Степень на степень деление – Свойства отрицательных степеней. Как умножать отрицательные степени. Деление отрицательных степеней. Степени чисел

Содержание

Как делить степени | Алгебра

Как делить степени? При каких условиях деление степеней возможно?

В алгебре найти частное степеней можно в двух случаях:

1) если степени имеют одинаковые основания;

2) если степени имеют одинаковые показатели.

Чтобы разделить степени с одинаковыми основаниями, надо основание оставить прежним, а из показателя степени делимого вычесть показатель степени делителя (или коротко: при делении степеней показатели вычитают):

   

или

   

или

   

(последнюю формулу удобно использовать, если показатель степени в знаменателе больше показателя степени в числителе).

При делении степеней с одинаковыми показателями общий показатель можно вынести за скобки:

   

Рассмотрим, как делить степени, на конкретных примерах.

   

Единицу в показателе степени не пишут, но при делении степеней ее следует учесть:

   

При делении степеней с одинаковыми основаниями и одинаковыми показателями получаем единицу:

   

   

   

   

Вынесение общего показателя при делении степеней позволяет упростить вычисления:

   

   

В выражениях возведение в степень выполняется в первую очередь.

Если нужно число разделить на степень либо степень разделить на число, сначала следует выполнить возведение в степень, а затем — деление:

   

   

www.algebraclass.ru

Деление степеней с одинаковыми основаниями

Пусть надо a9 ÷ a3; здесь, согласно смыслу деления, дано произведение = a9 и дан один множитель = a

3. Надо найти другой множитель. Напишем данное произведение (a9) подробнее

a · a · a · a · a · a · a · a · a

и отделим, например, подчеркивая, данный множитель, т. е. a3 или a · a · a. Тогда мы увидим, каков другой множитель, а именно осталось неподчеркнутым

a · a · a · a · a · a,

что = a6. Итак,

a9 ÷ a3 = a6.

Пусть надо b47 ÷ b18. Данное произведение есть b47 или такое произведение, где b повторяется множителем 47 раз; отделим один данный множитель, b18, или произведение, где b повторяется 18 раз множителем. Тогда мы сообразим, что искомым множителем является произведение, где b повторяется 29 раз множителем, т. е. b

29. Итак, b47 ÷ b18 = b29.

Также

x15 ÷ x5 = x10
(a + b)7 ÷ (a + b) = (a + b)6
323 ÷ 320 = 33 = 27 и т. д.

Вообще

am ÷ an = am-n (если m > n)

или словами: при делении степеней с одинаковыми основаниями основание степени остается без изменения, а показатель делителя вычитается из показателя делимого (если показатель делимого больше показателя делителя).

Пусть теперь надо

20a

5b4c2d ÷ 5a3b3c2.

Здесь дано произведение (20a5b4c2d) и один множитель 5a3b3c2; надо найти другой множитель. У произведения коэффициент (+20), он получился от умножения коэффициента данного множителя (+5) на коэффициент искомого множителя. Чтобы найти этот коэффициент, надо (+20) ÷ (+5), получим +4. В данном произведении a взято множителем 5 раз, в данном множителе a входит множителем 3 раза. Поэтому в искомом множителе a должно входить множителем 2 раза, т. е. в искомом множителе должно быть a2. В данном произведении b берется множителем 4 раза, а в данном множителе – 3 раза; следовательно, в искомом множителе b должно входить множителем лишь 1 раз. В данном произведении имеем c

2 (c берется множителем 2 раза) и в данном множителе имеем c2. Поэтому в искомом множителе c не должно вовсе входить. В данном произведении имеется множитель d, а в данном множителе d вовсе нет; поэтому d должно иметься в искомом множителе. Итак,

20a5b4c2d ÷ 5a3b3c2 = 4a2bd.

Еще примеры:

В предыдущем встречались деления, вроде c2 ÷ c2; a ÷ a; b3 ÷ b3; и т. д. Здесь уместно заметить, что частное от деления какого-либо числа на самое себя всегда равно 1.

maths-public.ru

4. Степень с натуральным показателем и её свойства ⋆ Social AstroWay- Развлекательно-информационный портал

На этом уроке мы продолжим изучение умножения и деления степеней с одинаковыми показателями. В начале урока сделаем краткую сводку уже известных нам формул действий со степенями. Далее будем решать примеры на все действия со степенями.

Тема: Степень с натуральным показателем и ее свойства

Урок: Умножение и деление степеней с одинаковыми показателями (продолжение)

1. Напоминание основных определений и теорем

Напоминание:

Основные определения:

Здесь a — основание степени,

n — показатель степени,

— n-ая степень числа.

Теорема 1. Для любого числа а и любых натуральных n иk справедливо равенство:

При умножении степеней с одинаковыми основаниями показатели складываются, основание остается неизменным.

Теорема 2. Для любого числа а и любых натуральных n иk, таких, что  n >k справедливо равенство:

При делении степеней с одинаковыми основаниями показатели отнимаются, а основание остается неизменным.

Теорема 3. Для любого числа а и любых натуральных n и k справедливо равенство:

Теорема 4.

Для любых чисел а и b и любого натурального n справедливо равенство:

Чтобы перемножить степени с одинаковыми показателями, достаточно перемножить основания, а показатель степени оставить неизменным.

Теорема 5.

Для любого числа а и b () и любого натурального n справедливо равенство:

Чтобы разделить друг на друга степени с одинаковыми показателями, достаточно разделить одно основание на другое, а показатель степени оставить неизменным.

2. Решение примеров на возведение дроби в степень с помощью теоремы 5

Пример 1: Возвести дробь в степень.

Для решения следующих примеров воспользуемся теоремой 5.

а)

б)

Для решения следующего примера вспомним формулы:

в)

д)

Замечание: ,

е)

ж)

3. Решение примеров на вычисление с помощью теоремы 5

Пример 2:Вычислите.

