Решение через обратную матрицу – Обратная матрица. Вычисление обратной матрицы методом присоединённой матрицы. Решение систем линейных уравнений методом обратной матрицы.
Обратная матрица и методы ее вычисления
Запишем вспомогательную матрицу
и приведем её, с помощью элементарных преобразований, к матрице, в которой единичная матрица будет слева. Переставим местами первую и вторую строки
Прибавим ко второй строке первую строку, умноженную на а к третьей строке первую, умноженную на
Прибавим ко второй строке третью, умноженную на
Умножим вторую строку на
Прибавим к первой строке вторую, умноженную на а к третьей вторую, умноженную на
Разделим третью строку на 3
К первой строке прибавим третью, умноженную на
Тогда обратная матрица равна
ru.solverbook.com
Обратная матрица. Примеры вычисления
Нахождение обратной матрицы является важной составляющей в разделе линейной алгебры. С помощью таких матриц, если они существуют, можно быстро найти решение системы линейных уравнений.
Матрицаназывается обратной к матрице,если выполняются следующие равенства.
.
Если определитель матрицыотличен от нуля, то матрицу называют не особо или невырожденной.
Для того, чтобы матрица имела обратную необходимо и достаточно, чтобы она была невырожденной
Алгоритм нахождения обратной матрицы
Пусть имеем квадратную матрицу
и нужно найти обратную к ней. Для этого нужно выполнить следующие действия:
1. Найти определитель матрицы. Если он не равен нулю то выполняем следующие действия. В противном случае данная матрица вырождена и для нее не существует обратной
2. Найти алгебраические дополнения элементов матрицы . Они равны минорам, умноженным на в степени суммы строки и столбца, для которого ищем.
3. Составить матрицу из алгебраических дополнений элементов матрицы матрицы и протранспонировать ее. Эта матрица называется присоединенной или союзной и обозначается .
4. Разделить присоединенную матрицу на детерминант . Полученная матрица будет обратной и иметь свойства, которые изложены в начале статьи.
———————————————
Пример 1.
Найти матрицу, обратную к матрице (Дубовик В.П., Юрик И.И. «Высшая математика. Сборник задач»)
1) (1.127)
2) (1.130)
3) (1.133)
Решение.
1)Находим определитель матрицы
Так как детерминант не равен нулю (), то обратная матрица существует. Находим матрицу, составленную из алгебраических дополнений
Матрица дополнений примет вид
Транспонируем ее и получаем присоединенную
Разделим ее на определитель и получим обратную
Видим, что в случае, когда определитель равен единице присоединена и обратная матрицы совпадают.
2) Вычисляем определитель матрицы
Находим матрицу алгебраических дополнений
Конечный вид матрицы дополнений
Транспонируем ее и находим союзную матрицу
Находим обратную матрицу
3) Вычислим детерминант матрицы. Для этого разложим его на первую строчку. В результате получим два отличны от нуля слагаемые
Находим матрицу алгебраических дополнений. Расписание определителя проводим по строкам и столбцам, в которых больше нулевых элементов (обозначены черным цветом).
Конечный вид матрицы дополнений следующий
Транспонируем ее и находим присоединенную матрицу
Поскольку определитель матрицы равен единице то обратная матрица совпадает с присоединенной. Данный пример назад.
При вычислениях обратной матрицы типичными являются ошибки связанные с неправильными знаками при вычислении определителя и матрицы дополнений.
———————————————
——————————
yukhym.com
Нахождение обратной матрицы: три алгоритма и примеры
Нахождение обратной матрицы
- методом алгебраических дополнений, при котором требуется находить определители и транспонировать матрицы;
- методом исключения неизвестных Гаусса, при котором требуется производить элементарные преобразования матриц (складывать строки, умножать строки на одно и то же число и т. д.).
Для особо любознательных существуют и другие методы, например, метод линейных преобразований. На этом уроке разберём три упомянутых метода и алгоритмы нахождения обратной матрицы этими методами.
Обратной матрицей, которую требуется отыскать для данной квадратной матрицы
,
произведение на которую матрицы А справа является единичной матрицей, т.е,
. (1)
Обратной матрицей, которую требуется отыскать для данной квадратной матрицы А, называется такая матрица
,
произведение на которую матрицы А справа является единичной матрицей, т.е,
. (1)
Единичной матрицей называется диагональная матрица, у которой все диагональные элементы равны единице.
Квадратная матрица называется неособенной (или невырожденной, несингулярной), если её определитель не равен нулю, и особенной (или вырожденной, сингулярной), если её определитель равен нулю.
Обратная матрица может быть найдена только для квадратной матрицы. Естественно, обратная матрица также будет квадратной и того же порядка, что и данная матрица. Матрица, для которой может быть найдена обратная матрица, называется обратимой матрицей.
Для обратной матрицы существует уместная аналогия с обратным числом. Для каждого числа a, не равного нулю, существует такое число b, что произведение a и b равно единице: ab = 1. Число b называется обратным для числа b. Например, для числа 7 обратным является число 1/7, так как 7*1/7=1.
