Статистика как найти медиану – 5.5 Мода и медиана. Их вычисление в дискретных и интервальных вариационных рядах

5.5 Мода и медиана. Их вычисление в дискретных и интервальных вариационных рядах

Мода и медиана – особого рода средние, которые используются для изучения структуры вариационного ряда. Их иногда называют структурными средними, в отличие от рассмотренных ранее степенных средних.

Мода – это величина признака (варианта), которая чаще всего встречается в данной совокупности, т.е. имеет наибольшую частоту.

Мода имеет большое практическое применение и в ряде случаев только мода может дать характеристику общественных явлений.

Медиана – это варианта, которая находится в середине упорядоченного вариационного ряда.

Медиана показывает количественную границу значения варьирующего признака, которой достигла половина единиц совокупности. Применение медианы наряду со средней или вместо нее целесообразно при наличии в вариационном ряду открытых интервалов, т.к. для вычисления медианы не требуется условное установление границ отрытых интервалов, и поэтому отсутствие сведений о них не влияет на точность вычисления медианы.

Медиану применяют также тогда, когда показатели, которые нужно использовать в качестве весов, неизвестны. Медиану применяют вместо средней арифметической при статистических методах контроля качества продукции. Сумма абсолютных отклонений варианты от медианы меньше, чем от любого другого числа.

Рассмотрим расчет моды и медианы в дискретном вариационном ряду:

Стаж, лет, X

Число рабочих, чел, f

Накопленные частоты

1

2

2

3

4

6

4

5

(11)

8

4

15

10

1

16

ИТОГО:

16

Определить моду и медиану.

Мода Мо = 4 года, так как этому значению соответствует наибольшая частота f = 5.

Т.е. наибольшее число рабочих имеют стаж 4 года.

Для того, чтобы вычислить медиану, найдем предварительно половину суммы частот. Если сумма частот является числом нечетным, то мы сначала прибавляем к этой сумме единицу, а затем делим пополам:

Ме=16/2=8

Медианой будет восьмая по счету варианта.

Для того, чтобы найти, какая варианта будет восьмой по номеру, будем накапливать частоты до тех пор, пока не получим сумму частот, равную или превышающую половину суммы всех частот. Соответствующая варианта и будет медианой.

Ме = 4 года.

Т.е. половина рабочих имеет стаж меньше четырех лет, половина больше.

Если сумма накопленных частот против одной варианты равна половине сумме частот, то медиана определяется как средняя арифметическая этой варианты и последующей.

Вычисление моды и медианы в интервальном вариационном ряду

Мода в интервальном вариационном ряду вычисляется по формуле

где ХМ0 — начальная граница модального интервала,

hм0 – величина модального интервала,

fм0, fм0-1, fм0+1– частота соответственно модального интервала, предшествующего модальному и последующего.

Модальным называется такой интервал, которому соответствует наибольшая частота.

Пример 1

Группы по стажу

Число рабочих, чел

Накопленные частоты

1

2

3

До 2

4

4

2-4

23

27

4-6

20

47

6-8

35

82

8-10

11

93

свыше 10

7

100

ИТОГО:

100

Определить моду и медиану.

Решение.

Модальный интервал [6-8], т.к. ему соответствует наибольшая частота f = 35. Тогда:

Хм0=6, 0=35

hм0=2, 0-1=20

0+1=11

Вывод: Наибольшее число рабочих имеет стаж примерно 6,7 лет.

Для интервального ряда Ме вычисляется по следующей формуле:

где Хме – нижняя граница медиального интервала,

е – величина медиального интервала,

– половина суммы частот,

е – частота медианного интервала,

е-1 –сумма накопленных частот интервала, предшествующего медианному.

Медианный интервал – такой интервал, которому соответствует кумулятивная частота, равная или превышающая половину суммы частот.

Определим медиану для нашего примера.

Найдем:

т.к 82>50, то медианный интервал [6-8].

