Расчет электрического освещения методом коэффициента использования светового потока – 3.10.4. Примеры проектировочных (проверочных) расчетов общего равномерного искусственного освещения методом коэффициента использования светового потока.

Содержание

Расчет электрического освещения.

  1. Методы удельной мощности.

    1. Определяем площадь помещения:

где А – ширина помещения = 18 м

В – длина помещения = 36 м

    1. Производим выбор светильника в зависимости от среды в помещении (или класса), источника света:

Среда В – Iа, ЛН, ВЗГ-200АМ

    1. По таблице (стр.1) выбираем Е нормированную, компрессорная с постоянным дежурным персоналом:

Г-0,8, ЛН, Енорм=75лк, Кз=1,3

    1. Определяем расчетную высоту:

м

    1. Определяем удельную мощность по таблицам в зависимости от типа светильников (стр. 156-157):

= 18Вт/м2, pпотолка=50%, pстен=30%, pраб.поверх=10%, Кз=1,3, Z=1,15

    1. Определяем установленную мощность:

    1. Определяем предварительное количество светильников:

    1. Расчет электроосвещения в других помещениях аналогичен и результаты сводим в таблицу:

Таблица 1. Расчетные данные электроосвещения

  1. Расчет электроосвещения методом коэффициента использования светового потока.

2.1.Определяем световой поток лампы и уточняем количество светильников:

где Е – нормированная освещенность, л

S – площадь помещения, м2

Кз – коэффициент запаса

Z – коэффициент неравномерности освещения

n – количество светильников из пункта 1.7

η – коэффициент использования светового потока определяется по таблице (стр. 9-10) в зависимости от:

1) коэффициент отражения pп=50% pс=30% pр=10%

2) индекса помещения

3) типа светильника

2.2.Сравниваем расчетный световой поток с потоком стандартной лампы: ЛН-Г220-200, Фл.ст=2800лм

т.к. Ф≠ Фл.ст

, 3489≠2800 производим перерасчет количества светильников

3.Расчет электрического освещения точечным методом для ламп накаливания

    1. Располагаем светильники на плане.

Задаем количество рядов:

n=72 светильника

n1=3 ряда

Количество светильников в ряду

n2= n/ n1=72/3=24 светильника

Определяем расстояние между рядами:

м

Расстояние от стен:

м

Определяем расстояние между светильниками в ряду:

м

Расстояние от стен:

м

    1. Выбираем контрольные точки.

Расчетные данные заносим в таблицу

Таблица 2. Технические данные расчетов

м

м

м

    1. Определяем освещенность в точке «а»

; где

Фл.ст— световой поток стандартной лампы, лм

μ- 1,02-1,15 – коэффициент, учитывающий освещенность у неучтенных светильников

— суммарная «е»- относительная освещенность

1000- световой поток условной лампы

К3— коэффициент запаса

лк

Следовательно выбираем светильник Н4Б-300Г220-300 Ф

л.ст=4600лм

лк

72 светильника Вт

  1. Расчет электроосвещения для люминесцентных ламп (ЛЛ)

    1. Расчет ЛЛ методом удельной мощности,Вт/м2

Исходные данные:

А=18м, В=36м, H=7м, среда В-Iа

    1. Определяем площадь помещения

    1. Производим выбор светильника

Среда В – Iа, ЛН, ЛН-НОГЛ-1

НОГЛ-1

    1. Выбираем освещенность

Г-0,8, Енорм=155лк, Кз=1,5

м

    1. Определяем удельную мощность

Выбираем лампу ЛТБ-80

= 1,5Вт/м2 при Е=100лк, Z=1,1

При Е-150 лк удельная мощность равна = 6,75Вт/м2

    1. Определяем установленную мощность

    1. Определяем предварительное количество светильников

5.Расчет электрического освещения методом коэффициента использования светового потока

    1. Определяем световой поток ЛЛ и уточняем количество светильников:

где Кз =1,5

Z =1,1

n =27

Светильник второй группы НОГЛ- pпотолка=50%, pстен=30%, pраб.поверх=10%,

    1. Сравниваем расчетный световой поток со световым потоком стандартной лампы

ЛТБ-80 Флл =4440лм Фсв-ка =лк

10600≠8880 производим перерасчет количества светильников

Вывод: принимаем к установке 32 (2*80)

  1. Проверка освещенности в контрольных точках.

    1. Располагаем светильники на плане 32 (2*80), I

      св-1655 мм

а) определяем количество светильников в длину

n2= В/ Lкв=36/1,7=21≈16 шт

принимаем три ряда

б) количество светильников в ряду

n2= n/ n1=32/3=11шт

г) определяем расстояние между рядами:

м

г) расстояние от стен:

м

д) определяем расстояние между светильниками в ряду:

м

е) между светильниками

м

    1. Расчетные данные заносим в таблицу

    1. Определяем Е в контрольной точке

; где

Фл.ст— световой поток стандартной лампы, лм

μ- 1,02-1,15 – коэффициент, учитывающий освещенность у неучтенных светильников

— суммарная «е»- относительная освещенность

1000- световой поток условной лампы

К3— коэффициент запаса

-длина светильника

лс

Принимаем к установке 8 светильников в рядум

лк

Вывод: Принимаем к установке 24 (2*80) светильников.

studfiles.net

Как выполняется расчет освещения: основные методы

Методы расчета освещения

Расчет светового освещения методом светового потока, точечным, или способом удельной мощности, может быть осуществлен для любого помещения. Но если метод коэффициента использования светового потока применяется для расчета общего равномерного освещения, то точечный метод чаще используют для расчета освещенности локальных мест, а метод удельной мощности — для определения примерной мощности светильников.

Кроме того, метод расчета зависит от известных параметров освещения и его конечного назначения. Поэтому, дабы не быть голословными, давайте разберем каждую из этих методик отдельно и по этапам.

Методы расчета освещения

Как мы уже указали выше, существует три основных способа расчета освещения – это метод коэффициента использования светового потока, точечный метод и метод удельной мощности. Давайте разберем каждый из них по отдельности.