а)

б)

4. Решение различных типовых задач с помощью выученных теорем

Пример 3: Представить выражение в виде степени с показателем больше 1.

а)  

б)

б)

б)  или по-другому:  

5. Вычисление примеров наиболее рациональным способом

Пример 4: Вычислить наиболее рациональным способом.

а)

б)

в)

г)

д)

Список рекомендованной литературы

1. Дорофеев Г.В., Суворова С.Б., Бунимович Е.А. и др. Алгебра 7. 6 издание. М.: Просвещение. 2010 г.

2. Мерзляк А.Г., Полонский В.Б., Якир М.С. Алгебра 7. М.: ВЕНТАНА-ГРАФ 

3. Колягин Ю.М., Ткачёва М.В., Фёдорова Н.Е. и др. Алгебра 7 .М.: Просвещение. 2006 г.

 

Рекомендованные ссылки на ресурсы интернет

1. Школьный помощник (Источник).

2. Школьный помощник (Источник).

 

Рекомендованное домашнее задание

1. 583, 584, 585 стр. 152. Дорофеев Г.В., Суворова С.Б., Бунимович Е.А. и др. Алгебра 7. 6 издание. М.: Просвещение. 2010 г.

2. Вычислить наиболее рациональным способом.

а)    б)    в)   

3. Представить выражение в виде степени с показателем больше 1.

а)       б)      в)

Источник Редактор InternetUrok.ru

astroway.info

Свойства отрицательных степеней. Как умножать отрицательные степени. Деление отрицательных степеней. Степени чисел

Свойства отрицательных степеней

Свойства степени с отрицательным показателем

Свойства отрицательных степеней рассмотрим при следующих условиях:

a и b действительные числа, отличные от нуля, m и n – целые числа

Тогда можно указать следующие свойства степени с отрицательным показателем:

1. aman = am + n
2. (am)n = am * n
3. ambm = (ab)m
4. am : bm = (a/b)m
5. am : an = am — n
6. a-m = 1/am

Свойства отрицательных степеней рассмотрим на примерах. Из примеров будет понятно как использовать свойства отрицательных степеней.

Как умножать отрицательные степени?

Как умножать отрицательные степени? Точно так же как и положительные. Здесь речь идет о целых степенях.

Пример умножения отрицательных степеней:

2-2 * 2-3

=
2(-2 + (-3)) =
2(-2 — 3) =
2-5 =
1/25

Ещё пример на умножение чисел с отрицательными степенями:

4-3 * 4-5 =
4(-3 + (-5)) =
(4-3 — 5) =
4-8 =
1/48

Деление отрицательных степеней

Деление отрицательных степеней делается так же как и деление положительных степеней.

Деление отрицательных степеней опирается на свойства отрицательных степеней.

Пример на деление отрицательных степеней:

2-3 : 24 =
2(-3 — 4) =
2-7 =
1/27

Дополнительные материалы по теме



www.sbp-program.ru

Свойства степени с натуральным показателем. Примеры с решениями

Возведение произведения в степень

Выражение (ab)n является степенью произведения множителей a и b. Это выражение можно представить в виде произведения степеней anbn. Докажем это на примере.

По определению степени:

Раскрываем скобки, а затем, используя переместительный закон умножения, переставляем сомножители так, чтобы одинаковые буквы стояли рядом:

Группируем отдельно множители a и множители b, и получаем:

Воспользовавшись определением степени, находим:

Следовательно:

(ab)n = anbn

Свойство степени произведения распространяется на степень произведения двух и более множителей:

(3a2b)2 = 9a4b2

Отсюда следует правило:

Чтобы возвести произведение в степень, можно отдельно возвести в эту степень каждый множитель и полученные результаты перемножить.

Возведение частного в степень

Для возведения в степень частного, надо возвести в степень отдельно делимое и делитель.

Если говорить иначе, то степень частного равна частному степеней:

Так как частное в алгебре часто записывается в виде дроби (знак деления заменяется дробной чертой), то правило возведения частного в степень можно переформулировать так, чтобы оно подходило и для дробей:

Чтобы возвести дробь в степень надо возвести в эту степень отдельно её числитель и знаменатель.

Общая формула возведения в степень частного будет выглядеть так:

Возведение степени в степень

Для возведения степени числа в степень, надо перемножить показатели степеней, а основание оставить без изменений.

Например, нам нужно возвести 72 в третью степень:

(72)3

Чтобы нам не возводить 7 сначала во вторую степень, а после этого ещё в третью, вспоминаем, что степень числа это сокращённая форма умножения одинаковых сомножителей, а это значит, что:

(72)3 = 72 · 72 · 72 = 72+2+2 = 72·3 = 76

Следовательно, при возведении степени в степень показатели степеней перемножаются.

Общая формула возведения степени в степень:

(ax)y = axy

Примеры на свойства степеней

Пример 1. Выполните действия:

а) (x5)3;      б) 2(n3)5;      в) -4(a4)2

Решение:

а) (x5)3 = x5 · 3 = x15         
б) 2(n3)5 = 2n3 · 5 = 2n15   
в) -4(a4)2 = -4a4 · 2 = -4a8

Пример 2. Возведите в степень:

а) (-2mn)4;      б) (3bc)3;      в) (-6a4b)2

Решение:

а) (-2mn)4 = (-2)4 · m4 · n4 = 16m4n4                        
б) (3bc)3 = 33 · b3 · c3 = 27b3c3                                 
в) (-6a4b)2 = (-6)2 · (a4)2 · b2 = 36 · a8 · b2 = 36a8b2

Пример 3. Возведите дробь в степень:

а) (2a )2;      б) (-xy )5;      в) (a2b)3
5z2c3

Решение:

а) (2a )2(2a)2 = 4a2
55225

б) (-xy)5 = —(xy)5 = —x5y5
zz5z5

в) (a2b)3(a2b)3 = (a2)3 · b3 = a6b3
2c3(2c3)323 · (c3)38c9

naobumium.info

Как делить степени Как? Так!