Для неособенной квадратной матрицы А обратной является матрица
, (2)
где — определитель матрицы А, а — матрица, союзная с матрицей А.
Алгоритм нахождения обратной матрицы методом алгебраических дополнений
1. Найти определитель данной матрицы A. Если определитель равен нулю, нахождение обратной матрицы прекращается, так как матрица вырожденная и обратная для неё не существует.
2. Найти матрицу, транспонированную относительно A.
3. Вычислить элементы союзной матрицы как алгебраические дополнения марицы, найденной на шаге 2.
4. Применить формулу (2): умножить число, обратное определителю матрицы
5. Проверить полученный на шаге 4 результат, умножив данную матрицу A на обратную матрицу. Если произведение этих матриц равно единичной матрицы, значит обратная матрица была найдена верно. В противном случае начать процесс решения снова.
Пример 1. Для матрицы
найти обратную матрицу.
Решение. Для нахождения обратной матрицы необходимо найти определитель матрицы А . Находим по правилу треугольников:
Следовательно, матрица А – неособенная (невырожденная, несингулярная) и для неё существует обратная.
Найдём матрицу, союзную с данной матрицей А.
Найдём матрицу , транспонированную относительно матрицы A:
Вычисляем элементы союзной матрицы как алгебраические дополнения матрицы, транспонированной относительно матрицы A:
Следовательно, матрица
,
союзная с матрицей
Замечание. Порядок вычисления элементов и транспонирования матрицы может быть иным. Можно сначала вычислить алгебраические дополнения матрицы A, а затем транспонировать матрицу алгебраических дополнений. В результате должны получиться те же элементы союзной матрицы.
Применяя формулу (2), находим матрицу, обратную матрице А:
Алгоритм нахождения обратной матрицы методом исключения неизвестных Гаусса
1. К матрице A приписать единичную матрицу того же порядка.
2. Полученную сдвоенную матрицу преобразовать так, чтобы в левой её части получилась единичная матрица, тогда в правой части на месте единичной матрицы автоматически получится обратная матрица. Матрица A в левой части преобразуется в единичную матрицу путём элементарных преобразований матрицы.
2. Если в процессе преобразования матрицы A в единичную матрицу в какой-либо строке или в каком-либо столбце окажутся только нули, то определитель матрицы равен нулю, и, следовательно, матрица A будет вырожденной, и она не имеет обратной матрицы. В этом случае дальнейшее нахождение обратной матрицы прекращается.
Пример 2. Для матрицы
найти обратную матрицу.
Решение. Составляем сдвоенную матрицу
и будем её преобразовывать, так чтобы в левой части получилась единичная матрица. Начинаем преобразования.
Умножим первую строку левой и правой матрицы на (-3) и сложим её со второй строкой, а затем умножим первую строку на (-4) и сложим её с третьей строкой, тогда получим
.
Чтобы по возможности не было дробных чисел при последующих преобразованиях, создадим предварительно единицу во второй строке в левой части сдвоенной матрицы. Для этого умножим вторую строку на 2 и вычтем из неё третью строку, тогда получим
.
Сложим первую строку со второй, а затем умножим вторую строку на (-9) и сложим её с третьей строкой. Тогда получим
.
Разделим третью строку на 8, тогда
.
Умножим третью строку на 2 и сложим её со второй строкой. Получается:
.
Переставим местами вторую и третью строку, тогда окончательно получим:
.
Видим, что в левой части получилась единичная матрица, следовательно, в правой части получилась обратная матрица . Таким образом:
.
Можно проверить правильность вычислений, умножим исходную матрицу на найденную обратную матрицу:
.
В результате должна получиться обратная матрица.
Пример 3. Для матрицы
найти обратную матрицу.
Решение. Составляем сдвоенную матрицу
и будем её преобразовывать.
Первую строку умножаем на 3, а вторую на 2, и вычитаем из второй, а затем первую строку умножаем на 5, а третью на 2 и вычитаем из третьей строки, тогда получим
.
Первую строку умножаем на 2 и складываем её со второй, а затем из третьей строки вычитаем вторую, тогда получим
.
Видим, что в третьей строке в левой части все элементы получились равными нулю. Следовательно, матрица вырожденная и обратной матрицы не имеет. Дальнейшее нахождение обратной марицы прекращаем.
Матрицы теснейшим образом связаны с системами линейных уравнений. Каждой матрице соответствует система линейных уравнений, коэффициенты в которой есть элементы матрицы. И наоборот, системе линейных уравнений соответствует некоторая матрица.
Поэтому существует метод линейных преобразований для нахождения обратной матрицы. Для решения задач нам будет достаточно знать, что линейное преобразование — это система линейных уравнений, вид которой будет приведён ниже в алгоритме.
Алгоритм нахождения обратной матрицы методом линейных преобразований
1. Для данной невырожденной матрицы A составить линейное преобразование — систему линейных уравнений вида
,
где aij — элементы матрицы A.