Расчет по методу коэффициента использования светового потока

Данный метод расчета, может быть выполнен для двух случаев – когда известно точное количество ламп и необходимо рассчитать их мощность, или, когда известна мощность ламп и необходимо рассчитать их количество. Давайте рассмотрим оба варианта.

Расчет производится по формуле:

Формула расчета методом коэффициента использования

Давайте рассмотрим каждое из значений из этой формулы по отдельности, и разберемся от чего оно зависит.

Часть табл.1 СНиП 23-05-95

Итак:

  • Emin – это минимальное нормируемое значение освещенности для данного помещения. Данное значение задается табл.1 СНиП 23-05-95, и зависит от таких показателей как характеристика зрительной работы, характеристик фона и типа освещения. Для отдельных помещений данный показатель приведен в табл.2 СНиП 23-05-95.

Часть табл.2 СНиП 23-05-95

  • S – это площадь помещения. Здесь все достаточно логично, ведь чем больше площадь помещения, тем большее количество света необходимо для ее освещения. И не учитывать этот фактор мы не можем.
  • Kз – это коэффициент запаса. Этот показатель учитывает, что в процессе эксплуатации лампа будет подвергаться загрязнению, и ее световой поток будет снижаться. Кроме того, данный показатель позволяет учесть снижение отраженной составляющей от стен потолка и других поверхностей. Ведь в процессе эксплуатации краски этих поверхностей тускнеют, и так же поддаются загрязнению. Инструкция советует принимать коэффициент запаса для ламп накаливания равным 1,3, а для газоразрядных ламп равным 1,5. Более точно его можно выбрать по табл.3 СНиП 23-05-95.

Выбор коэффициента запаса

  • Z – коэффициент неравномерности освещения. Данное значение зависит от равномерности распределения светильников по всей площади помещения, а также от наличия затеняющих объектов. Вычисляется данное значение по формуле:

Коэффициент неравномерности освещения

Eср – это среднее значение освещенности в помещении, а Emin – соответственно его минимальное значение.

Обратите внимание! Для большинства помещений, неравномерность освещения строго ограничена. Так, для помещений, в которых выполняются работы I—II зрительных разрядов, коэффициент Z не должен превышать 1,5 для люминесцентных ламп, или 2 для других источников света. Для остальных помещений, данный коэффициент составляет 1,8 и 3 соответственно.

  • N – это количество светильников, установленных в помещении. Он зависит от выбранной системы освещения.
  • n – количество ламп в светильнике. Если применяются одноламповые светильники, то его значение равно единице. При большем количестве, ставим соответствующее число.
  • ɳ — коэффициент использования светового потока. Он определяется как соотношение излучаемого и падающего на рабочую поверхность, светового потока всех ламп. А вот для его определения следует использовать специальную справочную литературу. Ведь данный параметр является производной от индекса помещения, коэффициента отражения стен и потолка, а также от типа светильника.

Таблица выбора коэффициента использования светового потока

Методом коэффициента использования светового потока, можно произвести расчет и количества необходимых светильников, при известной величине светового потока. Для этого следует использовать формулу —

Метод коэффициента использования для расчета количества светильников

Величины в этой формуле не отличаются от рассмотренного выше варианта, поэтому более детально данную формулу рассматривать не будем.

Расчет точечным методом

Расчет точечным методом содержит некоторые отличия для точечных светильников, и для так называемых, световых полос. Под световыми полосами подразумевают люминесцентные лампы. Давайте рассмотрим оба варианта.

Расчет точечным методом

Итак:

  • Начнем с расчета точечных светильников. На самом первом этапе расчета, нам следует вычислить высоту Нр. Данная высота является разностью между высотой подвеса светильника и нормируемой высотой минимальной освещенности.

Расчет величины Нр

  • Высота подвеса светильника — это расстояние от потолка до непосредственно лампы. Она зависит от строения светильника.

Расчет угла α

  • С нормируемой высотой минимальной освещенности, все немного сложнее. Как мы уже говорили выше, в табл. 2 СниП 23-05-95 вы можете найти минимально допустимое освещение практически для любого помещения.
  • В то же время высота, для которой указана данная норма, может отличаться. Обычно она варьируется от 0 до 1,0 метра. Это обусловлено тем, что в одних помещениях необходимо обеспечить максимальную освещенность в районе пола, а для других на уровне движения или стола, то есть 0,7 метра.
  • Для того чтобы получить высоту Нр, необходимо от высоты помещения вычесть две рассмотренные выше высоты.

Чертим план помещения с расстановкой на нем светильников

План помещения с большим количеством светильников

  • Теперь нам следует начертить план помещения и размещения светильников, на котором мы должны определить равноудаленную точку от всех светильников в помещении. Именно для нее будет производится расчет. Кроме того, масштабированный план значительно облегчит расчет точечным методом освещения в любом помещении. Ведь это позволит вычислить расстояние от любого из светильников до расчётной точки – обычно его обозначают d.
  • Вычисление величин Нр и d, нам было необходимо для получения значения горизонтальной освещенности в искомой точке. Эта величина вычисляется по специальным графикам пространственных изолюксов. А этот график зависит от типа светильников.

На фото графики пространственных изолюксов

  • Найдя параметр Нр на оси ординат, а параметр d на оси абсцисс, на их пересечении мы получим условную освещенность в искомой точке от данного светильника.
  • Но нам необходимо найти условную освещенность в данной точке от каждого расположенного поблизости светильника, а затем суммировать их значение. Таким образом мы получим величину Ее.
  • Теперь, для расчета точечным методом, пример формулы будет следующим –

Формула расчета точечным методом

  • В этой формуле, 1000 – это условный световой поток лампы. Ен – нормируемая освещенность, kз – коэффициент запаса, выбор которого мы рассматривали в предыдущем разделе нашей статьи.
  • µ — это коэффициент добавочной освещенности от соседних светильников и отраженного света. Обычно значение данного показателя принимают от 1 до 1,5.

