Средний мозг физиология – «Проф. Ю.И. Савченков Частная физиология ЦНС Физиология среднего мозга и ретикулярной формации мозгового ствола Лекции 6.». Скачать бесплатно и без регистрации.

Физиология среднего мозга

Средний мозг играет важную роль врегуляции мышечного тонуса и в осуществлении установочных и выпрямительных рефлексов, благодаря которым возможны стояние и ходьба.

Рис Поперечный (вертикальный) разрез среднего мозга на уровне верхних холмиков. (увеличить рисунок)

Роль среднего мозга в регуляции мышечного тонуса лучше всего наблюдать на кошке, у которой сделан поперечный разрез между продолговатым и средним мозгом. У такой кошки резко повышается тонус, мышц, особенно разгибателей. Голова запрокидывается назад, резко выпрямляются лапы. Мышцы настолько сильно сокращены, что попытка согнуть конечность заканчивается неудачей — она сейчас же распрямляется. Животное, поставленное на вытянутые, как палки, лапы, может стоять. Такое состояние называется децеребрационной ригидностью.

Если разрез сделать выше среднего мозга, то децеребрационная ригидность не возникает. Примерно через 2 часа такая кошка делает усилие подняться. Сначала она поднимает голову, затем туловище, потом встает на лапы и может начать ходить. Следовательно, нервные аппараты регуляции мышечного тонуса и функции стояния и ходьбы находятся в среднем мозге.

Явления децеребрационной ригидности объясняют тем, что перерезкой отделяются от продолговатого и спинного мозга красные ядра и ретикулярная формация. Красные ядра не имеют непосредственной связи с рецепторами и эффекторами, но они связаны со всеми отделами центральной нервной системы. К ним подходят нервные волокна от мозжечка, базальных ядер, коры полушарий большого мозга. От красных ядер начинается нисходящий руброспинальный тракт, по которому передаются импульсы к двигательным нейронам спинного мозга. Его называют экстрапирамидным трактом. Чувствительные ядра среднего мозга выполняют ряд важнейших рефлекторных функций. Ядра, находящиеся в верхних холмиках, являются первичными зрительными центрами. Они получают импульсы от сетчатки глаза и участвуют в ориентировочном рефлексе, т. е. повороте головы к свету. При этом происходит изменение ширины зрачка и кривизны хрусталика (аккомодация), способствующая ясному видению предмета.

Ядра нижних холмиков являются первичными слуховыми центрами. Они участвуют в ориентировочном рефлексе на звук — поворот головы в сторону звука. Внезапные звуковые и световые раздражения вызывают сложную реакцию настораживания, мобилизующую животное на быструю ответную реакцию.

Физиология промежуточного мозга

Главными образованиями промежуточного мозга являются таламус (зрительный бугор) и гипоталамус (подбугорная область).

Таламус — чувствительное ядро подкорки. Его называют «коллектором чувствительности», так как к нему сходятся афферентные (чувствительные) пути от всех рецепторов, исключая обонятельные. Здесь находится третий нейрон афферентных путей, отростки которого заканчиваются в чувствительных зонах коры.

Главной функцией таламуса является интеграция (объединение) всех видов чувствительности. Для анализа внешней среды недостаточно сигналов от отдельных рецепторов. Здесь происходит сопоставление информации, получаемой по различным каналам связи, и оценка ее биологического значения. В зрительном бугре насчитывается 40 пар ядер, которые подразделяются на специфические (на нейронах этих ядер заканчиваются восходящие афферентные пути), неспецифические (ядра ретикулярной формации) и ассоциативные. Через ассоциативные ядра таламус связан со всеми двигательными ядрами подкорки — полосатым телом, бледным шаром, гипоталамусом и с ядрами среднего и продолговатого мозга.

Изучение функций зрительного бугра проводится путем перерезок, раздражения и разрушения.

Кошка, у которой разрез сделан выше промежуточного мозга, резко отличается от кошки, у которой высшим отделом центральной нервной системы является средний мозг. Она не только поднимается и ходит, т. е. выполняет сложно координированные движения, но еще проявляет все признаки эмоциональных реакций. Легкое прикосновение вызывает злобную реакцию. Кошка бьет хвостом, скалит зубы, рычит, кусается, выпускает когти. У человека зрительный бугор играет существенную роль в эмоциональном поведении, характеризующемся своеобразной мимикой, жестами и сдвигами функций внутренних органов. При эмоциональных реакциях повышается давление, учащаются пульс, дыхание, расширяются зрачки. Мимическая реакция человека является врожденной. Если пощекотать нос плода 5 — 6 мес., то можно видеть типичную гримасу неудовольствия (П. К. Анохин). При раздражении зрительного бугра у животных возникают двигательные и болевые реакции — визг, ворчание. Эффект можно объяснить тем, что импульсы от зрительных бугров легко переходят на связанные с ними двигательные ядра подкорки.

В клинике симптомами поражения зрительных бугров являются сильная головная боль, расстройства сна, нарушения чувствительности как в сторону повышения, так и понижения, нарушения движений, их точности, соразмерности, возникновение насильственных непроизвольных движений.

Гипоталамус является высшим подкорковым центром вегетативной нервной системы. В этой области расположены центры, регулирующие все вегетативные функции, обеспечивающие постоянство внутренней среды организма, а также регулирующие жировой, белковый, углеводный и водно-солевой обмен.

В деятельности вегетативной нервной системы гипоталамус играет такую же важную роль, какую играют красные ядра среднего мозга в регуляции скелетно-моторных функций соматической нервной системы.

