Примеры нахождение производной функции – Подготовка школьников к ЕГЭ в учебном центре «Резольвента» (Справочник по математике — Элементы математического анализа

Примеры нахождения производной сложной функции

Рассмотрим еще некоторые примеры нахождения производной сложной функции.

   

   

   

   

Решение:

Там, где возможно, перед дифференцированием примеры упрощаем:

   

   

Данная функция — сложная. Внешняя функция f=u³, внутренняя — выражение, стоящее в скобках. Дифференцируем по правилу дифференцирования сложной функции:  Имеем:

   

   

   

2) При нахождении производных логарифмов во многих случаях возможно предварительное преобразование выражений с использованием свойств логарифмов, что позволяет существенно облегчить дифференцирование:

   

Здесь внешняя функция — ln u, внутренняя — выражение, стоящее под знаком логарифма. Внутренняя функция представляет собой дробь, поэтому для ее дифференцирования применяем правило нахождения производной частного: 

   

   

   

   

Сокращаем числитель и знаменатель на (х²+1) и 2:

   

   

3) Здесь внешняя функция — f=arccos u, u — выражение с квадратным к0рнем. Дифференцируем:

   

   

   

   

4) Первое слагаемое — сложная показательная функция 3 в степени u, u=cos x.

   

Второе слагаемое дифференцируем по правилу нахождения производной произведения:

   

   

   

   

www.matematika.uznateshe.ru

Примеры решений производных

  • Попробуйте найти производные от приведенных ниже функций.
  • Нажмите на изображение или стрелку, чтобы попасть на страницу с подробным решением.

Примеры решений производных от явных функций

Найдите производные    следующих функций, зависящих от переменной x:
  Решение > > >
  Решение > > >
  Решение > > >
  > > >         > > >         > > >         > > >         > > >         > > >         > > >         > > >         > > >         > > >

  > > > Здесь , , , – постоянные.
  > > >         > > >         > > >         > > >         > > >         > > >         > > >         > > >         > > >         > > >         > > >         > > >         > > >         > > >         > > >         > > >         > > >         > > >         > > >

Примеры решений производных высших порядков от явных функций

Найти производные первого и второго порядка следующей функции:

.
Решение > > >

Найти производную третьего порядка:
.
Решение > > >

Найти производную шестого порядка следующей функции:
.
Решение > > >

Вычислить n-ю производную функции
.
Решение > > >

Найти n-ю производную следующей функции:
,
где и – постоянные.
Решение > > >

Примеры решения производных от функций, заданных параметрическим способом

Найдите производную от функции, заданной параметрическим способом:

Решение > > >

Найдите производную , где и выражены через параметр :

Решение > > >

Найдите производные второго    и третьего    порядка от функции, заданной параметрическим способом:

Решение > > >

Примеры решений производных от неявных функций

Найдите производную первого порядка от функции, заданной неявно уравнением:
.
Решение > > >

Найти производную второго порядка от неявно заданной функции:
.
Решение > > >

Найти производную третьего порядка при от функции, заданной уравнением:
.
Решение > > >

Автор: Олег Одинцов.     Опубликовано:   Изменено:

1cov-edu.ru

Производная сложной функции

Если g(x) и f(u) – дифференцируемые функции своих аргументов соответственно в точках x и u = g

(x), то сложная функция также дифференцируема в точке x и находится по формуле

           

Типичная ошибка при решении задач на производные — машинальное перенесение правил дифференцирования простых функций на сложные функции. Будем учиться избегать этой ошибки.

Посмотрите на формулу 9 в таблице производных. Исходная функция является функцией от функции, причём аргумент x является аргументом лишь второй функции, а вторая функция является аргументом первой функции, или, согласно более строгому определению — промежуточным аргументом по независимой переменной x.

А теперь посмотрите на картинку ниже, которая иллюстрирует решение задач на сложные производные по аналогии с простым примером из кулинарии — приготовлении запечёных яблок, фаршированных ягодами.

Итак, «яблоко» — это функция, аргументом которой является промежуточный аргумент, а промежуточный аргумент по независимой переменной x, в свою очередь, является «фаршем» (ягодами). Представим себе, что решая задачи на производные сложной функции, сначала помещаем яблоко с фаршем в особую (физико-математическую) духовку и устанавливаем режим 1. При таком режиме духовка воздействует только на «яблоко», поскольку нужно, допустим, больше пропечь яблоко, а фарш из ягод оставить более сочным, то есть обрабатывать в другом режиме. Итак, в при режиме 1 обрабатывается яблоко, а фарш остаётся незатронутым, или, ближе к нашим задачам, находим производную функции лишь от промежуточного аргумента, то есть, «яблока». Затем в духовке устанавливается режим 2, который воздействует только на фарш, иначе говоря, записываем производную функции, являющейся промежуточным аргументом по независимой переменной

x. И, в конце концов, записываем произведение производной «яблока» и производной «фарша». Можно подавать!