Но для люминесцентных ламп данный расчёт не подходит. Для него разработан так называемый точечный метод расчета светящихся полос. Суть данного метода идентична варианту, рассмотренному выше, и его вполне можно сделать своими руками.

Расчет для светящихся полос

Для начала, как и в первом варианте, вычисляем значение Нр. Затем рисуем план помещения и расположения светильников.

Обратите внимание! План следует создавать с соблюдением масштаба. Это необходимо для определения точки А, для которой мы производим расчет. Эта точка будет расположена посередине светящейся полосы, то есть лампы, и удалена от этой середины на расстояние р.

План помещения и пространственные изолюксы для расчета светящихся полос

  • На следующем этапе, определяем линейную плотность светового потока. Делается это по формуле F=Fсв×n/L. Для этой формулы Fсв – это световой поток светильника. Его значение равно сумме световых потоков всех ламп в светильнике. N – это количество светильников в полосе. Обычно таких светильников один, но могут быть и другие варианты. L – это длина лампы.
  • На следующем этапе, нам необходимо найти так называемые приведенные размеры – р* и L*. Р* = p/Hp, а L*=L/2 ×Hp. Исходя из этих приведенных размеров, по графикам линейных изолюксов находим относительную освещенность в заданной точке. Дальнейшие вычисления выполняем по той же формуле, как и для точечных светильников.

Расчет способом удельной мощности

Последним возможным вариантом расчета освещения, является метод удельной мощности. Данный метод относительно прост, но не дает точных результатов. Кроме того, он требует использования большого количества справочной литературы, приведенной на видео.

Суть данного метода сводится к следующему. Прежде всего, определяем величину Нр. Ее мы искали во всех описанных выше вариантах, поэтому не будем на ней останавливаться более подробно.

Таблицы выбора удельной мощности светильников

  • Дальнейший расчет производится по таблицам. В них мы определяем необходимую для данного помещения удельную мощность всех светильников – Руд.
  • После этого можно определить мощность одной лампы. Делается это по формуле –

Формула расчета удельной мощности

Где S – площадь помещения, а n – количество ламп.

Исходя из полученного значения, находим ближайшее большее значение существующих ламп. Если мощность ламп не соответствует требованиям светильника, то увеличиваем количество светильников, и повторяем расчет методом удельной мощности.

Выбор метода расчета

Имея представление, каким образом производится расчет, давайте рассмотрим, какой из способов выбрать конкретно для вашего случая. Ведь различные методы расчета предназначены для различных помещений и условий.

Итак:

  • Начнем с метода коэффициента использования светового потока. Данный способ нашел достаточно широкое применение. Преимущественно его применяют для расчета общего освещения в помещениях, не имеющих перепадов высот по горизонтали. Кроме того, данный способ не сможет выявить затененные участки, и произвести расчет для них.

Выбираем метод расчета освещенности

  • Для этих целей существует точечный метод. Он применяется для расчета местного освещения, затененных участков и помещений с перепадом высот, а также наклонных поверхностей. Но вот общее равномерное освещение таким методом посчитать достаточно сложно — ведь он не учитывает отраженные и некоторые другие составляющие.
  • А вот способ удельной мощности, является одним из наиболее простых. Но в то же время он не дает точных значений, и преимущественно используется в качестве приближенного. С его помощью определяют приближенное количество светильников и их мощность.

Кроме того, данный расчет позволяет определить, какова приближенная цена монтажа и эксплуатации данной осветительной системы.

Вывод

Конечно, такие сложные методологии совершенно не нужны, если вы просто создаете освещение рассады в домашних условиях. Для этого и подобных случаев, достаточно применить нормируемый показатель минимальной освещенности, умножив его на площадь помещения.

А уже, исходя из полученного значения, выбрать количество и мощность ламп. Но если говорить о промышленных масштабах, то здесь без тщательного расчёта не обойтись. И лучше в данном вопросе не заниматься самодеятельностью, а довериться профессиональным конструкторским бюро.

elektrik-a.su

Расчёт электрического освещения методом коэффициента использования светового потока | ЭлектроАС

Дата: 1 августа, 2010 | Рубрика: Статьи, Художественное освещение
Метки: Освещение, Расчёт освещения, Система освещения

Этот материал подготовлен специалистами компании «ЭлектроАС».
Нужен электромонтаж или электроизмерения? Звоните нам!

В данном материале подробно описан светотехнический расчёт по методу коэффициента использования светового потока. Напомню, что данная методика рекомендована для расчёта общего равномерного освещения горизонтальных поверхностей (рабочие места), и является верной независимо от того, какой вид светильников вы планируете использовать.

Статьи цикла «Методы расчёта электрического освещения»:

  1. Введение.
  2. Метод коэффициента использования светового потока.
  3. Расчёт электрического освещения методом удельной мощности. Начало.
  4. Расчёт электрического освещения методом удельной мощности. Продолжение

Итак, для начала введём основную формулу расчёта, а именно уравнение требуемого светового потока светильника:

Фл = Ен*Кз*S*z / n*ƞ

Ен – нормируемая освещённость. Этот параметр является одним из самых важных при расчёте освещения. Нормируемая освещённость зависит от класса зрительной работы выполняемой в освещаемом помещении и выбирается согласно СНиП. Подробнее о выборе нормируемой освещённости вы можете прочитать в соответствующей статье.

Кз – коэффициент запаса. Этот коэффициент учитывает снижение освещённости в процессе эксплуатации осветительных приборов из-за загрязнения светильников и ламп, а также ухудшения отражающих свойств поверхностей стен, потолка и пола. Коэффициент запаса выбирается по таблицам, приведённым в СНиП, и зависит от условий среды в освещаемом помещении, а также от типа светильников.

Таблица 1. Коэффициенты запаса (СНиП 23-05-95)

Согласно своду правил по проектированию и строительству СП 31-110-2003 для помещений с нормальной средой коэффициент запаса следует принимать равным 1,4 при использовании люминесцентных ламп и 1,2 для осветительных установок с лампами накаливания. Однако если чистка светильников затруднена (высота подвеса более 5 метров и отсутствие мостиков) коэффициент запаса следует увеличить на 0,1.

