Решить матрицу онлайн методом крамера онлайн – Онлайн калькулятор. Решение систем линейных уравнений. Матричный метод. Метод обратной матрицы.

Решение системы линейных уравнений (метод Крамера)

Этот онлайн калькулятор позволит вам очень просто решить систему линейных уравнений (СЛУ) методом Крамера.

Для того чтобы решить систему линейных уравнений методом Крамера, выберите количество неизвестных величин:
2345

Заполните систему линейных уравнений

Для изменения в уравнении знаков с «+» на «-» вводите отрицательные числа. Если в вашем уравнение отсутствует какой-то коэффициент, то на его месте в калькуляторе введите ноль. Вводить можно числа или дроби. Например: 1.5 или 1/7 или -1/4 и т.д.

Решить систему

Воспользуйтесь также:
Решение системы линейных уравнений (метод подстановки)
Решение системы линейных уравнений (метод Гаусса)
Решение системы линейных уравнений (матричный метод)

Решение системы линейных уравнений методом Крамера

Метод Крамера

Метод Крамера — это метод решения квадратных систем линейных алгебраических уравнений с ненулевым определителем основной матрицы (то есть в случае, когда система уравнений имеет единственное решение). Основным математическим действием при решении системы уравнения методом Крамера является вычисление определителей матриц размерностью n (где n — количество уравнений в системе).

На нашем сайте вы можете решать системы уравнений методом Крамера в режиме онлайн. При этом решение вы получаете мгновенно, и оно является полным и подробным. При решении системы уравнений нужно находить определители нескольких разных матриц. Для сокращения решения эта операция упрощена (выдаётся лишь результат). Но вы можете при необходимости получить полное решение нахождения детерминанта матрицы. Соответствующий калькулятор имеется на нашем ресурсе.

matematikam.ru

Матричный метод онлайн

Данный онлайн калькулятор решает систему линейных уравнений матричным методом. Дается очень подробное решение. Для решения системы линейных уравнений выберите количество переменных. Выбирайте метод вычисления обратной матрицы. Затем введите данные в ячейки и нажимайте на кнопку «Вычислить».

Очистить все ячейки?

Инструкция ввода данных. Числа вводятся в виде целых чисел (примеры: 487, 5, -7623 и т.д.), десятичных чисел (напр. 67., 102.54 и т.д.) или дробей. Дробь нужно набирать в виде a/b, где a и b целые или десятичные числа. Примеры 45/5, 6.6/76.4, -7/6.7 и т.д.

Матричный метод решения систем линейных уравнений

Рассмотрим следующую систему линейных уравнений:

(1)

Для решения системы линейных уравнений (1) матричным методом запишем ее матричном виде:

где

Мы будем предполагать, что матрица A имеет обратное, т.е. определитель матрицы A не равен нулю.

Умножим матричное уравнение (2) на обратную матрицу A−1. Тогда

Учитывая определение обратной матрицы, имеем A−1A=E, где E— единичная матрица. Следовательно (4) можно записать так:

или, учитывая, что Ex=x:

Таким образом, для решения системы линейных уравнений (1) (или (2)), достаточно умножить обратную к A матрицу на вектор ограничений b.

Примеры решения системы линейных уравнений матричным методом

Пример 1. Решить следующую систему линейных уравнений матричным методом:

Матричный вид записи системы линейных уравнений: Ax=b, где

.

Найдем обратную к матрице A методом Жордана-Гаусса. С правой стороны матрицы A запишем единичную матрицу:

.

Выбираем самый большой по модулю ведущий элемент столбца 1. Для этого заменяем местами строки 1 и 2:

.

Исключим элементы 1-го столбца матрицы ниже главной диагонали. Для этого сложим строки 2,3 со строкой 1, умноженной на -1/3,-1/3 соответственно:

.

Выбираем самый большой по модулю ведущий элемент столбца 2. Для этого заменяем местами строки 2 и 3:

.

Исключим элементы 2-го столбца матрицы ниже главной диагонали. Для этого сложим строку 3 со строкой 2, умноженной на -24/51:

.

Исключим элементы 3-го столбца матрицы выше главной диагонали. Для этого сложим строки 1, 2 со строкой 3, умноженной на 17/53, 85/159 соответственно:

.

Исключим элементы 2-го столбца матрицы выше главной диагонали. Для этого сложим строку 1 со строкой 2, умноженной на -3/17:

.

Делим каждую строку матрицы на ведущий элемент соответствующей строки:

.

Отделяем правую часть матрицы. Полученная матрица является обратной матрицей к A :

.

Обратная матрица найдена. Решение системы линейных уравнений имеет вид x=A−1b. Тогда

.

Ответ:

Пример 2. Решить следующую систему линейных уравнений матричным методом:

.

Матричный вид записи системы линейных уравнений: Ax=b, где

.

Найдем обратную к матрице A методом алгебраических дополнений. Вычислим определитель матрицы A :

.

Вычислим все алгебраические дополнения матрицы A:

,
,
,
,
,
,
,
,
.