Пример 1.Найти производную функции

Сначала определим, где здесь «яблоко», то есть функция по промежуточному аргументу u, а где «фарш», то есть промежуточный аргумент u по независимой переменной x. Определяем: возведение в степень — это функция по промежуточному аргументу, то есть «яблоко», а выражение в скобках (разность двух тригонометрических функций) — это промежуточный аргумент, то есть «фарш».

Тогда

Далее по таблице производных (производная суммы или разности, производные синуса и косинуса) находим:

Требуемая в условии задачи производная (готовое «фаршированое яблоко»):

Нахождение производной сложной логарифмической функции имеет свои особенности, поэтому у нас есть и урок «Производная логарифмической функции».

Пример 2.Найти производную функции

Неправильное решение: вычислять натуральный логарифм каждого слагаемого в скобках и искать сумму производных:

Правильное решение: опять определяем, где «яблоко», а где «фарш». Здесь натуральный логарифм от выражения в скобках — это «яблоко», то есть функция по промежуточному аргументу u, а выражение в скобках — «фарш», то есть промежуточный аргумент u по независимой переменной x.

Тогда (применяя формулу 14 из таблицы производных)

Во многих реальных задачах выражение с логарифмом бывает несколько сложнее, поэтому и есть урок «Производная логарифмической функции».

Пример 3.Найти производную функции

Неправильное решение:

Правильное решение. В очередной раз определяем, где «яблоко», а где «фарш». Здесь косинус от выражения в скобках (формула 7 в таблице производных)- это «яблоко», оно готовится в режиме 1, воздействующем только на него, а выражение в скобках (производная степени — номер 3 в таблице производных) — это «фарш», он готовится при режиме 2, воздействующей только на него. И как всегда соединяем две производные знаком произведения. Результат:

Производная сложной логарифмической функции — частое задание на контрольных работах, поэтому настоятельно рекомендуем посетить урок «Производная логарифмической функции».

Первые примеры были на сложные функции, в которых промежуточный аргумент по независимой переменной был простой функцией. Но в практических заданиях нередко требуется найти производную сложной функции, где промежуточный аргумент или сам является сложной функцией или содержит такую функцию. Что делать в таких случаях? Находить производные таких функций по таблицам и правилам дифференцирования. Когда найдена производная промежуточного аргумента, она просто подставляется в нужное место формулы. Ниже – два примера, как это делается.

Кроме того, полезно знать следующее. Если сложная функция может быть представлена в виде цепочки из трёх функций

,

то её производную следует находить как произведение производных каждой из этих функций:

.

Для решения многих ваших домашних заданий может потребоваться открыть в новых окнах пособия Действия со степенями и корнями и Действия с дробями.

Пример 4.Найти производную функции

Применяем правило дифференцирования сложной функции, не забывая, что в полученном произведении производных промежуточный аргумент по независимой переменной x не меняется:

Готовим второй сомножитель произведения и применяем правило дифференцирования суммы:

Второе слагаемое — корень, поэтому

Таким образом получили, что промежуточный аргумент, являющийся суммой, в качестве одного из слагаемых содержит сложную функцию: возведение в степень — сложная функция, а то, что возводится в степень — промежуточный аргумент по независимой переменной

x.

Поэтому вновь применим правило дифференцирования сложной функции:

Степень первого сомножителя преобразуем в корень, а дифференцируя второй сомножитель, не забываем, что производная константы равна нулю:

Теперь можем найти производную промежуточного аргумента, нужного для вычисления требуемой в условии задачи производной сложной функции y:

Тогда

Пример 5.Найти производную функции

Сначала воспользуемся правилом дифференцирования суммы:

Получили сумму производных двух сложных функций. Находим первую из них:

Здесь возведение синуса в степень — сложная функция, а сам синус — промежуточный аргумент по независимой переменной

x. Поэтому воспользуемся правилом дифференцирования сложной функции, попутно вынося множитель за скобки:

Теперь находим второе слагаемое из образующих производную функции y:

Здесь возведение косинуса в степень — сложная функция f[g(x)], а сам косинус — промежуточный аргумент по независимой переменной x. Снова воспользуемся правилом дифференцирования сложной функции:

Результат — требуемая производная:


Для сложных функций на основании правила дифференцирования сложной функции формула производной простой функции принимает другой вид.

Поделиться с друзьями

Весь блок «Производная»

function-x.ru

Как найти производную? Примеры решений

Как найти производную, как взять производную? На данном уроке мы научимся находить производные функций. Но перед изучением данной страницы я настоятельно рекомендую ознакомиться с методическим материалом Горячие формулы школьного курса математики. Справочное пособие можно открыть или закачать на странице Математические формулы и таблицы. Также оттуда нам потребуется Таблица производных, ее лучше распечатать, к ней часто придется обращаться, причем, не только сейчас, но и в оффлайне.

Есть? Приступим. У меня для Вас есть две новости: хорошая и очень хорошая. Хорошая новость состоит в следующем: чтобы научиться находить производные, совсем не обязательно знать и понимать, что такое производная. Более того, определение производной функции, математический, физический, геометрический смысл производной целесообразнее переварить позже, поскольку качественная проработка теории, по моему мнению, требует изучения ряда других тем, а также некоторого практического опыта.