Самые ранние исследования функций гипоталамуса принадлежат — Клоду Бернару. Он обнаружил, что укол в промежуточный мозг кролика вызывает повышение температуры тела почти на 3°С. Этот классический опыт, открывший локализацию центра терморегуляции в гипоталамусе, получил название теплового укола. После разрушения гипоталамуса животное становится пойкилотермным, т. е. теряет способность удерживать постоянство температуры тела. В холодной комнате температура тела понижается, а в жаркой повышается.

Позднее было установлено, что почти все органы, иннервируемые вегетативной нервной системой, могут быть активированы раздражением подбугорной области. Иными словами, все эффекты, которые можно получить при раздражении симпатических и парасимпатических нервов, получаются при раздражении гипоталамуса.

В настоящее время для раздражения различных структур мозга широко применяется метод вживления электродов. С помощью особой, так называемой стереотаксической техники, через трепанационное отверстие в черепе вводят электроды в любой заданный участок мозга. Электроды изолированы на всем протяжении, свободен только их кончик. Включая электроды в цепь, можно узко локально раздражать те или иные зоны.

При раздражении передних отделов гипоталамуса возникают парасимпатические эффекты — усиление движений кишечника, отделение пищеварительных соков, замедление сокращений сердца и др. при раздражении задних отделов наблюдаются симпатические эффекты — учащение сердцебиения, сужение сосудов, повышение температуры тела и др. Следовательно, в передних отделах подбугорной области располагаются парасимпатические центры, а в задних — симпатические.

Так как раздражение при помощи вживленных электродов производится на целом животном, без наркоза, то представляется возможность судить о поведении животного. В опытах Андерсена на козе с вживленными электродами был найден центр, раздражение которого вызывает неутолимую жажду, — центр жажды. При его раздражении коза могла выпивать до 10 л воды. Раздражением других участков можно было заставить сытое животное есть (центр голода).

Широкую известность получили опыты испанского ученого Дельгадо на быке с электродом, вживленным в центр страха: Когда на арене разъяренный бык бросался на тореадора, включали раздражение, и бык отступал с ясно выраженными признаками страха.

Американский исследователь Д. Олдз предложил модифицировать метод — предоставить возможность самому животному замыкать, что неприятных раздражений животное будет избегать и, наоборот, стремиться повторять приятные.

Опыты показали, что имеются структуры, раздражение которых вызывает безудержное стремление к повторению. Крысы доводили себя до истощения, нажимая на рычаг до 14000 раз! Кроме того, обнаружены структуры, раздражение которых, по-видимому, вызывает крайне неприятное ощущение, так как крыса второй раз избегает нажать на рычаг и убегает от него. Первый центр, очевидно, является центром удовольствия, второй — центром неудовольствия.

Чрезвычайно важным для понимания функций гипоталамуса явилось открытие в этом отделе мозга рецепторов, улавливающих изменения температуры крови (терморецепторы), осмотического давления (осморецепторы) и состава крови (глюкорецепторы).

С рецепторов, обращенных в кровь, возникают рефлексы, направленные на поддержание постоянства внутренней среды организма — гомеостаза. «Голодная кровь», раздражая глюкорецепторы, возбуждает пищевой центр: возникают пищевые реакции, направленные на поиск и поедание пищи.

Одним из частых проявлений заболевания гипоталамуса в клинике является нарушение водно-солевого обмена, проявляющееся в выделении большого количества мочи с низкой плотностью. Заболевание носит название несахарного мочеизнурения.

Подбугорная область тесно связана с деятельностью гипофиза. В крупных нейронах надзрительного и околожелудочкового ядер гипоталамуса образуются гормоны — вазопрессин и окситоцин. По аксонам гормоны стекают к гипофизу, где накапливаются, а затем поступают в кровь.

Иное взаимоотношение между гипоталамусом и передней долей гипофиза. Сосуды, окружающие ядра гипоталамуса, объединяются в систему вен, которые спускаются к передней доле гипофиза и здесь распадаются на капилляры. С кровью к гипофизу поступают вещества — релизинг-факторы, или освобождающие факторы, стимулирующие образование гормонов в передней его доле.

studfiles.net

Средний мозг Анатомия среднего мозга

Из третьего мозгового пузыря развивается средний мозг, к которому относятся ножки мозга, расположение, вентрально (кпереди) и пластинка крыши, или четверохолмие. Полостью среднего мозга является мозговой водопровод (сильвиев водопровод). Пластинка крыши состоит из двух верхних, и двух нижних холмиков (бугорков), в которых заложены ядра серого вещества. Верхние холмики связаны со зрительным путем, нижние — со слуховым. От них берет начало двигательный путь, идущий к клеткам передних рогов спинного мозга. На вертикальном разрезе среднего мозга хорошо видны три его отдела: крыша, покрышка и основание, или собственно ножки мозга. Между покрышкой и основанием находится черное вещество. В покрышке лежат два крупных ядра — красные ядра и ядра ретикулярной формации. Мозговой водопровод окружен центральным серым веществом, в котором лежат ядра III и IV пар черепных нервов. Основание ножек мозга образовано волокнами пирамидных путей и путей, соединяющих кору больших полушарий с ядрами моста и мозжечком. В покрышке лежат системы восходящих путей, образующих пучок, называемый медиальной (чувствительной) петлей. Волокна медиальной петли начинаются в продолговатом мозге от клеток ядер тонкого и клиновидного канатиков и заканчиваются в ядрах зрительного бугра. Латеральная (слуховая) петля состоит из волокон слухового пути, идущих из области моста к нижним холмикам четверохолмия и медиальным коленчатым телам промежуточного мозга.

