Система методом гаусса – Метод Гаусса — Википедия

Метод Гаусса

Пусть задана система линейных алгебраических уравнений, которую необходимо решить (найти такие значения неизвестных хi, что обращают каждое уравнение системы в равенство).

Мы знаем, что система линейных алгебраических уравнений может:

1) Не иметь решений (быть несовместной).
2) Иметь бесконечно много решений.
3) Иметь единственное решение.

Как мы помним, правило Крамера и матричный метод непригодны в тех случаях, когда система имеет бесконечно много решений или несовместна. Метод Гауссанаиболее мощный и универсальный инструмент для нахождения решения любой системы линейных уравнений, который в каждом случае приведет нас к ответу! Сам алгоритм метода во всех трёх случаях работает одинаково. Если в методах Крамера и матричном необходимы знания определителей, то для применения метода Гаусса необходимо знание только арифметических действий, что делает его доступным даже для школьников начальных классов.

Преобразования расширенной матрицы (это матрица системы —  матрица, составленная только из коэффициентов при неизвестных, плюс столбец свободных членов) 

системы линейных алгебраических  уравнений в методе Гаусса:

1) строки матрицы можно переставлять местами.

2) если в матрице появились (или есть) пропорциональные (как частный случай – одинаковые) строки, то следует удалить из матрицы все эти строки кроме одной.

3) если в матрице в ходе преобразований появилась нулевая строка, то ее также следует удалить.

4) строку матрицы можно умножить (разделить) на любое число, отличное от нуля.

5) к строке матрицы можно прибавить другую строку, умноженную на число, отличное от нуля.

В методе Гаусса элементарные преобразования не меняют решение системы уравнений.

Метод Гаусса состоит из двух этапов:

  1. «Прямой ход» — с помощью элементарных преобразований привести расширенную матрицу системы линейных алгебраических уравнений к «треугольному» ступенчатому виду: элементы расширенной матрицы, расположенные ниже главной диагонали, равны нулю (ход «сверху-вниз»). Например, к такому виду:

Для этого выполним следующие действия:

1)   Пусть мы рассматриваем первое уравнение системы линейных алгебраических уравнений и коэффициент при х1 равен К. Второе, третье и т.д. уравнения преобразуем следующим образом: каждое уравнение (коэффициенты при неизвестных, включая свободные члены) делим на коэффициент при неизвестном х1, стоящий в каждом уравнении, и умножаем на К. После этого из второго уравнения (коэффициенты при неизвестных и свободные члены) вычитаем первое. Получаем при х1 во втором уравнении коэффициент 0. Из третьего преобразованного уравнения вычитаем первое уравнение, так до тех пор, пока все уравнения, кроме первого, при неизвестном х

1 не будут иметь коэффициент 0.

2)   Переходим к следующему уравнению. Пусть это будет второе уравнение и коэффициент при х2 равен М. Со всеми «нижестоящими» уравнениями поступаем так, как описано выше. Таким образом, «под» неизвестной х2 во всех уравнениях будут нули.

3)   Переходим к следующему уравнению и так до тех пора, пока не останется одна последняя неизвестная и преобразованный свободный член.       

  1. «Обратный ход» метода Гаусса – получение решения системы линейных алгебраических уравнений (ход «снизу-вверх»). Из последнего «нижнего» уравнения получаем одно первое решение – неизвестную хn. Для этого решаем элементарное уравнение А*х
    n
    = В. В примере, приведенном выше, х3 = 4. Подставляем найденное значение в «верхнее» следующее уравнение и решаем его относительно следующей неизвестной. Например, х2 – 4 = 1, т.е. х2 = 5. И так до тех пор, пока не найдем все неизвестные.

Пример.

