Развитие биосферы – Формирование и развитие биосферы Земли. Возникновение жизни на Земле и ее разнообразие

Содержание

Основные этапы развития биосферы

Этапы развития (эволюции) биосферы

Современная структура биосферы и границы обитания живых организмов формировались длительное время. Каждый временной промежуток эволюции биосферы характеризуется определенным комплексом экологических факторов и совокупностью живых организмов.

Можно выделить следующие исторические этапы развития (эволюции) биосферы:

  1. возникновение и развитие жизни в воде;
  2. заселение организмами суши и формирование наземно-воздушной и почвенной сред обитания;
  3. появление человека и его эволюция из обычного биологического вида в биосоциальное существо;
  4. переход биосферы в ноосферу под влиянием разумной деятельности человека.

Наша планета появилась около 5 млрд лет назад. В то время температура земной поверхности была выше 100 °С, и жизнь на Земле существовать не могла. Снижение температуры способствовало формированию водной оболочки планеты — гидросферы. Масса гидросферы постепенно росла, увеличивалась ее площадь, что создало условия, благоприятные для зарождения жизни. Появление живого вещества в гидросфере способствовало формированию биологического круговорота вещества.

На этом этапе формирования биосферы важная роль принадлежала бактериям с различными способами питания (фото- и хемоавтотрофам, фото- и хемогетеротрофам). Она состояла, прежде всего, в разложении мертвого органического вещества до биогенов, которые возвращались обратно в биологический круговорот. Деструктивная функция бактерий позволила поддерживать биомассу органического вещества планеты на постоянном уровне. В то же время древние фотосинтезирующие бактерии (цианобактерии) насыщали гидросферу кислородом. В дальнейшем в результате роста и размножения автотрофов количество кислорода возросло. Он начал выделяться в атмосферу и распространяться в ней. За счет кислорода в верхних слоях атмосферы появился озон.

Примерно 500 млн лет назад концентрация кислорода в атмосфере достигла современных значений. Этот факт вместе с образованием озонового экрана позволил организмам выйти на сушу — началось формирование наземной флоры и фауны. Первые наземные растения (псилофиты и древние мохообразные) путем фотосинтеза образовали первичное органическое вещество суши. Это готовое органическое вещество стало служить пищей гетеротрофным организмам. Так сформировалась наземно-воздушная среда обитания. Таким образом, живые организмы постепенно преобразовывали физико-химические параметры окружающей среды, делая ее благоприятной для существования. В этом заключается еще одна важная функция живого вещества —

средообразующая.

В то же время в гидросфере продолжала развиваться жизнь. Здесь она была представлена цианобактериями, красными и зелеными водорослями, а также почти всеми типами животных. Глубоководные организмы, постепенно продвигаясь все глубже ко дну, заселили всю гидросферу.

Последующие этапы эволюции биосферы проходили в направлении бурного развития и распространения жизни на суше. Появились мхи, древовидные плауны, хвощи, папоротники, голосеменные растения, на смену которым пришли покрытосеменные, быстро распространившиеся по всей планете.

Первыми животными суши были пауки и скорпионы. В период около 300 млн лет назад появились первые земноводные. В дальнейшем, приблизительно 150 млн лет назад, массового распространения и процветания достигли пресмыкающиеся: динозавры, древние черепахи и крокодилы. Около 50 млн лет назад появились птицы и млекопитающие.

Биосферная роль животных связана с их гетеротрофным типом питания и способностью к передвижению. Они потребляют органическое вещество, создаваемое растениями, перемещают его на значительные расстояния. Тем самым животные способствуют распространению плодов, семян, спор.

Завоевание суши живыми организмами привело к значительному росту биомассы живого вещества. В настоящий момент, как уже отмечалось, биомасса суши многократно превышает океаническую биомассу.

Венцом современной эволюции биосферы стало появление Человека разумного, которое произошло всего около 50 тыс. лет назад.

В процессе эволюции биосферы некоторые вещества на долгое время исключались из биологического круговорота. Благодаря этому на Земле в разные геологические эпохи сформировались залежи полезных ископаемых в виде нефти, известняков, железных руд и др. Именно эволюция биосферы позволила Земле приобрести свой уникальный облик и стать планетой жизни среди других планет Солнечной системы. А главными факторами эволюции биосферы на рассмотренных этапах стали процессы, связанные с функционированием живого вещества:

синтез, разрушение, круговорот.

Современный этап эволюции биосферы

Около 50 тыс. лет назад в эволюцию биосферы стал вносить вклад новый фактор — антропогенный, связанный с деятельностью человека. На ранних стадиях цивилизации взаимодействие человека с биосферой носило скорее локальный характер. Оно в первую очередь было связано с удовлетворением насущных потребностей человека в пище и жилье. В Средние века темпы развития общества, промышленности и сельского хозяйства ускорились. Географические открытия позволили заметно расширить освоение природных территорий для человеческих нужд. Человек для удовлетворения своих потребностей стал все больше использовать живое и минеральное косное вещества.

Еще более глубокие изменения в биосферных процессах начались в XX в. в результате научно-технической революции. Бурными темпами стали развиваться энергетика, транспорт, химическая промышленность. Это привело к тому, что деятельность человека постепенно стала фактором, изменяющим облик Земли. Результатом стало разрушение природных экосистем (озер, болот, лугов), а также вымирание многих видов животных и растений, истощение полезных ископаемых. Кроме того, загрязнение окружающей среды радионуклидами, ядохимикатами, а также промышленными и бытовыми отходами приобрело глобальные масштабы. Все это поставило человечество на грань экологической катастрофы.

Сегодня масштабы влияния человеческой деятельности на эволюцию биосферы стали поистине гигантскими. Большинство действий, порой приводящих к катастрофическим последствиям, совершаются человеком от непонимания природных процессов и явлений, а также их взаимосвязей. Примером может служить загрязнение окружающей среды и интенсивное, неумеренное использование природных ресурсов.

Очень серьезной стала в последние десятилетия проблема бытового мусора, который складируется на свалках или сбрасывается в воды Мирового океана. Места утилизации отходов представляют опасность, поскольку вредные вещества, растворяясь в воде, загрязняют грунтовые воды и почву. В Тихом океане на сегодняшний день количество бытового мусора по площади в 2 раза превышает континентальную площадь США, а по массе — в 6 раз больше массы планктона.

Французский математик Эдуард Леруа предложил термин — ноосфера. Он назвал ноосферой оболочку биосферы, которая формируется человеческим сознанием. Впоследствии основоположник учения о биосфере В. И. Вернадский расширил данное понятие. По Вернадскому, разумная деятельность человека должна стать ведущим фактором в отношениях общества и природы.

Ноосфера (сфера разума) — высшая стадия развития биосферы, при которой разумная деятельность человечества становится главной движущей силой ее развития.

Этапы эволюции биосферы характеризовались увеличением разнообразия живых форм и усложнением их организации. Живое вещество, зародившись в океане, распространилось по всей суше. Именно живые организмы позволили Земле приобрести ее уникальный облик и стать планетой жизни среди других планет Солнечной системы. Главными факторами эволюции биосферы на рассмотренных этапах являются процессы, связанные с функционированием живых организмов: синтез, разрушение, круговорот. Высшей стадией развития биосферы, основанной на человеческом разуме, является ноосфера.

jbio.ru

10.5. Формирование и развитие биосферы Земли

Как было отмечено выше, жизнь на Земле первоначально появилась в форме примитивной биосферы. Соответственно присутствие жизни на планете стало коренным образом преображать окружающую среду. Ведь два важнейших компонента биосферы — живое вещество и среда их обитания — непрерывно взаимодействуют между собой и находятся в тесном органическом единстве, образуя целостную динамическую систему. Развитие биосферы Земли можно рассматривать как последовательную смену трех этапов: восстановительного, слабоокислительного и окислительного.

Восстановительный этап в развитии биосферы

Как считают многие ученые, восстановительный этап развития биосферы начался еще в космических условиях и завершился появлением на Земле гетеротрофной биосферы. На этом этапе развития биосферы появились малые сферические анаэробы и прокариоты. Физиологические процессы этих организмов основывались не на кислородном окислении, а на дрожжевом брожении. Изначально в атмосфере Земли присутствовали лишь следы свободного кислорода. Производство свободного кислорода начали первые организмы. Но количество кислорода было незначительным и пока он приводил лишь к окислительным процессам на земной поверхности и в океане.

267

Поскольку первые организмы были гетеротрофами, они нуждались в питании. Пищей для них стали ранее накопленные органические соединения, растворенные в водах первичного океана, так как первичная биосфера ограничивалась водной средой. Но жизнь нуждалась в дополнительных источниках энергии. Поэтому на ранних стадиях эволюции живые организмы активно использовали различного рода радиацию. По мнению А. И. Перельмана, особенно важную роль играл радиоактивный калий, который поглощался первыми организмами. Потребность в калии впоследствии закрепилась генетически, хотя для более высокоорганизованных форм радиоактивность перестала служить источником энергии.