Содержимое:

2 метода:

Делить выражения и числа в степенях не так уж и сложно. Если у вас одно основание (число или выражение в степени), то степени просто вычитаются, а основание остается тем же. Если у вас ничего не получается, читайте дальше!

Шаги

Часть 1 Основы

  1. 1 Запишите пример. Например, самый простой вариант это ma ÷ mb. В таком случае, m8 ÷ m2. Запишите.
  2. 2 Вычтите вторую степень из первой. Т.е. m8-2.
  3. 3 Запишите результат. Т.е. m6. Все просто. Если у вас не неизвестная буква, а число, например, 2, вам придется возвести его в степень (26 = 64), чтобы получить окончательный ответ.

Часть 2 Больше информации

  1. 1 Убедитесь, что основы в примере одинаковые. Если они разные, у вас не получится вычесть степени. Вот, что вам надо знать:
    • Если у вас есть пример m6 ÷ x4, его уже никак не упростишь, т.к. тут разные основы.
    • Хотя, если основы не буквы, а числа, вы можете решить пример. Например, сократив их: 23 ÷ 41, приведите все основы к «2.» Вместо 4 будет 22, посчитайте: 23 ÷ 22 = 21, или 2.
  2. 2 Деление выражений в степенях с несколькими переменными. Вам нужно разделить степени и основания, пока не получится финальный ответ. Вот так:
    • x6y3z2 ÷ x4y3z =
    • x6-4y3-3z2-1 =
    • x2z
  3. 3 Разделите выражения с коэффициентами. Когда у вас одинаковые основания, не сложно если у выражений разные коэффициенты. Просто разделите степени как обычно, потом разделите коэффициенты. Вот так:
    • 6x4 ÷ 3x2 =
    • 6/3x4-2 =
    • 2x2
  4. 4 Разделите выражения с отрицательными степенями. Чтобы разделить выражения с отрицательными степенями, нужно подвинуть основание на другую сторону, за знак равенства. Тогда, если у вас было 3-4 в числителе, его нужно передвинуть в знаменатель. Вот примеры:
    • Пример 1:
      • x-3/x-7 =
      • x7/x3 =
      • x7-3 =
      • x4
    • Пример 2:
      • 3x-2y/xy =
      • 3y/(x2 * xy) =
      • 3y/x3y =
      • 3/x3

Советы

  • Если у вас есть калькулятор, проверьте ответ.
  • Не волнуйтесь, если у вас ничего не получается! Продолжайте тренироваться.

Прислал: Осипова Жанна . 2017-11-06 10:59:28

kak-otvet.imysite.ru

Степень с натуральным показателем и её свойства. Степень на степень деление


Как делить степени | Алгебра

Как делить степени? При каких условиях деление степеней возможно?

В алгебре найти частное степеней можно в двух случаях:

1) если степени имеют одинаковые основания;

2) если степени имеют одинаковые показатели.

Чтобы разделить степени с одинаковыми основаниями, надо основание оставить прежним, а из показателя степени делимого вычесть показатель степени делителя (или коротко: при делении степеней показатели вычитают):

   

или

   

или

   

(последнюю формулу удобно использовать, если показатель степени в знаменателе больше показателя степени в числителе).

При делении степеней с одинаковыми показателями общий показатель можно вынести за скобки:

   

Рассмотрим, как делить степени, на конкретных примерах.

   

Единицу в показателе степени не пишут, но при делении степеней ее следует учесть:

   

При делении степеней с одинаковыми основаниями и одинаковыми показателями получаем единицу:

   

   

   

   

Вынесение общего показателя при делении степеней позволяет упростить вычисления:

   

   

В выражениях возведение в степень выполняется в первую очередь.

Если нужно число разделить на степень либо степень разделить на число, сначала следует выполнить возведение в степень, а затем — деление:

   

   

www.algebraclass.ru

Как умножать и делить степени? Что делают при умножении и делении степеней?

Если говорить простыми словами, то возведение числа в степень — это операция, при которой число многократно умножается само на себя.

Здесь число a — это основание степени, а число n — это показатель степени.

Умножение степеней.

При умножении степеней их основания могут совпадать, а могут различаться.

_

Сначала рассмотрим, как умножать степени с одинаковыми основаниями.

Для этого нужно сложить показатели степеней, а основания оставить без изменений.

Здесь a — основание степеней, а n и m — показатели.

Например:

6² * 6³ = 6^5 = 7776.

Проверить эту формулу очень легко — достаточно возвести в степень каждый множитель, а затем перемножить полученные числа.

6² * 6³ = (6*6) * (6*6*6) = 36 * 216 = 7776.

_

Теперь об умножении степеней с разными основаниями.

Здесь возможны 3 варианта:

1) Основания степеней различаются, но показатели совпадают.

В этом случае нужно перемножить основания и возвести их в указанную степень.

Например:

5³ * 6³ = (5 * 6)³ = 30³ = 27000.

2) Основания и показатели различаются, но имеется возможность привести степени к одному основанию.

Например:

9² * 81².

Здесь 81 можно представить в виде 9².

Поэтому 81² = (9²)² = 9^4 (при возведении степени в степень показатели перемножаются).

В итогу получим, что 9² * 81² = 9^2 * 9^4 = 9^6 = 531441.

3) Основания и показатели различаются, но можно привести данные степени к одному показателю.

Например:

5² * 8^4.

8^4 можно представить как 8² * 8².

Поэтому:

5² * 8^4 = 5² * 8² * 8² = (5*8*8)² = 320² = 102400.

4) Основания и показатели различаются, возможность приведения степеней к одному основанию и показателю отсутствует.

Например:

3² * 7³.

Основания и показатели в этом случае являются простыми числами. Поэтому здесь единственный вариант — возводить в степень каждый множитель отдельно, а затем перемножать результаты.

3² * 7³ = 9 * 343 = 3087.