Решим систему линейных уравнений методом Гаусса, как советуют некоторые авторы:

Запишем расширенную матрицу системы и с помощью элементарных преобразований приведем ее к ступенчатому виду:

Смотрим на левую верхнюю «ступеньку». Там у нас должна быть единица. Проблема состоит в том, что в первом столбце единиц нет вообще, поэтому перестановкой строк ничего не решить. В таких случаях единицу нужно организовать с помощью элементарного преобразования. Обычно это можно сделать несколькими способами. Поступим так: 

1 шаг. К первой строке прибавляем вторую строку, умноженную на –1. То есть, мысленно умножили вторую строку на –1 и выполнили сложение первой и второй строки, при этом вторая строка у нас не изменилась.

Теперь слева вверху «минус один», что нас вполне устроит. Кто хочет получить +1, может выполнить дополнительное действие: умножить первую строку на –1 (сменить у неё знак).

Дальше алгоритм работает уже по апробированной методике:

2 шаг. Ко второй строке прибавили первую строку, умноженную на 5. К третьей строке прибавили первую строку, умноженную на 3.

3 шаг. Первую строку умножили на –1, в принципе, это для красоты. У третьей строки также сменили знак и переставили её на второе место, таким образом, на второй «ступеньке у нас появилась нужная единица.

4 шаг. К третьей строке прибавили вторую строку, умноженную на 2.

5 шаг. Третью строку разделили на 3.

Признаком, который свидетельствует об ошибке в вычислениях (реже – об опечатке), является «плохая» нижняя строка. То есть, если бы у нас внизу получилось что-нибудь вроде (0 0 11 |23), и, соответственно, 11x3 = 23, x3 = 23/11, то с большой долей вероятности можно утверждать, что допущена ошибка в ходе элементарных преобразований.

Выполняем обратный ход, в оформлении примеров часто не переписывают саму систему, а уравнения «берут прямо из приведенной матрицы». Обратный ход, напоминаю, работает «снизу вверх». В данном примере получился подарок:

x3 = 1
x2 = 3
x1 + x2 – x3 = 1, следовательно x1 + 3 – 1 = 1, x1 = –1

Ответ: x1 = –1, x2 = 3, x3

= 1.

Решим эту же систему по предложенному алгоритму. Получаем

4   2   –1   1
5   3   –2   2
3   2   –3   0

Разделим второе уравнение на 5, а третье – на 3. Получим:

4   2       –1    1
1   0.6    –0.4  0.4
1   0.66  –1    0

Умножим второе и третье уравнения на 4, получим:

4    2       –1    1
4    2,4    –1.6  1.6
4    2.64  –4    0

Вычтем из второго и третьего уравнений первое уравнение, имеем:

4    2       –1      1
0    0.4    –0.6   0.6
0    0.64  –3    –1

Разделим третье уравнение на 0,64:

4    2      –1              1
0    0.4   –0.6           0.6
0    1      –4.6875    –1.5625

 Умножим третье уравнение на 0,4

4    2       –1              1
0    0.4    –0.6           0.6
0    0.4    –1.875     –0.625

Вычтем из третьего уравнения второе, получим «ступенчатую» расширенную матрицу: 

4    2      –1              1
0    0.4   –0.6           0.6
0    0      –1.275      –1.225

Таким образом, так как в процессе вычислений накапливалась погрешность, получаем х3 = 0,96 или приблизительно 1.

х= 3 и х= –1.

Решая таким образом, Вы никогда не запутаетесь в вычислениях и не смотря на погрешности вычислений, получите результат.

Такой способ решения системы линейных алгебраических уравнений легко программируем и не учитывает специфические особенности коэффициентов при неизвестных, ведь на практике (в экономических и технических расчетах) приходиться иметь дело именно с нецелыми коэффициентами.

Желаю успехов! До встречи на занятиях! Репетитор Дмитрий Айстраханов.

© blog.tutoronline.ru, при полном или частичном копировании материала ссылка на первоисточник обязательна.

blog.tutoronline.ru

Метод Гаусса

Определение и описание метода Гаусса

Метод преобразований Гаусса (также известный как преобразование методом последовательного исключения неизвестных переменных из уравнения или матрицы) для решения систем линейных уравнений представляет собой классический методом решения системы алгебраических уравнений (СЛАУ). Также этот классический метод используют для решения таких задач как получение обратных матриц и определения ранговости матрицы.