Физиология среднего мозга

Средний мозг играет важную роль в регуляции мышечного тонуса и в осуществлении установочных и выпрямительных рефлексов, благодаря которым возможны стояние и ходьба.

Роль среднего мозга в регуляции мышечного тонуса лучше всего наблюдать на кошке, у которой сделан поперечный разрез между продолговатым и средним мозгом. У такой кошки резко повышается тонус, мышц, особенно разгибателей. Голова запрокидывается назад, резко выпрямляются лапы. Мышцы настолько сильно сокращены, что попытка согнуть конечность заканчивается неудачей — она сейчас же распрямляется. Животное, поставленное на вытянутые, как палки, лапы, может стоять. Такое состояние называется децеребрационной ригидностью.

Если разрез сделать выше среднего мозга, то децеребрационная ригидность не возникает. Примерно через 2 часа такая кошка делает усилие подняться. Сначала она поднимает голову, затем туловище, потом встает на лапы и может начать ходить. Следовательно, нервные аппараты регуляции мышечного тонуса и функции стояния и ходьбы находятся в среднем мозге.

Явления децеребрационной ригидности объясняют тем, что перерезкой отделяются от продолговатого и спинного мозга красные ядра и ретикулярная формация. Красные ядра не имеют непосредственной связи с рецепторами и эффекторами, но они связаны со всеми отделами центральной нервной системы. К ним подходят нервные волокна от мозжечка, базальных ядер, коры полушарий большого мозга. От красных ядер начинается нисходящий руброспинальный тракт, по которому передаются импульсы к двигательным нейронам спинного мозга. Его называют экстрапирамидным трактом. Чувствительные ядра среднего мозга выполняют ряд важнейших рефлекторных функций. Ядра, находящиеся в верхних холмиках, являются первичными зрительными центрами. Они получают импульсы от сетчатки глаза и участвуют в ориентировочном рефлексе, т. е. повороте головы к свету. При этом происходит изменение ширины зрачка и кривизны хрусталика (аккомодация), способствующая ясному видению предмета.

Ядра нижних холмиков являются первичными слуховыми центрами. Они участвуют в ориентировочном рефлексе на звук — поворот головы в сторону звука. Внезапные звуковые и световые раздражения вызывают сложную реакцию настораживания, мобилизующую животное на быструю ответную реакцию.

Рис 4. Поперечный (вертикальный) разрез среднего мозга на уровне верхних холмиков.

studfiles.net

Средний мозг. Нормальная физиология

Основными структурными образованиями среднего мозга являются: ядро блокового нерва – IV пара черепно-мозговых нервов (n.trochlearis), ядро глазодвигательного нерва (n.oculomotorius) – III пара черепно-мозговых нервов, красное ядро (n.ruber), черное вещество (substantia nigra), четверохолмие, ножки мозга и ядра ретикулярной формации.

Блоковой нерв иннервирует верхнюю косую мышцу глаза, обеспечивает поворот глаза вверх-наружу.

Глазодвигательный нерв отвечает за поднятие верхнего века, регуляцию движений глаза вверх, вниз, к носу и вниз к углу носа. Нейроны добавочного ядра глазодвигательного нерва (ядро Якубовича) регулируют просвет зрачка и кривизну хрусталика, обеспечивая процесс аккомодации.

Красные ядра имеют связи с корой больших полушарий, подкорковыми ядрами, мозжечком, спинным мозгом. Они регулируют тонус мускулатуры. Стимуляция красных ядер приводит к увеличению тонуса мышц-сгибателей. Эти ядра оказывают тормозное влияние на латеральное вестибулярное ядро (Дейтерса) продолговатого мозга, которое активирует тонус мышц-разгибателей. Перерезка между средним и продолговатым мозгом приводит к децеребрационной ригидности, характеризующейся резким повышением тонуса мышц-разгибателей конечностей, шеи и спины. Это связано с активацией ядра Дейтерса, не получающего тормозные влияния со стороны красного ядра. Ригидность исчезает, если разрушить ядро Дейтерса или произвести перерезку ниже ромбовидной ямки продолговатого мозга.

Черное вещество располагается в ножках мозга, участвует в регуляции актов жевания, глотания и их последовательности, а также в координации мелких и точных движений пальцев рук, например, при письме, игре на скрипке, на рояле. Нейроны этого ядра синтезируют дофамин, поставляемый к базальным ядрам головного мозга. Последний играет важную роль в контроле сложных двигательных актов. Поражение черного вещества приводит к дегенерации дофаминергических волокон, проецирующихся в полосатое тело, нарушению тонких движений пальцев рук, развитию мышечной ригидности и тремору (болезнь Паркинсона).

Ретикулярная формация среднего мозга принимает участие в регуляции сна и бодрствования.

Проводниковая функция среднего мозга Эта функция определяется наличием в нем как восходящих путей к таламусу (спиноталамический тракт, медиальная петля), к коре больших полушарий и мозжечку, так и нисходящих – к продолговатому и спинному мозгу (пирамидный тракт, корково-мостовой и рубро-ретикулоспинальный пуги).

Рефлекторная функция среднего мозга Верхние бугры четверохолмия – это первичный зрительный подкорковый центр, обеспечивающий зрительный ориентировочный рефлекс – поворот головы и глаз в сторону светового раздражителя, фиксацию взора и слежение за движущимися объектами. При повреждении или раздражении верхних бугров наблюдается нистагм глаз.