Деление степеней.

Здесь всё по аналогии с умножением — основания степеней бывают одинаковыми, а бывают разными.

_

Если вы выполняете деление степеней с одинаковыми основаниями, то нужно делать следующее:

Основания оставить без изменений, а показатели степеней отнять друг от друга.

Например:

7³ : 7² = 7^1 = 7.

Проверка выполняется описанным выше способом:

7³ : 7² = 343 : 49 = 7.

_

Что касается деления степеней с разными основаниями, то здесь все принципы будут аналогичны умножению.

Если основания и показатели степеней — простые числа, то нужно отдельно возводить в степень делимое и делитель.

В ином случае степени можно привести либо к одному основанию, либо к одному показателю.

Вот несколько примеров:

4² : 2^4 = 4² : (2²)² = 4² : 4² = 1.

10³ : 5³ = (10 : 5)³ = 2³ = 8.

9³ : 2^6 = 9³ : (2³ * 2³) = 4,5³ : 2³ = 2,25³ = 11,390625.

www.bolshoyvopros.ru

Умножение и деление чисел со степенями

Если вам нужно возвести какое-то конкретное число в степень, можете воспользоваться таблицей степеней натуральных чисел от 2 до 25 по алгебре. А сейчас мы более подробно остановимся на свойствах степеней.

Экспоненциальные числа открывают большие возможности, они позволяют нам преобразовать умножение в сложение, а складывать гораздо легче, чем умножать.

Например, нам надо умножить 16 на 64. Произведение от умножения этих двух чисел равно 1024. Но 16 – это 4×4, а 64 – это 4х4х4. То есть 16 на 64=4x4x4x4x4, что также равно 1024.

Число 16 можно представить также в виде 2х2х2х2, а 64 как 2х2х2х2х2х2, и если произвести умножение, мы опять получим 1024.

А теперь используем правило возведения числа в степень. 16=42, или 24, 64=43, или 26, в то же время 1024=64=45, или 210.

Следовательно, нашу задачу можно записать по-другому: 42х43=45 или 24х26=210, и каждый раз мы получаем 1024.

Мы можем решить ряд аналогичных примеров и увидим, что умножение чисел со степенями сводится к сложению показателей степени, или экспонент, разумеется, при том условии, что основания сомножителей равны.

Таким образом, мы можем, не производя умножения, сразу сказать, что 24х22х214=220.

Это правило справедливо также и при делении чисел со степенями, но в этом случае экспонента делителя вычитается из экспоненты делимого. Таким образом, 25:23=22, что в обычных числах равно 32:8=4, то есть 22. Подведем итоги:

amх an=am+n, am: an=am-n, где m и n — целые числа.

С первого взгляда может показаться, что такое умножение и деление чисел со степенями не очень удобно, ведь сначала надо представить число в экспоненциальной форме. Нетрудно представить в такой форме числа 8 и 16, то есть 23 и 24, но как это сделать с числами 7 и 17? Или как поступать в тех случаях, когда число можно представить в экспоненциальной форме, но основания экспоненциальных выражений чисел сильно различаются. Например, 8×9 – это 23х32, и в этом случае мы не можем суммировать экспоненты. Ни 25 и ни 35 не являются ответом, ответ также не лежит в интервале между этими двумя числами.

Тогда стоит ли вообще возиться с этим методом? Безусловно стоит. Он дает огром­ные преимущества, особенно при сложных и трудоемких вычислениях.

Для того чтобы легче было двигаться дальше, давайте подробнее рассмотрим понятие экспоненты и попробуем дать ей более обобщенное толкование.

До сих пор мы считали, что экспонента – это количество одинаковых сомножителей. В этом случае минимальная величина экспоненты – это 2. Однако если мы производим операцию деления чисел, или вычитания экспонент, то можем получить также число меньше 2, значит, старое определение нас больше не может устроить. Подробнее читайте в следующей статье.

Материалы по теме:

Поделиться с друзьями:

Загрузка…

matemonline.com

Умножение и деление степеней с одинаковыми основаниями

Умножение степеней с одинаковыми основаниями

При умножении степеней с одинаковыми основаниями их показатели складываются.

Рассмотрим, почему показатели складываются. Во-первых, возведение в степень — это сокращённая запись умножения:

23 = 2 · 2 · 2

Во-вторых, умножение числа самого на себя, имеющего при этом разные степени, означает, что это число берётся сомножителем столько раз, сколько указывают показатели степеней:

23 · 22 = (2 · 2 · 2) · (2 · 2) = 2 · 2 · 2 · 2 · 2 = 25
3 множ.2 множ.5 множ.

Из примера становится понятно, что при сложении показателей степеней, мы получаем общую сумму сомножителей, поэтому для любого выражения будет верна формула:

ax · ay = ax+y

Примеры умножения степеней

Пример 1. Запишите в виде степени:

n3n5

Решение:

n3n5 = n3 + 5 = n8

Пример 2. Упростите:

xy2z3x4y5z6

Решение: чтобы легче было провести умножение степеней с одинаковыми основаниями можно сначала сгруппировать степени по основаниям:

(xx4)(y2y5)(z3z6)

Теперь выполним умножение степеней:

(xx4)(y2y5)(z3z6) = (x1 + 4)(y2 + 5)(z3 + 6) = x5y7z9

Следовательно:

xy2z3x4y5z6 = x5y7z9

Пример 3. Выполните умножение:

а) nxn5;      б) xxn;      в) amam

Решение:

а) nxn5 = nx + 5               б) xxn = xn + 1                 в) amam = am + m = a2m

Пример 4. Упростите выражение:

а) -a2 · (-a)2 &middot a;      б) -(-a)2 · (-a) &middot a

Решение:

а) -a2 · (-a)2 &middot a = -a2 · a2 &middot a = -(a2a2a) = -(a2 + 2 + 1) = -a5 б) -(-a)2 · (-a) &middot a = -a2 · (-a) &middot a = a3 &middot a = a4

Деление степеней с одинаковыми основаниями

При делении степеней с одинаковыми основаниями из показателя степени делимого вычитают показатель степени делителя.