Что касается пыльных, влажных, сырых, особо сырых и жарких помещений, при использовании светильников с люминесцентными лампами коэффициент запаса принимается равным 1,7 (1 — 4 эксплуатационная группа), 1,6 (5 — 6 эксплуатационная группа), а для ламп накаливания коэффициент запаса равен 1,4.

S – площадь освещаемого помещения.

z – коэффициент неравномерности освещения. Проще говоря, z есть не что иное, как отношение средней освещённости к минимальной (Еср / Емин). Обычно значение коэффициента неравномерности принимается исходя из отношения расстояния между светильниками к высоте их подвеса над рабочей поверхностью (L/hр). При условии, что отношение L/hр находится в пределах рекомендуемых значений, коэффициент z может быть принят при использовании ламп накаливания или газоразрядных ламп 1,15, а при установке люминесцентных ламп 1,1. Если требуется рассчитать среднюю освещённость, либо освещение помещения осуществляется отражённым светом, z принимается равным единице и не влияет на результат расчёта.

n – количество светильников принятых к установке в помещении. Прежде чем приступить к расчёту требуемого светового потока светильника, необходимо определиться с количеством осветительных приборов, которые будут установлены в помещении. Определяя количество светильников, необходимо руководствоваться рекомендуемым отношением L/hр. Подробнее об этом можно прочитать в статье посвящённой выбору количества осветительных приборов.

После вычисления требуемого светового потока светильника может возникнуть ситуация невозможности установки осветительных приборов с таким световым потоком. Например, величина расчётного световой потока светильника может выходить за рамки параметров выпускаемой осветительной продукции. В этом случае следует изменить количество светильников n и провести расчёт повторно.

Если требуется уменьшить расчётный световой поток светильника, то количество светильников n необходимо увеличить. И наоборот: если нужно повысить требуемый световой поток одного светильника, необходимо уменьшить общее количество осветительных приборов.

ƞ – коэффициент использования светового потока. Этот коэффициент является основой данной методики и определяется как отношение светового потока падающего на рабочую поверхность к световому потоку осветительного прибора (Фр / Фоп). Этот коэффициент принимается по таблице и зависит от коэффициентов отражения стен, потолка и пола, а также индекса помещения и типа КСС используемых светильников.

Таблица 2. Коэффициенты использования

Таблица 3. Коэффициенты отражения

Индекс помещения i зависит от геометрических параметров освещаемого помещения (длина (А), ширина (В), высота подвеса светильников над рабочей поверхностью (hр)) и определяется по следующей формуле:

i = А*В / hр*(А+В)

Прежде чем использовать найденный индекс помещения в дальнейших расчётах его необходимо округлить до ближайшего значения из следующего ряда:
0,5; 0,6; 0,7; 0,8; 0,9; 1,0; 1,1; 1,25; 1,5; 1,75; 2,0; 2,25; 2,5; 3,0.

После того как найден требуемый световой поток светильника следует выбрать светильники по каталогу производителя. Световой поток принимаемых к установке светильников при этом не должен отличаться от расчётного более чем на 10 % в меньшую сторону и на 20 % в большую. В случае если установка таких светильников по тем или иным причинам невозможна, следует перейти к корректировке расчёта путём изменения количества установленных светильников, как это описано выше.

Надеюсь, этот материал дал исчерпывающие сведения по расчёту искусственного освещения методом коэффициента использования светового потока, и вам не придётся искать какую-либо дополнительную информацию по данному вопросу. Все приведённые формулы и коэффициенты соответствуют действующим на момент написания статьи требованиям и нормам, и их можно использовать для проектного расчёта.

Статьи цикла «Методы расчёта электрического освещения»:

  1. Введение.
  2. Метод коэффициента использования светового потока.
  3. Расчёт электрического освещения методом удельной мощности. Начало.
  4. Расчёт электрического освещения методом удельной мощности. Продолжение

elektroas.ru

3.2 Расчет освещения по методу коэффициента использования светового потока

Этот метод применяют при расчете общего равномерного освещения горизонтальных плоскостей закрытых помещений с симметрично размещенными светильниками при условии отсутствия в помещении громоздкого оборудования, затеняюще­го рабочие места. Метод определяет освещенность поверх­ности с учетом как светового потока, падающего от светильников непо­средственно на освещаемую поверхность ФП, так и отраженного от стен, потолков и самой освещаемой поверхности ФОТР:

ФР = ФП + ФОТР (3.1)

где Фр  суммарный световой поток, падающий на освещаемую по­верхность.

На горизонтальную рабочую поверхность падает не весь световой поток от ламп, размещенных в освещаемом помещении, так как некото­рая часть светового потока поглощается осветительной структурой, сте­нами и потолком. Следовательно, Фр < п • ФЛ.

Коэффициентом использования светового потока осветительной установки  отношение светового потока, падающего на гори­зонтальную поверхность, равную площади освещаемого помещения, к суммарному световому потоку всех источников света, размещенных в этом помещении:

КИ = Фр/п • ФЛ. (3.2)

Из (3.2): коэффициент использования светово­го потока всегда меньше единицы и зависит от типа и КПД светильника, высоты подвеса, окраски стен, пола и потолка, площади и геомет­рических размеров помещения.

Каждый тип светильника характеризуется кривой си­лы света. Чем большая часть светового потока, излучаемая светильником, падает на освещаемую поверхность, тем меньше света поглощается стенами и потолком  следовательно, коэффициент исполь­зования возрастает.

С увеличением КПД потери светового потока в светильнике уменьшаются, а коэффициент использования возрастает. Чем выше подвешены светильники над рабочей поверхностью, тем ниже коэффициент использования. Чем светлее окраска стен и потолка, тем выше значения коэффици­ента отражения, растет и коэффициент использования.

Зависимость коэффициента использования от геометрических раз­меров помещения учитывается индексом (показателем) помещения i. Для прямоугольных помещений ин­декс i определяет эмпирическая формула:

i = LL LB / НР (LL + LB) (3,3)

где LL и LB  длина и ширина помещения, м.

