Свойства функции модуль х – Графики функций, содержащих модуль — ПРОИЗВЕДЕНИЕ И ЧАСТНОЕ ДРОБЕЙ — РАЦИОНАЛЬНЫЕ ДРОБИ — ПОУРОЧНЫЕ РАЗРАБОТКИ ПО АЛГЕБРЕ 8 КЛАСС — Поурочные планы — разработки уроков — авторские уроки — план-конспект урока

Как построить график модуля функции и график корня


График и свойства функции у = │ах│ (модуль)

Рассмотрим функцию у = │ах│, где а — определенное число.

Областью определения функции у = │ах│, является множество всех действительных чисел. На рисунке изображены соответственно графики функций у = │х│, у = │ │, у = │х/2│.

Можно заметить, что график функции у = | ах | получается из графика функции у = ах, если отрицательную часть графика функции у = ах (она находится ниже оси Ох), отразить симметрично этой оси.

По графику легко усмотреть свойства функции у = │ ах │.

При х = 0, получаем у = 0, то есть графику функции принадлежит начало координат; при х = 0, получаем у > 0, то есть все  другие точки графика лежат выше оси Ох.

Для противоположных значений х, значения у

будут одинаковыми; ось Оу это ось симметрии графика.

К примеру, можно построить график функции у = │х3│. Чтобы сравнить функции у = │х3│и у = х3, составим таблицу их значений при одинаковых значениях аргументов.

Из таблицы видим, что для того, чтобы построить график функции у = │х3│, можно начать с построения графика функции у = х3. После этого стоит симметрично оси Ох отобразить ту его часть, которая находится ниже этой оси. В результате получим график, изображенный на рисунке.

График и свойства функции у = x1/2 (корень)

Рассмотрим функцию у = x1/2.

Областью определения этой функции является множество неотрицательных действительных чисел, так как выражение

x1/2 имеет значение только при х > 0.

Построим график. Для составления таблицы ее значений используем микрокалькулятор, округляя значения функции до десятых.

После нанесения на координатную плоскость точек, и плавного их соединения, получаем график функции у = x1/2.

Построенный график позволяет сформулировать некоторые свойства функции у = x1/2.

При х = 0, получаем у = 0; при х > 0, получаем у > 0; график проходит через начало координат; остальные точки графика расположены в первой координатной четверти.

Теорема. График функции у = x1/2 симметричен графику функции у = х

2, где х > 0, относительно прямой у = х.

Доказательство. Графиком функции у = х2, где х > 0, является ветвь параболы, расположенная в первой координатной четверти. Пусть точка Р (а; b) — произвольная точка этого графика. Тогда истинно равенство b = а2. Поскольку по условию число а неотрицательное, то истинно также и равенство а = b1/2. А это означает, что координаты точки Q (b; а) превращают формулу у = x1/2 в истинное равенство, или иначе, точка Q (b; а) принадлежит графику функции у = x1/2.

Так же доказывается, что если точка

М (с; d) принадлежит графику функции у = x1/2, то точка N (d; с) принадлежит графику у = х2, где х > 0.

Получается, что каждой точке Р (а; b) графика функции у = х2, где х > 0, соответствует единственная точка Q (b; а) графика функции у = x1/2  и наоборот.

Остается доказать, что точки Р (а; b) и Q (b; а) симметричны относительно прямой у = х. Опустив перпендикуляры на координатные оси из точек Р и Q, получаем на этих осях точки Е (а; 0), D (0; b), F (b; 0),

С (0; а). Точка R пересечения перпендикуляров РЕ и QC имеет координаты (а; а) и поэтому принадлежит прямой у = х. Треугольник PRQ является равнобедренным, так как его стороны RP и RQ равны │ bа│ каждая. Прямая у = х делит пополам как угол DOF, так и угол PRQ и пересекает отрезок PQ в определенной точке S. Поэтому отрезок RS является биссектрисой треугольника PRQ. Поскольку биссектриса равнобедренного треугольника является его высотой и медианой, то PQRS и PS = QS. А это означает, что точки Р (а; b) и Q (b; а) симметричные относительно прямой у = х.

Поскольку график функции у = x1/2

симметричен графику функции у = х2, где х > 0, относительно прямой у = х, то графиком функции у = x1/2 является ветвь параболы.

belmathematics.by

Как построить график модуля функции и график корня


График и свойства функции у = │ах│ (модуль)

Рассмотрим функцию у = │ах│, где а — определенное число.

Областью определения функции у = │ах│, является множество всех действительных чисел. На рисунке изображены соответственно графики функций у = │х│, у = │ │, у = │х/2│.