И сейчас наша задача освоить эти самые производные технически. Очень хорошая новость состоит в том, что научиться брать производные не так сложно, существует довольно чёткий алгоритм решения (и объяснения) этого задания, интегралы или пределы, например, освоить труднее.

Советую следующий порядок изучения темы: во-первых, эта статья. Затем нужно прочитать важнейший урок Производная сложной функции. Эти два базовых занятия позволят поднять Ваши навыки с полного нуля. Далее можно будет ознакомиться с более сложными производными в статье Сложные производные.

Логарифмическая производная. Если планка окажется слишком высока, то сначала прочитайте вещьПростейшие типовые задачи с производной. Помимо нового материала, на уроке рассмотрены другие, более простые типы производных, и есть прекрасная возможность улучшить свою технику дифференцирования. Кроме того, в контрольных работах почти всегда встречаются задания на нахождение производных функций, которые заданы неявно или параметрически. Такой урок тоже есть:Производные неявных и параметрически заданных функций.

Я попытаюсь в доступной форме, шаг за шагом, научить Вас находить производные функций. Вся информация изложена подробно, простыми словами.

Собственно, сразу рассмотрим пример: Пример 1

Найти производную функции Решение:

Это простейший пример, пожалуйста, найдите его в таблице производных элементарных функций. Теперь посмотрим на решение и проанализируем, что же произошло? А произошла следующая вещь:

у нас была функция , которая в результате решения превратилась в функцию.

Говоря совсем просто, для того чтобы найти производную

функции, нужно по определенным правилам превратить её в другую функцию. Посмотрите еще раз на таблицу производных – там функции превращаются в другие функции. Единственным

исключением является экспоненциальная функция , которая

превращается сама в себя. Операция нахождения производной называется дифференцированием.

Обозначения: Производную обозначаютили.

ВНИМАНИЕ, ВАЖНО! Забыть поставить штрих (там, где надо), либо нарисовать лишний штрих (там, где не надо) –ГРУБАЯ ОШИБКА! Функция и её производная – это две разные функции!

Вернемся к нашей таблице производных. Из данной таблицы желательно запомнить наизусть: правила дифференцирования и производные некоторых элементарных функций, особенно:

производную константы:

, где– постоянное число; производную степенной функции:

, в частности:,,.

Зачем запоминать? Данные знания являются элементарными знаниями о производных. И если Вы не сможете ответить преподавателю на вопрос «Чему равна производная числа?», то учеба в ВУЗе может для Вас закончиться (лично знаком с двумя реальными случаями из жизни). Кроме того, это наиболее распространенные формулы, которыми приходится пользоваться практически каждый раз, когда мы сталкиваемся с производными.

Вреальности простые табличные примеры – редкость, обычно при нахождении производных сначала используются правила дифференцирования, а затем – таблица производных элементарных функций.

Вэтой связи переходим к рассмотрению правил дифференцирования:

1) Постоянное число можно (и нужно) вынести за знак производной

, где– постоянное число (константа)Пример 2

Найти производную функции

Смотрим в таблицу производных. Производная косинуса там есть, но у нас .

Решаем:

Самое время использовать правило, выносим постоянный множитель за знак производной:

А теперь превращаем наш косинус по таблице:

Ну и результат желательно немного «причесать» – ставим минус на первое место, заодно избавляясь от скобок:

Готово.

2) Производная суммы равна сумме производных

Найти производную функции

Решаем. Как Вы, наверное, уже заметили, первое действие, которое всегда выполняется при нахождении производной, состоит в том, что мы заключаем в скобки всё выражение и ставим штрих справа вверху:

Применяем второе правило:

Обратите внимание, что для дифференцирования все корни, степени нужно представить в виде , а если они находятся в знаменателе, то

переместить их вверх. Как это сделать – рассмотрено в моих методических материалах.

Теперь вспоминаем о первом правиле дифференцирования – постоянные множители (числа) выносим за знак производной:

Обычно в ходе решения эти два правила применяют одновременно (чтобы не переписывать лишний раз длинное выражение).

Все функции, находящиеся под штрихами, являются элементарными табличными функциями, с помощью таблицы осуществляем превращение:

Можно всё оставить в таком виде, так как штрихов больше нет, и производная найдена. Тем не менее, подобные выражения обычно упрощают:

Все степени вида желательно снова представить в виде корней,

степени с отрицательными показателями – сбросить в знаменатель. Хотя этого можно и не делать, ошибкой не будет.

Пример 4

Найти производную функции

Попробуйте решить данный пример самостоятельно (ответ в конце урока).

3) Производная произведения функций

Вроде бы по аналогии напрашивается формула …., но неожиданность состоит в том, что:

Эта необычное правило (как, собственно, и другие)следует из определения производной. Но с теорией мы пока повременим – сейчас важнее научиться решать:

Пример 5

Найти производную функции

Здесь у нас произведение двух функций, зависящих от . Сначала применяем наше странное правило, а затем превращаем функции по таблице производных:

Сложно? Вовсе нет, вполне доступно даже для чайника.