Нижние бугры четверохолмия – это первичный слуховой подкорковый центр, участвующий в ориентировочном слуховом рефлексе – повороте головы в сторону источника звука. Двустороннее повреждение нижних бугров сопровождается потерей способности локализовать источник звука в пространстве.

У человека рефлекс четверохолмия называется сторожевым, обеспечивает старт-реакцию на внезапные звуковые или зрительные раздражители. Связь среднего мозга с гипоталамусом создает вегетативное обеспечение подготовки к избеганию, оборонительной и двигательной реакции (вскакивание на ноги, вздрагивание, бегство от раздражителя).

Средний мозг участвует в реализации статических рефлексов при относительном покое тела, т. е. при стоянии, лежании в различных положениях, и статокинетических, связанных с изменением положения тела в пространстве.

Статические рефлексы делят на позно-тонические и установочные, или выпрямительные. Они обеспечивают удержание частей тела (например, головы) на месте, а также корректируют ориентацию конечностей при смене их положения. Так, в опытах на кошках с удаленным вестибулярным аппаратом показано, что пассивное поднимание головы приводит к снижению тонуса разгибателей задних конечностей и повышению тонуса разгибателей передних конечностей. При пассивном опускании головы наблюдаются противоположные явления.

Статокинетические рефлексы проявляются при вращении, пе-ремещении тела в горизонтальной и вертикальной плоскостях. При вращательном движении наблюдается нистагм головы и глаз, который выражается в медленном движении головы и глаз в сторону, противоположную направлению вращения, и быстром возвращении в исходное состояние. При быстром подъеме или опускании туловища в самолете или лифте наблюдается рефлекс лифта. Опускание приводит к разгибанию конечностей, а подъем – к сгибанию.

Поделитесь на страничке

Следующая глава >

med.wikireading.ru

Вопрос 36.8 Физиология среднего мозга, его рефлекторная деятельность и участие в процессах саморегуляции функций.

Средний мозг представлен четверохолмием и ножками мозга. Наиболее крупными ядрами среднего мозга являются красное ядро, черное вещество и ядра черепных (глазодвигательного и блокового) нервов, а также ядра ретикулярной формации.

Средний мозг играет важную роль в регуляции мышечного тонуса и в осуществлении установочных и выпрямительных рефлексов, благодаря которым возможны стояние и ходьба.

Роль среднего мозга в регуляции мышечного тонуса лучше всего наблюдать на кошке, у которой сделан поперечный разрез между продолговатым и средним мозгом. У такой кошки резко повышается тонус, мышц, особенно разгибателей. Голова запрокидывается назад, резко выпрямляются лапы. Мышцы настолько сильно сокращены, что попытка согнуть конечность заканчивается неудачей — она сейчас же распрямляется. Животное, поставленное на вытянутые, как палки, лапы, может стоять. Такое состояние называется децеребрационной ригидностью. Явления децеребрационной ригидности объясняют тем, что перерезкой отделяются от продолговатого и спинного мозга красные ядра и ретикулярная формация.

Функционально самостоятельными структурами среднего мозга являются бугры четверохолмия. Верхние из них являются первичными подкорковыми центрами зрительного анализатора, нижние — слухового. В них происходит первичное переключение зрительной и слуховой информации. От бугров четверохолмия аксоны их нейронов идут к ретикулярной формации ствола, мотонейронам спинного мозга. Нейроны четверохолмия могут быть полимодальными и детекторными (реагируют на 1 признак раздражения). Основная функция бугров четверохолмия — организация реакции настораживания и так называемых старт-рефлексов на внезапные зрительные или звуковые сигналы. Активация среднего мозга в этих случаях через гипоталамус приводит к повышению тонуса мышц, учащению сокращений сердца; происходит подготовка к избеганию, к оборонительной реакции. Четверохолмие организует ориентировочные зрительные и слуховые рефлексы. У человека четверохолмный рефлекс является сторожевым. В случаях повышенной возбудимости четверохолмий при внезапном звуковом или световом раздражении у человека возникает вздрагивание, вскрикивание. При нарушении четверохолмного рефлекса человек не может быстро переключаться с одного вида движения на другое. Следовательно, четверохолмия принимают участие в организации произвольных движений.

37.9 Роль среднего и продолговатого мозга в регуляции мышечного тонуса. Децеребрационнаярегидность и механизм ее возникновения (гамма-регидность).

Продолговатый мозг организует рефлексы поддержания позы. Эти рефлексы формируются за счет афферентации от рецепторов преддверия улитки и полукружных каналов в верхнее вестибулярное ядро; отсюда переработанная информация оценки необходимости изменения позы посылается к латеральному и медиальному вестибулярным ядрам. Эти ядра участвуют в определении того, какие мышечные системы, сегменты спинного мозга должны принять участие в изменении позы, поэтому от нейронов медиального и латерального ядра по вестибулоспинальному пути сигнал поступает к передним рогам соответствующих сегментов спинного мозга, иннервирующих мышцы, участие которых в изменении позы в данный момент необходимо.

Изменение позы осуществляется за счет статических и статокинетических рефлексов. Статические рефлексы регулируют тонус скелетных мышц с целью удержания определенного положения тела. Статокинетические рефлексы продолговатого мозга обеспечивают перераспределение тонуса мышц туловища для организации позы, соответствующей моменту прямолинейного или вращательного движения.