Можно заметить, что график функции

у = | ах | получается из графика функции у = ах, если отрицательную часть графика функции у = ах (она находится ниже оси Ох), отразить симметрично этой оси.

По графику легко усмотреть свойства функции у = │ ах │.

При х = 0, получаем у = 0, то есть графику функции принадлежит начало координат; при х = 0, получаем у > 0, то есть все  другие точки графика лежат выше оси Ох.

Для противоположных значений х, значения у будут одинаковыми; ось Оу это ось симметрии графика.

К примеру, можно построить график функции у = │х3│. Чтобы сравнить функции у = │х3│и у = х3, составим таблицу их значений при одинаковых значениях аргументов.

Из таблицы видим, что для того, чтобы построить график функции у = │х3│, можно начать с построения графика функции у = х3. После этого стоит симметрично оси Ох отобразить ту его часть, которая находится ниже этой оси. В результате получим график, изображенный на рисунке.

График и свойства функции у = x1/2 (корень)

Рассмотрим функцию у = x1/2.

Областью определения этой функции является множество неотрицательных действительных чисел, так как выражение x1/2 имеет значение только при х > 0.

Построим график. Для составления таблицы ее значений используем микрокалькулятор, округляя значения функции до десятых.

После нанесения на координатную плоскость точек, и плавного их соединения, получаем график функции у = x1/2.

Построенный график позволяет сформулировать некоторые свойства функции у = x1/2.

При х = 0, получаем у = 0; при х > 0, получаем у > 0; график проходит через начало координат; остальные точки графика расположены в первой координатной четверти.

Теорема. График функции у = x1/2 симметричен графику функции у = х2, где х > 0, относительно прямой у = х.

Доказательство. Графиком функции

у = х2, где х > 0, является ветвь параболы, расположенная в первой координатной четверти. Пусть точка Р (а; b) — произвольная точка этого графика. Тогда истинно равенство b = а2. Поскольку по условию число а неотрицательное, то истинно также и равенство а = b1/2. А это означает, что координаты точки Q (b; а) превращают формулу у = x1/2 в истинное равенство, или иначе, точка Q (b; а) принадлежит графику функции у = x1/2.

Так же доказывается, что если точка М (с; d) принадлежит графику функции у = x1/2, то точка N (d; с) принадлежит графику у = х2

, где х > 0.

Получается, что каждой точке Р (а; b) графика функции у = х2, где х > 0, соответствует единственная точка Q (b; а) графика функции у = x1/2  и наоборот.

Остается доказать, что точки Р (а; b) и Q (b; а) симметричны относительно прямой у = х. Опустив перпендикуляры на координатные оси из точек Р и Q, получаем на этих осях точки Е (а; 0), D (0; b), F (b; 0), С (0; а). Точка R пересечения перпендикуляров РЕ и QC имеет координаты (а; а) и поэтому принадлежит прямой у = х. Треугольник PRQ является равнобедренным, так как его стороны RP

и RQ равны │ bа│ каждая. Прямая у = х делит пополам как угол DOF, так и угол PRQ и пересекает отрезок PQ в определенной точке S. Поэтому отрезок RS является биссектрисой треугольника PRQ. Поскольку биссектриса равнобедренного треугольника является его высотой и медианой, то PQRS и PS = QS. А это означает, что точки Р (а; b) и Q (b; а) симметричные относительно прямой у = х.

Поскольку график функции у = x1/2 симметричен графику функции у = х2, где х > 0, относительно прямой у = х, то графиком функции у = x1/2 является ветвь параболы.

belmathematics.by

Графики функций с модулем



Муниципальное общеобразовательное учреждение

Средняя общеобразовательная школа

городского округа город Буй Костромской области

Графики функций

с модулем

Работу выполнила:

Торопова И.В. учитель математики

2004 г.


В курсе математики основной и средней школы незначительное место отводится построению графиков функций, аналитическое выражение которых содержит знак модуля. И поэтому учащиеся испытывают определённые затруднения при их построении.

Впервые с модулем числа учащиеся встречаются в курсе математики 6 класса, и больше не упоминается о нем до 9 класса, и немного заданий на построение графиков таких функций встречается в курсе алгебры и начала анализа 10 класса.

Поэтому, я считаю, что формировать навыки построения графиков функций, аналитическое выражение которых содержит знак модуля, можно начинать с учащимися 7 – 8 классов, проявляющими интерес к изучению математики на занятиях математического кружка или факультатива.

В 7 классе после изучения тем «Линейная функция» и « Прямая пропорциональность» стоит попробовать построить график функции y = |2х|.