Для каждого типа светильника в зависимости от индекса помеще­ния и коэффициентов отражения потолков, стен и расчетной поверхности вычислены коэффициенты использования светового потока, приведенные в таблицах (Приложения П1 и П2). В таблицах 2.132.15 даны характе­ристики светильников.

Средняя освещенность ЕСР горизонтальной поверхности:

ЕСР = (Фр/S) = КИ n  ФЛ / S. (3,4)

Строительные нормы и правила (СНиП) устанавливают наимень­шие величины освещенности рабочих поверхностей. Поэтому при расче­те необходимо обеспечить нормированную минимальную, а не среднюю освещенность. Так как Ecp > Emin, то вводится поправочный коэффициент Z, пред­ставляющий собой отношение средней освещенности к минимальной:

Z = Ecp /Emin. (3.5)

Поправочный коэффициент Z зависит от типа светильника и относительного рас­стояния между светильниками. Значения Z для некоторых стандартных светильников приведены в таблица 3.1

При расчете осветительных установок с люминес­центными лампами коэффициент Z может быть ориентировочно принят в пределах 1,11,2. С течением времени освещенность от осветительной установки за счет загрязнения снижается. Для учета этого в расчетную формулу вводится коэффициент запаса КЗАП > 1. В таблице 3.2 приведены рекомендуемые величины КЗАП в зависимо­сти от степени загрязнения освещаемого помещения и периодичности чистки светильников с лампами накаливания и люминесцентными

Таблица 3.1 Значения поправочного коэффициента Z

Тип светильника

Отношение L/HР

0,8

1,2

1,6 2,0

Значения Z

Универсаль без затемнителя

1,2

1,15

1,25

1,5

Глубокоизлучатель эмалированный

1,15

1,1

1,2

1,4

Люцегга цельного стекла

1,0

1,0

1,2

2,2

Шар молочного стекла

1,0

1,0

1,1

1,3

Лампа зеркальная

1,2

1,4

1,5

1,8

СК-300

1,0

1,0

2,2

1,3

Пм

1,0

1,0

1,1

1,2

Из (3.5) EСР = ZЕMIN; введя коэффициент запаса КЗАП, после преобразований из (3.4) получим основное расчетное уравнение для определения светового потока каждой лампы освещаемого помещения

ФЛ = ЕMINZ КЗАПS / КИ n . (3.6)

По вычисленному значению светового потока ФЛ, выбирают стан­дартную лампу с ближайшим значением светового потока Ф0. После это­го проверяют фактическую освещенность [лк] при выбранных лампах

ЕФАКТ = Ф0 ЕMIN / ФЛ . (3.7)

Таблица 3.2 Значения коэффициентов запаса K3АП

Характеристика объекта

Коэффициент запаса

Сроки чистки

светиль­ников

Люминес­центные лампы

Лампы накали­вания

Помещения с большим выделением пы­ли, дыма, копоти (цементные заводы, литейные цеха, дробильные корпуса ОФ, дозировочные отделения и пр.)

2,0

1,7

4 раза в месяц

Помещения со средним выделение пыли, дыма, копоти (прокатные цеха, механо­сборочные цеха, флотомагнитообогатительные фабрики и пр.)

1,8

1,5

3 раза в месяц

Помещения с малым выделением (машино- и приборостроительные заводы, конторы, конструкторские бюро и пр.)

1,5

1,3

2 раза в месяц

Открытые пространства

1,5

1,3

Общественные и жилые здания

1,5

1,3

Пример 1. Определить число светильников и мощность ламп для освещения электроремонтного цеха длиной А = 72 м, шириной Б = 48 м и высотой Н = 12 м. Стены, потолок и пол имеют коэффициенты отражения соответственно Sc = 30 %, Sп = 50 % и Sр = 10 %. Размещение светильника приведено на рисунке 3.1

hС = 1,2 м

Н НР

hР = 0,8 м

Рисунок 3.1 Размещение светильников

Решение. Учитывая разряд зрительной работы (таблица 1.1, п.36) и большую высоту помещения, принимаем для освещения цеха газоразрядные лампы типа ДРЛ. По таблице 1.1 устанавливаем норму осве­щенности в цехе, которая при газоразрядных лампах составляет 300 лк на уровне h1= 0,8 м от пола. Для освещения цеха принимаем светильники типа СДДРЛ.

В соответствии с рисунком 3.1 определяем высоту подвеса светильника над рабочей поверхностью: Нр=Нhр hс = 12  0,8 – 1,2 = 10 м.

По формуле (3.3) определяем индекс помещения:

i = АВ/ НР (А + Б) = 72  48 / 10 (72 + 48) = 3456 / 1200 = 2,88 = 3

По таблице П2 находим коэффициент использования светового пото­ка Ки.

При Sп = 50 %, Sc =30 %, Sp =10 % и i = 3 коэффициент использования Ки = 0,74.

Применяя формулу (3.6) при n = 1, находим суммарный световой поток, необходимый для создания освещенности в ЕMIN = 300 лк:

ФЛ СУММ = ЕMINZ КЗАПS / КИ n =

= 300  1,5  1,1 72  48 / 0,74 1 = 1541189 лм.

Принимаем для освещения лампу ДРЛ мощностью 700 Вт и по табл. 2.7 находим ее световой поток ФЛ = 40000 лм.

Необходимое число ламп определяем как частное от деления ФЛ СУММ

на световой поток одной лампы ФЛ = 40000 лм:

n Л = ФЛ СУММ / ФЛ0 =1541189 / 40000 = 38,6 = 40 шт.

Распределяем эти лампы по длине цеха в 4 ряда по 10 ламп в каж­дом ряду.

Пример 2. Рассчитать освещение учебной аудитории вуза, которая имеет: длину А = 15 м, ширину В = 6 м, высоту Н = 4 м. Коэффициенты отражения потолка, стен и пола имеют значе­ния соответственно Sп = 70 %, Sс = 50 % и Sр = 10 %. Расчеты выполнить для двух вариантов: для ламп накаливания и люминесцентны­х ламп.