Продолжительность существования первичной восстановительной биосферы в геологических масштабах была невелика. Причина этого заключалась в том, что первичные гетеротрофные организмы быстро размножались и, естественно, довольно быстро исчерпали свою питательную базу. Поэтому, достигнув максимальной биомассы, они должны были либо вымереть от голода, либо перейти к автотрофному (фотосинтетическому) способу питания.

Слабоокислительный этап в развитии биосферы

Слабоокислительный этап в развитии биосферы связан с появлением около 4 млрд. лет назад процесса фотосинтеза. Новый способ питания был основан на том, что некоторые простые соединения обладают способностью поглощать свет, если в их составе есть атом магния (как в хлорофилле). Уловленная таким способом световая энергия может быть использована для усиления реакций обмена, в том числе и для образования органических соединений, которые при необходимости могут расщепляться с высвобождением энергии. Именно таким путем происходило образование хлорофилла, приведшее в конечном итоге к появлению фотосинтеза, позволявшего получать энергию непосредственно от Солнца.

Но первичная поверхность Земли, лишенная свободного кислорода, облучалась ультрафиолетовой радиацией Солнца. Поэтому, возможно, первые фотохимические организмы использовали радиацию ультрафиолетовой части спектра. Только после возникновения озонового экрана (в связи с появлением свободного кислорода как побочного продукта того же фотосинтеза) автотрофные фотосинте-зирующие организмы начали использовать излучение в видимой части солнечного спектра.

Новый способ питания способствовал быстрому расселению организмов нового типа у поверхности первичных водоемов. Оказавшись более приспособленными, они вытеснили первичные гетеротрофные организмы. Можно предполагать, что в раннем океане

268

шла борьба между первичными и вторичными организмами, завершившаяся победой автотрофов. Немаловажным фактором в этой борьбе стало то, что автотрофы в качестве отходов своей жизнедеятельности выделяли свободный кислород, который стал смертельным ядом для первичных гетеротрофов.

Первыми автотрофными организмами, очевидно, были цианеи, а затем зеленые водоросли. Останки их находят в породах архейского возраста (около 3 млрд. лет назад). В то время, очевидно, существовало множество видов водорослей, как свободно плавающих в воде, так и прикрепленных ко дну. Хотя свободный кислород и был ядом для первичных аэробов, не все они погибли. Некоторые остались жить в болотах, где не было свободного кислорода. Там, питаясь, они вьщеляли метан. Некоторые же первичные организмы смогли приспособиться к кислородной атмосфере.

Параллельно с этим шел процесс формирования эукариотов. Прокариоты — простые, выносливые и практически бессмертные организмы — уступали место смертным эукариотам. Прокариоты, обладавшие высокой вариабельностью, способностью к быстрому размножению, легко приспосабливались к меняющимся условиям среды, существовавшим в первые периоды истории Земли. Но с формированием кислородной атмосферы условия стабилизировались, и в этих новых условиях нужны были организмы нового типа, приспособленные к ним. Нужна была не генетическая гибкость, а генетическая стабильность. Эукариоты появились к концу второго этапа развития биосферы Земли.

Рассмотренные процессы составили содержание второго этапа в истории развития биосферы Земли, продолжавшегося до завершения осадконакопления полосчатых железистых формаций докембрия примерно 1,8 млрд. лет назад. Таким образом, этот период в истории биосферы занял почти половину всей геологической истории планеты. Дело в том, что хотя свободный кислород и появлялся в значительных количествах, но он расходовался не на образование атмосферы, а на окисление железа, сернистых соединений и других поливалентных металлов. При этом окислы железа осаждались, образуя полосчатые формации. Только после освобождения океана от железа и других металлов концентрация кислорода в атмосфере стала резко возрастать.

В естествознании существует понятие «точки Пастера» — такой концентрации свободного кислорода, при которой кислородное дыхание становится более эффективным (примерно в 50 раз) способом использования внешней энергии Солнца, чем анаэробное брожение. Этот критический уровень примерно равен 0,01 от современного показателя содержания кислорода в атмосфере. После перехода через точку Пастера преимущество в естественном отборе

269

получают организмы, способные к кислородному дыханию. С этого момента начинается третий этап в эволюции биосферы Земли.

Окислительный этап в эволюции биосферы

Третий этап эволюции биосферы связан с развитием фотоавто-трофной биосферы Земли. С этого момента количество кислорода в атмосфере начало резко повышаться. Еще в протерозое (2,6 млрд. — 570 млн. лет назад) эукариоты разделились на растительные и животные клетки. Большей частей растительных клеток использовался фотосинтез. Благодаря этому концентрация кислорода в атмосфере возрастала, и его уже стало хватать для процессов дыхания. Тогда же в океане появились первые многоклеточные организмы.

Около 400 млн. лет назад (конец ордовика — начало силура), когда концентрация свободного кислорода в атмосфере достигла 10%, возник озоновый экран, предохраняющий живое вещество от жесткого излучения, и жизнь вышла из моря на сушу. Как только это случилось, резко возросла интенсивность реакций фотосинтеза, а следовательно, и поступление кислорода в атмосферу. Всего за 100 млн. лет концентрация кислорода достигла современного значения в 21%. После этого состав атмосферы практически не менялся до наших дней.

Выход жизни на сушу обусловил резкое увеличение массы живого вещества. (Масса живого вещества суши в 800 раз больше биомассы океана.) Одновременно жизнь проникала все глубже в океан, осваивая все большие глубины. Наземные растения, отмирая, положили начало образованию угля, нефти, газа, горючих сланцев. Стал меняться биогеохимический круговорот элементов. При этом снижалась роль основных пород, и в земной коре вместо магния, кальция, железа большую роль стали играть кремний, натрий, алюминий, калий. Также благодаря деятельности живых организмов резко возрос круговорот кислорода и углекислого газа. Эти процессы, а также постепенное снижение уровня радиации стимулировали и ускоряли усложнение живого вещества, вели к появлению новых, более высокоорганизованных видов.

Так, на суше появились папоротники, хвощи, семенные папоротники. Развитие наземной растительности и образование почв создали предпосылки для выхода на поверхность континента животных. В результате эволюции растительного мира в мезозойской эре (около 200 млн. лет назад) возникли леса хвойных и цветковых растений.

Формирование и развитие биосферы предстает как чередование этапов эволюции, прерываемых скачкообразными переходами в качественно новые состояния, в результате чего образовывались все

270

более сложные и упорядоченные формы живого вещества. В истории биосферы бывали временные остановки прогрессивного развития, но они никогда не переходили в стадию деградации, поворота развития вспять. Чтобы убедиться в этом, достаточно посмотреть на основные вехи в истории развития биосферы:

  • появление простейших клеток-прокариотов;

  • появление значительно более организованных клеток-эукариотов;

  • объединение клеток-эукариотов с образованием многоклеточных организмов, функциональная дифференциация клеток в организме;

  • появление организмов с твердыми скелетами и формирование высших животных;

  • возникновение у высших животных развитой нервной системы и формирование мозга как органа сбора, систематизации, хранения информации и управления на ее основе поведением организмов;

  • формирование разума как высшей формы деятельности мозга;

• образование социальной общности людей — носителей разума. Вершиной направленного развития биосферы стало появление в

ней человека. В ходе эволюции Земли на смену геолого-биологической эволюции пришел период социальной эволюции, который принес самые крупные изменения в биосфере Земли, во всем облике нашей планеты.

studfiles.net

Эволюция биосферы — развитие, история, этапы, стадии, периоды, факторы, вики — WikiWhat

Факторы эволюции биосферы

Эволюция биосферы проходила под воздействием двух основных факторов — естественных геологических и климатических изме­нений на планете, а также изменения количества и состава живых организмов в процессе биологической эволюции. На настоящем этапе к этим факторам добавляется третий фактор — деятельность человеческого общества (антропогенный).

Этапы эволюции биосферы

Эволюция биосферы подразделяется на три этапа: образование биосферы, эволюция организмов, появление человека. Первый и второй этапы эволюции биосферы проходили исключительно по биологическим закономерностям, и поэтому они называются этапом биогенеза. Так как третий период связан с возникновением и развитием человеческого общества, он носит название ноогенеза.

  • На первом этапе образовалась первичная биосфера с биотическим круговоротом веществ. Этот этап начался приблизительно 3 млрд лет назад и продолжался до кембрийского периода палеозойской эры.
  • На втором этапе происходило усложнение биотической части биосферы — многоклеточных организмов. Этот этап начался 0,5 млрд лет назад с кембрийского периода и продолжался до появления современных людей.
  • Третий этап связан с появлением человеческого общества. Он начался приблизительно 40-50 тысяч лет тому назад и продолжается сегодня.

см. также: Биохимическая эволюция

Образование биосферы

см. Атмосфера Земли#История образования атмосферы

Образование биосферы происходило одно­временно с появлением живых организмов на Земле. Эволюция живых организмов шла параллельно с изменением биосферы. Первые живые организмы были одноклеточными гетеротрофными, анаэробными прокариотами. Эти организмы накапливали энергию в основном в результате процессов гликолиза и брожения. В первичной биосфере было мало органических веществ, и гетеротрофные прокариоты не могли быстро размножаться. В результате естественного отбора возникли аутотрофные организмы, способные самостоятель­но синтезировать органические вещества из неорганических — первые хемосинтезирующие и фотосинтезирующие бактерии и сине-зелёные водоросли.