Учащиеся уже хорошо умеют строить графики прямой пропорциональности и предварительно надо построить график функции

y = 2х, затем вспомнить с учащимися определение модуля числа и попросить их составить таблицу значений для функции y = |2х| (значения переменной х необходимо взять как положительные так и отрицательные), затем отметить полученные точки на координатной плоскости, соединить их и сравнить полученные графики, ответив на следующие вопросы:

а) Какие значения принимает функция y = |2х| при х≥0, х

б) чем сходны графики функций y = 2х и y = |2х|, чем различаются?

в) Можно ли получить график функции из графика функции y = 2х?
y = 2х y = |2х|


х

-3

-2

-1

0

1

2

3

y

-6

-4

-2

0

2

4

6

х

-3

-2

-1

0

1

2

3

y

6

4

2

0

2

4

6

Учащиеся заметят, что для построения графика функции y = |2х| можно построить график функции y = 2х, затем оставить без изменения часть графика при х≥0, а часть графика расположенную ниже оси х ( при х

Таких заданий можно подобрать много, а способные учащиеся вполне могут построить графики следующих функций: y = |х + 1|, y = |2х + 1|, используя выводы, полученные при построении графика функции y = |2х|.
y = | х + 1| y = |2х + 1|

В 8 классе учащиеся знакомятся с графиком обратной пропорциональности и продолжая формировать умения строить графики, сильным учащимся стоит

построить графики функций типа y = и y = , опираясь на знания, полученные при построении графиков функций, содержащих модуль

в 7 классе.


y = y =


В курсе алгебры 9 класса при изучении темы «Функция. Область определения и область значения функции» ребята знакомятся с графиком функции y = |х| , её областью определения и областью значения. Но заданий в учебнике под редакцией С.А. Теляковского с использованием функции

y = |х| нет, кроме №17 и то предлагаемого на дом. А вот в дидактических материалах для 9 класса авторов Ю.Н. Макарычева, Н.Г. Миндюка,

Л.М. Коротковой предлагаются задания из второго блока, способствующие развитию учащихся в алгоритмическом и логическом плане.

С-8 «График квадратичной функции»

Задание №6

Постройте график функции: а) y = |х| — 3 ; б) y = |х +3| .

y = |х| — 3 y = |х +3|

При построении данных графиков функций можно воспользоваться знаниями, полученными при преобразовании графиков функций y =aх2+n c одной стороны , т. е. график функции y = |х| — 3 можно получить из графика

y = |х| с помощью параллельного переноса вдоль оси Оy на три единицы масштаба вниз, а график функции y = |х +3| из графика функции y = |х| с помощью параллельного переноса вдоль оси Ох на три единицы масштаба влево. Затем сильных учащихся попросить сделать вывод о построении графиков функций вида y = |х| + n ; y = |х — m|.

n>0
y = |х — m| y = |х| + n


m

n

m>0

А с другой стороны (возможно учащиеся и этот способ вспомнят, который чаще всего и используется) построить график функции y = |х — m| можно из графика функции y = х – m , оставив без изменения все части графика, которые лежат выше оси абсцисс, а части расположенные ниже её отобразить симметрично.

С-14 «Графический способ решения систем уравнений» предлагается задание №5, также из второго блока.

Решите графически систему уравнений:

а) y =х2 – 3

y = |х|
Ответ: (≈ -2,3; ≈2,3) (≈ 2,3; ≈2,3)

Учащиеся легко с этим заданием справляются, поэтому можно предложить

ёще ряд аналогичных заданий.

Задание: Изобразив схематически графики, выясните, имеет ли решение система уравнений и если имеет, то сколько:

а) y = х2 – 3 б) y = х2 – 3 в) y = х2 – 3 г) y = х2 – 3 д) y = х2 – 3

y = |х| — 3 y = -|х| y = 4 — |х| y = -|х| — 3 y =-|х| — 4

(3 решения) (2 решения) (2 решения) (1 решение) (нет решения)

Решение.

а)


Отработав навыки построения графика квадратичной функции сильные учащиеся могут попробовать построить графики следующих функций:

а) y = |х2— 1|

Для построения достаточно сначала построить график функции y = х2— 1 , а на интервале (-1; 1) часть графика отобразить симметрично относительно оси абсцисс, остальную часть оставить без изменения.

Аналогичных заданий можно

подобрать достаточно много,

но после их выполнения необходимо

с учащимися сделать вывод о

построении графиков функций

вида y = |f(х)|.

Здесь же надо рассмотреть построение графиков функций вида y = f(|х|). т.е. графики функций содержащие модуль аргумента.

б) y = После его построения учащиеся заметят,

что данный график получается из графика

функции y =путем симметрии относительно уже оси Оy . Необходимо еще раз обратить внимание учащихся, что под знаком модуля находится аргумент и вновь сделать выводы.
в) y = х2 — 6|х| + 4


Некоторые учащиеся заметят, что под знаком модуля стоит аргумент, учитывая что х2 =|х|2, тогда достаточно будет построить график функции для х≥0, а затем полученную кривую отобразить относительно оси у.


