Примеры нахождение производной функции – Подготовка школьников к ЕГЭ в учебном центре «Резольвента» (Справочник по математике — Элементы математического анализа
Примеры нахождения производной сложной функции
Рассмотрим еще некоторые примеры нахождения производной сложной функции.
Решение:
Там, где возможно, перед дифференцированием примеры упрощаем:
Данная функция — сложная. Внешняя функция f=u³, внутренняя — выражение, стоящее в скобках. Дифференцируем по правилу дифференцирования сложной функции: Имеем:
2) При нахождении производных логарифмов во многих случаях возможно предварительное преобразование выражений с использованием свойств логарифмов, что позволяет существенно облегчить дифференцирование:
Здесь внешняя функция — ln u, внутренняя — выражение, стоящее под знаком логарифма. Внутренняя функция представляет собой дробь, поэтому для ее дифференцирования применяем правило нахождения производной частного:
Сокращаем числитель и знаменатель на (х²+1) и 2:
3) Здесь внешняя функция — f=arccos u, u — выражение с квадратным к0рнем. Дифференцируем:
4) Первое слагаемое — сложная показательная функция 3 в степени u, u=cos x.
Второе слагаемое дифференцируем по правилу нахождения производной произведения:
www.matematika.uznateshe.ru
Примеры решений производных
- Попробуйте найти производные от приведенных ниже функций.
- Нажмите на изображение или стрелку, чтобы попасть на страницу с подробным решением.
Примеры решений производных от явных функций
Найдите производные следующих функций, зависящих от переменной x:
Решение > > >
Решение > > >
Решение > > >
> > > > > > > > > > > > > > > > > > > > > > > > > > > > > >
> > > Здесь , , , – постоянные.
> > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > >
Примеры решений производных высших порядков от явных функций
Найти производные первого и второго порядка следующей функции:
.
Решение > > >
Найти производную третьего порядка:
.
Решение > > >
Найти производную шестого порядка следующей функции:
.
Решение > > >
Вычислить n-ю производную функции
.
Решение > > >
Найти n-ю производную следующей функции:
,
где и – постоянные.
Решение > > >
Примеры решения производных от функций, заданных параметрическим способом
Найдите производную от функции, заданной параметрическим способом:
Решение > > >
Найдите производную , где и выражены через параметр :
Решение > > >
Найдите производные второго и третьего порядка от функции, заданной параметрическим способом:
Решение > > >
Примеры решений производных от неявных функций
Найдите производную первого порядка от функции, заданной неявно уравнением:
.
Решение > > >
Найти производную второго порядка от неявно заданной функции:
.
Решение > > >
Найти производную третьего порядка при от функции, заданной уравнением:
.
Решение > > >
Автор: Олег Одинцов. Опубликовано: Изменено:
1cov-edu.ru
Производная сложной функции
Если g(x) и f(u) – дифференцируемые функции своих аргументов соответственно в точках
Типичная ошибка при решении задач на производные — машинальное перенесение правил дифференцирования простых функций на сложные функции. Будем учиться избегать этой ошибки.
Посмотрите на
формулу 9 в таблице производных. Исходная функция является функцией от функции, причём аргумент x
является аргументом лишь второй функции, а вторая функция является аргументом первой функции, или,
согласно более строгому определению — промежуточным аргументом по независимой переменной
А теперь посмотрите на картинку ниже, которая иллюстрирует решение задач на сложные производные по аналогии с простым примером из кулинарии — приготовлении запечёных яблок, фаршированных ягодами.
Итак, «яблоко» — это функция, аргументом которой является промежуточный аргумент, а промежуточный аргумент по независимой переменной x,
в свою очередь, является «фаршем» (ягодами). Представим себе, что решая задачи на производные сложной функции, сначала помещаем яблоко с фаршем в особую (физико-математическую) духовку и устанавливаем режим 1.
При таком режиме духовка воздействует только на «яблоко», поскольку нужно, допустим, больше пропечь яблоко, а фарш из ягод оставить более сочным, то есть обрабатывать в другом режиме.
Итак, в при режиме 1 обрабатывается яблоко, а фарш остаётся незатронутым, или, ближе к нашим задачам, находим
производную функции лишь от промежуточного аргумента, то есть, «яблока». Затем в духовке устанавливается режим 2, который воздействует
только на фарш, иначе говоря, записываем производную функции, являющейся промежуточным аргументом по независимой переменной
Пример 1.Найти производную функции
Сначала определим, где здесь «яблоко», то есть функция по промежуточному аргументу u, а где «фарш», то есть промежуточный аргумент u по независимой переменной x. Определяем: возведение в степень — это функция по промежуточному аргументу, то есть «яблоко», а выражение в скобках (разность двух тригонометрических функций) — это промежуточный аргумент, то есть «фарш».