Первые фотосинтезирующие организмы, поглощая углекислый газ и выделяя кислород, изменили состав атмосферы.

В результате содержание углекислого газа в атмосфере уменьшалось, а содержание кислорода все больше увеличивалось. В верх­них слоях атмосферы на высоте 15-25 км под воздействием электрохимических процессов кислород образовал озоновый экран, который защищал живые организмы на Земле от губительного воздействия ультрафиолетовых солнечных и космических лучей. В этих условиях происходило дальнейшее увеличение численности живых организмов на поверхности морей.

Эволюция организмов

см. Происхождение многоклеточных, Эволюция многоклеточных

Увеличение свободного кислорода в атмосфере обусловило появление на поверхности Земли организмов, приспособленных к аэробному дыханию кислородом, и многоклеточных существ.

Озоновый экран дал возможность живым организмам выйти из воды на сушу и распространиться по ней. Предполагается, что первые многоклеточные организмы появились в период, когда содержание кислорода в атмосфере достигло примерно 3%, — в начале кембрийского периода, примерно 500 млн лет назад.

Фотосинтезирующие организмы, обитающие в морях, вырабатывали избыточное количество кислорода, что привело к интен­сивному развитию аэробных организмов. Вследствие расщепления веществ в процессе аэробного дыхания выделялось большое количество энергии, а большой запас энергии создавал возможности для ещё большего усложнения организмов.

Организмы завоевали различные среды обитания и широко распространились. В палеозойской эре жизнь имела широкое распространение не только в водной среде, она выходила также на сушу. Интенсивное развитие зелёных растений способствовало дальнейшему обогащению атмосферы кислородом и большему усложнению организмов.

В середине палеозойской эры установилось равновесие между образованием и расходом кислорода, содержание его в атмосфере достигло 20%, и это равновесие сохраняется и поныне.

В результате уравновешивания деятельности автотрофов, гетеротрофов и редуцентов, участвующих в круговороте веществ, в биосфере сформировалось состояние гомеостаза (постоянство, устойчивость). Появление человека привело к образованию очень мощного в истории биосферы фактора, который по степени своего воздействия приравнивался к крупным геологическим процессам. Этот фактор (человеческая деятельность) становился причиной нарушения гомеостатического состояния биосферы.

С появления человеческого общества в эволюции биосферы начался этап ноогенеза. На этом этапе эволюция биосферы продолжается под влиянием сознательной трудовой деятельности человека.

Ноосфера

Сознательная деятельность человека в пределах биосферы способствовала теперь превращению её в ноосферу. Материал с сайта http://wikiwhat.ru

Понятие «ноосфера» было впервые введено в науку в 1927 году французским геологом Э. Леруа (от греч. noos — разум + sphaira — шар). В. И. Вернадский истолковывал ноосферу как биосферу, изме­нённую под влиянием труда и разумной деятельности человека.

Человек должен правильно понимать закономерности эволюции биосферы и исходя из этого разумно регулировать её экологическое развитие. Другими словами, своей трудовой деятельностью человек не должен нарушать закономерности эволюции биосферы.

Ноогеника

Ноогеника — это наука, которая занимается разработкой мероприятий по предупреждению эколо­гического кризиса в условиях беспрерывного научно-технического прогресса. Она сформировалась в середине XX в. Основной задачей этой науки является восстановление нарушенных взаимоотношений между человеком и природой, обусловленных техничес­ким прогрессом.

Ноогеника должна не только выполнять охранные функции, но и разрабатывать меры по расширению многообразия жизненных форм на Земле, созданию новых видов микроорганизмов, растений и животных.

Не нужно стремиться к установлению постоянного равновесия между человеком и природой. Это и невозможно. Мы должны научиться осознанно управлять эволюцией биосферы, главной составной частью которой является человеческое общество.

Экологические проблемы

см. Экологическая проблема

На этой странице материал по темам:
  • Основной фактор изменяющий биосферу

  • Доклад биологические эры биосферы

  • Причины изменения в биосфере биогенеза

  • 3. процесс развития биосферы википедия

  • Главным фактором эволюции биосферы является

Вопросы к этой статье:
  • Под воздействием каких факторов происходила эволюция биосферы?

  • Назовите факторы, воздействующие на эволюцию биосферы.

  • Изложите основные этапы эволюции биосферы.

  • Дайте объяснение этапов биогенеза и ноогенеза.

  • С чем связаны этапы биогенеза и ноогенеза эволюции биосферы?

  • Что такое ноосфера?

  • Проанализируйте сходства и различия между биосферой и ноосферой.

  • Что такое озоновый экран?

  • На каком этапе развития биосферы начинает нарушаться состояние гомеостаза?

  • Что представляет собой наука ноогеника и каковы её задачи?

wikiwhat.ru

Эволюция биосферы: состояние, развитие, основные этапы

Понятие, основные этапы

Эволюция биосферы – это история жизни на Земле. Наша Земля, по утверждениям ученых, возникла около 5 млрд. лет назад. За этот период времени она немало изменилась и прошла в своей истории путь от раскаленной массы до планеты, защищенной атмосферой, имеющей воду и населенной различными формами жизни, то есть обладающей биосферой.

Эволюция биосферы имеет основные этапы или эры: архей, протерозой, палеозой, мезозой и кайнозой. Катархей, что означает ниже или ранее древнего, этап существования планеты, имеет отношение только к истории планеты, так как в этот период жизни на Земле еще не было, она появилась позже – в архее или древнем.

Эра архея начинается тем, что появляются первые живые клетки. На этом этапе повествования об «эволюции биосферы», любознательный человек спросит: «Откуда появились? И чего это вдруг?». Такие вопросы будут возникать на все протяжение освещения этой темы. Но продолжим.

Временные периоды и эры

Первые живые клетки получили название – прокариоты, то есть клетки, которые не имеют ограниченных мембраной ядер. Это были простейшие организмы, способные к быстрому размножению. Они жили без кислорода и не могли синтезировать органическое вещество из неорганического. Легко приспосабливались к окружающей среде и ею же и питались. Сформулированный принцип Реди говорит о том, что в это время появляется непреодолимая граница между живым и неживым, хотя они взаимодействуют. Живое происходит только от живого. Опять вопрос: «Если живое происходило от живого и не могло переваривать неживое, то чем оно питалось? Неужели себе подобными?»

Далее происходит, по утверждению ученых, истощение питательной для этих клеток среды и они изменяются и начинают существовать за счет солнечной энергии и сами вырабатывать вещества, необходимые им же для жизни. Этот процесс получил название «Фотосинтез». Он является в эволюции биосферы главным фактором. С этого момента начинается формирование атмосферы Земли, а кислород становится главным условием для существования живых организмов. Постепенно формируется озоновый слой, и содержание кислорода в воздухе достигает привычных на сегодня 21%. То есть пока защитный слой не сформировался, устойчивость живых организмов была такой, что позволяло им существовать и в той среде. Тогда зачем ее менять? Или кислород был побочным эффектом жизнедеятельности, то есть ее отходами?

Так идет эволюция примерно 2 млрд. лет. А в протерозое, то есть 1,8 млрд. лет назад, появляются живые организмы с клетками, в которых явно выражено ядро. Еще через 800 млн. лет, эти организмы, названные эукариоты, разделились на растительные и животные клетки. Растительные продолжили функцию фотосинтеза, а животные начали «учиться» передвигаться.

900 млн. лет назад было положено начало эпохи полового размножения. Это приводит к видовому разнообразию и лучшей приспосабливаемости к условиям окружающей среды. Эволюционный процесс ускоряется.

Проходит около 100 млн. лет и, по мнению ученых, появляются первые многоклеточные организмы. Интересно, как до этого отличались одноклеточные? У многоклеточных организмов появляются органы и ткани.

Наступает эра палеозоя и ее первый этап – кембрий. В кембрийский период возникают практически все животные, в том числе существующие и сейчас. Это: моллюски, рачки, иглокожие, губки, археоциаты, плеченогие и трилобиты.

500 млн. лет назад появляются крупные плотоядные и небольшие позвоночные. Еще через 90 млн. лет они начинают заселять сушу. Живые организмы способные существовать на суше и в воде назвали двоякодышащими. Из них произошли земноводные и сухопутные. Это древние рептилии, схожие на современных ящериц. Появляются и первые насекомые. Еще 110 млн. лет проходит, и насекомые научились летать.

Мезозой. 230 млн. лет назад. Эволюция продолжается. У растений появляется корень, стебель, листья. Формируется система, обеспечивающая растение водой и питательными веществами. Меняются и способы размножения. Споры и семена становятся самыми пригодными для этих целей на суше. Начинаются отложения не переработанных органических отходов. Вместе с отложениями каменных углей, начинает высвобождаться дополнительный кислород.