Тогда:

Хме =6, е =35,

е =2, е-1=47,

Вывод: Половина рабочих имеет стаж меньше 6,16 лет, а половина имеет стаж больше, чем 6,16 лет.

studfiles.net

Мода и медиана в статистике

Мода и медиана в статистике

В статистике модой называется величина признака (варианта), которая чаще всего встречается в данной совокупности.
Медианой в статистике называется варианта, которая находится в середине вариационного ряда. Медиана делит ряд пополам. Обозначают медиану символом.

Распределительные средние – мода и медиана, их сущность и способы исчисления.

Данные показатели относятся к группе распределительных средних и используются для формирования обобщающей характеристики величины варьирующего признака.

Мода – это наиболее часто встречающееся значение варьирующего признака в вариационном ряду. Модой распределения называется такая величина изучаемого признака, которая в данной совокупности встречается наиболее часто, т.е. один из вариантов признака повторяется чаще, чем все другие. Для дискретного ряда (ряд, в котором значение варьирующего признака представлены отдельными числовыми показателями) модой является значение варьирующего признака обладающего наибольшей частотой. Для интервального ряда сначала определяется модальный интервал (т.е. содержащий моду), в случае интервального распределения с равными интервалами определяется по наибольшей частоте; с неравными интервалами – по наибольшей плотности, а определение моды требует проведения расчетов на основе следующих формул:

где:

— нижняя граница модального интервала;

— величина модального интервала;

— частота модального интервала;

— частота интервала, предшествующего модальному;

— частота интервала, следующего за модальным;

Медиана — это значение варьирующего признака, приходящееся на середину ряда, расположенного в порядке возрастания или убывания числовых значений признака, т.е. величина изучаемого признака, которая находится в середине упорядоченного вариационного ряда. Главное свойство медианы в том, что сумма абсолютных отклонений значений признака от медианы меньше, чем от любой другой величины:

Для определения медианы в дискретном ряду при наличии частот, сначала исчисляется полусумма частот, а затем определяется какое значение варьирующего признака ей соответствует. При исчислении медианы интервального ряда сначала определяются медианы интервалов, а затем определяется какое значение варьирующего признака соответствует данной частоте. Для определения величины медианы используется формула:

где: — нижняя граница медианного интервала;

— величина медианного интервала;

— накопленная частота интервала, предшествующего медианному;

— частота медианного интервала;

Медианный интервал не обязательно совпадает с модальным.

Моду и медиану в интервальном ряду распределения можно определить графически. Мода определяется по гистограмме распределения. Для этого выбирается самый высокий прямоугольник, который в данном случае является модальным. Затем правую вершину модального прямоугольника соединяют с правым верхним углом предыдущего прямоугольника. А левую вершину модального прямоугольника – с левым верхним углом последующего прямоугольника. Далее из точки их пересечения опускают перпендикуляр на ось абсцисс.

Примеры расчета моды и медианы мы уже рассматривали здесь.

www.goodstudents.ru

Мода, медиана, Нахождение медианы, Определение медианы, Определение моды

Медиана в статистке

Медиана — это такое значение признака, которое разделяет ранжированный ряд распределения на две равные части — со значениями признака меньше медианы и со значениями признака больше медианы. Для нахождения медианы, нужно отыскать значение признака, которое находится на середине упорядоченного ряда.

Посмотреть решение задачи на нахождение моды и медианы Вы можете здесь

В ранжированных рядах несгруппированные данные для

нахождения медианы сводятся к поиску порядкового номера медианы. Медиана может быть вычислена по следующей формуле:

где Хm — нижняя граница медианного интервала;
im — медианный интервал;
Sme— сумма наблюдений, которая была накоплена до начала медианного интервала;
fme — число наблюдений в медианном интервале.

Свойства медианы

  1. Медиана не зависит от тех значений признака, которые расположены по обе стороны от нее.
  2. Аналитические операции с медианой весьма ограничены, поэтому при объединении двух распределений с известными медианами невозможно заранее предсказать величину медианы нового распределения.
  3. Медиана обладает свойством минимальности. Его суть заключается в том, что сумма абсолютных отклонений значений х, от медианы представляет собой минимальную величину по сравнению с отклонением X от любой другой величины

Графическое определение медианы

Для определения медианы графическим методом используют накопленные частоты, по которым строится кумулятивная кривая. Вершины ординат, соответствующих накопленным частотам, соединяют отрезками прямой. Разделив поп олам последнюю ординату, которая соответствует общей сумме частот и проведя к ней перпендикуляр пересечения с кумулятивной кривой, находят ординату искомого значения медианы.