Рассмотрим частное двух степеней с одинаковыми основаниями:

n12 : n5

где n – это число не равное нулю, так как на 0 делить нельзя. Запишем частное в виде дроби:

Представим n12 в виде произведения n7 · n5, тогда числитель и знаменатель дроби можно будет сократить на общий множитель n5:

n12 = n7 · n5 =  n7
n5n5

Верность совершённого действия легко проверить с помощью умножения:

n7 · n5 = n7+5 = n12

Следовательно, общая формула для деления степеней с одинаковым основанием будет выглядеть так:

ax : ay = ax-y

Примеры деления степеней

Пример 1. Частное степеней замените степенью с тем же основанием:

а) a5;      б) m18
am10

Решение:

а) a5 = a4 · a = a4
a a
б) m18 = m8 · m10 = m8
m10 m10

Пример 2. Выполните деление:

а) x7 : x2;      б) n10 : n5;      в) a30 : a10

Решение:

а) x7 : x2 = x7 — 2 = x5          б) n10 : n5 = n10 — 5 = n5      в) a30 : a10 = a30 — 10 = a20

Пример 3. Чему равно значение выражения:

а) an ;      б) mx ;      в) b5 · b8
a2mb3

Решение:

в) b5 · b8 = b2 · b3 · b8 = b2 · b8 = b10
b3b3

naobumium.info

Отрицательная степень числа | Алгебра 8 класс

Степень с отрицательным показателем

Число с отрицательным показателем степени равно дроби, числителем которой является единица, а знаменателем данное число с положительным показателем.

d -c = 1;     7 -5 = 1;     a -5 = 1
d c7 5a 5

Чтобы разобраться, почему число в отрицательной степени равно дроби, надо вспомнить правило деления степеней с одинаковыми основаниями:

При делении степеней с одинаковыми основаниями из показателя степени делимого вычитают показатель степени делителя.

Следовательно, если степень делимого будет меньше степени делителя, то в результате получится число с отрицательной степенью:

a 5 : a 8 = a 5-8 = a -3

Если записать деление в виде дроби, то при сокращении в числителе останется 1, а в знаменателе число будет иметь положительную степень:

Значит:

Действия над степенями с отрицательными показателями

При умножении отрицательных степеней с одинаковыми основаниями показатели степеней складываются:

При делении отрицательных степеней с одинаковыми основаниями из показателя степени делимого вычитается показатель делителя:

Чтобы возвести произведение в отрицательную степень, надо возвести в эту степень каждый сомножитель отдельно:

Чтобы возвести дробь в отрицательную степень, надо возвести в эту степень отдельно числитель и знаменатель:

При возведении одной степени (положительной или отрицательной) в степень (положительную или отрицательную) показатели степеней перемножаются:

naobumium.info

Правило деление степеней — Aiki-group.ru

Правило деления степеней

Правило деления степеней. При делении степеней с одинаковыми основаниями основание оставляют прежним, а из показателя степени делимого вычитают показатель степени делителя. Примеры:

Слайд 11 из презентации «Деление и умножение степеней» к урокам алгебры на тему «Степень»

Размеры: 960 х 720 пикселей, формат: jpg. Чтобы бесплатно скачать слайд для использования на уроке алгебры, щёлкните на изображении правой кнопкой мышки и нажмите «Сохранить изображение как. ». Скачать всю презентацию «Деление и умножение степеней.ppt» можно в zip-архиве размером 1313 КБ.

«Деление и умножение степеней» — a2 a3 = a2+3 = a5. a3 = a · a · a. Найдем произведение a2 и a3. 100. 2+3. 5 раз. 64 = 144 = 1 0000 =. Умножение и деление степеней. 3 раза. a2 a3 =.

«Степени двойки» — 1024+. Правила перевода из одной системы счисления в другую. Гусельникова Е.В. Школа №130. Содержание. Таблица степеней двойки. Переведём число 1998 из десятичной в двоичную систему. Кислых В.Н. 11Э Зинько К.О. 11Э. Преподаватель: Выполнили: Рассмотрим схему преобразования на примере.

«Степень с отрицательным показателем» — Степень с отрицательным показателем. 5 12?3 (27?3 ). -2. -1. Вычислите: -3.

«Степень с рациональным показателем» — по теме: «Степень с рациональным показателем». Цели урока: I. Организационная часть. Проверка домашнего задания 1.Математический диктант 2. Взаимопроверка III.Самостоятельная работа IV. Обобщающий урок. Ход урока. Подготовка к контрольной работе V. Подведение итогов урока VI. II.

«Степень с целым показателем» — Представьте выражение в виде степени. X-12. Расположите в порядке убывания. Представьте выражение x-12 в виде произведения двух степеней с основанием x, если один множитель известен. Вычислите. Упростите.

«Свойства степени» — Обобщение знаний и умений по применению свойств степени с натуральным показателем. Вычислительная пауза. Свойства степени с натуральным показателем. Проверь себя! Применение знаний для решения различных по сложности задач. Тест. Физминутка. Развитие настойчивости, мыслительной активности и творческой деятельности.

900igr.net

Правило деление степеней

1. Степень произведения двух или нескольких сомножителей равна произведению степеней этих сомножителей (с тем же показателем):

(abc…) n = a n b n c n …

Пример 1. (7•2•10) 2 = 7 2 •2 2 •10 2 = 49•4•100 = 19600. Пример 2. (x 2 –a 2 ) 3 = [(x +a)(x — a)] 3 =(x +a) 3 (x — a) 3

Практически более важно обратное преобразование:

a n b n c n … = (abc…) n

т.е. произведение одинаковых степеней нескольких величин равно той же степени произведения этих величин.