И закончить рассмотрение графиков функций в 9 классе, аналитическое выражение которых содержит знак модуля построением графиков вида

y = |f(|х|)|.

Предложить учащимся построить графики следующих функций:

а) y = |х| ; б) y = |х| — 1; в) y = | |х| — 1|.

Задания а) и б) легко учащиеся выполнят, но их выполнение должно натолкнуть их на мысль, что построение графика функции под в) следует выполнять поэтапно: строим график функции y = |х|, затем выполнить параллельный перенос вдоль оси Оу на одну единицу масштаба вниз и наконец, часть графика расположенного под осью Ох симметрично отобразить относительно её.

а) б) в)


Тренировочные упражнения:


а) y = | |2х|-3 | б) y = | 3|х| + 1| в) y =| х2 — 4|х| + 3 |

г) y = |х| + х д) y = 2|х| + х е) y =+ 3


Вывод: Для построения графика функции y = |f(|х|)| надо построить график функции y = f(|х|), далее оставить без изменения все части построенного графика, которые лежат выше оси абсцисс, а части, расположенные ниже её, отобразить симметрично относительно этой оси.

Такая работа с графиками закрепит знания учащихся о модуле числа и даст неплохие навыки для их построения.

В 10-11 классах эту работу следует продолжить, т.к. учащиеся основательно знакомятся со свойствами функций и их исследованием.

В 10 классе большое место отводится изучению тригонометрических функций и, конечно же, их графикам. Здесь можно такие задания:


1. Построить графики функций у = cos|x| и у = |cosx|.

Решение.


а)у = cos|x|, cos|x| = cosx, т.к. cos x = cos(-x). Следовательно, график данной функции тот же, что и график функции у = cosx;
б) у=- |cosx|, при cos x ≥ 0 у = cos x. Следовательно, на участке, где
cos x ≥ 0, график будет тот же, что и график функции у = cosx. При cos x у = — cosx. Следовательно, части графика функции у = cos x, расположенные
ниже оси абсцисс, зеркально отобразятся и будут расположены в верхней
полуплоскости.

2. Построить графики функций у = sin[x| и у = |sin x |.


Решение.

Чтобы построить график у = sin|x|, надо построить сначала график

у = sin х при х > 0, а затем построить кривую, симметричную с построенным графи­ком относительно оси ординат.

3. Построить график функции у = sin х + |sin х |.

4. Построить график функции у =tg|x|.

Решение.


Функция чётная, так как tg|-x| = tg|x|. При х > 0 график искомой функции тот же, что и график функции у = tg x.

5. Построить график функции у = |tgx|.


Решение.

Часть графика функции у = tgx, расположенную в верхней полуплоско­сти, оставить без изменений, а часть графика, расположенную в нижней полуплоскости, зеркально отобразить относительно оси ОХ.

В теме «Функции и их графики» при изучении нового материала и говоря о преобразовании графиков вновь вспомнить и о графиках функции у = |f(х)| и y = f(|х|):

а) график у = |f(х)| функции получается из графика функции у = f(х) сле­дующим образом: часть графика у = f(х), лежащая над осью Ох, сохраняет­ся, часть его, лежащая под осью Ох, отображается симметрично относи­тельно оси Ох:

б) график функции y = f(|х|) получается из графика функции у = f(х) так: при х≥0 график у = f(х) сохраняется, а при х 0 полученная часть графика отображается симметрично относительно оси Oу:


На следующем уроке рассмотреть построение нескольких таких графиков функций.

а) построить графики функций:

б) построить график функции у = |х-1| + |х+3|.

Решение.

Находим значения переменной, при которых выражения, стоящие под знаком модуля, обращаются в нуль: х — 1 = 0 или х + 3 = 0;

х= 1 или х = -3.

1) при х = -х+ 1-х-3 =-2х-2; у = -2х-2;

2) при -3= -х+ 1 +х + 3 = 4; у = 4;

3) при х>1, у = х-1+х + 3=2х + 2; у= 2х + 2.


В теме «Исследование функций» в учебнике «Алгебра и начала анализа» для учащихся 10-11 классов Колмогорова А.Н. включены функции, содержащие знак модуля, но таких заданий всего два — это №99(а, в), №55(а).


В качестве дополнительного задания на исследования тригонометрических функций сильным учащимся предложить построить график функции

у = 2 – sin| х+|

Решение.

1 способ. Строим график функции у = —sin|х|

Ось ординат переносим на +, а ось абсцисс — на -2.

2 способ. График имеет две ветви, уравнения которых различны.