Пример 6

Найти производную функции

В данной функции содержится сумма и произведение двух функций – квадратного трехчленаи логарифма. Со школы мы помним, что умножение и деление имеют приоритет перед сложением и вычитанием.

Здесь всё так же. СНАЧАЛА мы используем правило дифференцирования произведения:

Теперь для скобки используем два первых правила:

В результате применения правил дифференцирования под штрихами у нас остались только элементарные функции, по таблице производных превращаем их в другие функции:

Готово.

При определенном опыте нахождения производных, простые производные вроде не обязательно расписывать так подробно. Вообще, они обычно решаются устно, и сразу записывается, что.

Пример 7

Найти производную функции Это пример для самостоятельного решения (ответ в конце урока)

4) Производная частного функций

В потолке открылся люк, не пугайся, это глюк. А вот это вот суровая действительность:

Пример 8

Найти производную функции

Чего здесь только нет – сумма, разность, произведение, дробь…. С чего бы начать?! Есть сомнения, нет сомнений, но, В ЛЮБОМ СЛУЧАЕ для начала рисуем скобочки и справа вверху ставим штрих:

Теперь смотрим на выражение в скобках, как бы его упростить? В данном случае замечаем множитель, который согласно первому правилу целесообразно вынести за знак производной:

Заодно избавляемся от скобок в числителе, которые теперь не нужны. Вообще говоря, постоянные множители при нахождении производной

можно и не выносить, но в этом случае они будут «путаться под ногами», что загромождает и затрудняет решение.

Смотрим на наше выражение в скобках. У нас есть сложение, вычитание и деление. Со школы мы помним, что деление выполняется в первую очередь. И здесь – сначала применяем правило дифференцирования частного:

Таким образом, наша страшная производная свелась к производным двух простых выражений. Применяем первое и второе правило, здесь это сделаем устно, надеюсь, Вы уже немного освоились в производных:

Штрихов больше нет, задание выполнено.

На практике обычно (но не всегда) ответ упрощают «школьными» методами:

Пример 9

Найти производную функции

Это пример для самостоятельного решения (ответ в конце урока). Время от времени встречаются хитрые задачки:

Пример 10

Найти производную функции

Смотрим на данную функцию. Здесь снова дробь. Однако перед тем как использовать правило дифференцирования частного (а его можно использовать), всегда имеет смысл посмотреть, а нельзя ли упростить саму дробь, или вообще избавиться от нее?

Дело в том, что формула достаточно громоздка, и применять ее совсем не хочется.

В данном случае можно почленно поделить числитель на знаменатель. Преобразуем функцию:

Ну вот, совсем другое дело, теперь дифференцировать просто и приятно:

Готово.

Пример 11

Найти производную функции

Здесь ситуация похожа, превратим нашу дробь в произведение, для этого поднимем экспоненту в числитель, сменив у показателя знак:

Произведение все-такидифференцировать проще:

Пример 12

Найти производную функции Это пример для самостоятельного решения (ответ в конце урока).

5) Производная сложной функции

Данное правило также встречается очень часто. Но о нём рассказать можно очень много, поэтому я создал отдельный урок на тему Производная сложной функции.

Желаю успехов!

Ответы:

Пример 4: . В ходе решения

данного примера следует обратить внимание, на тот факт, что и– постоянные числа, не важно чему они равны, важно, что это — константы. Поэтомувыносится за знак производной, а.

Пример 7:

Пример 9:

Пример 12:

studfiles.net

Как найти производную по определению?

Поиск Лекций

Составить отношение и вычислить предел .

Откуда появилась таблица производных и правила дифференцирования? Благодаря единственному пределу . Кажется волшебством, но в действительности – ловкость рук и никакого мошенничества. На уроке Что такое производная? я начал рассматривать конкретные примеры, где с помощью определения нашёл производные линейной и квадратичной функции. В целях познавательной разминки продолжим тревожить таблицу производных, оттачивая алгоритм и технические приёмы решения:

Пример 1

Найти производную функции , пользуясь определением производной

По сути, требуется доказать частный случай производной степенной функции, который обычно фигурирует в таблице: .

Решение технически оформляется двумя способами. Начнём с первого, уже знакомого подхода: лесенка начинается с дощечки, а производная функция – с производной в точке.

Рассмотрим некоторую (конкретную) точку , принадлежащую области определения функции , в которой существует производная. Зададим в данной точке приращение (разумеется, не выходящее за рамки о/о-я) и составим соответствующее приращение функции:

Вычислим предел:

Неопределённость 0:0 устраняется стандартным приёмом, рассмотренным ещё в первом веке до нашей эры. Домножим числитель и знаменатель на сопряженное выражение :

Техника решения такого предела подробно рассмотрена на вводном уроке о пределах функций.

Итак, .

Поскольку в качестве можно выбрать ЛЮБУЮ точку интервала , то, осуществив замену , получаем:

Ответ: по определению производной:

Готово.