Возбуждение ядер блуждающего нерва вызывает усиление сокращения гладких мышц желудка, кишечника, желчного пузыря и одновременно расслабление сфинктеров этих органов.

Средний мозг. Красные ядра располагаются в верхней части ножек мозга. Они связаны с корой большого мозга (нисходящие от коры пути), подкорковыми ядрами, мозжечком, спинным мозгом (красноядерно-спинномозговой путь). Базальные ганглии головного мозга, мозжечок имеют свои окончания в красных ядрах. Нарушение связей красных ядер с ретикулярной формацией продолговатого мозга ведет к децеребрационной ригидности. Это состояние характеризуется сильным напряжением мышц-разгибателей конечностей, шеи, спины. Основной причиной возникновения децеребрационной ригидности служит выраженное активирующее влияние латерального вестибулярного ядра (ядро Дейтерса) на мотонейроны разгибателей. Это влияние максимально в отсутствие тормозных влияний красного ядра и вышележащих структур, а также мозжечка. При перерезке мозга ниже ядра латерального вестибулярного нерва децеребрационная ригидность исчезает.

Красные ядра, получая информацию от двигательной зоны коры большого мозга, подкорковых ядер и мозжечка о готовящемся движении и состоянии опорно-двигательного аппарата, посылают корригирующие импульсы к мотонейронам спинного мозга по руброспинальному тракту и тем самым регулируют тонус мускулатуры, подготавливая его уровень к намечающемуся произвольному движению.

Другое функционально важное ядро среднего мозга — черное вещество — располагается в ножках мозга, регулирует акты жевания, глотания (их последовательность), обеспечивает точные движения пальцев кисти руки, например при письме. Нейроны этого ядра способны синтезировать медиатор дофамин, который поставляется аксональным транспортом к базальным ганглиям головного мозга. Поражение черного вещества приводит к нарушению пластического тонуса мышц. Тонкая регуляция пластического тонуса при игре на скрипке, письме, выполнении графических работ обеспечивается черным веществом.

studfiles.net

Физиология среднего мозга. — МегаЛекции

Морфо-функциональная характеристика продолговатого мозга, моста и мозжечка.

Головной мозг представляет собой скопление тел нервных клеток, нервных трактов и кровеносных сосудов. Нервные тракты образуют белое вещество мозга и состоят из пучков нервных волокон, передающих импульсы к различным участкам серого вещества или от них. В головном мозге различают продолговатый, задний, средний, промежуточный и конечный мозг. Стволовая часть головного мозга образована продолговатым мозгом, мостом и средним мозгом.

1) Физиология продолговатого мозга.

Продолговатый мозг можно рассматривать как продолжение спинного мозга. Вверху продолговатый мозг переходит в мост, а боковые его отделы — в ножки мозжечка. здесь расположены ядра четырех пар черепных нервов (IX –XII – языкоглоточный, блуждающий, добавочный, подъязычный нервы), которые иннервируют жизненно важные органы — сердце, легкие и осуществляют рефлекторную регуляцию вегетативных функций (ритм сердца, дыхания, обмена веществ, деятельности пищеварительных желез, тонуса сосудов, чихания, рвоты и кашля).

Функции продолговатого мозга:

1. в продолговатом мозге происходит перекрест восходящих и нисходящих путей с правой стороны на левую и наоборот;

2. рефлексы, дуги которых замыкаются в продолговатом мозге можно объединить в три основные группы:

· жизненно важные вегетативные – дыхания, сердечно-сосудистой системы, пищеварительной системы, глотания;

· защитные рефлексы – чихания кашля, мигания, слезоотделения, рвотный;

· соматические рефлексы, участвующие в регуляции тонуса и двигательной активности мышц туловища, конечностей, шеи, лица.

1. Большая часть вегетативных рефлексов продолговатого мозга реализуется через расположенные в нем ядра блуждающего нерва (Х), которые получают информацию о состоянии деятельности сердца, сосудов, пищеварительного тракта, легких. В ответ на эту информацию ядра организуют двигательную или секреторную реакцию. Ядра блуждающего нерва усиливают сокращение гладких мышц желудка, кишечника, замедляют работу сердца, вызывают сужение бронхов.



2. В продолговатом мозге локализируются центры слюноотделения, дыхательный и сосудо-двигательный центры.

3. На уровне продолговатого мозга происходит переключение импульсов от рецепторов. Рецепция кожной чувствительности – ядро тонического нерва. Рецепция вкуса – ядро языкоглоточного нерва. Рецепция слуховых раздражений – ядро слухового нерва. Рецепция вестибулярных раздражений – верхнее вестибулярное ядро. Далее после переключения в соответствующих ядрах обработанная информация поступает в подкорковые структуры для определения биологической значимости.

Физиология моста.

Мост граничит снизу с продолговатым мозгом, а сверху — с ножками среднего мозга. В нем проходят нервные пути, располагаются ядра V — VIII пар черепных нервов (тройничного, отводящего, лицевого, преддверно-улиткового нервов).

Функции моста.

Функции моста определяются входящими в него структурами. Через мост проходят все восходящие и нисходящие пути, которые связывают передний мозг со спинным мозгом, с мозжечком и структурами ствола мозга. Мост вместе с продолговатым мозгом принимает участие в регуляции различных сложных двигательных актов (сосательный рефлекс), защитных рефлексов (кашель). Мост регулирует мышечный тонус и равновесие тела.

Физиология мозжечка.