Пример 3. Пример 4. (a +b) 2 (a 2 – ab +b 2 ) 2 =[(a +b)(a 2 – ab +b 2 )] 2 =(a 3 +b 3 ) 2

2. Степень частного (дроби) равна частному от деления той же степени делимого на ту же степень делителя:

Пример 5. Пример 6.

Обратное преобразование:. Пример 7.. Пример 8..

3. При умножении степеней с одинаковыми основаниями показатели степеней складываются:

Пример 9.2 2 •2 5 =2 2+5 =2 7 =128. Пример 10. (a – 4c +x) 2 (a – 4c +x) 3 =(a – 4c + x) 5 .

4. При делении степеней с одинаковыми основаниями показатель степени делителя вычитается из показателя степени делимого

Пример 11. 12 5 :12 3 =12 5-3 =12 2 =144. Пример 12. (x-y) 3 :(x-y) 2 =x-y.

5. При возведении степени в степень показатели степеней перемножаются:

Пример 13. (2 3 ) 2 =2 6 =64. Пример 14.

maths.yfa1.ru

Сложение, вычитание, умножение, и деление степеней

Сложение и вычитание степеней

Очевидно, что числа со степенями могут слагаться, как другие величины , путем их сложения одно за другим со своими знаками.

Так, сумма a 3 и b 2 есть a 3 + b 2 . Сумма a 3 — b n и h 5 -d 4 есть a 3 — b n + h 5 — d 4 .

Коэффициенты одинаковых степеней одинаковых переменных могут слагаться или вычитаться.

Так, сумма 2a 2 и 3a 2 равна 5a 2 .

Это так же очевидно, что если взять два квадрата а, или три квадрата а, или пять квадратов а.

Но степени различных переменных и различные степени одинаковых переменных, должны слагаться их сложением с их знаками.

Так, сумма a 2 и a 3 есть сумма a 2 + a 3 .

Это очевидно, что квадрат числа a, и куб числа a, не равно ни удвоенному квадрату a, но удвоенному кубу a.

Сумма a 3 b n и 3a 5 b 6 есть a 3 b n + 3a 5 b 6 .

Вычитание степеней проводится таким же образом, что и сложение, за исключением того, что знаки вычитаемых должны соответственно быть изменены.

Или: 2a 4 — (-6a 4 ) = 8a 4 3h 2 b 6 — 4h 2 b 6 = -h 2 b 6 5(a — h) 6 — 2(a — h) 6 = 3(a — h) 6

Умножение степеней

Числа со степенями могут быть умножены, как и другие величины, путем написания их одно за другим, со знаком умножения или без него между ними.

Так, результат умножения a 3 на b 2 равен a 3 b 2 или aaabb.

Или: x -3 ⋅ a m = a m x -3 3a 6 y 2 ⋅ (-2x) = -6a 6 xy 2 a 2 b 3 y 2 ⋅ a 3 b 2 y = a 2 b 3 y 2 a 3 b 2 y

Результат в последнем примере может быть упорядочен путём сложения одинаковых переменных. Выражение примет вид: a 5 b 5 y 3 .

Сравнивая несколько чисел(переменных) со степенями, мы можем увидеть, что если любые два из них умножаются, то результат — это число (переменная) со степенью, равной сумме степеней слагаемых.

Так, a 2 .a 3 = aa.aaa = aaaaa = a 5 .

Здесь 5 — это степень результата умножения, равная 2 + 3, сумме степеней слагаемых.

Так, a n .a m = a m+n .

Для a n , a берётся как множитель столько раз, сколько равна степень n;

И a m , берётся как множитель столько раз, сколько равна степень m;

Поэтому, степени с одинаковыми основами могут быть умножены путём сложения показателей степеней.

Так, a 2 .a 6 = a 2+6 = a 8 . И x 3 .x 2 .x = x 3+2+1 = x 6 .

Или: 4a n ⋅ 2a n = 8a 2n b 2 y 3 ⋅ b 4 y = b 6 y 4 (b + h — y) n ⋅ (b + h — y) = (b + h — y) n+1

Умножьте (x 3 + x 2 y + xy 2 + y 3 ) ⋅ (x — y). Ответ: x 4 — y 4 . Умножьте (x 3 + x — 5) ⋅ (2x 3 + x + 1).

Это правило справедливо и для чисел, показатели степени которых — отрицательные.

1. Так, a -2 .a -3 = a -5 . Это можно записать в виде (1/aa).(1/aaa) = 1/aaaaa.

2. y -n .y -m = y -n-m .

3. a -n .a m = a m-n .

Если a + b умножаются на a — b, результат будет равен a 2 — b 2 : то есть

Результат умножения суммы или разницы двух чисел равен сумме или разнице их квадратов.

Если умножается сумма и разница двух чисел, возведённых в квадрат, результат будет равен сумме или разнице этих чисел в четвёртой степени.

Так, (a — y).(a + y) = a 2 — y 2 . (a 2 — y 2 )⋅(a 2 + y 2 ) = a 4 — y 4 . (a 4 — y 4 )⋅(a 4 + y 4 ) = a 8 — y 8 .

Деление степеней

Числа со степенями могут быть поделены, как и другие числа, путем отнимая от делимого делителя, или размещением их в форме дроби.

Таким образом a 3 b 2 делённое на b 2 , равно a 3 .

Запись a 5 , делённого на a 3 , выглядит как $\frac$. Но это равно a 2 . В ряде чисел a +4 , a +3 , a +2 , a +1 , a 0 , a -1 , a -2 , a -3 , a -4 . любое число может быть поделено на другое, а показатель степени будет равен разнице показателей делимых чисел.

При делении степеней с одинаковым основанием их показатели вычитаются..

Так, y 3 :y 2 = y 3-2 = y 1 . То есть, $\frac= y$.

И a n+1 :a = a n+1-1 = a n . То есть $\frac = a^n$.