Решение. Вариант 1. Светильники размещаем на вершинах треугольника (Рисунок 3.2). Освещение аудитории осуществляется лампами нака­ливания. Используются светильники типа ПО02 (шар молочного стекла). Норма освещенности согласно таблицы 1.5 при использовании ламп накали­вания составляет ЕMIN = 150 лк на уровне рабочей поверхности hP = 0,8 м от пола.

При указанном размещении светильников их общее количество в аудитории будет равно пСВ = 14 шт, в каждом по одной лампе пЛС = 1 шт, итого число ламп; пЛ = пСВпЛС = 14  1 = 14 шт.

Высота подвеса светильника над рабочим столом:

Нр = Нhс hр = 4  0,4 – 0,8 = 2,8 м.

Индекс помещения по формуле (3.3) составит:

i = LL LB / НР (LL+ LB) = 15  6/ 2,8 (15 + 6) = 1,53 = 1,5

По табл. ПI для светильника ПО02 (шар) находим коэффициент использования светового потока, который равен КИ = 0,36 . По формуле (3.6) рассчитываем световой поток лампы, необходимый для освещения:

ФЛ СУММ = ЕMINZ КЗАПS / КИ n =

= 150  1,3  1 15  6 / 0,36 14 = 3482 лм.

LCT LCB

LCT

hC

LB

H HP

hP

LL

Рисунок 3.2 Схема размещения светильников в аудитории

H = 4 м; hC = 2,8 м; LB = 6 м; LL = 15 м; LСТ = 1,5 м; LСВ = 3 м

В этой формуле КЗАП = 1,3 (для ламп накаливания) и Z = 1 в соответ­ствии с таблицей 3.1.

В соответствии с расчетным световым потоком ФЛ =3482 лм по таблице 2.1 выбираем лампу типа Г300 мощностью 300 Вт со световым по­током 4600 лм. С этой лампой освещенность будет выше нормативной:

ЕФАКТ = ФЛ0 ЕMIN / ФЛ = (4600150/3482) = 198,16. [лк]

Если поставить лампу мощностью 200 Вт со световым потоком Ф= 2920 лм, то фактическая освещенность составит согласно формуле (3.7):

ЕФАКТ = ФЛ0 ЕMIN / ФЛ = (2920150/3482) = 126 , [лк]

что меньше ЕMIN= 150 лк.

Мощность Р, затрачиваемая на освещение аудитории лампами нака­ливания, составит: Р = пЛРЛ = 14300 = 4200 Вт = 4,2 кВт .

Вариант 2. Освещение аудитории выполняется люминесцентными лампами со светильниками типа ЛДО. Норма освещенности при исполь­зовании газоразрядных ламп составляет ЕMIN= 300 лк (таблица 1.5). Раз­мещение светильников аналогично первому варианту. Коэффициент ис­пользования светового потока для светильников ЛДО, по таблице П2, составляет КИ= 0,57. Тогда световой поток будет равен:

ФЛ СУММ = ЕMINZ КЗАПS / КИ nСВ=

= 300  1,5  1,1 15  6 / 0,57 14 = 5583 лм.

Коэффициент запаса К3 = 1,5 и Z = 1,1 для газоразрядных ламп.

По световому потоку ФЛ СУММ = 5583 лм выбираем мощность

люминес­центных ламп. Принимаем лампу типа ЛБ-40-4 мощностью PЛ = 40 Вт со све­товым потоком Ф = 2850 лм. В светильнике ЛДО устанавливаются две таких лампы, тогда Ф = 5700 лм. Фактическая освещенность составит:

ЕФАКТ = ФЛ0 ЕMIN / ФЛСУММ = (5700300/5583) = 306 . [лк]

Мощность P, затрачиваемая на освещение аудитории люминесцент­ными лампами будет равна ; P = пСВ пЛС PЛ =14  2 40 = 1120 Bт = l,12 кВт .

Второй вариант наиболее экономичен.

studfiles.net

12) Расчет осветительной установки методом коэффициента использования светового потока

Применяемые в настоящее время приемы расчета освещенности ос­нованы на двух формулах, связывающих полученную освещенность с харак­теристиками светильников:

Принципиальная разность между формулами в том, что первая в не­дифференциальной форме определяет среднюю освещенность на площадке, а вторая показывает освещенность в конкретной точке.

Метод расчета осветительных установок (ОУ), основанный на средней освещенности, назван методом коэффициента использования светового пото­ка (КИСП). Метод расчета ОУ, основанный на второй формуле, носит назва­ние точечного метода. Недостатком второго метода является недостаточно полный учет отраженного света от потолков, стен и других поверхностей. Наиболее точные результаты дает использование обоих методов: метода КИСП для расчета ОУ и точечного метода для проверки освещенности в со­мнительных точках.

Применяется для расчета общего равномерного осве­щения горизонтальных поверхностей внутри помещения с учетом отражений от потолков, стен и рабочих поверхностей.

Метод неприменим при расчете: 1)локализированного освещения; 2) местного освещения; 3) освещения наклонных плоскостей.

Световой поток Ф, достигающий освещаемой поверхности, очевидно будет меньше светового потока ламп светильника, поэтому должен быть скорректирован при помощи кпд светильника, а также коэффициента использо­вания светового потока обусловленного особенностями помещения, коэффи­циентом отражения от стен, потолка, рабочих поверхностей и кривой силы света светильника.

где Фрп — световой поток, достигающий рабочей поверхности, Фс — световой поток светильника (источника). Освещенность при этом определяется по следующей формуле:

где Фс — световой поток светильника; N-число светильников в помещении; и – КИСП; S — площадь помещения, м2 ; К3 — коэффициент запаса.

Освещенность в помещении зависит:

  1. от окраски и чистоты потолков, стен, рабочих поверхностей;

  2. от КСС светильников: чем уже КСС тем больше и;

  1. от высоты подвеса светильников;

  2. от размеров освещаемой площадки.