Преобразование с помощью метода Гаусса заключается в совершении небольших (элементарных) последовательных изменениях системы линейных алгебраических уравнений, приводящих к исключению переменных из неё сверху вниз с образованием новой треугольной системы уравнений, являющейся равносильной исходной.

Определение 1

Эта часть решения носит название прямого хода решения Гаусса, так как весь процесс осуществляется сверху вниз.

После приведения исходной системы уравнений к треугольной осуществляется нахождение всех переменных системы снизу вверх (то есть первые найденные переменные занимают находятся именно на последних строчках системы или матрицы). Эта часть решения известна также как обратный ход решения методом Гаусса. Заключается его алгоритм в следующем: сначала вычисляется переменные, находящиеся ближе всего к низу системы уравнений или матрицы, затем полученные значения подставляются выше и таким образом находится ещё одна переменная и так далее.

Описание алгоритма метода Гаусса

Последовательность действий для общего решения системы уравнения методом Гаусса заключается в поочередном применении прямого и обратного хода к матрице на основе СЛАУ. Пусть исходная система уравнений имеет следующий вид:

$\begin{cases} a_{11} \cdot x_1 +…+ a_{1n} \cdot x_n = b_1 \\ … \\ a_{m1} \cdot x_1 + a_{mn} \cdot x_n = b_m \end{cases}$

Чтобы решить СЛАУ методом Гаусса, необходимо записать исходную систему уравнений в виде матрицы:

$A = \begin{pmatrix} a_{11} & … & a_{1n} \\ \vdots & … & \vdots \\ a_{m1} & … & a_{mn} \end{pmatrix}$, $b=\begin{pmatrix} b_1 \\ \vdots \\ b_m \end{pmatrix}$

Матрица $A$ называется основной матрицей и представляет собой записанные по порядку коэффициенты при переменных, а $b$ называется столбцом её свободных членов. Матрица $A$, записанная через черту со столбцом свободных членов называется расширенной матрицей:

$A = \begin{array}{ccc|c} a_{11} & … & a_{1n} & b_1 \\ \vdots & … & \vdots & …\\ a_{m1} & … & a_{mn} & b_m \end{array}$

Теперь необходимо с помощью элементарных преобразований над системой уравнений (или над матрицей, так как это удобнее) привести её к следующему виду:

$\begin{cases} α_{1j_{1}} \cdot x_{j_{1}} + α_{1j_{2}} \cdot x_{j_{2}}…+ α_{1j_{r}} \cdot x_{j_{r}} +… α_{1j_{n}} \cdot x_{j_{n}} = β_1 \\ α_{2j_{2}} \cdot x_{j_{2}}…+ α_{2j_{r}} \cdot x_{j_{r}} +… α_{2j_{n}} \cdot x_{j_{n}} = β_2 \\ …\\ α_{rj_{r}} \cdot x_{j_{r}} +… α_{rj_{n}} \cdot x_{j_{n}} = β_r \\ 0 = β_(r+1) \\ … \\ 0 = β_m \end{cases}$ (1)

Матрица, полученная из коэффициентов преобразованной системы уравнения (1) называется ступенчатой, вот так обычно выглядят ступенчатые матрицы:

$A = \begin{array}{ccc|c} a_{11} & a_{12} & a_{13} & b_1 \\ 0 & a_{22} & a_{23} & b_2\\ 0 & 0 & a_{33} & b_3 \end{array}$

Для этих матриц характерен следующий набор свойств:

  1. Все её нулевые строки стоят после ненулевых
  2. Если некоторая строка матрицы с номером $k$ ненулевая, то в предыдущей строчке этой же матрицы нулей меньше, чем в этой, обладающей номером $k$.

После получения ступенчатой матрицы необходимо подставить полученные переменные в оставшиеся уравнения (начиная с конца) и получить оставшиеся значения переменных.

Основные правила и разрешаемые преобразования при использовании метода Гаусса

При упрощении матрицы или системы уравнений этим методом нужно использовать только элементарные преобразования.