В эру палеозоя, особенно в период девона и карбона, уровень растительного мира значительно превышал существующий. Леса представляли собой заросли из древовидный плауновых, гигантский хвощовых и различных папоротников. Фауна идет по пути совершенствования семян. Хозяева суши этого периода – рептилии, которые все дальше уходят от воды. Появляются плавающие, летающие и двигающиеся по суше. Они плотоядные и травоядные.

195 млн. лет назад – первые птицы и млекопитающие. Это: птеранодон, плезиозавр, мезозавр, бронтозавр, трицератопс и другие.

Кайнозой. 67 млн. лет назад. Мир млекопитающих, птиц, насекомых и растений огромен. В предыдущий период произошли значительные похолодания, которые внесли некоторые изменения в процесс размножения растений. Преимущества получили покрытосемянные.

8 млн. лет назад – период формирования современных существ и приматов.

Хотя процесс эволюции шел почти 4 млрд. лет, доклеточные живые организмы существуют и сегодня. Это вирусы и фаги. То есть одни доклеточные эволюционировали в человека, а другие остались, как были.

На сегодня фауна насчитывает порядка 1,2 млн. видов, а флора около 0,5 млн.

Как мы видим, каждая эра характеризуется своеобразием видов флоры и фауны. Причем виды, как правило, не переходят из одной эры в другую. Есть лишь некоторые сходства. Можно ли их считать наследованием или это совершенно иные формы жизни? Как один вид преобразовывался в другой и почему? Доказательств, то есть останков переходных форм, а они должны обязательно быть при эволюционных изменениях, нет и у палеонтологии. Во всяком случае, они широко неизвестны.

Палеонтология

Ученые утверждают, что в процессе эволюции были существенные остановки развития. Чем является ее новая эра – эра социальной революции?

В развитии биосферы, биологическая эволюция определяется как процесс развития живой природы, проходящий естественным образом. При этом изменяются и преобразовываются как отдельные экосистемы, так и биосфера в целом. Доказательствами чего считают останки животных и растений, существовавших в прошлом, и следы их жизнедеятельности, найденные в процессе раскопок.  Обнаружением и изучением таких ископаемых останков и следов занимается наука палеонтология. Она также пытается воссоздать или реконструировать внешний вид, особенности питания, поведения и размножения живых организмов прошлого.

Человек с древних времен волей-неволей сталкивался с останками древних животных и растений. Об этом свидетельствуют записи античных авторов: Ксенофона, Геродота, Аристотеля. Ученых эпохи Возрождения: Леонардо да Винчи, Георгия Агрикола, Джироламо Фракасторо. В XIX веке – это, конечно, Чарльз Дарвин, Жорж Кювье, основатель палеонтологии, а в XX – Владимир Ковалевский, Тейар де Шардена и В.И. Вернадский.

Новый этап эволюции

Именно В.И. Вернадский поддерживает термин «Ноосфера», то есть разумная сфера, данный да Шарденом и развивает и научно обосновывает это понятие. Он выделяет этапы эволюции биосферы. Их три: возникновение жизни и первичной биосферы, в котором главенствующее положение отведено химическим реакциям и климатическим изменениям. Следующий — второй этап – это появление новых и разнообразных одно- и многоклеточных организмов. Здесь главной является биологическая эволюция. И третий этап – появление человека и общества, которое начинает по-своему и в своих интересах воздействовать на биосферу, превращая ее в ноосферу или новое эволюционное состояние биосферы.

Жизнь на нашей планете зародилась примерно 3,5 млрд. лет назад и кратко эволюция биосферы представляла собой: появление жизни и постоянный процесс изменения ее форм и видов, вплоть до настоящего времени. После того как в эволюцию стал вмешиваться человек, какие новые виды и формы жизни появились? Наоборот, количество видов и число представителей этих видов стало сокращаться прогрессирующими темпами. И они такие, что новое эволюционное состояние биосферы будет ее последним этапом. Человек лишь пользуется тем, чтобыло создано до него. Просто степень этого использования становиться с развитием науки и технологий, все более глубокой. Единственным достижением человека можно считать его попытки расширить свое присутствие за пределами Земли и ее биосферы.

Вопросы без ответов

Изменения происходят под воздействием каких-то факторов, которые возникли и не дают системе существовать в привычной и удобной для нее манере. Что же это были за факторы? Почему процесс возникновения новых форм и видов ускоряется по мере приближения к нашему времени, а с началом нашей эры – разнообразие видов и их численность начинает сокращаться?

Как люди, которые до сих пор не могут определить возраст Туринской плащаницы, где речь идет о тысяче лет, с легкостью и убежденностью называют эры и их временные промежутки в миллионы лет? Как человек, который отстаивает такое происхождение жизни, после работы идет в церковь, обращается к религии и молится? Ведь церковь утверждает иное происхождение сущего. От кого же мы произошли? От вируса и обезьяны или это был промысел Божий? Достоверных доказательств нет ни у кого. Биосфера в своей истории прошла эволюцию, то есть была причинно-следственная связь, обуславливающая переход от одной стадии к другой или одна биосистема заканчивала свое существование и на ее место приходила другая, с предыдущей совершенно несвязанная?

Видео — Эволюция или 3 800 000 000 лет жизни наших предков за 45 минут

ecology-of.ru

Биосфера. Эволюция биосферы.

Количество просмотров публикации Биосфера. Эволюция биосферы. — 2205

Биосфера (от др.-греч. βιος — жизнь и σφαῖρα — сфера, шар) — оболочка Земли, заселённая живыми организмами, находящаяся под их воздействием и занятая продуктами их жизнедеятельности; ʼʼплёнка жизниʼʼ; глобальная экосистема Земли.

Биосфера — оболочка Земли, заселённая живыми организмами и преобразованная ими. Биосфера начала формироваться не позднее, чем 3,8 млрд. лет назад, когда на нашей планете стали зарождаться первые организмы. Она проникает во всю гидросферу, верхнюю часть литосферы и нижнюю часть атмосферы, то есть населяет экосферу. Биосфера представляет собой совокупность всœех живых организмов. В ней обитает более 3 000 000 видов растений, животных, грибов и бактерий. Человек тоже является частью биосферы, его деятельность превосходит многие природные процессы и, как сказал В. И. Вернадский: ʼʼЧеловек становится могучей геологической силойʼʼ.

Французский учёный-естествоиспытатель Жан Батист Ламарк в начале XIX в. впервые предложил по сути дела концепцию биосферы, ещё не введя даже самого термина. Термин ʼʼбиосфераʼʼ был предложен австрийским геологом и палеонтологом Эдуардом Зюссом в 1875 году.

Целостное учение о биосфере создал биогеохимик и философ В. И. Вернадский. Он впервые отвёл живым организмам роль главнейшей преобразующей силы планеты Земля, учитывая их деятельность не только в настоящее время, но и в прошлом.

Существует и другое, более широкое определœение: Биосфера — область распространения жизни на космическом телœе. При том, что существование жизни на других космических объектах, помимо Земли пока неизвестно, считается, что биосфера может распространяться на них в более скрытых областях, к примеру, в литосферных полостях или в подлёдных океанах. Так, к примеру, рассматривается возможность существования жизни в океане спутника Юпитера Европы.

Местоположение биосферы

Биосфера включает в себя верхние слои литосферы, в которых ещё живут организмы, гидросферу и нижние слои атмосферы.

Границы биосферы

Верхняя граница в атмосфере: 15—20 км. Она определяется озоновым слоем, задерживающим коротковолновое ультрафиолетовое излучение, губительное для живых организмов.

Нижняя граница в литосфере: 3,5—7,5 км. Она определяется температурой перехода воды в пар и температурой денатурации белков, однако в основном распространение живых организмов ограничивается вглубь несколькими метрами.

Граница между атмосферой и литосферой в гидросфере: 10—11 км. Определяется дном Мирового Океана, включая донные отложения.

Состав биосферы

Структура биосферы:

Живое вещество — вся совокупность тел живых организмов, населяющих Землю, физико-химически едина, вне зависимости от их систематической принадлежности. Масса живого вещества сравнительно мала и оценивается величиной 2,4…3,6·1012 т (в сухом весе) и составляет менее одной миллионной части всœей биосферы (ок. 3·1018 т), которая, в свою очередь, представляет собой менее одной тысячной массы Земли. Но это одна ʼʼиз самых могущественных геохимических сил нашей планетыʼʼ, поскольку живые организмы не просто населяют земную кору, а преобразуют облик Земли. Живые организмы населяют земную поверхность очень неравномерно. Их распространение зависит от географической широты.

Биогенное вещество — вещество, создаваемое и перерабатываемое живым организмом. На протяжении органической эволюции живые организмы тысячекратно пропустили через свои органы, ткани, клетки, кровь большую часть атмосферы, весь объём мирового океана, огромную массу минœеральных веществ. Эту геологическую роль живого вещества можно представить себе по месторождениям угля, нефти, карбонатных пород и т. д.

Косное вещество — продукты, образующиеся без участия живых организмов.