Расчет ОУ ведется не по средней, а по минимальной освещенности:

z при расчете ОУ принимают в пределах z-1,1… 1,2, тогда необходимый световой поток для освещения помещения на уровне Ен определяется по формуле:

или

Для нахождения и=сn определяют рс, рn, рр, КСС светильника.

— индекс помещения.

Порядок расчета ОУ методом КИСП

  1. Проверяют применимость метода.

  2. Выбирают тип ОП и ИС.

  3. Выбирают по нормативам Ен.

  4. Определяют Нр и N=NANB шт. осветительных приборов.

  5. Определяют c; n; р; i; КСС; Z.

  6. По справочнику определяют с и n.

  7. Вычисляют Флр.

  8. Выбирают 0,90Фр Фст1,2Фр.

  9. Определяют Pуст=NPл.

13) Проектирование электроосвещения. Методы расчета освещенности.

Целью светотехнического расчета является определение потребной мощности источников света для получения необходимого уровня освещенно­сти. Прежде чем приступить к решению этой задачи, исходя из характера выполняемых работ и условий окружающей среды у освещаемого объекта, необходимо, пользуясь нормативными документами, определить следующие параметры:

  1. уровень нормируемой освещенности ЕН;

  2. виды и систему освещения;

  3. тип источника света;

  4. напряжение питания и тип светильника с учетом условий окру­жающей среды;

  5. размещение светильников;

  6. выбрать показатели качества света: К- коэффициент пульса­ции, PL— уровень блескости и М – уровень дискомфорта.

По результатам расчета определяют световой поток светильников, по которому из справочных таблиц находят мощность ближайшей стандартной лампы выбранного выше типа. При выборе мощности источника света счита­ется допустимым, если световой поток выбираемой стандартной лампы от­личается от расчетного не более чем на — 10 или +20%, т.е. 0,9ФРФл1,2ФР, если расхождение между стандартным источником света по световому пото­ку превышает указанные пределы, следует повторить расчет, изменив чис­ло светильников, не сильно отклоняясь от наивыгоднейшего их расположе­ния, чтобы получить более близкое совпадение световых потоков стандарт­ной и расчетной ламп.

Иногда возникает необходимость выполнить проверочный расчет при известном расположении светильников и их мощности, т.е. проверяется, соответствует ли получаемая освещенность нормативной.

Светотехнические расчеты в настоящее время достаточно унифици­рованы и проводятся с использованием большого объема справочных мате­риалов, значительно облегчающих расчеты.

На практике светотехнических расчетов наиболее часто используется метод коэффициента использования светового потока и точечный метод. Оба метода имеют свою область применения. Причем, где неприемлем один метод, в полной ме­ре пригоден другой. В простейших случаях пользуются методом удельной мощности

Освещенность определяется по следующей формуле:

где Фс — световой поток светильника; N-число светильников в помещении; и – КИСП; S — площадь помещения, м2 ; К3 — коэффициент запаса.

Освещенность в помещении зависит:

  1. от окраски и чистоты потолков, стен, рабочих поверхностей;

  2. от КСС светильников: чем уже КСС тем больше и;

  1. от высоты подвеса светильников;

  2. от размеров освещаемой площадки.

Расчет ОУ ведется не по средней, а по минимальной освещенности:

studfiles.net

Расчёт электрического освещения методом коэффициента использования светового потока

 

Расчёт электрического освещения методом удельной мощности. Метод удельной мощности представляет собой упрощённый вариант метода коэффициента использования. Удельная мощность (Pуд) – это отношение общей мощности всех ламп помещения (необходимой для достижения заданной освещённости) к его площади. Измеряется удельная мощность в Вт/м². Для большей наглядности представим эту величину в виде следующего выражения:Pуд = n*Pл / S
Где n – общее количество установленных в помещении ламп (шт)
Pл – мощность одной лампы (Вт)
S – площадь освещаемого помещения (м²)Если выразить из этой формулы мощность одной лампы, то получим следующее выражение:

Pл = Pуд / S*n

Таким образом, зная площадь помещения, количество ламп и определив значение удельной мощности, достаточно легко рассчитать мощность каждой лампы. Общее количество ламп определяется в процессе проектирования расположения светильников исходя из наивыгоднейшего отношения (L/hр), а удельная мощность выбирается по таблицам.

Расчёт электрического освещения методом коэффициента использования светового потока

 

Основная формула расчёта, а именно уравнение требуемого светового потока светильника:

Фл = Ен*Кз*S*z / n*ƞ

Ен – нормируемая освещённость. Этот параметр является одним из самых важных при расчёте освещения. Нормируемая освещённость зависит от класса зрительной работы выполняемой в освещаемом помещении и выбирается согласно СНиП

 

Точечный метод

 

Точечный метод в отличие от метода коэффициента использования позволяет определить освещенность любой точки на рабочей поверхности, как угодно расположенной в пространстве, например, горизонтально, вертикально или наклонно. Расчет освещения точечным методом производят тогда, когда невозможно применить метод коэффициента использования, например расчеты локализованного освещения, освещения наклонных или вертикальных поверхностей. Точечный метод также часто применяют в качестве проверочного расчета, когда необходимо оценить фактическое распределение освещенности на освещаемой поверхности. Однако точечный метод имеет существенный недостаток: не учитывает освещенность, создаваемую световым потоком, отраженным от стен и потолков, вследствие чего освещенность получается несколько заниженной. Поэтому точеный метод можно применять для расчета освещения помещений, в которых, отраженный световой поток составляет незначительную долю по сравнению со световым потоком, падающим непосредственно на освещаемую поверхность, например производственных помещений с низкими коэффициентами стен и потолков, местного освещения, наружного освещения.



5. Правила пользования средством пожаротушения.

Пенные огнетушители

Предназначены для тушения различных веществ и материалов, за исключением электроустановок, находящихся под напряжением.

Для приведения в действие химически-пенного огнетушителя ОХП-10 (Рис. 1), необходимо иглой (5) прочистить спрыск (3), повернуть вверх на 180° до отказа рукоятку (2), перевернуть огнетушитель крышкой (6) вниз и направить струю пены на очаг горения.