Таким преобразованиями считаются операции, которые возможно применять к матрице или системе уравнений без изменения её смысла:

  • перестановка нескольких строк местами,
  • прибавление или вычитание из одной строчки матрицы другой строчки из неё же,
  • умножение или деление строчки на константу, не равную нулю,
  • строчку, состоящую из одних нулей, полученную в процессе вычисления и упрощения системы, нужно удалить,
  • Также нужно удалить лишние пропорциональные строчки, выбрав для системы единственную из них с более подходящими и удобными для дальнейших вычислений коэффициентами.

Все элементарные преобразования являются обратимыми.

Разбор трёх основных случаев, возникающих при решении линейных уравнений используя метод простых преобразований Гаусса

Различают три возникающих случая при использовании метода Гаусса для решения систем:

  1. Когда система несовместная, то есть у неё нет каких-либо решений
  2. У системы уравнений есть решение, причём единственное, а количество ненулевых строк и столбцов в матрице равно между собой.
  3. Система имеет некое количество или множество возможных решений, а количество строк в ней меньше чем количество столбцов.

Исход решения с несовместной системой

Для этого варианта при решении матричного уравнения методом Гаусса характерно получение какой-то строчки с невозможностью выполнения равенства. Поэтому при возникновении хотя бы одного неправильного равенства полученная и исходная системы не имеют решений вне зависимости от остальных уравнений, которые они содержат. Пример несовместной матрицы:

$\begin{array}{ccc|c} 2 & -1 & 3 & 0 \\ 1 & 0 & 2 & 0\\ 0 & 0 & 0 & 1 \end{array}$

В последней строчке возникло невыполняемое равенство: $0 \cdot x_{31} + 0 \cdot x_{32} + 0 \cdot x_{33} = 1$.

Система уравнений, у которой есть только одно решение

Данные системы после приведения к ступенчатой матрице и удаления строчек с нулями имеют одинаковое количество строк и столбцов в основной матрице. Вот простейший пример такой системы:

$\begin{cases} x_1 — x_2 = -5 \\ 2 \cdot x_1 + x_2 = -7 \end{cases}$

Запишем её в виде матрицы:

$\begin{array}{cc|c} 1 & -1 & -5 \\ 2 & 1 & -7 \end{array}$

Чтобы привести первую ячейку второй строчки к нулю, домножим верхнюю строку на $-2$ и вычтем её из нижней строчки матрицы, а верхнюю строчку оставим в исходном виде, в итоге имеем следующее:

$\begin{array}{cc|c} 1 & -1 & -5 \\ 0 & 3 & 10 \end{array}$

Этот пример можно записать в виде системы:

$\begin{cases} x_1 — x_2 = -5 \\ 3 \cdot x_2 = 10 \end{cases}$

Из нижнего уравнения выходит следующее значение $x$: $x_2 = 3 \frac{1}{3}$. Подставим это значение в верхнее уравнение: $x_1 – 3 \frac{1}{3}$, получаем $x_1 = 1 \frac{2}{3}$.

Система, обладающая множеством возможных вариантов решений

Для этой системы характерно меньшее количество значащих строк, чем количество столбцов в ней (учитываются строки основной матрицы).

Переменные в такой системе делятся на два вида: базисные и свободные. При преобразовании такой системы содержащиеся в ней основные переменные необходимо оставить в левой области до знака “=”, а остальные переменные перенести в правую часть равенства.

У такой системы есть только некое общее решение.

Разберём следующую систему уравнений:

$\begin{cases} 2y_1 + 3y_2 + x_4 = 1 \\ 5y_3 — 4y_4 = 1 \end{cases}$

Запишем её в виде матрицы:

$\begin{array}{cccc|c} 2 & 3 & 0 & 1 & 1 \\ 0 & 0 & 5 & 4 & 1 \\ \end{array}$

Наша задача найти общее решение системы. Для этой матрицы базисными переменными будут $y_1$ и $y_3$ (для $y_1$ — так как он стоит на первом месте, а в случае $y_3$ — располагается после нулей).