1) если х+≥ 0, то есть х≥-, то у = 2 – sin( х+).

2) если х+0, то есть х, то у = 2 – sin( -(х+))= 2+ sin( х+).

Область определения функции — вся числовая прямая.

Область значения функции определим из условия -1≤– sin| х+|≤1

-1+2≤ у 1+2

1≤ у ≤3

Общая точка обеих ветвей графика: х= -; у=- sin| 0|+2=2: точка (-; 2).

Можно учащимся, конечно, предложить построить и исследовать графики таких функций, как у= arcsin| x| , у= arcsin| x-1|, у=arccos| x|, у= arctg| x|, но с этим заданием справятся только сильные учащиеся или проявляющие интерес к данной теме.

И закончить построение таких графиков функций в 11 классе рассмотрением графиков показательной и логарифмической функций типа:


у = 2| x| у =| log аx |

График функции у = 2x при х≥0 Строим график функции у = log аx.

И его зеркальное отображение На интервале (0;1) у = log аx 0

относительно оси Оу дадут в (кривая расположена под осью Ох)

совокупности график заданной эта часть графика функции симмет

функции. рично отобразится относительно

оси Ох, а остальная часть останется

без изменения.

у = 2| x-1| у = log | x ||у = |log | x ||

Литература
1. Афанасьева Т.Л., Тапилина Л.А. Алгебра 10 класс (поурочные планы).- Волгоград . -2002. С.13-45.

2. Вирченко Н.А., Ляшко И.И., Швецов К.И. Графики функций: Справочник. –Киев: Наукова думка. -1979. — С.100-107.


3. Колмогоров А.Н., Абрамов А.М., Дудницын Ю.П. и др. Алгебра и начала анализа: Учебник для 10-11 класса средней школы. – М.: Просвещение, 1990. – С. 47-54.
4. Макарычев Ю.Н. и др. Дидактические материалы по алгебре для 9 класса. – 5-е изд. – М.: Просвещение, 2000. – С. 10-19. 0>

megdu.ru

Свойства функции

В этой статье мы коротко суммируем сведения, которые касаются такого важного математического понятия, как функция. Мы поговорим о том, что такое  числовая функция и какие свойства функции необходимо знать и уметь исследовать.

Что такое  числовая функция? Пусть у нас есть два числовых множества: Х и Y, и  между этими множествами есть определенная зависимость. То есть каждому элементу х из множества Х по определенному правилу ставится в соответствие  единственный элемент  y из множества Y.

Важно, что каждому элементу х из множества Х соответствует один и только один элемент y из множества Y.

Правило, с помощью которого каждому элементу из множества Х мы ставим в соответствие единственный элемент из множества Y, называется числовой функцией. 

Множество Х называется областью определения функции.

Множество Y называется множеством значений значений функции.

Равенство   называется уравнением функции. В этом уравнении    — независимая переменная, или аргумент функции.   — зависимая переменная.

Если мы возьмем все пары и поставим им в соответствие соответствующие точки координатной плоскости, то  получим график функции. График функции — это графической изображение зависимости между множествами Х и Y.

Свойства функции мы можем определить, глядя на график функции, и, наоборот, исследуя свойства функции мы можем построить ее график.

Основные свойства функций. 

1. Область определения функции.

Область определения функции D(y)-это множество всех допустимых значений аргумента x ( независимой переменной x), при которых выражение, стоящее в правой части уравнения функции   имеет смысл. Другими словами, это область допустимых значений выражения .

Чтобы по графику функции найти ее область определения, нужно, двигаясь слева направо вдоль оси ОХ, записать все промежутки значений х, на которых существует график функции.

2. Множество значений функции.

Множество значений функции  Е(y)— это множество всех значений, которые может принимать  зависимая переменная y.

Чтобы по графику функции  найти ее множество значений, нужно, двигаясь снизу вверх вдоль оси OY, записать все промежутки значений y, на которых существует график функции.

3.  Нули функции.

Нули функции — это те значения аргумента х, при которых значение функции (y) равно нулю.

Чтобы найти нули функции , нужно решить уравнение  . Корни этого уравнения и будут нулями функции .

Чтобы найти нули функции по ее графику, нужно найти точки пересечения графика с осью ОХ. Абсциссы точек пересечения и будут нулями функции  .

4. Промежутки знакопостоянства функции. 

Промежутки знакопостоянства функции — это такие промежутки значений аргумента, на которых функция сохраняет свой знак, то есть  или .

Чтобы найти промежутки знакопостоянства функции , нужно решить неравенства и  .