В который раз порадуемся логарифмам:

Пример 2

Найти производную функции , пользуясь определением производной

Решение: рассмотрим другой подход к раскрутке той же задачи. Он точно такой же, но более рационален с точки зрения оформления. Идея состоит в том, чтобы в начале решения избавиться от подстрочного индекса и вместо буквы использовать букву .

Рассмотрим произвольную точку , принадлежащую области определения функции (интервалу ), и зададим в ней приращение . А вот здесь, кстати, как и в большинстве случаев, можно обойтись без всяких оговорок, поскольку логарифмическая функция дифференцируема в любой точке области определения.

Тогда соответствующее приращение функции:

Найдём производную:

Простота оформления уравновешивается путаницей, которая может возникнуть у начинающих (да и не только). Ведь мы привыкли, что в пределе изменяется буква «икс»! Но тут всё по-другому: – античная статуя, а – живой посетитель, бодро шагающий по коридору музея. То есть «икс» – это «как бы константа».

Устранение неопределённости закомментирую пошагово:

(1) Используем свойство логарифма .

(2) В скобках почленно делим числитель на знаменатель.

(3) В знаменателе искусственно домножаем и делим на «икс» чтобы воспользоваться замечательным пределом , при этом в качестве бесконечно малой величины выступает .

Ответ: по определению производной:

Или сокращённо:

Предлагаю самостоятельно сконструировать ещё две табличные формулы:

Пример 3

Найти производную по определению

В данном случае составленное приращение сразу же удобно привести к общему знаменателю. Примерный образец оформления задания в конце урока (первый способ).

Пример 3:Решение: рассмотрим некоторую точку , принадлежащую области определения функции . Зададим в данной точке приращение и составим соответствующее приращение функции:

Найдём производную в точке :

Так как в качестве можно выбрать любую точку области определения функции , то и
Ответ: по определению производной

Пример 4

Найти производную по определению

А тут всё необходимо свести к замечательному пределу . Решение оформлено вторым способом.

Аналогично выводится ряд других табличных производных. Полный список можно найти в школьном учебнике, или, например, 1-м томе Фихтенгольца. Не вижу особого смысла переписывать из книг и доказательства правил дифференцирования – они тоже порождены формулой .

Пример 4:Решение: рассмотрим произвольную точку , принадлежащую , и зададим в ней приращение . Тогда соответствующее приращение функции:

Найдём производную:

Используем замечательный предел

Ответ: по определению

Пример 5

Найти производную функции , используя определение производной

Решение: используем первый стиль оформления. Рассмотрим некоторую точку , принадлежащую , изададим в ней приращение аргумента . Тогда соответствующее приращение функции:

Возможно, некоторые читатели ещё не до конца поняли принцип, по которому нужно составлять приращение . Берём точку (число) и находим в ней значение функции: , то есть в функцию вместо «икса» следует подставить . Теперь берём тоже вполне конкретное число и так же подставляем его в функцию вместо «икса»: . Записываем разность , при этом необходимо полностью взять в скобки.

Составленное приращение функции бывает выгодно сразу же упростить. Зачем? Облегчить и укоротить решение дальнейшего предела.

Используем формулы , раскрываем скобки и сокращаем всё, что можно сократить:

Индейка выпотрошена, с жаркое никаких проблем:

В итоге:

Поскольку в качестве можно выбрать любое действительное число, то проведём замену и получим .

Ответ: по определению.

В целях проверки найдём производную с помощью правил дифференцирования и таблицы:

Всегда полезно и приятно знать правильный ответ заранее, поэтому лучше мысленно либо на черновике продифференцировать предложенную функцию «быстрым» способом в самом начале решения.

Пример 6

Найти производную функции по определению производной

Это пример для самостоятельного решения. Результат лежит на поверхности:

Пример 6:Решение: рассмотрим некоторую точку , принадлежащую , и зададим в ней приращение аргумента . Тогда соответствующее приращение функции:

Вычислим производную:

Таким образом:
Поскольку в качестве можно выбрать любое действительное число, то и
Ответ: по определению.

Вернёмся к стилю №2:

Пример 7

Пользуясь определением, найти производную функции

Давайте немедленно узнаем, что должно получиться. По правилу дифференцирования сложной функции:

Решение: рассмотрим произвольную точку , принадлежащую , зададим в ней приращение аргумента и составим приращение функции:

Найдём производную:

(1) Используем тригонометрическую формулу .

(2) Под синусом раскрываем скобки, под косинусом приводим подобные слагаемые.

(3) Под синусом сокращаем слагаемые, под косинусом почленно делим числитель на знаменатель.

(4) В силу нечётности синуса выносим «минус». Под косинусом указываем, что слагаемое .

(5) В знаменателе проводим искусственное домножение, чтобы использовать первый замечательный предел . Таким образом, неопределённость устранена, причёсываем результат.