Или: y 2m : y m = y m 8a n+m : 4a m = 2a n 12(b + y) n : 3(b + y) 3 = 4(b +y) n-3

Правило также справедливо и для чисел с отрицательными значениями степеней. Результат деления a -5 на a -3 , равен a -2 . Также, $\frac : \frac = \frac.\frac= \frac= \frac$.

h 2 :h -1 = h 2+1 = h 3 или $h^2:\frac = h^2.\frac= h^3$

Необходимо очень хорошо усвоить умножение и деление степеней, так как такие операции очень широко применяются в алгебре.

Примеры решения примеров с дробями, содержащими числа со степенями

1. Уменьшите показатели степеней в $\frac$ Ответ: $\frac$.

2. Уменьшите показатели степеней в $\frac$. Ответ: $\frac$ или 2x.

3. Уменьшите показатели степеней a 2 /a 3 и a -3 /a -4 и приведите к общему знаменателю. a 2 .a -4 есть a -2 первый числитель. a 3 .a -3 есть a 0 = 1, второй числитель. a 3 .a -4 есть a -1 , общий числитель. После упрощения: a -2 /a -1 и 1/a -1 .

4. Уменьшите показатели степеней 2a 4 /5a 3 и 2 /a 4 и приведите к общему знаменателю. Ответ: 2a 3 /5a 7 и 5a 5 /5a 7 или 2a 3 /5a 2 и 5/5a 2 .

5. Умножьте (a 3 + b)/b 4 на (a — b)/3.

6. Умножьте (a 5 + 1)/x 2 на (b 2 — 1)/(x + a).

7. Умножьте b 4 /a -2 на h -3 /x и a n /y -3 .

8. Разделите a 4 /y 3 на a 3 /y 2 . Ответ: a/y.

www.math30.com

Алгебра – 7 класс. Умножение и деление степеней

Урок на тему: «Правила умножения и деления степеней с одинаковыми и разными показателями. Примеры»

Дополнительные материалы Уважаемые пользователи, не забывайте оставлять свои комментарии, отзывы, пожелания. Все материалы проверены антивирусной программой.

Умножение и деление степеней

Цель урока: научится производить действия со степенями числа.

Для начала вспомним понятие «степень числа». Выражение вида $\underbrace_$ можно представить, как $a^n$.

Справедливо также обратное: $a^n= \underbrace_$.

Это равенство называется «запись степени в виде произведения». Оно поможет нам определить, каким образом умножать и делить степени. Запомните: a – основание степени. n – показатель степени. Если n = 1, значит, число а взяли один раз и соответственно: $a^n= 1$. Если n= 0, то $a^0= 1$.

Почему так происходит, мы сможем выяснить, когда познакомимся с правилами умножения и деления степеней.

Правила умножения

a) Если умножаются степени с одинаковым основанием. Чтобы $a^n * a^m$, запишем степени в виде произведения: $\underbrace_ * \underbrace_$. На рисунке видно, что число а взяли n+m раз, тогда $a^n * a^m = a^$.

Пример. $2^3 * 2^2 = 2^5 = 32$.

Это свойство удобно использовать, что бы упростить работу при возведении числа в большую степень. Пример. $2^7= 2^3 * 2^4 = 8 * 16 = 128$.

б) Если умножаются степени с разным основанием, но одинаковым показателем. Чтобы $a^n * b^n$, запишем степени в виде произведения: $\underbrace_ * \underbrace_$. Если поменять местами множители и посчитать получившиеся пары, получим: $\underbrace_$.

Значит, $a^n * b^n= (a * b)^n$.

Пример. $3^2 * 2^2 = (3 * 2)^2 = 6^2= 36$.

Правила деления

a) Основание степени одинаковое, показатели разные. Рассмотрим деление степени с большим показателем на деление степени с меньшим показателем.

Запишем степени в виде дроби:

Для удобства деление запишем в виде простой дроби. Теперь сократим дробь.

Получается: $\underbrace_= a^$. Значит, $\frac=a^$.

Это свойство поможет объяснить ситуацию с возведением числа в нулевую степень. Допустим, что n=m, тогда $a^0= a^=\frac =1$.

б) Основания степени разные, показатели одинаковые. Допустим, необходимо $\frac$. Запишем степени чисел в виде дроби:

Для удобства представим. Используя свойство дробей, разобьем большую дробь на произведение маленьких, получим. $\underbrace* \frac * \ldots * \frac >_$. Соответственно: $\frac=( \frac)^n$.

mathematics-tests.com

Степени и корни

Операции со степенями и корнями. Степень с отрицательным ,

нулевым и дробным показателем. О выражениях, не имеющих смысла.

Операции со степенями.

1. При умножении степеней с одинаковым основанием их показатели складываются :

a m · a n = a m + n .

2. При делении степеней с одинаковым основанием их показатели вычитаются .

3. Степень произведения двух или нескольких сомножителей равна произведению степеней этих сомножителей.

4. Степень отношения (дроби) равна отношению степеней делимого (числителя) и делителя (знаменателя):

( a / b ) n = a n / b n .

5. При возведении степени в степень их показатели перемножаются:

Все вышеприведенные формулы читаются и выполняются в обоих направлениях слева направо и наоборот.

П р и м е р . ( 2 · 3 · 5 / 15 ) ² = 2 ² · 3 ² · 5 ² / 15 ² = 900 / 225 = 4 .

Операции с корнями. Во всех нижеприведенных формулах символ означает арифметический корень (подкоренное выражение положительно).

1. Корень из произведения нескольких сомножителей равен произведению корней из этих сомножителей:

2. Корень из отношения равен отношению корней делимого и делителя:

3. При возведении корня в степень достаточно возвести в эту степень подкоренное число:

4. Если увеличить степень корня в m раз и одновременно возвести в m -ую степень подкоренное число, то значение корня не изменится:

5. Если уменьшить степень корня в m раз и одновременно извлечь корень m -ой степени из подкоренного числа, то значение корня не изменится:

Расширение понятия степени. До сих пор мы рассматривали степени только с натуральным показателем; но действия со степенями и корнями могут приводить также к отрицательным, нулевым и дробным показателям. Все эти показатели степеней требуют дополнительного определения.