Мозжечок разделен на два полушария и состоит из серого и белого вещества. К нему идут импульсы от рецепторов костно-суставной и мышечной систем, вестибулярного аппарата, коры головного мозга.

Мозжечок принимает участие в координации и регуляции произвольных и непроизвольных движений, вегетативных и поведенческих функций. Регуляция этих функций обеспечивается следующими особенностями мозжечка:

· Выделяют три структуры мозжечка: древний мозжечок (состоит из клочка, узелка и нижней части червя), старый мозжечок (состоит из верхней части червя, пирамиды и язычка), новый мозжечок (состоит из двух полушарий).

· Кора мозжечка однотипна, она имеет различные связи с другими структурами мозга, что создает условия для быстрой обработки информации;

· Основной нейронный компонент коры мозжечка – клетка Пуркинье, она имеет большое количество входов и один аксонный выход из мозжечка;

· На клетке Пуркинье проецируются все виды сенсорных раздражений – проприорецептивные, кожные, зрительные, слуховые;

· С соседними отделами мозга мозжечок соединяется тремя парами ножек. Нижние ножки соединяют с продолговатым мозгом, средние – с мостом, верхние – со средним мозгом.

· Афферентные импульсы поступают в мозжечок через нижние и средние ножки, через верхние ножки сигналы идут в таламус, мост, красное ядро, ретикулярную формацию среднего мозга. Средние ножки связывают новый мозжечок с лобной долей мозга.

Двигательные функции мозжечка.

1) Мышечный тонус и поза регулируются преимущественно древним мозжечком.

2) Координация выполняемого движения осуществляется старым и новым мозжечком.

3) Мозжечок участвует в программировании движений, что осуществляется его полушариями.

Т.о. мозжечок обеспечивает координацию движений, его повреждение влечет нарушение двигательных функций и равновесия тела.

Нарушение целостности мозжечка приводит к расстройству двигательных функций.

Морфо-функциональная характеристика среднего мозга и ретикулярной формации.

Физиология среднего мозга.

Средний мозг состоит из ножек мозга и четверохолмия. Основные центры среднего мозга: красное ядро, черная субстанция, ядра глазодвигательного и блокового нервов.

Красное ядро располагается в верхней части ножки мозга, оно связано с корой мозга через низходящие от коры пути, имеются связи с подкорковыми ядрами, мозжечком и спинным мозгом. Нарушение связи красного ядра с ретикулярной формацией продолговатого мозга ведет к децеробрационной ригидности у животных. Красные ядра посылают импульсы по руброспинальному пути к мотонейронам спинного мозга.

Черная субстанция располагается в ножках мозга, регулирует акты жевания, глотания, обеспечивает точность движений пальцев руки при письме. Ядро глазодвигательного нерва обеспечивает поднятие верхнего века, оно регулирует движение глаза вверх, вниз, к носу. Регулирует просвет зрачка и кривизну хрусталика. Ядро иннервирует верхнюю косую мышцу глаза, обеспечивает поворот вверх.

Ретикулярная формация среднего мозга принимает участие в регуляции сна.

Четверохолмие.

Верхние бугорки четверохолмия являются первичными подкорковыми образованиями. В них происходит переключение зрительных путей от сетчатки глаза, они осуществляют поворот глаз и головы в сторону раздражителя – зрительный ориентировочный рефлекс. Нижние бугорки являются рефлекторными центрами слуховых ориентировочных рефлексов, в них происходит переключение между нейронами второго и третьего порядка от слуховых и вестибулярных.

Итак, к рефлексам среднего мозга мы относим: статические рефлексы (перераспределение мышечного тонуса при изменении положения головы в покое) – рефлексы позы и выпрямительные рефлексы, статокинетические рефлексы – перераспределение тонуса при ускорении и вращательных движениях, сторожевой рефлекс — поворот головы туловища сторону света или звука.


Рекомендуемые страницы:


Воспользуйтесь поиском по сайту:

megalektsii.ru

Физиология среднего мозга

Средний мозг играет важную роль врегуляции мышечного тонуса и в осуществлении установочных и выпрямительных рефлексов, благодаря которым возможны стояние и ходьба.

Рис Поперечный (вертикальный) разрез среднего мозга на уровне верхних холмиков. (увеличить рисунок)

Роль среднего мозга в регуляции мышечного тонуса лучше всего наблюдать на кошке, у которой сделан поперечный разрез между продолговатым и средним мозгом. У такой кошки резко повышается тонус, мышц, особенно разгибателей. Голова запрокидывается назад, резко выпрямляются лапы. Мышцы настолько сильно сокращены, что попытка согнуть конечность заканчивается неудачей — она сейчас же распрямляется. Животное, поставленное на вытянутые, как палки, лапы, может стоять. Такое состояние называется децеребрационной ригидностью.

Если разрез сделать выше среднего мозга, то децеребрационная ригидность не возникает. Примерно через 2 часа такая кошка делает усилие подняться. Сначала она поднимает голову, затем туловище, потом встает на лапы и может начать ходить. Следовательно, нервные аппараты регуляции мышечного тонуса и функции стояния и ходьбы находятся в среднем мозге.