В качестве базисных переменных выбираем именно те, которые первые в строке не равны нулю.

Оставшиеся переменные называются свободными, через них нам необходимо выразить базисные.

Используя так называемый обратный ход, разбираем систему снизу вверх, для этого сначала выражаем $y_3$ из нижней строчки системы:

$5y_3 – 4y_4 = 1$

$5y_3 = 4y_4 + 1$

$y_3 = \frac{4/5}y_4 + \frac{1}{5}$.

Теперь в верхнее уравнение системы $2y_1 + 3y_2 + y_4 = 1$ подставляем выраженное $y_3$: $2y_1 + 3y_2 — (\frac{4}{5}y_4 + \frac{1}{5}) + y_4 = 1$

Выражаем $y_1$ через свободные переменные $y_2$ и $y_4$:

$2y_1 + 3y_2 — \frac{4}{5}y_4 — \frac{1}{5} + y_4 = 1$

$2y_1 = 1 – 3y_2 + \frac{4}{5}y_4 + \frac{1}{5} – y_4$

$2y_1 = -3y_2 — \frac{1}{5}y_4 + \frac{6}{5}$

$y_1 = -1.5x_2 – 0.1y_4 + 0.6$

Решение готово.

Пример 1

Решить слау методом Гаусса. Примеры. Пример решения системы линейных уравнений заданных матрицей 3 на 3 используя метод Гаусса

$\begin{cases} 4x_1 + 2x_2 – x_3 = 1 \\ 5x_1 + 3x_2 — 2x^3 = 2\\ 3x_1 + 2x_2 – 3x_3 = 0 \end{cases}$

Запишем нашу систему в виде расширенной матрицы:

$\begin{array}{ccc|c} 4 & 2 & -1 & 1 \\ 5 & 3 & -2 & 2 \\ 3 & 2 & -3 & 0\\ \end{array}$

Теперь для удобства и практичности нужно преобразовать матрицу так, чтобы в верхнем углу крайнего столбца была $1$.

Для этого к 1-ой строчке нужно прибавляем строчку из середины, умноженную на $-1$, а саму среднюю строчку записываем как есть, выходит:

$\begin{array}{ccc|c} -1 & -1 & 1 & -1 \\ 5 & 3 & -2 & 2 \\ 3 & 2 & -3 & 0\\ \end{array}$

Далее к средней строчке прибавим верхнюю, умноженную на $5$, а последнюю строчку преобразуем, умножив первую строчку на 3 и сложив с последней, получаем:

$\begin{array}{ccc|c} -1 & -1 & 1 & -1 \\ 0 & -2 & 3 & -3 \\ 0 & -1 & 0 & -3\\ \end{array}$

Домножим верхнюю и последнюю строчки на $-1$, а также поменяем местами последнюю и среднюю строки:

$\begin{array}{ccc|c} 1 & 1 & -1 & 1 \\ 0 & 1 & 0 & 3 \\ 0 & -2 & 3 & -3\\ \end{array}$

Далее сложим последнюю строчку с удвоенной средней:

$\begin{array}{ccc|c} 1 & 1 & -1 & 1 \\ 0 & 1 & 0 & 3 \\ 0 & 0 & 3 & 3\\ \end{array}$

И разделим последнюю строчку на $3$:

$\begin{array}{ccc|c} 1 & 1 & -1 & 1 \\ 0 & 1 & 0 & 3 \\ 0 & 0 & 1 & 1\\ \end{array}$

Получаем следующую систему уравнений, равносильную исходной:

$\begin{cases} x_1 + x_2 – x_3 = 1\\ x_2 = 3 \\ x_3 = 1 \end{cases}$

Из верхнего уравнения выражаем $x_1$:

$x1 = 1 + x_3 – x_2 = 1 + 1 – 3 = -1$.

Пример 2

Пример решения системы, заданной с помощью матрицы 4 на 4 методом Гаусса

$\begin{array}{cccc|c} 2 & 5 & 4 & 1 & 20 \\ 1 & 3 & 2 & 1 & 11 \\ 2 & 10 & 9 & 7 & 40\\ 3 & 8 & 9 & 2 & 37 \\ \end{array}$.