Чтобы найти  промежутки знакопостоянства функции  по ее графику, нужно

  • найти промежутки значений аргумента х, при которых график функции расположен выше оси ОХ — при этих значениях аргумента , 
  • найти промежутки значений аргумента х, при которых график функции расположен ниже оси ОХ — при этих значениях аргумента  .

5. Промежутки монотонности функции.

Промежутки монотонности функции — это такие промежутки значений  аргумента х, при которых функция возрастает или убывает.

Говорят, что функция   возрастает на промежутке I, если для любых двух значений аргумента  , принадлежащих промежутку I таких, что   выполняется соотношение:.

Другими словами, функция   возрастает на промежутке I, если большему значению аргумента из этого промежутка соответствует большее значение функции.

Чтобы по графику функции определить промежутки возрастания функции, нужно, двигаясь  слева направо по линии графика функции, выделить промежутки значений аргумента х, на которых график идет вверх.

Говорят, что функция   убывает на промежутке I, если для любых двух значений аргумента  , принадлежащих промежутку I таких, что   выполняется соотношение: .

Другими словами, функция   убывает на промежутке I, если большему значению аргумента из этого промежутка соответствует меньшее значение функции. 

Чтобы по графику функции определить промежутки убывания функции, нужно, двигаясь  слева направо вдоль линии графика функции, выделить промежутки значений аргумента х, на которых график идет вниз.

6. Точки максимума и минимума функции.

Точка называется точкой максимума функции , если существует такая окрестность I точки , что для любой точки х из этой окрестности выполняется соотношение:

.

Графически это означает что точка с абсциссой  x_0 лежит выше других точек из окрестности I графика функции y=f(x).

Точка называется точкой минимума  функции , если существует такая окрестность I точки , что для любой точки х из этой окрестности выполняется соотношение:

Графически это означает что точка с абсциссой  лежит ниже других точек  из окрестности I графика функции .

Обычно мы находим точки максимума и минимума функции, проводя исследование функции с помощью производной.

 7. Четность (нечетность) функции.

Функция  называется четной, если выполняются два условия:

а) Для любого значения аргумента , принадлежащего области определения функции,   также принадлежит области определения функции.

Другими словами, область определения  четной функции симметрична относительно начала координат.

б)  Для любого значения аргумента х, принадлежащего области определения функции, выполняется соотношение .

Функция называется нечетной, если выполняются два условия:

а) Для любого значения аргумента , принадлежащего области определения функции, также принадлежит области определения функции.

Другими словами, область определения нечетной функции симметрична относительно начала координат.

б)  Для любого значения аргумента х, принадлежащего области определения функции, выполняется соотношение .

Все функции делятся на четные, нечетные, и те, которые не являются четными и не являются нечетными. Они называются функциями общего вида.

Чтобы определить четность функции, нужно:

а). Найти область определения функции , и определить, является ли она симметричным множеством.

Если, например,  число х=2 входит в область определения функции, а число х=-2 не входит, то D(y) не является симметричным множеством, и функция — функция общего вида.

Если область определения  функции — симметричное множество, то проверяем п. б)

б). В уравнение функции  нужно вместо х подставить -х, упростить полученное выражение, и постараться привести его к виду  или .

Если , то функция четная.

Если , то функция нечетная.

Если не удалось привести ни к тому ни к другому, то наша функция — общего вида.

График четной функции симметричен относительно оси ординат ( прямой OY ).

График нечетной функции симметричен относительно начала координат ( точки (0,0) ).

8. Периодичность функции.

Функция называется периодической, если существует такое положительное число Т, что

  • для любого значения х из области определения функции, х+Т также принадлежит D(x)

В программе средней школы из числа периодических функций изучают только тригонометрические функции.

Предлагаю вам посмотреть  ВИДЕОУРОК, в котором  я рассказываю, как определить свойства функции, график которой изображен на рисунке:

И.В. Фельдман, репетитор по математике.

ege-ok.ru

8 класс. Алгебра. Модуль действительного числа. — Функция y = IxI.

Комментарии преподавателя

 

Вспомним определение: модулем неотрицательного действительного числа  называют само это число: |х| = х;

модулем отрицательного действительного числа  называют противоположное число: |х| = – х.

 Записывают так:

Тогда вместо у = |х| можно записать:

 

Построим график этой функции.

Сначала построим прямую у = х на луче [0;+∞), а затем прямую у = –х  на открытом луче (–∞; 0). Т.о., получаем график функции у = х.

 

Довольно часто в ходе решения задач с квадратными корнями возникают ситуации, приводящие к понятию модуля.

Источник конспекта: http://znaika.ru/catalog/8-klass/algebra/Grafik-u=%7Ckh%7C.-Tozhdestvo√%28a²%29-=%7Ca%7C.