2. Решить полученную систему относительно y — найти для предыдущего линейного преобразование обратное линейное преобразование
,
в котором Aij — алгебраические дополнения элементов матрицы A, Δ — определитель матрицы A. Внимание! Алгебраические дополнения располагаются как в транспонированной матрице, то есть для элементов строки — в столбце, а для элементов столбца — в строке.
3. Находим коэффициенты при y: , которые и будут элементами матрицы, обратной для матрицы A.
4. Пользуясь элементами, найденными на шаге 3, записать найденную обратную матрицу.
Наиболее наблюдательные могли заметить, что по сути метод линейных преобразований — это тот же метод алгебраических преобразований (союзной матрицы), но с другой формой записи. Для кого-то метод линейных преобразований может оказаться более удобным как более компактный.
Пример 4. Найти обратную матрицу для матрицы
.
Сначала проверим, не равен ли нулю определитель данной матрицы. Он не равен нулю, следовательно, обратная матрица существует.
Для данной матрицы записываем линейное преобразование:
.
Находим линейное преобразование, обратное предыдущему, для этого потребуется находить алгебраические дополнения (урок откроется в новом окне). Запишем обратное линейное преобразование:
Коэффициенты при иксах в обратном линейном преобразовании — это элементы обратной матрицы для матрицы A. Таким образом нашли обратную матрицу:
Начало темы «Матрицы»
Другие темы линейной алгебры
function-x.ru
обратная матрица
Нахождение обратной матрицы.
В этой статье разберемся с понятием обратной матрицы, ее свойствами и способами нахождения. Подробно остановимся на решении примеров, в которых требуется построить обратную матрицу для заданной.
Навигация по странице.
Обратная матрица — определение.
Нахождение обратной матрицы с помощью матрицы из алгебраических дополнений.
Свойства обратной матрицы.
Нахождение обратной матрицы методом Гаусса-Жордана.
Нахождение элементов обратной матрицы с помощью решения соответствующих систем линейных алгебраических уравнений.
Обратная матрица — определение.
Понятие обратной матрицы вводится лишь для квадратных матриц, определитель которых отличен от нуля, то есть для невырожденных квадратных матриц.
Определение.
Матрица называется обратной для матрицы , определитель которой отличен от нуля , если справедливы равенства , где E – единичная матрица порядка n на n.
Нахождение обратной матрицы с помощью матрицы из алгебраических дополнений.
Как же находить обратную матрицу для данной?
Во-первых, нам потребуются понятия транспонированной матрицы, минора матрицы и алгебраического дополнения элемента матрицы.
Определение.
Минор k-ого порядка матрицы A порядка m на n – это определитель матрицы порядка k на k, которая получается из элементов матрицы А, находящихся в выбранныхk строках и k столбцах. (k не превосходит наименьшего из чисел m или n).
Минор (n-1)-ого порядка, который составляется из элементов всех строк, кроме i-ой, и всех столбцов, кроме j-ого, квадратной матрицы А порядка n на n обозначим как .
Иными словами, минор получается из квадратной матрицы А порядка n на nвычеркиванием элементов i-ой строки и j-ого столбца.
Для примера запишем, минор 2-ого порядка, который получаетсся из матрицы выбором элементов ее второй, третьей строк и первого, третьего столбцов . Также покажем минор, который получается из матрицы вычеркиванием второй строки и третьего столбца . Проиллюстрируем построение этих миноров: и .
Определение.
Алгебраическим дополнением элемента квадратной матрицы называют минор (n-1)-ого порядка, который получается из матрицы А, вычеркиванием элементов ее i-ой строки и j-ого столбца, умноженный на .
Алгебраическое дополнение элемента обозначается как . Таким обрзом, .
Например, для матрицы алгебраическое дополнение элемента есть .
Во-вторых, нам пригодятся два свойства определителя, которые мы разобрали в разделевычисление определителя матрицы:
На основании этих свойств определителя, определения операции умножения матрицы на число и понятия обратной матрицы справедливо равенство , где — транспонированная матрица, элементами которой являются алгебраические дополнения .
Матрица действительно является обратной для матрицы А, так как выполняются равенства . Покажем это
Составим алгоритм нахождения обратной матрицы с использованием равенства .
Вычисляем определитель матрицы А и убеждаемся, что он отличен от нуля (в противном случае матрица А необратима).
Строим — матрицу из алгебраических дополнений элементов .
Транспонируем матрицу , тем самым получаем .
Умножаем каждый элемент матрицы на число . Этой операцией завершается нахождение обратной матрицы .
Проводим проверку результата, вычисляя произведения и . Если , то обратная матрица найдена верно, в противном случае где-то была допущена ошибка.
Разберем алгоритм нахождения обратной матрицы на примере.
Пример.
Дана матрица . Найдите обратную матрицу.
Решение.