Биокосное вещество — вещество, ĸᴏᴛᴏᴩᴏᴇ создается одновременно живыми организмами и косными процессами, представляя динамически равновесные системы тех и других. Таковы почва, ил, кора выветривания и т. д. Организмы в них играют ведущую роль.

– Вещество, находящееся в радиоактивном распаде.

– Рассеянные атомы, непрерывно создающиеся из всякого рода земного вещества под влиянием космических излучений.

– Вещество космического происхождения.

Слои биосферы

Аэробиосфера

Субстратом для жизни в атмосфере микроорганизмов (аэробионтов) служат водные капельки — атмосферная влага, источником энергии — солнечная энергия и аэрозоли. Примерно от верхушек деревьев до высоты наиболее частого расположения кучевых облаков простирается тропобиосфера (с тропобионтами; это пространство — более тонкий слой, чем тропосфера). Выше простирается слой крайне разреженной микробиоты — альтобиосфера (с альтобионтами). Выше простирается пространство, куда организмы проникают случайно и не часто и не размножаются — парабиосфера. Выше расположена апобиосфера.

Геобиосфера

Геобиосферу населяют геобионты, субстратом, а отчасти и средой жизни для которых служит земная твердь. Геобиосфера состоит из области жизни на поверхности суши — террабиосферы (с террабионтами), разделяемой на фитосферу (от поверхности земли до верхушек деревьев) и педосферу (почвы и подпочвы; иногда сюда включают всю кору выветривания) и жизнь в глубинах Земли — литобиосферу (с литобионтами, живущими в порах горных пород, главным образом в подземных водах). На больших высотах в горах, где уже невозможна жизнь высших растений, расположена высотная часть террабиосферы — эоловая зона (с эолобионтами). Литобиосфера распадается на слой, где возможна жизнь аэробов — гипотеррабиосферу, и слой, где возможно лишь обитание анаэробов — теллуробиосферу. Жизнь в неактивной форме может проникать глубже — в гипобиосферу. Метабиосфера — всœе биогенные и биокосные породы. Глубже расположена абиосфера.

В глубинах литосферы есть 2 теоретических уровня распространения жизни — изотерма 100°C, ниже которой вода при нормальном атмосферном давлении кипит, и изотерма 460°C, где при любом давлении вода превращается в пар, то есть в жидком состоянии быть не может.

Гидробиосфера

Гидробиосфера — весь глобальный слой воды (без подземных вод), населённый гидробионтами — распадается на слой континœентальных вод — аквабиосферу (с аквабионтами) и область морей и океанов — маринобиосферу (с маринобионтами). Выделяют 3 слоя — относительно ярко освещённую фотосферу, всœегда очень сумеречную дисфотосферу (до 1 % солнечной инсоляции) и слой абсолютной темноты — афотосферу.

Между верхней границей гипобиосферы и нижней границей парабиосферы лежит собственно биосфера — эубиосфера.

История развития биосферы

Развитие наблюдается лишь в живом веществе и связанным с ним биокосном. В косном веществе нашей планеты эволюционный процесс не проявляется.

Особое место в трудах В. И. Вернадского занимает концепция эволюции биосферы. Основная идея состоит по сути в том, что биосфера формировалась под воздействием живых организмов. Начиная же с момента возникновения жизни происходит постоянный процесс эволюции живых существ: возникают многочисленные новые виды, осуществляется смена видов на нашей планете. Естественно, изменения затрагивают и саму биосферу.

На начальных этапах развития существовали гетеротрофные анаэробные организмы, существующие в Мировом океане за счёт органических веществ, возникших в результате сложных химических процессов. Далее (по мере уменьшения запасов органических веществ) появляются автотрофные организмы, способные сами создавать органические вещества, используя энергию солнечного света. В результате их жизнедеятельности (фотосинтеза) в атмосферу стал выделяться кислород. Это стало предпосылкой появления аэробных организмов. Усложнение живого, увеличение его разнообразия приводили к изменению биосферы. Следовательно, эволюция биосферы сопряжена с эволюцией форм жизни на нашей планете.

В. И. Вернадский выделял три этапа развития биосферы:

1. Первый этап — возникновение жизни и первичной биосферы. Ведущие факторы здесь — геохимические и климатические изменения на Земле.

2. Второй этап — усложнение структуры биосферы в результате появления многочисленных и разнообразных эукариотных организмов — как одноклеточных, так и многоклеточных. Движущим фактором выступает биологическая эволюция.

3. Третий этап — возникновение человека, человеческого общества и постепенное превращение биосферы в ноосферу.

Зарождение жизни

Жизнь на Земле зародилась ещё в архее — примерно 3,5 млрд. лет назад в гидросфере. Такой возраст имеют найденные палеонтологами древнейшие органические остатки. Возраст Земли как самостоятельной планеты Солнечной системы оценивается в 4,5 млрд. лет. Τᴀᴋᴎᴍ ᴏϬᴩᴀᴈᴏᴍ, можно считать, что жизнь зародилась ещё в юношескую стадию жизни планеты. В архее появляются первые эукариоты — одноклеточные водоросли и простейшие организмы. Начался процесс почвообразования на суше. В конце архея появился половой процесс и многоклеточность у животных организмов.

Будущее биосферы

С течением времени биосфера становится всё более неустойчивой. Существует несколько трагичных для человечества преждевременных изменений состояния биосферы, некоторые из них связаны с деятельностью человечества.

Некоторые философы, к примеру, Дэвид Пирс, выступают за модификацию биосферы с целью избавления от страданий всœех живых существ и создание в буквальном смысле рая на Земле (см. одно из значений слова аболиционизм).

История исследований биосферы

Большой вклад в развитие учения о биосфере внёс В. И. Вернадский.

Искусственная биосфера

Биосфера — открытая система. Человек не может существовать вне биосферы, однако стремится исследовать космическое пространство. Ещё К. Э. Циолковский связывал освоение космоса с созданием искусственной биосферы.

Сегодня идея её создания вновь становится актуальной в связи с планами освоения Луны и Марса. При этом на данный момент попытка создания полностью автономной искусственной биосферы не увенчалась успехом.

Рассматривается возможность создания (пока в далёком будущем) внеземной биосферы на других планетах при помощи терраформирования.

referatwork.ru

Эволюция биосферы

Биосфера большой и очень сложный комплекс из множества элементов, взаимодействующих друг с другом миллионы лет. Научные теории, касающиеся возникновения и эволюции биосферы, носят преимущественно гипотетический характер. Выкладки, даже те, которые не противоречат современным физическим, химическим, биохимическим и другим законам, в основном невозможно подтвердить экспериментально.
Рассмотрим наиболее признанные гипотезы, касающиеся ключевых моментов эволюции биосферы.

Теория Большого взрыва как гипотеза зарождения Вселенной

В 1922 г. советский математик и геофизик Александр Александрович Фридман нашел решение уравнений общей теории относительности Альберта Эйнштейна. Оказалось, что решение является нестационарным, то есть Вселенная должна либо расширяться, либо сжиматься. В 1929 г. американский астроном Эдвин Хаббл обнаружил разбегание галактик, что свидетельствовало о расширении Вселенной. Анализируя картину расширения Вселенной, ученые пришли к выводу, что примерно 20 млрд. лет назад Вселенная была сжатой в точку и имела сколько угодно большую плотность. В результате Большого взрыва она начала расширяться, иначе говоря, существовать в привычном нам виде.

Ученые смогли восстановить картину развития Вселенной с малых долей первой секунды после Большого взрыва, но никто не знает ни причин, вызвавших взрыв, ни то, что было до него. «Теория «Большого взрыва» в настоящее время столь надежно установлена и верна, сколько верно то, что Земля вращается вокруг Солнца», — констатировал академик, советский физик-теоретик Зельдович в 1982 г. на международном конгрессе. Спустя 15 млрд. лет после Большого взрыва, то есть примерно 5 млрд. лет назад, сформировалась планета Земля как космическое тело.

Теория А.И. Опарина как гипотеза возникновения жизни (органических веществ, предбиологических структур) на планете Земля

Теория появления условий для возникновения жизни на Земле принадлежит советскому биохимику академику Александру Ивановичу Опарину, который сформулировал ее в 1922 году. Он предположил, что из молекул водяных паров, метана, аммиака и углекислого газа, составлявших атмосферу планеты на ранних этапах ее жизни, в результате случайных комбинаций под действием высоких температур от искровых разрядов, пронизывающих тогда еще бурлящую и клокочущую планету, стало возможным образование более сложных соединений, в том числе и образование аминокислот — кирпичиков, из которых строится основа жизни — белок. Их накопление в течение многих миллионов лет привело к образованию «питательного бульона жизни» — раствора молекул различных аминокислот. В некоторой степени эта теория была подтверждена экспериментально.

В 1952 г. молодой американский химик Стенли Миллер сделал смесь, имитирующую предположительный начальный состав атмосферы и океана Земли. Через нее пропускали электрические разряды, имитирующие молнии. Через неделю был произведен химический анализ смеси, и там были обнаружены некоторые аминокислоты.