Обратная матрица вычисляется из следующего выражения:

где Aij − алгебраическое дополнение элемента матрицы A, находящиеся на пересечении i-ой строки и j-ого столбца, а Δ − определитель матрицы A.

Используя формулу обратной матрицы, получим:

Обратная матрица найдена. Решение системы линейных уравнений имеет вид x=A−1b. Тогда

Ответ:

matworld.ru

Решение линейных уравнений методом Крамера онлайн

Габриэль Крамер — швейцарский математик, ученик и друг Иоганна Бернулли, один из создателей линейной алгебры.
Крамер рассмотрел систему произвольного количества линейных уравнений с квадратной матрицей. Решение системы
он представил в виде столбца дробей с общим знаменателем — определителем матрицы. Метод Крамера основан на
использовании определителей в решении систем линейных уравнений, что позволяет существенно ускорить процесс
решения. Данный метод может быть применен в решении системы стольких линейных уравнений, сколько в каждом
уравнении неизвестных. Главное, чтобы определитель системы не был равен «0», тогда метод Крамера может быть
использован в решении, если «0» — данный метод использовать нельзя. Также данный метод может быть применен
для решения систем линейных уравнений с единственным решением.

Так же читайте нашу статью «Решить линейное уравнение
методом Гаусса онлайн решателем»

Теорема Крамера. Если определитель системы отличен от нуля, то система линейных уравнений имеет одно
единственное решение, причём неизвестное равно отношению определителей. В знаменателе — определитель
системы, а в числителе — определитель, полученный из определителя системы путём замены коэффициентов при
этом неизвестном свободными членами. Эта теорема имеет место для системы линейных уравнений любого
порядка.

Допустим, дано СЛАУ такого вида:

\[\left\{\begin{matrix} 3x_1 + 2x_2 =1\\ x_1 + 4x_2 = -3 \end{matrix}\right.\]

Согласно теореме Крамера получаем:

\[x_1 = \frac {\begin{vmatrix} 1 & 2\\ -3 & 4 \end{vmatrix}}{\begin{vmatrix} 3 & 2\\ 1 & 4 \end{vmatrix}}=
\frac {1 \cdot4-2 \cdot(-3)}{3\cdot4-1\cdot2}=\frac {4+6}{12-2}= \frac{10}{10}=1\]

\[x_2 = \frac {\begin{vmatrix} 3 & 1\\ 1 & -3 \end{vmatrix}}{\begin{vmatrix} 3 & 2\\ 1 & 4 \end{vmatrix}}=
\frac {3 \cdot(-3) -1\cdot1)}{3\cdot4-1\cdot2}=\frac {-9-1}{12-2}= \frac{-10}{10}=1\]

Ответ: \[x_1 = 1, x_2 = -1.\]

Где можно решить уравнение методом Крамера онлайн решателем?

Решить уравнение вы можете на нашем сайте pocketteacher.ru. Бесплатный онлайн решатель
позволит решить уравнение онлайн любой сложности за считанные секунды. Все, что вам необходимо сделать — это
просто ввести свои данные в решателе. Так же вы можете посмотреть видео инструкцию
и узнать, как решить уравнение на нашем сайте. А если у вас остались вопросы, то вы можете задать их в нашей
групе Вконтакте: pocketteacher. Вступайте в нашу группу, мы всегда
рады помочь вам.

pocketteacher.ru

Метод Крамера решения систем линейных уравнений

Метод Крамера основан на использовании определителей в решении систем линейных уравнений. Это значительно ускоряет процесс решения.

Метод Крамера может быть использован в решении системы стольких линейных уравнений,
сколько в каждом уравнении неизвестных. Если определитель системы не равен нулю,
то метод Крамера может быть использован в решении, если же равен нулю, то не может.
Кроме того, метод Крамера может быть использован в решении систем линейных уравнений,
имеющих единственное решение.

Определение. Определитель, составленный из коэффициентов при неизвестных, называется определителем системы и обозначается (дельта).

Определители

получаются путём замены коэффициентов при соответствующих неизвестных свободными членами:

;

.

Формулы Крамера для нахождения неизвестных:

.

Найти значения  и возможно только при условии, если

.

Этот вывод следует из следующей теоремы.

Теорема Крамера . Если определитель системы отличен от нуля, то система линейных уравнений имеет одно единственное решение, причём неизвестное равно отношению определителей. В знаменателе – определитель системы, а в числителе – определитель, полученный из определителя системы путём замены коэффициентов при этом неизвестном свободными членами. Эта теорема имеет место для системы линейных уравнений любого порядка.


Пример 1. Решить систему линейных уравнений:

.                         (2)

Согласно теореме Крамера имеем:

Итак, решение системы (2):

Для проверки решений систем уравнений 3 Х 3 и 4 Х 4 можно воспользоваться онлайн-калькулятором, решающим методом Крамера.


Как явствует из теоремы Крамера, при решении системы линейных уравнений могут встретиться три случая:

Первый случай: система линейных уравнений имеет единственное решение

(система совместна и определённа)

Условия:

*

Второй случай: система линейных уравнений имеет бесчисленное множество решений

(система совместна и неопределённа)

Условия:

* ,

** ,

т.е. коэффициенты при неизвестных и свободные члены пропорциональны.