Источник видео: http://www.youtube.com/watch?v=4YdBGNourEg

Файлы

Нет дополнительных материалов для этого занятия.

www.kursoteka.ru

Функция y= ІхІ — презентация по Алгебре

Функция y= ІхІ — презентация по Алгебре

53335531463039513235404944384142294843374734365045565452

X

Скопируйте код и вставьте его на свой сайт.

Функция y= ІхІ

Описание презентации по отдельным слайдам:

1 слайд

Функция Подготовил Кожемяко Никита, 9 класс 2008г.

2 слайд

Актуальность – собрать сведения по теме в связи с подготовкой к экзамену Проблема – в школьном курсе алгебры недостаточно задач с модулем Объект исследования – функция Предмет исследования – функция у=|x| Цель – рассмотреть решение распространённых задач с модулем Гипотеза – я предполагал, что задачи с модулем решаются только графически Задачи – 1.Вспомнить известную мне информацию о задачах с модулем 2.Придумать новые задачи 3.Проконсультироваться с учителем 4.Создать презентацию 5.Защитить работу

3 слайд

Определение модуля В математике через |x| обозначается абсолютная величина, или модуль числа х. Абсолютная величина числа х равна этому числу, если х>0, равна противоположному числу –х, если x

4 слайд

1.D(f)=(-∞;+∞) 2.E(f)=[0;+∞) 3.Ограничена снизу 4.Возрастает на[0;+∞) убывает на(-∞;0] 5.Чётная функция 6. 7.Непрерывна х у Свойства функции График функции

5 слайд

Решение уравнений с модулем графическим методом |x-3|-1=x3 y=|x-3|-1 y=x3 0 x 1 4 Ответ: x=1 у

6 слайд

Решение неравенств с модулем графическим методом Решим неравенство |x|-2 ≥ y=|x|-2 y= 0 x y 1 4 Ответ: [4;+∞)

7 слайд

0 x 1 Решение уравнения с параметром и модулем графическим способом Рассмотрим 3 случая Iсл. c>1, 2 решения IIсл. c

8 слайд

Аналитический метод решения уравнения с модулем Решим уравнение|x-3|=5 I способ Рассмотрим два случая 1 случай x-3≥0 x-3=5 x=5+3 x=8, 8-3≥0 (и) 2 случай x-3

9 слайд

Алгоритм решения уравнений с модулем Найти нули модулей. Отметить нули на координатной прямой. Решить уравнение на каждом из промежутков с помощью системы. Написать ответ.

10 слайд

Решение уравнений с двумя модулями |x|=|x-3|+4-x |x|=0,|x-3|=0 Нули модулей: 0;3 0 3 х 1сл. x3 (л) Решений нет Ответ: 7/3.

11 слайд

Решение неравенств с модулем аналитическим методом |x+2|≥1 Рассмотрим два случая I случай x+2≥0 x+2≥1 x≥-2 x≥-1 II случай x+2

12 слайд

Решение неравенств с модулем различными методами Третий способ. Имеем: |x-2.5|>2. Геометрически выражение |x-2.5| означает расстояние р(x-2.5) на координатной прямой между точками х и 2.5. Значит, нам нужно Найти все такие точки х, которые удалены от точки 2.5 более, чем на 2- это точки из промежутков (-∞;0.5) и (4.5;+∞) Итак, получили следующее решения неравенства: х4.5. Четвёртый способ. Поскольку обе части заданного неравенства неотрицательны, то возведение их в квадрат есть равносильное преобразование неравенства. Получим |2x-5|2>42 Воспользовавшись тем что |x|2=x2, получим (2x-5-4)(2x-5+4)>0 Применив метод интервалов получим тот же ответ.

13 слайд

Алгоритм решения неравенств с модулем Найти нули модулей. Отметить нули на координатной прямой. Решить неравенство на каждом из промежутков с помощью системы. Написать ответ.

14 слайд

Решение неравенств с двумя модулями |x+1|≥|x-2| Нули модулей: -1;2 -1 2 х 1сл. x2 х+1≥х-2 0x≥-3,0≥3 (и) Ответ:(0,5;+∞) -1 2 х 0,5 2 х

15 слайд

График функции у=|x+1|-|x-2| Нули модулей: -1;2 1сл. x2 у=3 -3, x2 х у 0 у=

16 слайд

Выводы В ходе работы над проектом моя гипотеза не подтвердилась. Я не только вспомнил графический способ, но и научился решать уравнения и неравенства аналитическим методом и строить графики с несколькими модулями. В дальнейшем можно рассмотреть аналитический метод решения неравенств и уравнений с модулем и параметром.