Определение моды в статистике

Мода — значение признака, имеющее наибольшую частоту в статистическом ряду распределения.

Определение моды производится разными способами, и это зависит от того, представлен ли варьирующий признак в виде дискретного или интервального ряда.

Нахождение моды и медианы в контрольных по статистике происходит путем обычного просматривания столбца частот. В этом столбце находят наибольшее число, характеризующее наибольшую частоту. Ей соответствует определенное значение признака, которое и является модой. В интервальном вариационном ряду модой приблизительно считают центральный вариант интервала с наибольшей частотой. В таком ряду распределения мода вычисляется по формуле:

где ХМо — нижняя граница модального интервала;
imo — модальный интервал;
fм0, fм0-1,, fм0+1 — частоты в модальном, предыдущем и следующем за модальным интервалах.

Модальный интервал определяется по наибольшей частоте.

Мода широко используется в статистической практике при анализе покупательного спроса, регистрации цен и т. д.

Соотношения между средней арифметической, медианой и модой

Для одномодального симметричного ряда распределения средняя арифметическая, медиана и мода совпадают. Для асимметричных распределений они не совпадают.

К. Пирсон на основе выравнивания различных типов кривых определил, что для умеренно асимметричных распределений справедливы такие приближенные соотношения между средней арифметической, медианой и модой:

Источник: Балинова B.C. Статистика в вопросах и ответах: Учеб. пособие. — М.: ТК. Велби, Изд-во Проспект, 2004. — 344 с.

univer-nn.ru

Тема 1

ПРАКТИЧЕСКОЕ ЗАНЯТИЕ № 4.

Расчёт структурных характеристик вариационного ряда распределения.

Студент должен:

знать:

—   область применения и методику расчёта структурных средних величин;

уметь:

—   исчислять структурные средние величины;

—   формулировать вывод по полученным результатам.

Методические указания

В статистике исчисляются мода и медиана, которые относятся к структурным средним, так как  их величина зависит от строения статистической совокупности.

Расчёт моды

Модой называется значение признака (варианта), чаще всеговстречающееся в изучаемой совокупности. В дискретном ряду распределения модой будет варианта с наибольшей частотой.

Например: Распределение проданной женской обуви по размерам характеризуется следующим образом:

Размер обуви

34

35

36

37

38

39

40

41

Количество проданных пар

8

19

34

108

72

51

6

2

В этом ряду распределения  модой является 37 размер, т.е. Мо=37 размер.

Для интервального ряда распределения мода определяется по формуле:

где ХMo - нижняя граница модального интервала;

hMo  — величина модального интервала;

fMo – частота модального интервала;

fMo-1  и  fMo+1 – частота интервала соответственно

предшествующего модальному и следующего за ним.

Например: Распределение рабочих по стажу работы характеризуется следующими данными.

Стаж работы, лет

до 2

2-4

4-6

6-8

8-10

10 и более

Число рабочих, чел.

4

23

20

35

11

7

Определить моду интервального ряда распределения.

Мода интервального ряда составляет

Мода всегда бывает несколько неопределённой, т.к. она зависит от величины групп и точного положения границ групп. Мода широко применяется в коммерческой практике при изучении покупательского спроса, при регистрации цен и т.п.

Расчёт медианы

Медианой в статистике называется варианта, расположенная в середине упорядоченного ряда данных, и которая делит статистическую совокупность на две равные части так, что у одной половины значения меньше медианы, а у другой половины – больше её. Для определения медианы необходимо построить ранжированный ряд, т.е. ряд в порядке возрастания или убывания индивидуальных значений признака.

В дискретном упорядоченном ряду с нечётным числом членов медианой будет варианта, расположенная в центре ряда.