Вычислим определитель матрицы А, разложив его по элементам третьего столбца:
Определитель отличен от нуля, так что матрица А обратима.
Найдем матрицу из алгебраических дополнений:
Поэтому
Выполним транспонирование матрицы из алгебраических дополнений:
Теперь находим обратную матрицу как :
Проверяем полученный результат:
Равенства выполняются, следовательно, обратная матрица найдена верно.
Свойства обратной матрицы.
Понятие обратной матрицы, равенство , определения операций над матрицами и свойства определителя матрицы позволяют обосновать следующие свойства обратной матрицы:
Для невырожденной квадратной матрицы А справедливо равенство .
Для обратимой матрицы А выполняется равенство .
Для любого отличного от нуля числа k справедливо равенство .
Для невырожденных квадратных матриц А и В одного порядка выполняется равенство .
Нахождение элементов обратной матрицы с помощью решения соответствующих систем линейных алгебраических уравнений.
Рассмотрим еще один способ нахождения обратной матрицы для квадратной матрицы Апорядка n на n.
Этот метод основан на решении n систем линейных неоднородных алгебраических уравнений с n неизвестными. Неизвестными переменными в этих системах уравнений являются элементы обратной матрицы.
Идея очень проста. Обозначим обратную матрицу как X, то есть, . Так как по определению обратной матрицы , то
Приравнивая соответствующие элементы по столбцам, получим n систем линейных уравнений
Решаем их любым способом и из найденных значений составляем обратную матрицу.
Разберем этот метод на примере.
Пример.
Дана матрица . Найдите обратную матрицу.
Решение.
Примем . Равенство дает нам три системы линейных неоднородных алгебраических уравнений:
Не будем расписывать решение этих систем, при необходимости обращайтесь к разделурешение систем линейных алгебраических уравнений.
Из первой системы уравнений имеем , из второй — , из третьей — . Следовательно, искомая обратная матрица имеет вид . Рекомендуем сделать проверку, чтобы убедиться в правильности результата.
Подведем итог.
Мы рассмотрели понятие обратной матрицы, ее свойства и три метода ее нахождения.
Пример решений методом обратной матрицы
Задание 1. Решить СЛАУ методом обратной матрицы. 2 x 1 + 3x2 + 3x3+ x4= 1 3 x 1 + 5x2 + 3x3+ 2x4= 2 5 x 1 + 7x2 + 6x3+ 2x4= 3 4 x 1 + 4x2 + 3x3+ x4= 4
Начало формы
Конец формы
Решение. Запишем матрицу в виде: Вектор B: BT = (1,2,3,4) Главный определитель Минор для (1,1): = 5•(6•1-3•2)-7•(3•1-3•2)+4•(3•2-6•2) = -3 Минор для (2,1): = 3•(6•1-3•2)-7•(3•1-3•1)+4•(3•2-6•1) = 0 Минор для (3,1): = 3•(3•1-3•2)-5•(3•1-3•1)+4•(3•2-3•1) = 3 Минор для (4,1): = 3•(3•2-6•2)-5•(3•2-6•1)+7•(3•2-3•1) = 3 Определитель минора ∆ = 2•(-3)-3•0+5•3-4•3 = -3
Транспонированная матрица Алгебраические дополнения ∆1,1 = 5•(6•1-2•3)-3•(7•1-2•4)+2•(7•3-6•4) = -3 ∆1,2 = -3•(6•1-2•3)-3•(7•1-2•4)+1•(7•3-6•4) = 0 ∆1,3 = 3•(3•1-2•3)-3•(5•1-2•4)+1•(5•3-3•4) = 3 ∆1,4 = -3•(3•2-2•6)-3•(5•2-2•7)+1•(5•6-3•7) = -3 ∆2,1 = -3•(6•1-2•3)-3•(5•1-2•4)+2•(5•3-6•4) = 9 ∆2,2 = 2•(6•1-2•3)-3•(5•1-2•4)+1•(5•3-6•4) = 0 ∆2,3 = -2•(3•1-2•3)-3•(3•1-2•4)+1•(3•3-3•4) = -6 ∆2,4 = 2•(3•2-2•6)-3•(3•2-2•5)+1•(3•6-3•5) = 3 ∆3,1 = 3•(7•1-2•4)-5•(5•1-2•4)+2•(5•4-7•4) = -4 ∆3,2 = -2•(7•1-2•4)-3•(5•1-2•4)+1•(5•4-7•4) = 1 ∆3,3 = 2•(5•1-2•4)-3•(3•1-2•4)+1•(3•4-5•4) = 1 ∆3,4 = -2•(5•2-2•7)-3•(3•2-2•5)+1•(3•7-5•5) = 0 ∆4,1 = -3•(7•3-6•4)-5•(5•3-6•4)+3•(5•4-7•4) = -12 ∆4,2 = 2•(7•3-6•4)-3•(5•3-6•4)+3•(5•4-7•4) = -3 ∆4,3 = -2•(5•3-3•4)-3•(3•3-3•4)+3•(3•4-5•4) = 9 ∆4,4 = 2•(5•6-3•7)-3•(3•6-3•5)+3•(3•7-5•5) = -3 Обратная матрица Вектор результатов X X = A-1 ∙ B XT = (2,-1,-0.33,1) x1 = 2 x2 = -1 x3 = -0.33 x4 = 1
см. также решений СЛАУ методом обратной матрицы online. Для этого введите свои данные и получите решение с подробными комментариями.