Огнетушитель химически-пенный ОХП-10

1 — корпус огнетушителя;

2 — рукоятка для приведения огнетушителя в действие;

3 — спрыск для выхода пены;

4 — ручка для переноса огнетушителя;

5 — игла для прочистки спрыска;

6 — крышка огнетушителя. Рис. 1

Углекислотные огнетушители

Предназначены для тушения загораний различных веществ, за исключением тех, горение которых происходит без доступа воздуха, а также электроустановок, находящихся под напряжением до 380 В.

Для приведения в действие углекислотных огнетушителей ОУ-2, ОУ-5, ОУ-8 (Рис. 2) необходимо раструб (4) направить на горящий предмет, повернуть маховичок (3) вентиля (2) влево до отказа. Переворачивать огнетушитель не требуется; держать, по возможности, вертикально.

Во избежание обмораживания нельзя касаться металлической части раструба оголенными частями тела.

Огнетушитель углекислотный ОУ-2

1 — корпус огнетушителя;

2 — запорный вентиль;

3 — маховичок для приведения огнетушителя в действие;

4 — раструб-снегообразователь;

5 — рукоятка для переноса огнетушителя.

 

Рис. 2

Порошковые огнетушители

Предназначены для тушения нефтепродуктов, электроустановок, находящихся под напряжением до 1000 В, ценных материалов и загораний на автомобильном транспорте.



Для приведения в действие порошкового огнетушителя ОП-10 (Рис. 3) необходимо нажать на пусковой рычаг (3) и направить струю порошка на очаг горения через выкидную насадку (4).

Огнетушитель порошковый ОП-10

1 — корпус огнетушителя;

2 — рукоятка для переноса огнетушителя;

3 — пусковой рычаг для приведения огнетушителя в действие;

4 — выкидная насадка для выхода порошка. Рис. 3

Внутренние пожарные краны

Предназначены для тушения водой твердых сгораемых материалов и горючих жидкостей и для охлаждения ближайших резервуаров.

Внутренний пожарный кран вводится в работу двумя работниками. Один прокладывает рукав и держит наготове пожарный ствол для подачи воды в очаг горения, второй проверяет подсоединение пожарного рукава к штуцеру внутреннего крана и открывает вентиль для поступления воды в пожарный рукав.

Асбестовое полотно, войлок (кошма)

Используется для тушения небольших очагов горения любых веществ. Очаг горения накрывается асбестовым или войлочным полотном с целью прекращения к нему доступа воздуха.

Песок

Применяется для механического сбивания пламени и изоляции горящего или тлеющего материала от окружающего воздуха.

Подается песок в очаг пожара лопатой или совком.

Билет № 11.

1.Электрические машины переменного тока

cyberpedia.su

Расчет освещения методом коэффициента использования светового потока.

После того, как произведен выбор типа ламп, их расположение в рассматриваемом помещении и количество, необходимо определить мощность отдельных ламп и всей осветительной установки в целом. Для осветительных установок с ЛН и ДРЛ число ламп определяется из условия их рационального размещения; затем определяется мощность одной лампы, исходя из величины ее светового потока, , лм:

 

 

где Emin – минимальная освещенность, лк;

– коэффициент запаса;

S – площадь помещения, м2;

z – коэффициент минимальной освещенности;

N – количество светильников, шт.;

kи– коэффициент использования.

Значения Emin, , z и kивыбираются по справочным таблицам. По найденному значению выбирается ближайшая стандартная лампа по таблице 6, поток которой должен отличаться от расчетного не более чем на 10 % в меньшую сторону или на 20 % в большую. При невозможности выбора с такой точностью корректируется число светильников, N. Если по какой-либо причине задан однозначно, то из предыдущей формулы определяется N.

При расчете освещения, выполненного рядами люминесцентных светильников под N в формуле следует понимать число рядов, под – суммарный поток ламп одного ряда. По найденному значению производится компоновка ряда, то есть определяется светотехнически и конструктивно подходящее число и мощность светильников, для которых близко к необходимому. Коэффициент z зависит от многих факторов, из которых основное значение имеет относительное расстояние между светильниками, l. Если светильники расположены по углам квадрата или прямоугольника, z принимается равным 1,15, если люминесцентные светильники расположены рядами, z = 1,1.

Коэффициент использования светового потока определяется по справочникам в зависимости от типа светильника; от коэффициентов отражения от стен, потолка и рабочей поверхности; а также от индекса помещения, i, определяемого по формуле:

 

 

где А – длина помещения, м;

В – ширина, м;

H – расчетная высота.

 

 

Пример 1.

Освещение инструментального цеха, размеры которого A´B´H= =60´36´10 м; hр = 0,8 м; hс=1,2 м, выполнено лампами типа ДРЛ в светильниках РСП05/Г03.

Наметить размещение светильников в цехе.

 

h = H – hрhс = 10 – 0,8 – l,2 = 8 м.

 

Для принятого светильника, имеющего глубокую кривую силы света (буква Г в обозначений светильника), находим значение l = La/ h =1.

 

8 м.

 

При La = 8 м в ряду можно разместить восемь светильников, тогда

 

2l = 60 – 8·7 = 4 м; l = 2 м.



 

Принимаем число рядов светильников равным пяти, тогда 6 м;

 

La/Lb = 8/6 = 1, 33 < l, 5.

 

Число светильников в цехе N = 40. Размещение светильников представлено на рисунке 11.

Рисунок 11 – Размещение светильников в цехе

 

По таблице 4 принимаем rп = 0,7; rс = 0,5; rр = 0,1.

Индекс помещения составит

 

 

Из таблицы 5 находим Kи = 0,73.

При Emin = 300 лк и Kз = 1,5 находим:

 

38280,82 лм.

 

По таблице 6 подбираем лампу ДРЛ мощностью 700 Вт со световым потоком Fном = 35000 лм. Fномотличается от Fр на 9%, что допустимо.

 

cyberpedia.su