Ответ: по определению

Как видите, основная трудность рассматриваемой задачи упирается в сложность самого предела + небольшое своеобразие упаковки. На практике встречаются и тот и другой способ оформления, поэтому я максимально подробно расписываю оба подхода. Они равноценны, но всё-таки, по моему субъективному впечатлению, чайникам целесообразнее придерживаться 1-го варианта с «икс нулевым».

Пример 8

Пользуясь определением, найти производную функции

Пример 8:Решение: рассмотрим произвольную точку , принадлежащую , зададим в ней приращение и составим приращение функции:

Найдём производную:

Используем тригонометрическую формулу и первый замечательный предел:

Ответ: по определению

Разберём более редкую версию задачи:

Пример 9

Найти производную функции в точке , пользуясь определением производной.

Во-первых, что должно получиться в сухом остатке? Число

Вычислим ответ стандартным способом:

Решение: с точки зрения наглядности это задание значительно проще, так как в формуле вместо рассматривается конкретное значение.

Зададим в точке приращение и составим соответствующее приращение функции:

Вычислим производную в точке:

Используем весьма редкую формулу разности тангенсов и в который раз сведём решение к первому замечательному пределу:

Ответ: по определению производной в точке.

Задачу не так трудно решить и «в общем виде» – достаточно заменить на или просто в зависимости от способа оформления. В этом случае, понятно, получится не число, а производная функция.

Пример 10

Используя определение, найти производную функции в точке

Пример 10:Решение: Зададим приращение в точке . Тогда приращение функции:

Вычислим производную в точке:

Умножим числитель и знаменатель на сопряженное выражение:

Ответ: по определению производной в точкеЗаключительная бонус-задача предназначена, прежде всего, для студентов с углубленным изучением математического анализа, но и всем остальным тоже не помешает:

Пример 11

Будет ли дифференцируема функция в точке ?

Решение: очевидно, что кусочно-заданная функция непрерывна в точке , но будет ли она там дифференцируема?

Алгоритм решения, причём не только для кусочных функций, таков:

1) Находим левостороннюю производную в данной точке: .

2) Находим правостороннюю производную в данной точке: .

3) Если односторонние производные конечны и совпадают: , то функция дифференцируема в точке и геометрически здесь существует общая касательная (см. теоретическую часть урока Определение и смысл производной). Если получены два разных значения: (одно из которых может оказаться и бесконечным), то функция не дифференцируема в точке .

Если же обе односторонние производные равны бесконечности (пусть даже разных знаков), то функция не дифференцируема в точке , но там существует бесконечная производная и общая вертикальная касательная к графику (см. Пример 5 урока Уравнение нормали).

! Примечание: таким образом, между вопросами «Будет ли дифференцируема функция в точке?» и «Существует ли производная в точке?» есть разница!

Всё очень просто!

1) При нахождении левосторонней производной приращение аргумента отрицательно: , а слева от точки расположена парабола , поэтому приращение функции равно:

И соответствующий левосторонний предел численно равен левосторонней производной в рассматриваемой точке:

2) Справа от точки находится график прямой и приращение аргумента положительно: . Таким образом, приращение функции:

Правосторонний предел и правосторонняя производная в точке:

3) Односторонние производные конечны и различны:

Ответ: функция не дифференцируема в точке .

Ещё легче доказывается книжный случай недифференцируемости модуля в точке , о котором я в общих чертах уже рассказал на теоретическом уроке о производной.

Некоторые кусочно-заданные функции дифференцируемы и в точках «стыка» графика, например, котопёс обладает общей производной и общей касательной (ось абсцисс) в точке . Кривой, да дифференцируемый на ! Желающие могут убедиться в этом самостоятельно по образцу только что решённого примера.

 


Рекомендуемые страницы:

poisk-ru.ru

Калькулятор онлайн — Найти (с решением) производную функции

Этот математический калькулятор онлайн поможет вам если нужно найти производную функции. Программа решения производной не просто даёт ответ задачи, она приводит подробное решение с пояснениями, т.е. отображает процесс решения производной функции.

Данная программа может быть полезна учащимся старших классов общеобразовательных школ при подготовке к контрольным работам и экзаменам, при проверке знаний перед ЕГЭ, родителям для контроля решения многих задач по математике и алгебре. А может быть вам слишком накладно нанимать репетитора или покупать новые учебники? Или вы просто хотите как можно быстрее сделать домашнее задание по математике или алгебре? В этом случае вы также можете воспользоваться нашими программами с подробным решением.

Таким образом вы можете проводить своё собственное обучение и/или обучение своих младших братьев или сестёр, при этом уровень образования в области решаемых задач повышается.

Вы можете посмотреть теорию о производной функции и правила дифференцирования и таблицу производных, т.е. список формул для нахождения производных от некоторых элементарных функций.

Если вам нужно найти уравнение касательной к графику функции, то для этого у нас есть задача Уравнение касательной к графику функции.

Примеры подробного решения >>

Введите выражение функции

Обнаружено что не загрузились некоторые скрипты, необходимые для решения этой задачи, и программа может не работать.
Возможно у вас включен AdBlock.
В этом случае отключите его и обновите страницу.