Задание 2. Систему уравнений записать в матричной форме и решить ее с помощью обратной матрицы. Сделать проверку полученного решения. Решение:xml:xls
Пример 2. Записать систему уравнений в матричной форме и решить с помощью обратной матрицы. Решение:xml:xls
Пример. Дана система трех линейных уравнений с тремя неизвестными. Требуется: 1) найти ее решение с помощью формул Крамера; 2) записать систему в матричной форме и решить ее средствами матричного исчисления. Методические рекомендации. После решения методом Крамера, найдите кнопку «Решение методом обратной матрицы для исходных данных». Вы получите соответствующее решение. Таким образом, данные вновь заполнять не придется. Решение. Обозначим через А — матрицу коэффициентов при неизвестных; X — матрицу-столбец неизвестных; B — матрицу-столбец свободных членов:
Вектор B: BT=(4,-3,-3) С учетом этих обозначений данная система уравнений принимает следующую матричную форму: А*Х = B. Если матрица А — невырожденная (ее определитель отличен от нуля, то она имеет обратную матрицу А-1. Умножив обе части уравнения на А-1, получим: А-1*А*Х = А-1*B, А-1*А=Е. Это равенство называется матричной записью решения системы линейных уравнений. Для нахождения решения системы уравнений необходимо вычислить обратную матрицу А-1. Система будет иметь решение, если определитель матрицы A отличен от нуля. Найдем главный определитель. ∆=-1•(-2•(-1)-1•1)-3•(3•(-1)-1•0)+2•(3•1-(-2•0))=14 Итак, определитель 14 ≠ 0, поэтому продолжаем решение. Для этого найдем обратную матрицу через алгебраические дополнения. Пусть имеем невырожденную матрицу А:
A= |
|
Тогда:
A=1/∆ |
|
где Aij — алгебраическое дополнение элемента aij в определителе матрицы А, которое является произведением (—1)i+j на минор (определитель) n-1 порядка, полученный вычеркиванием i-й строки и j-го столбца в определителе матрицы А. Транспонированная матрица
Вычисляем алгебраические дополнения.
∆1,1=(-2•(-1)-1•1)=1
∆1,2=-(3•(-1)-0•1)=3
∆1,3=(3•1-0•(-2))=3
∆2,1=-(3•(-1)-1•2)=5
∆2,2=(-1•(-1)-0•2)=1
∆2,3=-(-1•1-0•3)=1
∆3,1=(3•1-(-2•2))=7
∆3,2=-(-1•1-3•2)=7
∆3,3=(-1•(-2)-3•3)=-7 Обратная матрица
Вектор результатов X X=A-1 • B
XT=(-1,1,2) x1=-14 / 14=-1 x2=14 / 14=1 x3=28 / 14=2 Проверка. -1•-1+3•1+0•2=4 3•-1+-2•1+1•2=-3 2•-1+1•1+-1•2=-3 doc:xml:xls Ответ: -1,1,2.
studfiles.net
Обратная матрица с помощью элементарных преобразований
Для того что бы найти обратную матрицу можно использовать два метода: с помощью алгебраических дополнений (метод присоединённой (союзной) матрицы) или элементарных преобразований (метод Жордано-Гаусса). Рассмотрим как найти обратную матрицу с помощью элементарных преобразований.
Обратной матрицей называется матрицы A-1 при умножении на исходную матрицу A получается единичная матрица E.
A·A-1 = A-1 · A = E
Алгоритм нахождения обратной матрицы с помощью элементарных преобразований:
- Найти определитель (детерминант) матрицы A. Если определитель ≠ 0, то обратная матрица существует. Если определитель = 0, то обратная матрица не существует.
- Дописываем справа единичную матрицу
- Делаем прямой ход. Обнуляем все элементы (с помощью элементарных преобразований) левой матрицы стоящей под ее главной диагонали.
- Делаем обратный ход. Обнуляем все элементы (с помощью элементарных преобразований) левой матрицы стоящей над ее главной диагонали.
- Элементы главной диагонали левой матрицы, преобразуем в единицы.
Пример
Рассмотрим данный метод на примере. Дана матрицы 3х3:
Найдем определитель (детерминант) матрицы, detA = 8 обратная матрица существует.
Допишем к нашей матрице слева единичную матрицу.
Чтобы сделать нули под элементом a11, вычтем 1-ую строку из всех строк, что расположены ниже её, при чём, для того, чтобы работать с меньшими числами, поделим каждую из этих строк на a11.