В начале меняем местами верхнюю исследующую за ней строчки, чтобы получить в левом верхнем углу $1$:

$\begin{array}{cccc|c} 1 & 3 & 2 & 1 & 11 \\ 2 & 5 & 4 & 1 & 20 \\ 2 & 10 & 9 & 7 & 40\\ 3 & 8 & 9 & 2 & 37 \\ \end{array}$.

Теперь умножим верхнюю строчку на $-2$ и прибавим ко 2-ой и к 3-ьей. К 4-ой прибавляем 1-ую строку, домноженную на $-3$:

$\begin{array}{cccc|c} 1 & 3 & 2 & 1 & 11 \\ 0 & -1 & 0 & -1 & -2 \\ 0 & 4 & 5 & 5 & 18\\ 0 & -1 & 3 & -1 & 4 \\ \end{array}$

Теперь к строке с номером 3 прибавляем строку 2, умноженную на $4$, а к строке 4 прибавляем строку 2, умноженную на $-1$.

$\begin{array}{cccc|c} 1 & 3 & 2 & 1 & 11 \\ 0 & -1 & 0 & -1 & -2 \\ 0 & 0 & 5 & 1 & 10\\ 0 & 0 & 3 & 0 & 6 \\ \end{array}$

Домножаем строку 2 на $-1$, а строку 4 делим на $3$ и ставим на место строки 3.

$\begin{array}{cccc|c} 1 & 3 & 2 & 1 & 11 \\ 0 & 1 & 0 & 1 & 2 \\ 0 & 0 & 1 & 0 & 2\\ 0 & 0 & 5 & 1 & 10 \\ \end{array}$

Теперь прибавляем к последней строке предпоследнюю, домноженную на $-5$.

$\begin{array}{cccc|c} 1 & 3 & 2 & 1 & 11 \\ 0 & 1 & 0 & 1 & 2 \\ 0 & 0 & 1 & 0 & 2\\ 0 & 0 & 0 & 1 & 0 \\ \end{array}$

Решаем полученную систему уравнений:

$\begin{cases} m = 0 \\ g = 2\\ y + m = 2\ \ x + 3y + 2g + m = 11\end{cases}$

$y=2$, $x = 0$.

spravochnick.ru

Решение систем линейных уравнений методом Гаусса

Теория

Классическим методом решения систем линейных алгебраических уравнений является метод Гаусса (метод исключений Гаусса). Суть метода — это последовательное исключение неизвестных, т.е. когда с помощью элементарных преобразований система уравнений приводится к равносильной системе ступенчатого вида, из которой последовательно, начиная с последних переменных, находятся все остальные переменные.

Матрица, составленная из все ai,j, называется основной матрицей системы. Если к этой матрице добавить вектор столбец, составленный из bi, то такая матрица называется расширенной матрицей системы.

Теорема Кронекера-Капелли (условие совместности системы): системат совместна тогда и только тогда, ранг ее основной матрицы равен рангу ее расширенной матрицы.

Алгоритм решения СЛАУ методом Гаусса подразделяется на два этапа:

  • На первом этапе (прямой ход) система приводится ступенчатой или треугольной форме. Вычтем из второго уравнения системы первое, умноженное на такое число, чтобы обнулился коэффициент при x1. Затем таким же образом вычтем первое уравнение из третьего, четвертого и т.д. Тогда исключаются все коэффициенты первого столбца, лежащие ниже главной диагонали. Затем при помощи второго уравнения исключим из третьего, четвертого и т.д. уравнений коэффициенты второго столбца. Последовательно продолжая этот процесс, исключим из матрицы все коэффициенты, лежащие ниже главной даигонали.
  • На втором этапе (обратный ход) выражаем все получившиеся базисные переменные через небазисные и построим фундаментальную систему решений. Если все переменные являются базисными, то получим единственное решение системы линейных уравнений. Эта процедура начинается с последнего уравнения, из которого выражают соответствующую базисную переменную (а она там всего одна) и подставляют в предыдущие уравнения, и так далее, поднимаясь по «ступенькам» наверх. Каждой строчке соответствует ровно одна базисная переменная, поэтому на каждом шаге, кроме последнего (самого верхнего), ситуация в точности повторяет случай последней строки.