Третий случай: система линейных уравнений решений не имеет

(система несовместна)

Условия:

*

** .

Итак, система m линейных уравнений с n переменными называется несовместной, если у неё нет ни одного решения, и совместной, если она имеет хотя бы одно решение. Совместная система уравнений, имеющая только одно решение, называется определённой, а более одного – неопределённой.


Пусть дана система

.

На основании теоремы Крамера


………….
,

где

определитель системы. Остальные определители получим, заменяя столбец с коэффициентами соответствующей переменной (неизвестного) свободными членами:


Пример 2.  Решить систему линейных уравнений методом Крамера:

.

Решение. Находим определитель системы:

Следовательно, система является определённой. Для нахождения её решения вычисляем определители

По формулам Крамера находим:

Итак, (1; 0; -1) – единственное решение системы.

Для проверки решений систем уравнений 3 Х 3 и 4 Х 4 можно воспользоваться онлайн-калькулятором, решающим методом Крамера.

Если в системе линейных уравнений в одном или нескольких уравнениях отсутствуют
какие-либо переменные, то в определителе соответствующие им элементы равны нулю! Таков следующий пример.

Пример 3.  Решить систему линейных уравнений методом Крамера:

.

Решение. Находим определитель системы:

Посмотрите внимательно на систему уравнений и на определитель системы и повторите
ответ на вопрос, в каких случаях один или несколько элементов определителя равны нулю. Итак,
определитель не равен нулю, следовательно, система является определённой. Для нахождения её решения вычисляем определители при неизвестных

По формулам Крамера находим:

Итак, решение системы — (2; -1; 1).

Для проверки решений систем уравнений 3 Х 3 и 4 Х 4 можно воспользоваться онлайн-калькулятором, решающим методом Крамера.

Как уже говорилось, если определитель системы равен нулю, а определители при неизвестных
не равны нулю, система несовместна, то есть решений не имеет. Проиллюстрируем следующим примером.

Пример 6. Решить систему линейных уравнений методом Крамера:

Решение. Находим определитель системы:

Определитель системы равен нулю, следовательно, система линейных уравнений либо несовместна
и определённа, либо несовместна, то есть не имеет решений. Для уточнения вычисляем определители при неизвестных

Определители при неизвестных не равны нулю, следовательно, система несовместна, то есть
не имеет решений.

Для проверки решений систем уравнений 3 Х 3 и 4 Х 4 можно воспользоваться онлайн-калькулятором, решающим методом Крамера.

В задачах на системы линейных уравнений встречаются и такие, где кроме букв, обозначающих
переменные, есть ещё и другие буквы. Эти буквы обозначают некоторое число, чаще всего действительное.
На практике к таким уравнениям и системам уравнений приводят задачи на поиск общих свойств каких-либо явлений и предметов.
То есть, изобрели вы какой-либо новый материал или устройство, а для описания его свойств, общих независимо от величины или количества
экземпляра, нужно решить систему линейных уравнений, где вместо некоторых коэффициентов при переменных — буквы. За примерами далеко
ходить не надо.

Пример 7. Решить систему линейных уравнений методом Крамера:

Здесь a — некоторое вещественное число. Решение. Находим определитель системы:

Находим определители при неизвестных

По формулам Крамера находим:

,

.

Следующий пример — на аналогичную задачу, только увеличивается количество уравнений,
переменных, и букв, обозначающих некоторое действительное число.

Пример 8.  Решить систему линейных уравнений методом Крамера:

Решение. Находим определитель системы:

Находим определители при неизвестных

По формулам Крамера находим:

,

,

.

И, наконец, система четырёх уравнений с четырьмя неизвестными.

Пример 9. Решить систему линейных уравнений методом Крамера:

.

Внимание! Методы вычисления определителей четвёртого порядка здесь объясняться не будут.
За этим — на соответствующий раздел сайта. Но небольшие комментарии будут. Решение. Находим определитель системы:

Небольшой комментарий. В первоначальном определителе из элементов второй строки были вычтены
элементы четвёртой строки, из элементов третьей строки — элементы четвёртой строки, умноженной на 2,
из элементов четвёртой строки — элементы первой строки, умноженной на 2. Преобразования первоначальных
определителей при трёх первых неизвестных произведены по такой же схеме. Находим определители
при неизвестных

Для преобразований определителя при четвёртом неизвестном из элементов первой строки
были вычтены элементы четвёртой строки.

По формулам Крамера находим:

,

,

,

.

Итак, решение системы — (1; 1; -1; -1).

Для проверки решений систем уравнений 3 Х 3 и 4 Х 4 можно воспользоваться онлайн-калькулятором, решающим методом Крамера.

Самые внимательные, наверное, заметили, что в статье не было примеров решения неопределённых
систем линейных уравнений. А всё потому, что методом Крамера решить такие системы невозможно, можно лишь констатировать, что
система неопределённа. Решения таких систем даёт метод Гаусса.

Другое по теме «Системы уравнений и неравенств»

Начало темы «Линейная алгебра»

Поделиться с друзьями

function-x.ru