Чтобы сделать нули над элементом a33, вычтем 3-ую строку с всех строк, что расположены выше её, при чём, для того, чтобы работать с меньшими числами, поделим каждую из этих строк на a33.
Чтобы сделать нули над элементом a22, вычтем 2-ую строку с всех строк, что расположены выше её, при чём, для того, чтобы работать с меньшими числами, поделим каждую из этих строк на a22.
Поделим каждую строку на элемент, который стоит на главной диагонали.
Вот мы и нашли обратную матрицу.
mozgan.ru
Обратная матрица. Вычисление обратной матрицы методом присоединённой матрицы. Решение систем линейных уравнений методом обратной матрицы.
Определение. Матрица А-1называется обратной к матрице А, если выполняется условие: АА-1= А-1А=Е, где Е — единичная матрица того же порядка, что и матрица А. Обратная А-1матрица имеет ту же размерность, что и матрица А.
Определение. Квадратная матрица А=называется невырожденной, если её определитель неравен нулю, в противном случае матрица называется вырожденной.
Теорема.Всякая невырожденная матрица имеет обратную.
Определение. Присоединенной матрицейк матрице А называется матрица вида:
=, где Аij-алгебраическое дополнение элемента аij.
Находят обратную матрицу поформуле: А-1=.
Пример 3.1
Найти обратную матрицу методом присоединенной матрицы.
А=
Решение.
Выясним, является ли данная матрица невырожденной. Для этого найдем определитель матрицы:
=3(-1)1+1+0(-1)2+1+1(-1)3+1=3(12-4)+0+(2-6)=24-4=20.
Т.к. 0, следовательно, данная матрица имеет обратную.
Найдем транспонированную матрицу.
АТ=
Вычислим присоединенную матрицу. Для этого найдем алгебраическое дополнение каждого элемента матрицы.
= (-1)1+1=12-4=8
= (-1)1+2= -(4-4)= 0
= (-1)1+3= 2-6= -4
= (-1)2+1= -(0-2)=2
= (-1)2+2= 12-2=10
= (-1)2+3= -(6-0)= -6
= (-1)3+1= 0-3= -3
= (-1)3+2= -(6-1)= -5
= (-1)3+3= 9-0=9.
=
4. Воспользуемся формулой: А-1=.
А-1==.
Решение систем линейных уравнений методом обратной матрицы
Пусть дана система линейных уравнений. Обозначим её через (1). Выпишим основную матрицу данной системы: А=, вектор-столбец неизвестных:X=и вектор-столбец свободных членов:B=. Теперь перепишем систему (1) в матричной форме:AX=BX=A-1B- решение системы (1).
Пример 3.2
Решить систему линейных уравнений: методом обратной матрицы.
Решение.
Формула, по которой будем находить решение системы: X=A-1B.
Основная матрица системы А=, вектор-столбец неизвестных:X=и вектор-столбец свободных членов:B=.
Найдем определитель =3(-1)1+1+0(-1)2+1+1(-1)3+1=3(12-4)+0+(2-6)=24-4=20.
Т.к. 0, следовательно, данная матрица имеет обратную.
Найдем обратную матрицу с помощью присоединенной матрицы (см. пример 3.1):
А-1=.
Подставим в формулу X=A-1B, получим:X===
Ответ: =, ,.
Правильность решения легко проверить, подставив полученные результаты, , в данную систему уравнения.
Решение систем линейных уравнений методом Гаусса и Крамера
Пусть дана система линейных уравнений. Обозначим её через (1). Основная матрица данной системы: А=, вектор-столбец неизвестных:X=и вектор-столбец свободных членов:B=. Теперь запишем систему (1) в матричной форме:AX=B.
Теорема Крамера. Пусть —определитель матрицы А, j—определитель матрицы, получаемой из А заменойj-го столбца столбцом свободных членов. Тогда, если0, то система имеет единственное решение:, (1jn).
Пример 4.1
Решить систему линейных уравнений: методом Крамера.
Решение.
Основная матрица системы А=и вектор-столбец свободных членов:B=.
Найдем определитель ==3(-1)1+1+0(-1)2+1+1(-1)3+1=3(12-4)+0+(2-6)=24-4=20. Т.к.0, следовательно, можно применить формулы Крамера.
Найдем определители ,,, полученные заменой соответствующих столбцов столбцом свободных членов:
==1(12-4)-1(8-6)+2(4-9)=8-2-10= -4;
==3(8-6)-0+1(2-4)=6-2=4;
==3(9-4)-0+1(2-3)=15-1=14.
Тогда, по формуле Крамера:
== —=;
=;
=.
Ответ: =, ,.
Решение систем линейных уравнений методом Гаусса
Пусть дана система линейных уравнений. Рассмотрим расширенную матрицу (АВ) данной системы и с помощью элементарных преобразований приведем её к ступенчатому виду, в результате получим расширенную матрицу (АВ).