Явления децеребрационной ригидности объясняют тем, что перерезкой отделяются от продолговатого и спинного мозга красные ядра и ретикулярная формация. Красные ядра не имеют непосредственной связи с рецепторами и эффекторами, но они связаны со всеми отделами центральной нервной системы. К ним подходят нервные волокна от мозжечка, базальных ядер, коры полушарий большого мозга. От красных ядер начинается нисходящий руброспинальный тракт, по которому передаются импульсы к двигательным нейронам спинного мозга. Его называют экстрапирамидным трактом. Чувствительные ядра среднего мозга выполняют ряд важнейших рефлекторных функций. Ядра, находящиеся в верхних холмиках, являются первичными зрительными центрами. Они получают импульсы от сетчатки глаза и участвуют в ориентировочном рефлексе, т. е. повороте головы к свету. При этом происходит изменение ширины зрачка и кривизны хрусталика (аккомодация), способствующая ясному видению предмета.

Ядра нижних холмиков являются первичными слуховыми центрами. Они участвуют в ориентировочном рефлексе на звук — поворот головы в сторону звука. Внезапные звуковые и световые раздражения вызывают сложную реакцию настораживания, мобилизующую животное на быструю ответную реакцию.

Физиология промежуточного мозга

Главными образованиями промежуточного мозга являются таламус (зрительный бугор) и гипоталамус (подбугорная область).

Таламус — чувствительное ядро подкорки. Его называют «коллектором чувствительности», так как к нему сходятся афферентные (чувствительные) пути от всех рецепторов, исключая обонятельные. Здесь находится третий нейрон афферентных путей, отростки которого заканчиваются в чувствительных зонах коры.

Главной функцией таламуса является интеграция (объединение) всех видов чувствительности. Для анализа внешней среды недостаточно сигналов от отдельных рецепторов. Здесь происходит сопоставление информации, получаемой по различным каналам связи, и оценка ее биологического значения. В зрительном бугре насчитывается 40 пар ядер, которые подразделяются на специфические (на нейронах этих ядер заканчиваются восходящие афферентные пути), неспецифические (ядра ретикулярной формации) и ассоциативные. Через ассоциативные ядра таламус связан со всеми двигательными ядрами подкорки — полосатым телом, бледным шаром, гипоталамусом и с ядрами среднего и продолговатого мозга.

Изучение функций зрительного бугра проводится путем перерезок, раздражения и разрушения.

Кошка, у которой разрез сделан выше промежуточного мозга, резко отличается от кошки, у которой высшим отделом центральной нервной системы является средний мозг. Она не только поднимается и ходит, т. е. выполняет сложно координированные движения, но еще проявляет все признаки эмоциональных реакций. Легкое прикосновение вызывает злобную реакцию. Кошка бьет хвостом, скалит зубы, рычит, кусается, выпускает когти. У человека зрительный бугор играет существенную роль в эмоциональном поведении, характеризующемся своеобразной мимикой, жестами и сдвигами функций внутренних органов. При эмоциональных реакциях повышается давление, учащаются пульс, дыхание, расширяются зрачки. Мимическая реакция человека является врожденной. Если пощекотать нос плода 5 — 6 мес., то можно видеть типичную гримасу неудовольствия (П. К. Анохин). При раздражении зрительного бугра у животных возникают двигательные и болевые реакции — визг, ворчание. Эффект можно объяснить тем, что импульсы от зрительных бугров легко переходят на связанные с ними двигательные ядра подкорки.

В клинике симптомами поражения зрительных бугров являются сильная головная боль, расстройства сна, нарушения чувствительности как в сторону повышения, так и понижения, нарушения движений, их точности, соразмерности, возникновение насильственных непроизвольных движений.

Гипоталамус является высшим подкорковым центром вегетативной нервной системы. В этой области расположены центры, регулирующие все вегетативные функции, обеспечивающие постоянство внутренней среды организма, а также регулирующие жировой, белковый, углеводный и водно-солевой обмен.

В деятельности вегетативной нервной системы гипоталамус играет такую же важную роль, какую играют красные ядра среднего мозга в регуляции скелетно-моторных функций соматической нервной системы.

Самые ранние исследования функций гипоталамуса принадлежат — Клоду Бернару. Он обнаружил, что укол в промежуточный мозг кролика вызывает повышение температуры тела почти на 3°С. Этот классический опыт, открывший локализацию центра терморегуляции в гипоталамусе, получил название теплового укола. После разрушения гипоталамуса животное становится пойкилотермным, т. е. теряет способность удерживать постоянство температуры тела. В холодной комнате температура тела понижается, а в жаркой повышается.

Позднее было установлено, что почти все органы, иннервируемые вегетативной нервной системой, могут быть активированы раздражением подбугорной области. Иными словами, все эффекты, которые можно получить при раздражении симпатических и парасимпатических нервов, получаются при раздражении гипоталамуса.

В настоящее время для раздражения различных структур мозга широко применяется метод вживления электродов. С помощью особой, так называемой стереотаксической техники, через трепанационное отверстие в черепе вводят электроды в любой заданный участок мозга. Электроды изолированы на всем протяжении, свободен только их кончик. Включая электроды в цепь, можно узко локально раздражать те или иные зоны.

При раздражении передних отделов гипоталамуса возникают парасимпатические эффекты — усиление движений кишечника, отделение пищеварительных соков, замедление сокращений сердца и др. при раздражении задних отделов наблюдаются симпатические эффекты — учащение сердцебиения, сужение сосудов, повышение температуры тела и др. Следовательно, в передних отделах подбугорной области располагаются парасимпатические центры, а в задних — симпатические.

Так как раздражение при помощи вживленных электродов производится на целом животном, без наркоза, то представляется возможность судить о поведении животного. В опытах Андерсена на козе с вживленными электродами был найден центр, раздражение которого вызывает неутолимую жажду, — центр жажды. При его раздражении коза могла выпивать до 10 л воды. Раздражением других участков можно было заставить сытое животное есть (центр голода).