Определение производной

Определение. Пусть функция \( y = f(x) \) определена в некотором интервале, содержащем внутри себя точку \( x_0 \). Дадим аргументу приращение \( \Delta x \) такое, чтобы не выйти из этого интервала. Найдем соответствующее приращение функции \( \Delta y \) (при переходе от точки \( x_0 \) к точке \( x_0 + \Delta x \) ) и составим отношение \( \frac{\Delta y}{\Delta x} \). Если существует предел этого отношения при \( \Delta x \rightarrow 0 \), то указанный предел называют производной функции \( y=f(x) \) в точке \( x_0 \) и обозначают \( f'(x_0) \).

$$ \lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x} = f'(x_0) $$

Для обозначения производной часто используют символ y’. Отметим, что y’ = f(x) — это новая функция, но, естественно, связанная с функцией y = f(x), определенная во всех точках x, в которых существует указанный выше предел. Эту функцию называют так: производная функции у = f(x).

Геометрический смысл производной состоит в следующем. Если к графику функции у = f(x) в точке с абсциссой х=a можно провести касательную, непараллельную оси y, то f(a) выражает угловой коэффициент касательной:
\( k = f'(a) \)

Поскольку \( k = tg(a) \), то верно равенство \( f'(a) = tg(a) \) .

А теперь истолкуем определение производной с точки зрения приближенных равенств. Пусть функция \( y = f(x) \) имеет производную в конкретной точке \( x \):
$$ \lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x} = f'(x) $$
Это означает, что около точки х выполняется приближенное равенство \( \frac{\Delta y}{\Delta x} \approx f'(x) \), т.е. \( \Delta y \approx f'(x) \cdot \Delta x \). Содержательный смысл полученного приближенного равенства заключается в следующем: приращение функции «почти пропорционально» приращению аргумента, причем коэффициентом пропорциональности является значение производной в заданной точке х. Например, для функции \( y = x^2 \) справедливо приближенное равенство \( \Delta y \approx 2x \cdot \Delta x \). Если внимательно проанализировать определение производной, то мы обнаружим, что в нем заложен алгоритм ее нахождения.

Сформулируем его.

Как найти производную функции у = f(x) ?

1. Зафиксировать значение \( x \), найти \( f(x) \)
2. Дать аргументу \( x \) приращение \( \Delta x \), перейти в новую точку \( x+ \Delta x \), найти \( f(x+ \Delta x) \)
3. Найти приращение функции: \( \Delta y = f(x + \Delta x) — f(x) \)
4. Составить отношение \( \frac{\Delta y}{\Delta x} \)
5. Вычислить $$ \lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x} $$
Этот предел и есть производная функции в точке x.

Если функция у = f(x) имеет производную в точке х, то ее называют дифференцируемой в точке х. Процедуру нахождения производной функции у = f(x) называют дифференцированием функции у = f(x).

Обсудим такой вопрос: как связаны между собой непрерывность и дифференцируемость функции в точке.

Пусть функция у = f(x) дифференцируема в точке х. Тогда к графику функции в точке М(х; f(x)) можно провести касательную, причем, напомним, угловой коэффициент касательной равен f'(x). Такой график не может «разрываться» в точке М, т. е. функция обязана быть непрерывной в точке х.

Это были рассуждения «на пальцах». Приведем более строгое рассуждение. Если функция у = f(x) дифференцируема в точке х, то выполняется приближенное равенство \( \Delta y \approx f'(x) \cdot \Delta x \). Если в этом равенстве \( \Delta x \) устремить к нулю, то и \( \Delta y \) будет стремиться к нулю, а это и есть условие непрерывности функции в точке.

Итак, если функция дифференцируема в точке х, то она и непрерывна в этой точке.

Обратное утверждение неверно. Например: функция у = |х| непрерывна везде, в частности в точке х = 0, но касательная к графику функции в «точке стыка» (0; 0) не существует. Если в некоторой точке к графику функции нельзя провести касательную, то в этой точке не существует производная.

Еще один пример. Функция \( y=\sqrt[3]{x} \) непрерывна на всей числовой прямой, в том числе в точке х = 0. И касательная к графику функции существует в любой точке, в том числе в точке х = 0. Но в этой точке касательная совпадает с осью у, т. е. перпендикулярна оси абсцисс, ее уравнение имеет вид х = 0. Углового коэффициента у такой прямой нет, значит, не существует и \( f'(0) \)

Итак, мы познакомились с новым свойством функции — дифференцируемостью. А как по графику функции можно сделать вывод о ее дифференцируемости?

Ответ фактически получен выше. Если в некоторой точке к графику функции можно провести касательную, не перпендикулярную оси абсцисс, то в этой точке функция дифференцируема. Если в некоторой точке касательная к графику функции не существует или она перпендикулярна оси абсцисс, то в этой точке функция не дифференцируема.