17 слайд

Список литературы Алгебра:Для 8 кл.:учеб. пособие для учащихся шк. и классов с углуб.изуч математики/ Н.Я.Виленкин, Г.С.Сурвило и др., под ред. Н.Я.Виленкина – М.: Просвещение. Мордкович А.Г. И др. Алгебра.9кл.: В двух частях. Ч.2: Задачник для общеообразоват. учреждений/М.:Мнемозина, 2004 г. Мордкович А.Г. И др. Алгебра.9кл.: В двух частях. Ч.2: Учебник для общеообразоват. учреждений/М.:Мнемозина, 2004 г. Мордкович А.Г. И др.Алгебра и начала анализа 10-11кл.: В двух частях. Ч.1: Задачник для общеообразоват. учреждений/М.:Мнемозина, 2004 г. Математика: Учеб. Для 6 кл. сред. шк./Н.Я. Виленкин и др. М.: Просвещение, 1993.

Чтобы скачать материал, введите свой email, укажите, кто Вы, и нажмите кнопку

Нажимая кнопку, Вы соглашаетесь получать от нас email-рассылку

Если скачивание материала не началось, нажмите еще раз «Скачать материал».

843386189098993410105112961225512350

331013319433332333533347733583336003361333615336823369034417

У вас есть презентация, загружайте:

Для того чтобы загрузить презентацию на сайт, необходимо зарегистрироваться.

uslide.ru

Определение модуля

Свойства модуля

1. Модули противоположных чисел равны

2. Квадрат модуля числа равен квадрату этого числа

3. Квадратный корень из квадрата числа есть модуль этого числа

4. Модуль числа есть число неотрицательное

5. Постоянный положительный множитель можно выносить за знак модуля

6. Если , то

7. Модуль произведения двух (и более) чисел равен произведению их модулей

Числовые промежутки

Окрестность точки Пусть хо—любое действительное число (точка на числовой прямой). Окрестностью точки хо называется любой интервал (a; b), содержащий точку x0. В частности, интервал (хо-ε,хо+ε), где ε >0, называется ε-окрестностью точки хо. Число хо называется центром.

3 ВОПРОС понятие функции Функцией называют такую зависимость переменной у от переменной х, при которой каждому значению переменной х соответствует единственное значение перемен­ной у.

Переменную х называют независимой переменной или аргументом.

Переменную у называют зависимой переменной.

Способы задания функции

Табличный способ.  заключается в задании таблицы отдельных значений аргумента и соответствующих им значений функции. Такой способ задания функции применяется в том случае, когда область определения функции является дискретным конечным множеством.

При табличном способе задания функции можно приближенно вычислить не содержащиеся в таблице значения функции, соответствующие промежуточным значениям аргумента. Для этого используют способ интерполяции.

Преимущества табличного способа задания функции состоят в том, что он дает возможность определить те или другие конкретные значения сразу, без дополнительных измерений или вычислений. Однако, в некоторых случаях таблица определяет функцию не полностью, а лишь для некоторых значений аргумента и не дает наглядного изображения характера изменения функции в зависимости от изменения аргумента.

Графический способ. Графиком функции y = f(x) называется множество всех точек плоскости, координаты которых удовлетворяют данному уравнению.

Графический способ задания функции не всегда дает возможность точно определить численные значения аргумента. Однако он имеет большое преимущество перед другими способами — наглядность. В технике и физике часто пользуются графическим способом задания функции, причем график бывает единственно доступным для этого способом.

Чтобы графическое задание функции было вполне корректным с математической точки зрения, необходимо указывать точную геометрическую конструкцию графика, которая, чаще всего, задается уравнением. Это приводит к следующему способу задания функции.

Аналитический способ. Чтобы задать функцию, нужно указать способ, с помощью которого для каждого значения аргумента можно найти соответствующее значение функции. Наиболее употребительным является способ задания функции с помощью формулы у = f (х),  где f (х) — некоторое выражение с переменной х. В таком случае говорят, что функция задана формулой или что функция задана аналитически.

      Для аналитически заданной функции иногда не указывают явно область определения функции. В таком случае подразумевают, что область определения функции у = f (х) совпадает с областью определения выражения f (х), т. е. с множеством тех значений х, при которых выражение f (х) имеет смысл.

Естественная область определения функции

Область определения функции f – это множество X всех значений аргумента x, на котором задается функция.

Для обозначения области определения функции f используется краткая запись вида D(f)

явное неявное параметрическое задание функции

Если функция задана уравнением у=ƒ(х), разрешенным относительно у, то функция задана в явном виде (явная функция).

Под неявным заданием функции понимают задание функции в виде уравнения F(x;y)=0, не разрешенного относительно у.

Всякую явно заданную функцию у=ƒ (х) можно записать как неявно заданную уравнением ƒ(х)-у=0, но не наоборот.

studfiles.net