Например: Стаж пяти рабочих составил 2, 4, 7, 9 и 10 лет. В таком ряду медиана-7 лет, т.е. Ме=7 лет

Если дискретный упорядоченный ряд состоит из чётного числа членов, то медианой будет средняя арифметическая из двух смежных вариант, стоящих в центре ряда.

Например: Стаж работы шести рабочих составил 1, 3, 4, 5, 10 и 11лет. В этом ряду имеются две варианты, стоящие в центре ряда. Это варианты 4 и 5. Средняя арифметическая из этих значений и будет медианой ряда

 

Чтобы определить медиану для сгруппированных данных, необходимо считать накопленные частоты.

Например: По имеющимся данным определим медиану размера обуви

Размер обуви

Количество проданных пар

Сумма накопленных частот

34

8

8

35

19

8+19=27

36

34

27+34=61

37

108

61+108=169

38

72

39

51

40

6

41

2

Итого

300

 

Для определения медианы надо подсчитать сумму накопленных частот ряда. Наращивание итога продолжается до получения накопленной суммы  частот, превышающей половину суммы частот ряда. В нашем примере сумма частот составила 300, её половина – 150. Накопленная сумма частот получилась равной 169. Варианта, соответствующая этой сумме, т.е. 37 и есть медиана ряда.

Если же сумма накопленных частот против одной из вариант равна точно половине суммы частот ряда, то медиана определяется как средняя арифметическая этой варианты и последующей.

Например: По имеющимся данным определим медиану заработной платы рабочих

Месячная заработная плата, тыс.руб.

Число рабочих, чел.

Сумма накопленных частот

14,0

2

2

14,2

6

2+6=8

16,0

12

8+12=20

16,8

16

18,0

4

Итого:

40

Медиана будет равна:

Медиана интервального вариационного ряда распределения определяется по формуле:

Где  ХМе – нижняя граница медианного интервала;

hMe – величина медианного интервала;

f  — сумма частот ряда;

fМе – частота медианного интервала;

Например: По имеющимся данным о распределении предприятий по численности промышленно – производственного персонала рассчитать медиану в интервальном вариационном ряду

Группы предприятий по численности ППП, чел.

Число предприятий

Сумма накопленных частот

100-200

1

1

200-300

3

1+3=4

300-400

7

4+7=11

400-500

30

11+30=41

500-600

19

600-700

15

700-800

5

 

Итого:

80

 

Определим, прежде всего, медианный интервал. В данном примере сумма накопленных частот, превышающих половину суммы всех значений ряда, соответствует интервалу 400-500.Это и есть медианный интервал, т.е. интервал, в котором находится медиана ряда. Определим её значение

Если же сумма накопленных частот против одного из интервалов равна точно половине суммы частот ряда, то медиана определяется по формуле:

где n – число единиц в совокупности.

Например: По имеющимся данным о распределении предприятий по численности промышленно – производственного персонала рассчитать медиану в интервальном вариационном ряду

Группы предприятий по численности ППП, чел.

Число предприятий

Сумма накопленных частот

100-200

1

1

200-300

3

1+3=4

300-400

6

4+6=10

400-500

30

10+30=40

500-600

20

40+20=60

600-700

15

700-800

5

 

Итого:

80

 

чел

Моду и медиану в интервальном ряду можно определить графически:

моду в дискретных рядах — по полигону распределения, моду в интервальных рядах — по гистограмме распределения, а медиану — по кумуляте.

Мода интервального ряда распределения определяется по гистограмме распределения определяют следующим образом. Для этого выбирается самый высокий прямоугольник, который является в данном случае модальным. Затем правую вершину модального прямоугольника соединяем с правым верхним углом предыдущего прямоугольника. А левую вершину модального прямоугольника – с левым верхним углом последующего прямоугольника. Далее из точки их пересечения опускают перпендикуляр на ось абсцисс. Абсцисса точки пересечения этих прямых и будет модой распределения.