Если ранг основной матрицы системы меньше ранга расширенной матрицы r(A)<r(АВ), то система несовместна. Еслиr(A)=r(АВ)=n, гдеn-число неизвестных, то система совместна и определена. Еслиr(A)=r(АВ)<n, гдеn-число неизвестных, то система совместна и неопределенна.
Записываем систему линейных уравнений из полученной ступенчатой матрицы. Определяем базисные и свободные переменные, и выражая базисные переменные через свободные получаем решение системы.
Пример 4.2
Решить систему линейных уравнений: методом Гаусса.
Решение.
r(A)=r(АВ)=nсистема совместна и определена.
Отсюда, запишем эквивалентную систему уравнений, имеем:
Решая её, получаем:
Ответ: =, ,.
Пример 4.3
Найти общее решение системы: .
Решение.
Составим матрицу системы: А=
Приведем её к треугольному виду:
r(A)=2. Запишем эквивалентную систему уравнений:
Примем за базисные переменные и, а свободные находим из условия (n-r), гдеn-число неизвестных, получаем (3-2)=1, т. е. у нас одна свободная переменная это.
Выразим базисные переменные через свободные: . Обозначая свободную переменную:=, получаем общее решение в виде:
Пример 4.4
Найти общее решение системы:
Решение.
Приведем расширенную матрицу системы к ступенчатому виду:
АВ=
r(A)=r(AВ)=2<n, гдеn-число неизвестных, то система совместная и неопределенная. Запишем эквивалентную систему уравнений:
Примем за базисные переменные и, а свободные находим из условия (n-r), гдеn-число неизвестных, получаем (5-2)=3, значит,-свободные переменные.
Выразим базисные переменные через свободные: Обозначая свободную переменную:=,,получаем общее решение в виде:.
studfiles.net
Обратные матрицы — Как найти обратную матрицу
Каталин Дэвид
Матрица обратима, если ее определитель отличен от нуля. Если A — обратимая матрица, то обратная ей матрица есть $A^{-1}=\frac{1}{\left|A\right|} \cdot adj(A)$. $adj(A)$ — присоединённая матрица исходной матрицы A.
Вычисление обратной матрицы
- Вычисляем определитель матрицы.
- Записываем транспонированную матрицу.
- Заменяем каждый элемент транспонированной матрицы его алгебраическим дополнением. Полученная матрица является присоединённой матрицей.
- Вычисляем обратную матрицу.
Пример 46
$A=\begin{pmatrix} 1 & 3\\ 2 & 5 \end{pmatrix}$
$\left|A\right|=1\cdot 5-6=-1$
Матрица обратима, значит, можно найти обратную ей матрицу.
$ A^{T}= \begin{pmatrix} 1 & 2\\ 3 & 5 \end{pmatrix}$
Заменяем элементы транспонированной матрицы их алгебраическими дополнениями.
$1\longrightarrow (-1)^{1+1}\cdot \Delta_{1,1}=(-1)^{2}\cdot5 = 5$
$2\longrightarrow (-1)^{1+2}\cdot \Delta_{1,2}=(-1)^{3}\cdot3 = -3$
$3\longrightarrow (-1)^{2+1}\cdot \Delta_{2,1}=(-1)^{3}\cdot2 = -2$
$5\longrightarrow (-1)^{2+2}\cdot \Delta_{2,2}=(-1)^{4}\cdot1 = 1$
$adj(A)= \begin{pmatrix} 5 & -3\\ -2 & 1\\ \end{pmatrix}$
$A^{-1}=- \begin{pmatrix} 5 & -3\\ -2 & 1 \end{pmatrix} = \begin{pmatrix} -5 & 3\\ 2 & -1 \end{pmatrix}$
Пример 47
$B=\begin{pmatrix} 2 & -7\\ -1 & 6 \end{pmatrix}$
$\left|B\right|=2\cdot 6-(-7)\cdot (-1) = 5$
Матрица обратима, значит, можно найти обратную ей матрицу.
$A^{T}= \begin{pmatrix} 2 & -1\\ -7 & 6 \end{pmatrix}$
Заменяем элементы транспонированной матрицы их алгебраическими дополнениями.
$2\longrightarrow (-1)^{1+1}\cdot \Delta_{1,1}=(-1)^{2}\cdot6 = 6$
$-1\longrightarrow (-1)^{1+2}\cdot \Delta_{1,2}=(-1)^{3}\cdot(-7) = 7$
$-7\longrightarrow (-1)^{2+1}\cdot \Delta_{2,1}=(-1)^{3}\cdot(-1) = 1$
$6\longrightarrow (-1)^{2+2}\cdot \Delta_{2,2}=(-1)^{4}\cdot2 = 2$
$adj(A)= \begin{pmatrix} 6 & 7\\ 1 & 2 \end{pmatrix}$
$A^{-1}=\frac{1}{5} \begin{pmatrix} 6 & 7\\ 1 & 2 \end{pmatrix} = \begin{pmatrix} \frac{6}{5} & \frac{7}{5}\\ \frac{1}{5} & \frac{2}{5} \end{pmatrix}$
Пример 48
$C=\begin{pmatrix} 1 & 3 & 2\\ 4 & 1 & 1\\ 1 & 2 & 3\\ \end{pmatrix}$
Вычисляем определитель по известной формуле и получаем $\left|B\right|=-18$.