Позже этот эксперимент был повторен многими исследователями. В соответствии со вторым началом термодинамики большие молекулы не могут быть равномерно распределены в растворе. Под действием электростатических сил они начинают объединяться в отдельные образования типа комочков геля, обрастая все новыми и новыми молекулами и образуя крупные капли с индивидуальной структурой и составом. Каждая сформировавшаяся таким образом капля имеет сугубо индивидуальную структуру, состав которой случаен. Далее начинает работать своеобразный отбор: устойчивые комбинации молекул сохраняются, неустойчивые — распадаются, а из их осколков образуются другие варианты случайных конструкций. Достигнув определенных размеров, капля, не будучи прочной, рассыпалась на две-три части под действием внешних механических сил. Образовавшиеся вновь капли по структуре совпадали с первоначальной.

Они как бы унаследовали от исходной капли ее индивидуальные особенности. Они вновь начинали «расти», дробились и т.д. Однако это еще не было живым веществом, это была так называемая предбиологическая структура, поведение которой описывается законами гидродинамики.

Прошло еще много миллионов лет, прежде чем эти капли превратились в живые клетки. Устойчивая прабелковая молекула, случайным образом «научившаяся» воспроизводить саму себя, получила колоссальное преимущество и расселилась по «питательному бульону». По мнению ученых, уже через каких-нибудь 1,0-1,5 млрд. лет появились многоклеточные организмы. Жизнь из плесневой и слизистой формы стала активной жизнью привычных нам существ. Теория А.И. Опарина завоевал а широкое признание, но она не может четко ответить на вопрос: как именно произошел переход от сложных органических веществ к простым живым организмам.

Большой биологический взрыв как гипотеза перехода от неживой к живой форме организации материи

Великий Луи Пастер в XIX в. первым обратил внимание на то, что в неживой природе молекулы либо зеркально симметричны (вода Н-О-Н, углекислый газ О-С-О), либо одинаково часто встречаются их правые и левые стерео изомеры. В то же время, молекулы, из которых построены живые организмы, зеркально асимметричны, то есть киральны, чаще всего они подобны винтам, а во многих случаях ими и являются (например, двойная спираль молекулы ДНК).

Но, самое главное, эти молекулы встречаются в природе лишь в каком-то одном варианте — либо только левом, либо только правом (так, спираль молекулы ДНК всегда только правая). Пастер, а затем Вернадский сделали предположение, что именно киральная чистота служит индикатором границы между химией живой и неживой природы.

Можно сказать, что в отлично от неорганических объектов живые организмы построены из винтов, причем винты одного типа только левые, другого — только правые.

Человек как живой организм построен из молекул определенной киральности (для одних видов молекул левой, для других — правой). Потребляемая человеком органическая пища также построена из молекул определенной киральности. Ясно, что киральность молекул пищи согласуется с киральностью молекул человеческого организма (подобно тому, как правые гайки согласуются с правыми винтами, а левые — с левыми). А что будет, если киральность молекул пищи вдруг изменится Такая пища будет уже непригодной, и может оказаться биологически ядовитой. Современные технологии позволяют получать зеркально отраженные стереоизомеры, их действие на организм человека оказывается совершенно иным по сравнению с действием природных стереоизомеров. Так «отраженный» стереоизомер витамина. С не воспринимается организмом, добавки в пищу некоторых искусственно полученных «отраженных» стереоизомеров, например фенилаланина, приводят к резкому нарушению обмена веществ, сопровождающемуся умопомешательством.
Для решения вопроса возникновения жизни на Земле необходимо было решить — каким образом зеркально симметричный неживой мир сумел перейти к кирально чистому, асимметричному живому. Современная наука пришла к выводу, что этот переход произошел скачкообразно, революционно, и этот скачок получил название Большого биологического взрыва, в ходе которого в подходящих условиях произошел акт самоорганизации материи (по некоторым оценкам процесс глобального перехода к киральной чистоте значительной части молекул мог произойти всего за 1-10 млн. лет). Появление живого вещества ознаменовало собой переход от геохимической эволюции к биогеохимической. Для осуществления этого перехода разницы были необходимы уникальные условия раннего геологического периода.

После завершения скачкообразного, революционного распространения жизни на Земле начал действовать принцип Реди (итальянский врач и естествоиспытатель XVII в.): живое происходит только от живого, между живым и неживым веществом существует непроходимая граница, хотя и имеется постоянное взаимодействие.
Сейчас на Земле возникновение какой-либо новой жизни из неживого вещества невозможно — поскольку отсутствуют необходимые условия.

Учение о биосфере

После возникновения живого существа как такового из “прабиотического бульона” начался процесс эволюции жизни, который изменил атмосферу, океаны и поверхность суши. Этот процесс подробно описан В.И. Вернадским и составляет суть его учения о биосфере. Он первый создал единую картину мира и указал в ней роль живого вещества.

Вернадский обосновал, что возникновение биосферы на Земле — это объективный результат развития общего космического процесса, и что биосферу нужно рассматривать как целостную геологическую оболочку Земли, состоящую из живого и неживого вещества, а также внешних условий существования жизни (таких как атмосферное давление и температура). Вернадский подчеркивал, что для строения биосферы характерны физико-химическая и геометрическая В.И. Вернадский разнородности. Разнородность строения является главным фактором, резко отличающим биосферу от всех других оболочек земного шара. Живое вещество охватывает всю биосферу, ее создает и изменяет.

Живое вещество едва ли составляет одну — две сотых процента от массы Земли. Но в геоформирующих процессах оно является самой большой, действенной силой. В. И. Вернадский показал, что тонкая оболочка Земли — биосфера, состоящая из разнородных структур — живого и неживого вещества, поддерживает в состоянии динамического равновесия все протекающие в ней процессы благодаря непрерывному перетоку (круговороту) атомов из косной материи через живое вещество снова в неживую природу, в котором одни и те же атомы постоянно меняют свои соединения. Он описал роль живых организмов в создании современного газового состава атмосферы, в формировании горных пород, вод мирового океана. Учение В. И. Вернадского — это философское и естественнонаучное обобщение законов развития нашей планеты с позиций единого космического процесса и исключительной роли, которую выполнило и выполняет на ней живое вещество. В. И. Вернадский создал его в 20-30-е годы XX века. Некоторые его смелые идеи получают экспериментальное подтверждение только сейчас.

С учетом учения Вернадского в настоящее время биосферу определяют как активную оболочку Земли, в которой совокупная деятельность живых организмов проявляется как геохимический фактор планетарного масштаба

Учение о ноосфере

Одним из уникальных этапов эволюции биосферы явилось возникновение разума как высшей познавательной способности живого организма.

Истоки и механизмы возникновения разума настолько же туманны, как и происхождение жизни в целом мозг человека и мозг животных (по крайней мере, высших млекопитающих) состоит на одних и тех же нейронов. При этом мозг человека обладает способностью познавать сам себя, видеть себя со стороны, эффективно передавать накопленные знания. Благодаря появлению разума возникает общество — совокупность индивидуумов, способных к совместному труду, к планомерной деятельности, к совместной духовной жизни, которая является большим, чем просто сумма проживающих в нем людей.

Появление интеллекта и закрепление господствующей роли Homo Sapiens (как единственного выжившего носителя разума) радикальным образом ускорило темпы практически всех процессов, протекающих во внешней оболочке Земли – биосфере. При этом развитие человека как биологического вида примерно 30-40 тысяч лет назад остановилось.

Механизм генетического развития человека на основе внутривидового отбора перестал функционировать Эволюция, морфологическое совершенствование человека, в том числе и развитие мозга, закончились! Почему это произошло?

Подавлять мощный механизм естественного отбора могут только столь же мощные факторы. Одна из гипотез относительно этого (академика Никиты Николаевича Моисеева) основывается на том, что на определенном этапе эволюции наших предков помимо силы, выносливости и других чисто физических качеств, определяющих выживание прачеловека, стала осознаваться определяющая роль знания, опыта и мастерства.
Знания и опыт повлекли за собой формулирование целого ряда запретов-табу в поведении и действиях членов общества.

Мудрецы и умельцы, которые во все большей степени обеспечивали благосостояние рода или племени, далеко не всегда были самыми сильными и смелыми членами общества, кому обычно естественный внутривидовой отбор давал преимущества. Жизненной необходимостью рода-племени стала защита не только самок и потомства, но и тех, кто оказывался носителем знаний и мастерства.

На этой основе сформировался важнейший из всех запретов — «не убий!».

В силу его исключительной важности для любой человеческой общности он оказался в основе морали и существует в том или ином виде у всех народов, во всех религиях. Возникновение именно этого запрета, вероятно, и поставило предел морфологическому совершенствованию организма человека. Защита слабых — эта дополнительная и весьма обременительная нагрузка, которую по необходимости взяло на себя рождавшееся общество, — прекратила действие естественного отбора, а следовательно, и индивидуальное развитие человека.