www.math.by

Метод Гаусса решения систем линейных уравнений

Метод Гаусса решения систем линейных уравнений
Пиши Дома Нужные Работы
Обратная связь

Метод Гаусса является одним из наиболее универсальных и эффективных методов решения систем линейных алгебраических уравнений. Он применим как для решения системы линейных алгебраических уравнений с невырожденной матрицей, так и для систем с вырожденной матрицей и для систем, число уравнений которых не совпадает с числом переменных. Идея метода Гаусса состоит в том, что систему m линейных алгебраических уравнений относительно n неизвестных :

 

приводят с помощью эквивалентных преобразований, не меняющих решения системы, к ступенчатому виду( в частности, к верхнетреугольному)

,

решение которой находят следующим образом: выражают .из последнего уравнения, подставляют в предпоследнее, из которого выражается и т.д., из первого уравнения выражается .

Матричная запись метода Гаусса

1.Прямой ход метода Гаусса: выписывается расширенная матрица системы( справа к матрице системы приписывается столбец свободных переменных)

,

применяем элементарные преобразования над строками для приведения матрицы к ступенчатому виду:

· строки можно переставлят местами;

· строку можно умножать на любое число, не равное нулю;

· к строке можно поэлементно прибавлять другую строку, умноженную на ненулевое число.


1-й этап:

Считая элемент ( в противном случае переставляем местами строки), обнулим все элементы первого столбца кроме .

Для этого ко второй строке прибавим первую строку, умноженную на .

К третьей строке прибавим вторую, умноженную на и т.д.

Получим преобразованную матрицу:

, где и — преобразованные коэффициенты матрицы.

2-й этап:

Считая , обнулим все коэффициенты второго столбца, кроме и , для чего к каждой строке прибавляем вторую строку, умноженную на соответствующий коэффициент.



Если в процессе приведения появляется нулевая строка, ее выбрасываем. Если появляется строка, все коэффициенты которой нули, а последний , то система несовместна.

Обратный ход метода Гаусса: По виду ступенчатой матрицы: восстановить систему: ,

Если число оставшихся уравнений и число переменных совпадает, то система имеет единственное решение. Если же переменных больше, чем уравнений, то переменные, вышедшие на диагональ называются главными, или зависимыми, а переменные не вышедшие на диагональ свободными. Свободные переменные необходимо перенести в правую часть уравнения и начиная с последнего уравнения выразить главную переменную ,подставить в предпоследнее, из которого выразить , и т.д., из первого уравнения выразить . В этом случае система имеет множество решений. Свободные переменные могут приобретать любые значения, и через них выражаются значения зависимых переменных.

Пример 6: Решить систему методом Гаусса:

Решение: Выпишем расширенную матрицу системы и приведем ее к верхнетреугольному виду:

 

является свободной переменной, т.к. не вышла на диагональ, переносим ее вправо. Система имеет бесконечное множество решений.

Из последнего уравнения выражаем

Из второго уравнения выражаем

Из первого уравнения выражаем

Выпишем общее решение системы:

Ответ: Система имеет множество решений, общее решение системы:

Решение однородных систем

Система линейных уравнений называется однородной, если правые части уравнений равны нулю:

Матричный вид однородной системы: Ax=0.

Однородная система всегда совместна, поскольку любая однородная линейная система имеет по крайней мере одно решение:

Если однородная система имеет единственное решение, то это единственное решение — нулевое, и система называется тривиально совместной. Если же однородная система имеет более одного решения, то среди них есть и ненулевые и в этом случае система называется нетривиально совместной.