 

 

 

 

 

 

 

 

 

Медиана рассчитывается по кумуляте. Для её определения из точки на шкале накопленных частот (частостей), соответствующей 50%, проводится прямая, параллельная оси абсцисс, до пересечения с кумулятой. Затем из точки пересечения указанной прямой с кумулятой опускается перпендикуляр на ось абсцисс. Абсцисса точки пересечения является медианой.

Кроме моды и медианы в вариантных рядах могут быть определены и другие структурные характеристики – квантили. Квантили предназначены для более глубокого изучения структуры ряда распределения.

Квантиль – это значение признака, занимающее определенное место в упорядоченной по данному признаку совокупности. Различают следующие виды квантилей:

—      квартили  – значения признака, делящие упорядоченную совокупность на четыре равные части;

—      децили – значения признака, делящие упорядоченную совокупность на десять равных частей;

—      перцентели - значения признака, делящие упорядоченную совокупность на сто равных частей.

Таким образом, для характеристики положения центра ряда распределения можно использовать 3 показателя: среднее значение признака, мода, медиана. При выборе вида и формы конкретного показателя центра распределения необходимо исходить из следующих рекомендаций:

—                 для устойчивых социально-экономических процессов в качестве показателя центра используют среднюю арифметическую. Такие процессы характеризуются симметричными распределениями, в которых ;

—                 для неустойчивых процессов положение центра распределения характеризуется с помощью Mo или Me. Для асимметричных процессов предпочтительной характеристикой центра распределения является медиана, поскольку занимает положение между средней арифметической и модой.

 

 

psistat.narod.ru

Определение моды и медианы в статистике

По данным таблицы рассчитаем моду и медиану

Интервалы

Диапазон по продолжительности жизни

Число стран (частота), f

Накопленная частота, f

1

60,8 — 63,53

6

6

2

63,53  – 66,25

13

19

3

66,25 – 68,98

12

31

4

68,98  – 71,70

18

49

5

71,70 — 74,43

37

86

6

74,43 — 77,15

22

108

7

77,15 — 79,88

27

135

8

79,88 — 82,60

15

150

Определение моды

Интервал, имеющий наибольшую частоту, будет являться модальным, а конкретное (дискретное) значение моды будет находиться внутри него. Рассчитать конкретное, значение моды в интервальном ряду можно по следующей формуле:

где: ХМо — нижняя граница модального интервала,
i — длина модального интервала,
fMo — частота модального интервала,
fMo-1 — частота, соответствующая предшествующему интервалу,
fMo+1 — частота, соответствующая последующему интервалу.

Самая большая частота, 37 стран, соответствует варианту 71,70 — 74,43. Этот интервал является модальным.

Определение медианы

Медиана применяется для количественной характеристики структуры и равна такому варианту, который делит ранжированную совокупность на две равные части. У одной половины совокупности признаки не больше медианы (меньше или равны), у второй — не меньше медианы (больше или равны).

Если рассматриваемый ряд интервальный, то накопленные частоты покажут нам медианный интервал. Конкретное значение медианы рассчитывается по формуле:

i — длина медианного интервала,
сумма f — сумма частот ряда (объем совокупности),
f’Me-1 — накопленная частота в интервале, предшествующем медианному,
fMe — частота медианного интервала.

Для нахождения медианного интервала нужно знать половину частот, то есть 150 : 2 = 75. В столбце «накопленные частоты» выбираем 5 интервал, так как в 4 интервале частот накопилось еще 49 стран — меньше половины. С помощью формулы найдем конкретное значение медианы, оно принадлежит медианному интервалу 71,70 — 74,43.

 

Разница между 74,14 и 73,61 говорит об умеренном асимметричном распределении

Заказать задачи по статистике Вы можете на странице http://univer-nn.ru/zadachi-po-statistike-primeri/

univer-nn.ru

медиана — что это? — 14 Августа 2014 — Примеры решений задач

называется вариант, расположенный в центре ранжированного ряда.

Медиана делит ряд на две равные части таким образом, что по обе стороны от нее находится одинаковое количество единиц совокупности. При этом у одной половины единиц совокупности значение варьирующего признака не больше медианы, у другой — не меньше. .