Само зарождение жизни на Земле является реализацией одной из возможных форм самоорганизации материи.
То же самое можно сказать и о двух рассматриваемых явлениях эволюции живого вещества на Земле — возникновении разума и норм морали — это тоже формы самоорганизации материи. Это естественная, хотя и не обязательная фаза развития живого.

После прохождения точки бифуркации (пороговая точка любой системы, когда она выводится из равновесия, переживает кардинальные изменения) у любой сложной системы есть много вариантов нового стабильного состояния. Какой из них будет реализован, заранее предсказать невозможно в принципе, поскольку это зависит от тех неизбежно присутствующих случайных воздействий — флуктуации внешней среды, которые в момент перехода через пороговое состояние и будут определять выбор. Поэтому необходимо понимать, что и жизнь как таковая, и человек как биологический вид, обладающий разумом и развивающийся в рамках определенных норм морали, есть явление уникальное. В привычном нам «виде» он больше нигде и никогда не возникнет — что не отрицает существования и возникновения прочих форм самоорганизации материи, «другой» жизни, разума, морали.

У человека, как уникального явления, есть только один путь выживания — это действовать в согласии с планетарными объективными законами эволюции. Иначе он исчезнет, погубив сам себя.

Об этом уже в первые годы XX столетия начал говорить В.И. Вернадский. Он отмечал, что воздействие человека на окружающую природу растет столь быстро, что скоро он превратится в решающую геолого-образующую силу, и окажется ответственным за будущее развитие природы.

Развитие окружающей среды и общества сделаются неразрывными, образовав новую оболочку Земли, ноосферу — сферу разума. В результате этого развитие планеты сделается направленным — направляемым силой разума.

Термин «ноосфера» предложил французский исследователь Леруа в 1924г., впоследствии он был широко популяризован Пьером Тейяр де Шарденом — французским палеонтологом, занимающимся вопросами эволюции. В.И.Вернадский стал употреблять этот термин только в последние годы своей жизни.

geographyofrussia.com

Эволюция биосферы

В эру научно-технического прогресса особое значение приобретают знания о жизненных процессах на Земле в целом. Важную роль в этих процессах играют живые организмы. За миллиарды лет, прошедшие с момента образования нашей планеты, они наполнили атмосферу кислородом и азотом, очистили её от углекислого газа, сформировали отложения известняка, нефти, природного газа. В процессе эволюции на Земле образовалась особая оболочка – биосфера (греч. bios «жизнь»). Термин «биосфера» впервые был использован в 1875 г. австрийским геологом Э. Зюссом. Под биосферой понимается совокупность всех живых организмов вместе со средой их обитания, в которую входят: вода, нижняя часть атмосферы и верхняя часть земной коры, населенная микроорганизмами.


Рис.1. Общий вид биосферы

Два главных компонента биосферы — живые организмы и среда их обитания - непрерывно взаимодействуют между собой и находятся в тесном, органическом единстве, образуя целостную динамическую систему. Биосфера как глобальная суперсистема в свою очередь состоит из ряда подсистем. Отдельные живые организмы не существуют изолированно. В процессе своей жизнедеятельности они соединяются в различные системы (сообщества), например, в популяции.


Рис.2. Популяция тупиков

В ходе эволюции образуется другой, качественно новый уровень живых систем, так называемые биоценозы — совокупность растений, животных и микроорганизмов в локальной среде обитания. Эволюция жизни постепенно приводит к росту и углублению дифференциации внутри биосферы. В совокупности с окружающей средой обитания, обмениваясь с ней веществом и энергией, биоценозы образуют новые системы — биогеоценозы или, как их еще называют, экосистемы. Они могут быть разного масштаба: море, озеро, лес, роща и т. д. Биогеоценоз представляет собой естественную модель биосферы в миниатюре, включающую все звенья биотического круговорота: от зеленых растений, создающих органическое вещество, до их потребителей, в итоге превращающих его вновь в минеральные элементы. Иначе говоря, биогеоценоз является элементарной ячейкой биосферы. Таким образом, в совокупности все живые организмы и экосистемы образуют суперсистему — биосферу.


Рис.3. Экологическая структура биоценоза пруда

Эволюция биосферы. Учение Вернадского о биосфере

Существуют различные точки зрения относительно времени возникновения биосферы. Согласно одной из них (концепция В.И. Вернадского), биосфера возникла на самой ранней стадии развития планеты Земля и имеет возраст, близкий к возрасту Земли (приблизительно 4,6 млрд. лет). По Вернадскому, переход от неживого вещества к простейшим формам живого занял незначительный (в геологическом масштабе) отрезок времени — не более 200 лет. Характерными чертами биосферы, в рамках концепции Вернадского, являются следующие:

1. Биосфера возникла сразу как совокупность биогеоценозов. Живое вещество сформировалось как совокупность сложных живых организмов.

2. Первичные организмы способны обеспечить все основные процессы (биохимические, биологические), происходящие в оболочках Земли.

3. Живые организмы обеспечивают миграцию химических элементов в земной коре.

Согласно другой точке зрения, биосфера сформировалась на определенном этапе развития Земли. Сначала был этап предоболочек, затем сформировались основные земные оболочки и лишь потом появилась биосфера.

По мнению Beрнадского, появление и существование человека в биосфере определяет высшую ступень ее развития. Само появление человека представляет переход от простого биологического приспособления живых организмов к разумному поведению и целенаправленному изменению окружающей среды разумными существом Живое вещество планеты при этом активно приспосабливается к новым условиям существования в природе. Происходит внезапное совместное влияние природы на человека и человека природу, и человек теперь несет ответственность за эволюцию жизни.

Существуют два основных определения понятия «биосфера», одно из которых известно со времени появления в науке данного термина. Это понимание биосферы как совокупности всех живых организмов на Земле. Ученик Докучаева, создателя учения о почвах, В.И. Вернадский, изучавший взаимодействие живых и неживых систем, выдвинул принцип неразрывной связи живого и неживого, переосмыслив понятие биосферы. Он понимал биосферу как сферу единства живого и неживого.


Рис.4. Многообразие живого вещества биосферы

Такое толкование определило взгляд Вернадского на проблему происхождения жизни на Земле. Рассматривались следующие варианты: 1) жизнь возникла до образования Земли и была занесена на нее; 2) жизнь зародилась после образования Земли; 3) жизнь зародилась вместе с формированием Земли. Вернадский придерживался последней из этих точек зрения и считал, что нет убедительных научных данных о том, что живое когда-либо не существовало на нашей планете. Иными словами, биосфера была на Земле всегда.

Биосфера (греч. bios — жизнь, sphaira — шар) — оболочка Земли, населенная живыми организмами и преобразованная ими. Биосфера тесно связана со всеми другими земными оболочками, является следствием, прежде всего биогеохимического круговорота, который обеспечивается солнечной энергией. В биосфере организмы и среда их обитания вследствие длительного взаимодействия друг с другом образуют целостную систему, находящуюся в динамическом равновесии.

Биосфера, согласно Вернадскому, включает в себя следующие составные части.

1. Живое вещество, образованное совокупностью организмов.

2. Биогенное вещество, которое создается в процессе жизнедеятельности организмов (газы атмосферы, каменный уголь, нефть, известняки и т.д.).

3. Косное вещество, которое формируется без участия живых организмов (в результате движения земной коры, деятельности вулканов, метеоритов).

4. Биокосное вещество, представляющее собой совместный результат жизнедеятельности организмов и небиологических процессов (почвы).

Вернадский сформулировал основные принципы организации биосферы в целом. Это два биогеохимических принципа.

1. Геохимическая энергия живого вещества в биосфере (включая человека как высшее наделенное разумом существо) стремится и максимальному проявлению.

2. В ходе эволюции видов живых организмов выживают организмы, которые своей жизнедеятельностью максимально увеличивают биогенную геохимическую энергию.


Рис.5. Фрагмент эволюции живого вещества биосферы

Вернадский осуществил оценки количества живого вещества в биосфере, на основании которых сформулировал следующий принцип: на протяжении всей истории Земли количество живого вещества в биосфере было практически постоянным. В настоящее время человек нарушил свое равновесие с биосферой. Пока человек (и крупные животные) в своем потреблении продуктов биосферы не превышали 1 % их общего количества, биосфера находилась в динамическом равновесии с другими земными оболочками. Современный человек потребляет на свои нужды уже более 7%. продуктов биосферы и существенно нарушает ее естественный баланс. Например, уже изменилось соотношение запасов углерода в атмосфере и на суше, разность между синтезом и разложением органических веществ стала в сотни раз больше, чем было первоначально.

Биосфера уже не справляется со своей функцией стабилизации, и скоро эту функцию человечеству придется взять на себя. В конце концов, когда вся система жизни и среды станет управляться человеком, тогда биосфера превратится в ноосферу. Но тогда основная часть энергетических и трудовых затрат уйдет на стабилизацию окружающей среды (по некоторым оценкам — более 99%). На поддержание и развитие цивилизации останется всего лишь несколько процентов (или даже менее 1%). Занимаясь им же созданной биогеохимией, изучающей распределение химических элементов по поверхности планеты, Вернадский пришел к выводу, что нет практически ни одного элемента таблицы Менделеева, который не включался бы в живое вещество. Вернадский подчеркивал также важное значение энергии и называл живые организмы механизмами превращения энергии.