Правила дифференцирования

Операция нахождения производной называется дифференцированием. При выполнении этой операции часто приходится работать с частными, суммами, произведениями функций, а также с «функциями функций», то есть сложными функциями. Исходя из определения производной, можно вывести правила дифференцирования, облегчающие эту работу. Если C — постоянное число и f=f(x), g=g(x) — некоторые дифференцируемые функции, то справедливы следующие правила дифференцирования:

$$ C’=0 $$ $$ x’=1 $$ $$ ( f+g)’=f’+g’ $$ $$ (fg)’=f’g + fg’ $$ $$ (Cf)’=Cf’ $$ $$ \left(\frac{f}{g} \right) ‘ = \frac{f’g-fg’}{g^2} $$ $$ \left(\frac{C}{g} \right) ‘ = -\frac{Cg’}{g^2} $$ Производная сложной функции:
$$ f’_x(g(x)) = f’_g \cdot g’_x $$

Таблица производных некоторых функций

$$ \left( \frac{1}{x} \right) ‘ = -\frac{1}{x^2} $$ $$ ( \sqrt{x} ) ‘ = \frac{1}{2\sqrt{x}} $$ $$ \left( x^a \right) ‘ = a x^{a-1} $$ $$ \left( a^x \right) ‘ = a^x \cdot \ln a $$ $$ \left( e^x \right) ‘ = e^x $$ $$ ( \ln x )’ = \frac{1}{x} $$ $$ ( \log_a x )’ = \frac{1}{x\ln a} $$ $$ ( \sin x )’ = \cos x $$ $$ ( \cos x )’ = -\sin x $$ $$ ( \text{tg} x )’ = \frac{1}{\cos^2 x} $$ $$ ( \text{ctg} x )’ = -\frac{1}{\sin^2 x} $$ $$ ( \arcsin x )’ = \frac{1}{\sqrt{1-x^2}} $$ $$ ( \arccos x )’ = \frac{-1}{\sqrt{1-x^2}} $$ $$ ( \text{arctg} x )’ = \frac{1}{1+x^2} $$ $$ ( \text{arcctg} x )’ = \frac{-1}{1+x^2} $$

www.mathsolution.ru

Подготовка школьников к ЕГЭ в учебном центре «Резольвента» (Справочник по математике — Элементы математического анализа

      Пример 1. Найти производную функции

y = cos 2x

      Решение. Воcпользовавшись формулой для производной сложной функции   y = cos (kx + b)   в случае, когда   = 2,   = 0,   получим

(cos 2x)’ = – 2sin 2x .

      Замечание. Очень часто школьники, а также и студенты, при решении примера 1 пишут:

(cos 2x)’ = – sin 2x .

      Это ошибка !!!

      Перепишем верный ответ еще раз:

(cos 2x)’ = – 2sin 2x .

      Приведем также верные ответы в похожих примерах:

      Пример 2. Найти производную функции

y = sin3x

      Решение. Воcпользовавшись формулой для производной сложной функции   y = f (x)) c   в случае, когда   (x) = sin x ,   а   = 3,   получим

Ответ:

      Пример 3. Найти производную функции

y = (3x – 7)5 .

      Решение. Воcпользовавшись формулой для производной сложной функции   y = (kx + b)c   в случае, когда   = 3,   = – 7,   а   = 5,   получим

y’ = 15(3x – 7)4 .

Ответ:

      Пример 4 . Найти производную функции

      Решение. Поскольку

,

то исходную функцию можно переписать в виде

      Воcпользовавшись формулой для производной сложной функции   y = f (x)) c   в случае, когда

,

а   = 8,   получим

Ответ:

      Пример 5 . Найти производную функции

      Решение. Воcпользовавшись правилом 5 для вычисления производной частного двух функций и формулой для производной сложной функции   y = arccos (kx + b)   в случае, когда   = 3,   = 0,   получим

Ответ:

.

      Пример 6. Найти производную функции

      Решение. Воcпользовавшись правилом 4 для вычисления производной произведения двух функций, формулой для производной сложной функции   y = arctg (kx + b)   в случае, когда   = 5,   = 0, и формулой для производной сложной функции   y = akx + b   в случае, когда   = 3,   = 2,   = 0,   получим

Ответ:

      Пример 7 . Найти производную функции

      Решение. Поскольку

то, воcпользовавшись формулой для производной сложной функции   y = e f (x)   в случае, когда   , и формулой для производной сложной функции   y = (kx + b)c   в случае, когда   с = – 1,   = 7,   = – 1,  получим

Ответ:

      На нашем сайте можно также ознакомиться с разработанными преподавателями учебного центра «Резольвента» учебными материалами для подготовки к ЕГЭ по математике.

    Приглашаем школьников (можно вместе с родителями) на бесплатное тестирование по математике, позволяющее выяснить, какие разделы математики и навыки в решении задач являются для ученика «проблемными».

Запись по телефону (495) 509-28-10

      Для школьников, желающих хорошо подготовиться и сдать ЕГЭ по математике или русскому языку на высокий балл, учебный центр «Резольвента» проводит

      У нас также для школьников организованы

МОСКВА, СВАО, Учебный центр «РЕЗОЛЬВЕНТА»

www.resolventa.ru