Широкую известность получили опыты испанского ученого Дельгадо на быке с электродом, вживленным в центр страха: Когда на арене разъяренный бык бросался на тореадора, включали раздражение, и бык отступал с ясно выраженными признаками страха.

Американский исследователь Д. Олдз предложил модифицировать метод — предоставить возможность самому животному замыкать, что неприятных раздражений животное будет избегать и, наоборот, стремиться повторять приятные.

Опыты показали, что имеются структуры, раздражение которых вызывает безудержное стремление к повторению. Крысы доводили себя до истощения, нажимая на рычаг до 14000 раз! Кроме того, обнаружены структуры, раздражение которых, по-видимому, вызывает крайне неприятное ощущение, так как крыса второй раз избегает нажать на рычаг и убегает от него. Первый центр, очевидно, является центром удовольствия, второй — центром неудовольствия.

Чрезвычайно важным для понимания функций гипоталамуса явилось открытие в этом отделе мозга рецепторов, улавливающих изменения температуры крови (терморецепторы), осмотического давления (осморецепторы) и состава крови (глюкорецепторы).

С рецепторов, обращенных в кровь, возникают рефлексы, направленные на поддержание постоянства внутренней среды организма — гомеостаза. «Голодная кровь», раздражая глюкорецепторы, возбуждает пищевой центр: возникают пищевые реакции, направленные на поиск и поедание пищи.

Одним из частых проявлений заболевания гипоталамуса в клинике является нарушение водно-солевого обмена, проявляющееся в выделении большого количества мочи с низкой плотностью. Заболевание носит название несахарного мочеизнурения.

Подбугорная область тесно связана с деятельностью гипофиза. В крупных нейронах надзрительного и околожелудочкового ядер гипоталамуса образуются гормоны — вазопрессин и окситоцин. По аксонам гормоны стекают к гипофизу, где накапливаются, а затем поступают в кровь.

Иное взаимоотношение между гипоталамусом и передней долей гипофиза. Сосуды, окружающие ядра гипоталамуса, объединяются в систему вен, которые спускаются к передней доле гипофиза и здесь распадаются на капилляры. С кровью к гипофизу поступают вещества — релизинг-факторы, или освобождающие факторы, стимулирующие образование гормонов в передней его доле.

studfiles.net

Тема: Физиология среднего мозга.

Средний мозг представлен красными ядрами, буграми четверохолмия, черной субстанции, ядрами глазодвигательных и блоковидных нервов.

Красные ядра — регулируют тонус мускулатуры, посылая корригирующие импульсы к мотонейроном спинного мозга, повышая тонус мышц-сгибателей. При нарушении его функции и связи со спинным мозгом развивается реакция, описанная как децеребрационная ригидность. Она характеризуется тем, что напрягаются мышцы разгибатели конечностей, шеи и спины.

Верхние и нижние бугры четверохолмия – обеспечивают соответственно зрительные и слуховые ориентировочные рефлексы на свет и звук, которые проявляются в изменении тонуса мышц, приводящие к повороту головы, туловища, глаз в сторону светового или звукового раздражителя.

Черная субстанция – регулирует точные движения пальцев рук (например, при письме, выполнении профессиональных навыков), акт жевания и глотания.

Ядра блокового и глазодвигательного нервов – обеспечивают повороты глазного яблока во всех направлениях.

Особенностью рефлексов среднего мозга (вместе с продолговатым, мостом и спинным мозгом) является их отношение к организации поддержании позы. Различают рефлексы выпрямления, статические и статокинетические рефлексы.

Рефлексы выпрямления – обеспечивают перераспределение тонуса мышц для возвращения животного в естественную позу.

Статические рефлексы – обеспечивают сохранение равновесия и положение тела в пространстве при спокойном стоянии, лежании, сидении в различных позах вместе с шейными статическими рефлексами спинного мозга. Берут начало эти рефлексы от рецепторов (вестибулярных) преддверья, в частности, от оттолитового аппарата. Далее они переключаются в верхнее вестибулярное ядро, а потом переработанная информация посылается к латеральному и медиальному вестибулярным ядрам продолговатого мозга. В этих ядрах определяется, какие мышечные системы, какие сегменты спинного мозга должны принять участие в изменении позы. Поэтому от нейронов медиального и латерального ядра по вестибулоспинальному пути сигнал поступает к передним рогам соответствующих сегментов спинного мозга, иннервирующих мышцы.

Статокинетические рефлексы – обеспечивают перераспределение мышечного тонуса для организации соответствующей позы при ускорениях: прямолинейных (перемещение тела в пространстве при движении в лифте, транспорте, при прыжках и беге – они возникают с рецепторов мешочка и маточки перепончатого лабиринта, в них принимают участие вестибулярные ядра, ядра мозжечка и другие элементы экстрапирамидной системы) или вращательных (рефлексы поворота головы и глаз — если тело совершает вращение по часовой стрелке, то голова вращается против и глаза, по возможности максимально долго удерживают видимую точку объекта; подобные рефлексы носят компенсаторный характер и направлены на то, чтобы максимально долго удерживать взгляд на определенном зрительном образе – вестибулярный нистагм).

Врач-стоматолог может обнаружить нарушение функции среднего мозга в изменениях функции жевательной и мимической мускулатуры. В частности, так как черная субстанция отвечает за координацию движений, связанных с приемом пищи, то могут встречаться больные с нарушением моторной функции полости рта.

studfiles.net