Детальное обоснование теоретические представления В.И. Вернадского и А.Л. Чижевского получают в наши дни. Так, исследования нашей космонавтики:

1. Позволили открыть новые многочисленные данные о связи земных и космических процессов.

2. Радикально повлияли на способы осуществления астрофизических и астрономических наблюдений и открытий.

3. Привели к своеобразной научной революции в астрофизике.

Так, например, в 60-х гг. были открыты квазары — космические объекты с грандиозным по энергетической мощи уровнем излучения (излучают в десятки раз больше энергии, чем самые мощные галактики), а также такие космические явления, как вспышки сверхновых. По современным астрофизическим представлениям, именно излучение сверхновых является главным источником космических лучей в Галактике. Они могут оказывать влияние, так как рентгеновский поток, исходящий от сверхновых, может создавать в стратосфере Земли высокие концентрации окиси азота — разрушителя озонового слоя, являющегося экраном, предохраняющим все живое Земли от воздействия жесткого излучения Солнца.


Рис.6. Связь земных и космических процессов — Полярное сияние

Представления о различных формах взаимодействия живого вещества с космическими материально-энергетическими потоками приобретают все большее значение также благодаря активно разрабатываемым гипотезам о существовании, по меньшей мере, в пределах нашей Галактики всепроникающей общегалактической живой системы. Они указывают на присутствие огромного количества микроорганизмов в космическом пространстве нашей Галактики. Исследования в этом направлении могут рассматриваться как свидетельство в пользу концепции, выдвигавшейся В.И. Вернадским о широком, космическим по масштабам, распространении во Вселенной живого вещества, его космическом значении.

Естественнонаучные гипотезы и факты показывают, что исследования взаимодействий, начатые трудами В.И. Вернадского и его последователей, представляют опережающие, перспективные направления в естествознании, постижении тайн природы.


Рис.7. Наша галактика – Млечный путь

По В.И. Вернадскому, наша планета и Космос представляются ныне как единая система, в которой жизнь, живое вещество связывают в единое целое процессы, протекающие на Земле с процессами космического характера. Согласно оценкам В.И. Вернадского, на протяжении всей истории Земли количество живого вещества в биосфере было практически постоянным. Грандиозная картина общепланетарного развития включала в себя и появление человека — носителя Разума, который ускорил все процессы, развивающиеся на планете. Он говорил, что воздействие человека на природу растет столь быстро, что он превратиться в основную в основную геологическую силу и должен будет принять на себя ответственность за будущее развитие природы. Биосфера постепенно превращается в ноосферу.

Биосфера и космические циклы

Связь между циклами солнечной активности и процессами в биосфере была замечена еще в XVIII в. Тогда английский астроном В. Гершель обратил внимание на связь между урожаями пшеницы и числом солнечных пятен. В конце XIX в. профессор Одесского университета Ф.Н. Шведов, изучая срез ствола столетней акации, обнаружил, что толщина годичных колец изменяется каждые 11 лет, как бы повторяя цикличность солнечной активности. Но лишь в XX в. удалось понять, что солнечная активность связана с электромагнитными и другими колебаниями мирового пространства.

Установил этот факт Чижевский, который обобщил опыт предшественников и подвел под эти эмпирические данные твердую научную базу. Он считал, что Солнце диктует ритм большинства биологических процессов на Земле, и, когда на нем образуется много пятен, наблюдаются хромосферные вспышки и усиливается яркость короны (это характерно для периодов активного Солнца), на нашей планете разражаются эпидемии, усиливается рост деревьев, особенно активно размножаются вредители сельского хозяйства и микроорганизмы — возбудители различных болезней. К такому заключению Чижевский пришел, изучая графики солнечной активности и активности биосферы путем наложения их друг на друга.


Рис.8. Циклы солнечной активности

Сегодня основная масса ученых едины во мнении, что человек и человечество составляют часть живого вещества нашей планеты. Это означает, что люди также подвержены действию космических энергий и солнечной радиации. Например, человеческий организм, так же как организмы других животных, «подстраивается» к ритмам биогеосферы, прежде всего суточным (циркадным) и сезонным, связанным со сменой времен года.

Обмен веществ у человека протекает в наследуемом из поколения в поколение циркадном ритме. В настоящее время считается, что около 40 процессов в человеческом организме подчинено строгому циркадному ритму. Например, еще в 1931 г. была установлена цикличность в функционировании печени человека. У людей, ведущих нормальный образ жизни и питающихся три раза в день, в первую половину дня печень выделяет наибольшее количество желчи, которая необходима для переваривания жиров и белков, расходуя запасенный гликоген и превращая его в простые разновидности сахара. Она отдает воду, образуя много мочевины, и накапливает жиры. Во второй половине дня печень начинает усваивать сахара, накапливая гликоген и воду. Объем ее клеток увеличивается в 3 раза.

На протяжении суток циклично колеблется содержание гемоглобина в крови, максимум его приходится на 11 — 13 часов, а минимум — на 16 — 18 часов. Суточным колебаниям подвержено содержание в крови калия, магния, натрия, кальция, железа. Ночью повышается количество солей магния, а в мозговой жидкости — солей калия. Оба эти соединения гасят нервно-мышечную возбудимость. По суточному графику работает вегетативная нервная система. Статистика утверждает, что даже рождение и смерть чаще случаются в темную часть суток, около полуночи.

Вся живая природа чутко реагирует на сезонные изменения окружающей температуры, интенсивность солнечного излучения — весной покрываются листвой деревья, осенью листва опадает, затухают обменные процессы, многие животные впадают в спячку и т. д. Человек здесь не исключение. На протяжении года у него меняется интенсивность обмена, состав клеток тканей, причем эти колебания различны в разных климатических поясах.

Так, в южных районах (Сочи) содержание гемоглобина и количество эритроцитов, а также максимальное и минимальное давление крови в холодный период возрастают на 20% по сравнению с теплым периодом времени. А в условиях Севера наибольший процент гемоглобина обнаружен у большинства обследованных жителей в летние месяцы, а наименьший — зимой и в начале весны.

Циклы солнечной активности оказывают свое влияние и на жизнедеятельность человека. Так, обработав материал по вспышкам возвратного тифа в Европейской России с1883 по1917 гг., а также данные по холере в России с 1823 по 1923 гг. и данные по активности Солнца, Чижевский пришел к выводу, что эти земные явления наступают синхронно с изменениями, происходящими в разных солнечных сферах. На основании построенных им графиков он еще в 1930 г. предсказал, что в 1960 - 1962 гг. произойдет эпидемическая вспышка холеры, что действительно случилось в странах Юго-Восточной Азии.

То, что состояние солнечной активности небезразлично для жизни на Земле, показывает и увеличение числа случаев заражения чесоткой в 1968 г. и неожиданно подскочившее число заболеваний клещевым энцефалитом и туляремией на вершине максимума векового цикла солнечной активности в 1957 г. (несмотря на проводившуюся, как и в прошлые годы, вакцинацию населения).

Таким образом, мы обнаруживаем явную взаимосвязь человека с растительным и животным миром, в котором все жизненные циклы — заболевания, массовые перекочевки, периоды бурного размножения млекопитающих, насекомых, вирусов - протекают синхронно с 11-летними циклами солнечной активности, как и чередование грозовой и спокойной летней погоды, большего и меньшего производства растительной массы.


Рис. 9. Связь числа психических заболеваний и солнечной активности

Гематологи пришли к выводу, что в годы максимума солнечной активности норма свертывания крови у здоровых людей увеличивается вдвое, а так как у сердечно-сосудистых больных способность несвертываемости крови угнетена, то при увеличении солнечных пятен учащаются инфаркты, инсульты. Поэтому сегодня никого не удивляет, когда в СМИ сообщают о неблагоприятных днях, в которые люди, больные хроническими заболеваниями, должны вести себя с осторожностью.

Приведенные факты позволяют нам говорить о влиянии космоса на физиологические процессы в отдельном человеческом организме. Но ведь одновременно человек является частью человечества, общественного организма, который также подвержен влиянию солнечной активности. Чижевский попытался установить взаимосвязь 11-летних солнечных циклов с насыщенностью историческими событиями разных периодов человеческой истории. В результате своего анализа он сделал вывод, что максимум общественной активности совпадает с максимумом солнечной активности.

Средние точки течения цикла дают максимум массовой деятельности человека, выражающийся в революциях, восстаниях, войнах, походах, переселениях, указывают на начала новых исторических эпох в истории человечества. В крайних точках течения цикла напряжение общечеловеческой деятельности военного или политического характера понижается до минимального предела, уступая место созидательной деятельности и сопровождаясь всеобщим упадком политического и военного энтузиазма, миром и спокойной творческой работой в области государственного строительства, науки и искусства. По подсчетам Чижевского, во время минимума солнечной активности социальная активность составляет не более 5%, во время максимума — достигает 60%.



biofile.ru