа выделяют три разновидности мышечной ткани:

  • гладкая;
  • сердечная;
  • поперечнополосатая.

Основными свойствами мышечных тканей являются такие параметры:

  • сокращение;
  • возбудимость;
  • проводимость;
  • лабильность.

Говоря конкретно о каждой из них, следует заметить, что мышечная ткань способна быстро воспринимать и проводить сигнальные импульсы. В ней разме6щаются нервные волокна, а также кровеносные сосуды и капилляры, которые питают мышцы кислородом, который поступает в кровь с дыханием.

Мышечная ткань имеет одно очень важное свойство: она быстро реагирует на любые виды раздражений, быстро посылая ответный импульс в мозг, вследствие чего организм моментально реагирует на любые воздействия физического, механического и химического характера. Это важнейшее условие нормальной и безопасной жизнедеятельности любого живого организма и одно из важных свойств, которым обладает мышечная ткань.

Каждый из этих видов мышечной ткани имеет свои особенности, хотя свойство сокращаться объединяет их. Как известно, клетки мышечной ткани имеют особенное строение, благодаря чему их свойства отличаются от других тканей организма.

Сокращения бывают контролируемыми и неконтролируемыми, длина мышечной клетки (миоцита) уменьшается или увеличивается во время движения мышц, что приводит к сгибанию или разгибанию конечностей, работе внутренних органов и всем другим видам активности мышечной ткани. Белковые миофибриллы, или миозиновые нити, очень быстро восстанавливают свою структуру. Это еще одно из свойств, каким обрадает мышечная ткань.

Какими свойствами обладают клетки мышечной ткани

Все мышечные клетки многоядерные и поэтому обменные процессы протекают в них очень быстро. Они могут иметь длину на всю мышцу, до 14 сантиметров. В клетках мышечной ткани происходят интенсивные процесс синтеза белка, образования и распада молекул АТФ и это одно из главных свойств, каким обладают клетки мышечной ткани. Ускорить эти процессы могут помочь аппараты для миостимуляции.

Интересоваться строением тела – это очень важно. Такая новинка, как буккальный массаж, воздействует на мышцы и снимает с них напряжение.

potrebitel.org.ua