Степень с отрицательным показателем. Степень некоторого числа с отрицательным (целым) показателем определяется как единица, делённая на степень того же числа с показателем, равным абсолютной велечине отрицательного показателя:

Т еперь формула a m : a n = a m — n может быть использована не только при m , большем, чем n , но и при m , меньшем, чем n .

П р и м е р . a 4 : a 7 = a 4 — 7 = a — 3 .

Если мы хотим, чтобы формула a m : a n = a m — n была справедлива при m = n , нам необходимо определение нулевой степени.

Степень с нулевым показателем. Степень любого ненулевого числа с нулевым показателем равна 1.

П р и м е р ы . 2 0 = 1, ( – 5 ) 0 = 1, ( – 3 / 5 ) 0 = 1.

Степень с дробным показателем. Для того, чтобы возвести действительное число а в степень m / n , нужно извлечь корень n –ой степени из m -ой степени этого числа а :

О выражениях, не имеющих смысла. Есть несколько таких выражений.

где a ≠ 0 , не существует .

В самом деле, если предположить, что x – некоторое число, то в соответствии с определением операции деления имеем: a = 0· x, т.e. a = 0, что противоречит условию: a ≠ 0

— любое число.

В самом деле, если предположить, что это выражение равно некоторому числу x, то согласно определению операции деления имеем: 0 = 0 · x . Но это равенство имеет место при любом числе x, что и требовалось доказать.

Если считать, что правила действий со степенями распространяются и на степени с нулевым основанием, то

0 0 — любое число.

Р е ш е н и е . Рассмотрим три основных случая:

1) x = 0 – это значение не удовлетворяет данному уравнению

2) при x > 0 получаем: x / x = 1, т.e. 1 = 1, откуда следует,

что x – любое число; но принимая во внимание, что в

нашем случае x > 0 , ответом является x > 0 ;

www.bymath.net

Это интересно:
  • Правила безопасности с утюгом Правила техники безопасности при работе утюгом Правила техники безопасности при работе утюгом. 1.Перед включением утюга в электросеть нужно проверить изоляцию шнура и положение утюга на подставке. 2.Включение и […]
  • Проблемы водного налога Проблемы водного налога Состояние, анализ и проблемы совершенствования водного налога При заборе воды сверх установленных квартальных (годовых) лимитов водопользования налоговые ставки в части такого превышения […]
  • Этапы исполнения приказа как составить приказ о переходе с 223фз на 44 фз Сергей Антонов 30 Ответ написан год назад Профессор 455 Ответ написан год назад Например: приказ об отмене применения положения о закупках. Оценка ответа: 0 Добавить […]
  • Правило на умножение и деление положительных и отрицательных чисел Деление отрицательных чисел Как выполнять деление отрицательных чисел легко понять, вспомнив, что деление — это действие, обратное умножению. Если « a » и « b » положительные числа, то разделить число « a » на число « […]
  • Разрешением 960h Разрешения D1, 960Н, 720Р, 960Р, 1080Р Системы видеонаблюдения получают все большее распространение по всему миру. Оборудование постоянно совершенствуется, и данная сфера постоянно развивается. Как и в любой […]
  • Виды собственности по конституций Конституционное право Российской Федерации. Баглай М.В. 6-е изд., изм. и доп. — М.: Норма, 200 7 . — 7 84 с. Настоящий учебник, представляющий собой шестое, измененное и дополненное, издание, написан известным […]

aiki-group.ru

Степень с натуральным показателем и её свойства

Степень с натуральным показателем и ее свойства.

Степенью числа a с натуральным показателем n, большим 1, называется произведение n множителей, каждый из которых равен a:

an = 

В выражении an :

—  число а (повторяющийся множитель) называют основанием степени

—  число n (показывающее сколько раз повторяется множитель) – показателем степени

Например: 25 = 2·2·2·2·2 = 32, здесь: 2   – основание степени, 5   – показатель степени, 32 – значение степени

Отметим, что основание степени может быть любым числом.

Вычисление значения степени называют действием возведения в степень. Это действие третьей ступени. То есть при вычислении значения выражения, не содержащего скобки, сначала выполняют действие третьей ступени, затем второй (умножение и деление) и, наконец, первой (сложение и вычитание).

Для записи больших чисел часто применяются степени числа 10. Так, расстояние от земли до солнца примерно равное 150 млн. км, записывают в виде 1,5 · 108

Каждое число большее 10 можно записать в виде: а · 10n , где 1

Например:  4578 = 4,578 · 103 ;

103000 = 1,03 · 105.

Свойства степени с натуральным показателем:

1. При умножении степеней с одинаковыми основаниями основание остается прежним, а показатели степеней складываются

am · an = am + n

например:  71.7 · 7 — 0.9 = 71.7+( — 0.9) = 71.7 — 0.9 =  70.8

2. При делении степеней с одинаковыми основаниями основание остается прежним, а показатели степеней вычитаются

am / an = am — n ,

где,  m > n,

a ? 0

например: 133.8 / 13 -0.2 = 13(3.8 -0.2) = 133.6

3. При возведении степени в степень основание остается прежним, а показатели степеней перемножаются.

(am )n = a m ·  n

    например: (23)2 = 2 3·2 = 26

    4. При возведении в степень произведения в эту степень возводится каждый множитель

      (a · b)n = an · b m ,

      например:(2·3)3 = 2n · 3 m ,

      5. При возведении в степень дроби в эту степень возводятся числитель и знаменатель

      (a / b)n = an / bn

      например: (2 / 5)3 = (2 / 5) · (2 / 5) · (2 / 5) = 23 / 53

      mirurokov.ru

      avtobaiki.ru