Для дискретного ряда,

медиану находим по следующему алгоритму:

— ранжируем ряд,

— если выборка содержит нечетное количество элементов, медиана равна (n+1)/2-му элементу,

— если выборка содержит четное количество элементов, медиана лежит между двумя средними элементами выборки и равна среднему арифметическому, вычисленному по этим двум элементам.

Пример 1. Найти медиану дискретного ряда

16,13,15,10,19,22,25,12,18,14,19,14,16,10.

Решение. Ранжируем ряд: 10,10,12,13,14,14,15,16,16,18,19,19,22,25, выборка содержит четное число элементов n=14, следовательно медиана лежит между двумя средними элементами выборки — между 7-элементом и 8-элементом:

10,10,12,13,14,14,15,16,16,18,19,19,22,25

и равна среднему арифметическому этих элементов:

Me=(15+16)/2=15,5

 

Найти медиану дискретного ряда, можно онлайн, с помощью данного калькулятора. Калькулятор автоматически ранжирует ряд и вычисляет медиану.

 

При вычислении медианы для интервального вариационного ряда сначала определяют медианный интервал, в пределах которого находится медиана, а затем — значение медианы по формуле:

Пример 2. Найти  медиану интервального ряда:

Решение:

Медианный интервал находится в возрастной группе 25-30 лет, так как в пределах этого интервала расположена варианта, которая делит совокупность на две равные части

(Σfi/2 = 3462/2 = 1731).

Далее подставляем в формулу необходимые числовые данные и получаем значение медианы:

Это значит что одна половина студентов имеет возраст до 27,4 года, а другая свыше 27,4 года.

ОСОБЕННОСТИ

  • Медиана обладает высокой робастностью, то есть нечувствительностью к неоднородностям и ошибкам выборки.
  • Сумма разностей между членами ряда выборки и медианой меньше, чем сумма этих разностей с любой другой величиной. В том числе с арифметическим средним.

Вычислить медиану в Excel

Можно скачать готовый шаблон для вычисления медианы в Excel

 

 

www.reshim.su

Медиана (статистика) в математической статистике

Медиана (статистика), в математической статистике — число, характеризующее выборку (например, набор чисел). Если все элементы выборки различны, то медиана — это такое число выборки, что ровно половина из элементов выборки больше него, а другая половина меньше него. В более общем случае медиану можно найти, упорядочив элементы выборки по возрастанию или убыванию и взяв средний элемент. Например, выборка {11, 9, 3, 5, 5} после упорядочивания превращается в {3, 5, 5, 9, 11} и её медианой является число 5. Если в выборке чётное число элементов, медиана может быть не определена однозначно: для числовых данных чаще всего используют полусумму двух соседних значений (то есть медиану набора {1, 3, 5, 7} принимают равной 4).

Другими словами, медианой в статистике называется значение, которое делит ряд пополам таким образом, что по обе стороны от нее (вниз или вверх) расположено одинаковое число единиц данной совокупности. Из-за этого свойства данный показатель имеет еще несколько названий: 50-й перцентиль или квантиль 0,5.

Медиану используют вместо средней арифметической, когда крайние варианты ранжированного ряда (наименьшая и наибольшая) по сравнению с остальными оказываются чрезмерно большими или чрезмерно малыми.

Функция МЕДИАНА измеряет центральную тенденцию, которая является центром множества чисел в статистическом распределении. Существует три наиболее распространенных способа определения центральной тенденции:

  • Среднее значение — среднее арифметическое, которое вычисляется сложением множества чисел с последующим делением полученной суммы на их количество.
    Например, средним значением для чисел 2, 3, 3, 5, 7 и 10 будет 5, которое является результатом деления их суммы, равной 30, на их количество, равное 6.
  • Медиана — число, которое является серединой множества чисел: половина чисел имеют значения большие, чем медиана, а половина чисел — меньшие.
    Например, медианой для чисел 2, 3, 3, 5, 7 и 10 будет 4.
  • Мода — число, наиболее часто встречающееся в данном множестве чисел. 
    Например, модой для чисел 2, 3, 3, 5, 7 и 10 будет 3.

www.persev.ru