Матрица обратима, значит, можно найти обратную ей матрицу.
$C^{T}=\begin{pmatrix} 1 & 4 & 1\\ 3 & 1 & 2\\ 2 & 1 & 3 \end{pmatrix}$
Заменяем каждый элемент транспонированной матрицы его алгебраическим дополнением.
$ 1\longrightarrow (-1)^{1+1}\cdot \Delta_{1,1}=(-1)^{2}\cdot \begin{vmatrix} 1 & 2\\ 1 & 3 \end{vmatrix} = 3 — 2 = 1$
$4\longrightarrow (-1)^{1+2}\cdot \Delta_{1,2}=(-1)^{3}\cdot \begin{vmatrix} 3 & 2\\ 2 & 3 \end{vmatrix} = -(9-4)=-5$
$1\longrightarrow (-1)^{1+3}\cdot \Delta_{1,3}=(-1)^{4}\cdot \begin{vmatrix} 3 & 1\\ 2 & 1 \end{vmatrix} = 3-2=1$
$3\longrightarrow (-1)^{2+1}\cdot \Delta_{2,1}=(-1)^{3}\cdot \begin{vmatrix} 4 & 1\\ 1 & 3\\ \end{vmatrix} = -(12-1)=-11$
$1\longrightarrow (-1)^{2+2}\cdot \Delta_{2,2}=$ $(-1)^{4}\cdot\begin{vmatrix} 1 & 1\\ 2 & 3\\ \end{vmatrix}=3-2=1$
$2\longrightarrow (-1)^{1+3}\cdot \Delta_{2,3}=$ $(-1)^{5}\cdot\begin{vmatrix} 1 & 4\\ 2 & 1 \end{vmatrix}= -(1-8)=7$
$2\longrightarrow (-1)^{3+1}\cdot \Delta_{3,1}=$ $(-1)^{4}\cdot\begin{vmatrix} 4 & 1\\ 1 & 2 \end{vmatrix}=8-1=7$
$1\longrightarrow (-1)^{3+2}\cdot \Delta_{3,2}=$ $(-1)^{5}\cdot \begin{vmatrix} 1 & 1\\ 3 & 2 \end{vmatrix}=-(2-3)=1$
$3\longrightarrow (-1)^{3+3}\cdot \Delta_{3,3}=$ $(-1)^{6}\cdot\begin{vmatrix} 1 & 4\\ 3 & 1 \end{vmatrix}=1-12=-11$
$adj(A)= \begin{pmatrix} 1 & -5 & 1\\ -11 & 1 & 7\\ 7 & 1 & -11 \end{pmatrix}$
$A^{-1} = — \frac{1}{18}\cdot \begin{pmatrix} 1 & -5 & 1\\ -11 & 1 & 7\\ 7 & 1 & -11 \end{pmatrix} =$ $\begin{pmatrix} — \frac{1}{18} & \frac{5}{18} & -\frac{1}{18}\\ \frac{11}{18} & -\frac{1}{18} & -\frac{7}{18}\\ -\frac{7}{18} & -\frac{1}{18} & \frac{11}{18} \end{pmatrix}$
Свойства обратной матрицы
Если A — обратимая матрица, то:
$A\cdot A^{-1} = A^{-1}\cdot A=I_{n}$
Пример 49
$A=\begin{pmatrix} 1 & 3\\ 2 & 5 \end{pmatrix}$
$A^{-1}= \begin{pmatrix} -5 & 3\\ 2 & -1 \end{pmatrix}$
$A\cdot A^{-1}= \begin{pmatrix} 1 & 3\\ 2 & 5 \end{pmatrix} \begin{pmatrix} -5 & 3\\ 2 & -1 \end{pmatrix}=$ $\begin{pmatrix} 1\cdot(-5)+3\cdot2 & 1\cdot3 + 3\cdot(-1)\\ 2\cdot(-5)+5\cdot2 & 2\cdot3 +5\cdot(-1) \end{pmatrix} = \begin{pmatrix} 1 & 0\\ 0 & 1 \end{pmatrix}= I_{2}$
$A^{-1}\cdot A= \begin{pmatrix} -5 & 3\\ 2 & -1 \end{pmatrix} \begin{pmatrix} 1 & 3\\ 2 & 5 \end{pmatrix}=$ $\begin{pmatrix} -5\cdot1 + 3\cdot2 & -5\cdot3 + 3\cdot 5\\ 2\cdot1 +(-1)\cdot2 & 2\cdot3 +(-1)\cdot5 \end{pmatrix}= \begin{pmatrix} 1 & 0\\ 0 & 1 \end{pmatrix}=I_{2}$
www.math10.com