Доказано, что при m=n для нетривиальной совместности системы необходимо и достаточно, чтобы определитель матрицы системы был равен нулю. Линейная комбинация решений однородной системы также является решением этой системы.

Пример: Исследовать однородную систему на совместность, найти решения:

Решение: Расширенную матрицу системы приведем к ступенчатому виду:

восстановим систему:

Система имеет множество решений. и главные переменные, и свободные переменные. Перенесем свободные переменные в правые части уравнений.

Из второго уравнения находим подставляя это выражение в первое уравнение, получим:

Общее решение системы:

Для нахождения частных решений, свободным переменным даем произвольные значения:

 

Элементы векторной алгебры

Векторы

Величины, которые полностью определяются своим численным значением, называются скалярными. Другие величины, например сила, скорость, ускорение, определяются не только своим числовым значением, но и направлением. Такие величины называют векторными.

Вектор-это направленный прямолинейный отрезок, т. е. отрезок, имеющий определенную длину и определенное направление. Если А- начало вектора, а В- его конец, то вектор обозначается символом , или . Вектор ( у него начало в точке В , а конец в точке А) называется противоположным вектору . Вектор, противоположный вектору , обозначается .

Длиной или модулем вектора называется длина отрезка AB и обозначается . Вектор, длина которого равна нулю, называется нулевым вектором и обозначается . Нулевой вектор направления не имеет. Вектор единичной длины, направление которого совпадает с направлением вектора , называется ортом вектора и обозначается .

Векторы и называются коллинеарными, если они лежат на одной прямой или на параллельных прямых. Обозначаются коллинеарные векторы ║

Коллинеарные векторы могут быть направлены одинаково, т.е. быть сонаправленными ( ), или быть противоположно направленными ( ).

Нулевой вектор считается коллинеарным любому вектору.

Два вектора и называются равными ( ), если они коллинеарные, одинаково направлены и имеют одинаковые длины.

Из определения равенства векторов следует, что вектор можно переносить параллельно самому себе, а начало вектора перемешать в любую точку пространства.

Три вектора в пространстве называются компланарными, если они лежат в одной плоскости или в параллельных плоскостях. Если среди трех векторов хотя бы один нулевой или хотя бы два коллинеарные, то такие векторы будут компланарны.




©2015- 2019 pdnr.ru Все права принадлежат авторам размещенных материалов.

pdnr.ru

Метод Гаусса Википедия

Ме́тод Га́усса — классический метод решения системы линейных алгебраических уравнений (СЛАУ). Назван в честь немецкого математика Карла Фридриха Гаусса. Это метод последовательного исключения переменных, когда с помощью элементарных преобразований система уравнений приводится к равносильной системе треугольного вида, из которой последовательно, начиная с последних (по номеру), находятся все переменные системы[1].

История[ | ]

Хотя в настоящее время данный метод повсеместно называется методом Гаусса, он был известен и до К. Ф. Гаусса. Первое известное описание данного метода — в китайском трактате «Математика в девяти книгах».[2]

Описание метода[ | ]

Пусть исходная система выглядит следующим образом:

{a11x1+…+a1nxn=b1…am1x1+…+amnxn=bm{\displaystyle \left\{{\begin{array}{lcr}a_{11}x_{1}+\ldots +a_{1n}x_{n}&=&b_{1}\\\ldots &&\\a_{m1}x_{1}+\ldots +a_{mn}x_{n}&=&b_{m}\\\end{array}}\right.}

Её можно записать в матричном виде:

Ax=b,{\displaystyle Ax=b,}

где

A=(a11…a1n…am1…amn),x=(x1⋮xn),b=(b1⋮bm).(1){\displaystyle A=\left({\begin{array}{ccc}a_{11}&\ldots &a_{1n}\\\ldots &&\\a_{m1}&\ldots &a_{mn}\end{array}}\right),\quad x=\left({\begin{array}{c}x_{1}\\\vdots \\x_{n}\end{array}}\right),\quad b=\left({\begin{array}{c}b_{1}\\\vdots \\b_{m}\end{array}}\right).\quad (1)}

ru-wiki.ru