Тогда
Далее по таблице производных (производная суммы или разности, производные синуса и косинуса) находим:
Требуемая в условии задачи производная (готовое «фаршированое яблоко»):
Нахождение производной сложной логарифмической функции имеет свои особенности, поэтому у нас есть и урок «Производная логарифмической функции».
Пример 2.Найти производную функции
Неправильное решение: вычислять натуральный логарифм каждого слагаемого в скобках и искать сумму производных:
Правильное решение: опять определяем, где «яблоко», а где «фарш». Здесь натуральный логарифм от выражения в скобках — это «яблоко», то есть
функция по промежуточному аргументу u, а выражение в скобках — «фарш», то есть промежуточный аргумент
Тогда (применяя формулу 14 из таблицы производных)
Во многих реальных задачах выражение с логарифмом бывает несколько сложнее, поэтому и есть урок «Производная логарифмической функции».
Пример 3.Найти производную функции
Неправильное решение:
Правильное решение. В очередной раз определяем, где «яблоко», а где «фарш». Здесь косинус от выражения в скобках (формула 7 в таблице производных)- это «яблоко», оно готовится в режиме 1, воздействующем только на него, а выражение в скобках (производная степени — номер 3 в таблице производных) — это «фарш», он готовится при режиме 2, воздействующей только на него. И как всегда соединяем две производные знаком произведения. Результат:
Производная сложной логарифмической функции — частое задание на контрольных работах, поэтому настоятельно рекомендуем посетить урок «Производная логарифмической функции».
Первые примеры были на сложные функции, в которых промежуточный аргумент по независимой переменной был простой функцией. Но в практических заданиях нередко требуется найти производную сложной функции, где промежуточный аргумент или сам является сложной функцией или содержит такую функцию. Что делать в таких случаях? Находить производные таких функций по таблицам и правилам дифференцирования. Когда найдена производная промежуточного аргумента, она просто подставляется в нужное место формулы. Ниже – два примера, как это делается.
Кроме того, полезно знать следующее. Если сложная функция может быть представлена в виде цепочки из трёх функций
,
то её производную следует находить как произведение производных каждой из этих функций:
.
Для решения многих ваших домашних заданий может потребоваться открыть в новых окнах пособия
Пример 4.Найти производную функции
Применяем правило дифференцирования сложной функции, не забывая, что в полученном произведении производных промежуточный аргумент по независимой переменной x не меняется:
Готовим второй сомножитель произведения и применяем правило дифференцирования суммы:
Второе слагаемое — корень, поэтому
Таким образом получили, что промежуточный аргумент, являющийся суммой, в качестве одного
из слагаемых содержит сложную функцию: возведение в степень — сложная функция, а то, что возводится
в степень — промежуточный аргумент по независимой переменной
Поэтому вновь применим правило дифференцирования сложной функции:
Степень первого сомножителя преобразуем в корень, а дифференцируя второй сомножитель, не забываем, что производная константы равна нулю:
Теперь можем найти производную промежуточного аргумента, нужного для вычисления требуемой в условии задачи производной сложной функции y:
Тогда
Пример 5.Найти производную функции
Сначала воспользуемся правилом дифференцирования суммы:
Получили сумму производных двух сложных функций. Находим первую из них:
Здесь возведение синуса в степень — сложная функция, а сам синус — промежуточный аргумент по независимой переменной x. Поэтому воспользуемся правилом дифференцирования сложной функции, попутно вынося множитель за скобки:
Теперь находим второе слагаемое из образующих производную функции y:
Здесь возведение косинуса в степень — сложная функция f[g(x)], а сам косинус — промежуточный аргумент по независимой переменной x
Результат — требуемая производная:
Для сложных функций на основании правила дифференцирования сложной функции формула производной простой функции принимает другой вид.
Поделиться с друзьями
Весь блок «Производная»
function-x.ru
Как найти производную? Примеры решений
Как найти производную, как взять производную? На данном уроке мы научимся находить производные функций. Но перед изучением данной страницы я настоятельно рекомендую ознакомиться с методическим материалом Горячие формулы школьного курса математики. Справочное пособие можно открыть или закачать на странице Математические формулы и таблицы. Также оттуда нам потребуется Таблица производных, ее лучше распечатать, к ней часто придется обращаться, причем, не только сейчас, но и в оффлайне.
Есть? Приступим. У меня для Вас есть две новости: хорошая и очень хорошая. Хорошая новость состоит в следующем: чтобы научиться находить производные, совсем не обязательно знать и понимать, что такое производная. Более того, определение производной функции, математический, физический, геометрический смысл производной целесообразнее переварить позже, поскольку качественная проработка теории, по моему мнению, требует изучения ряда других тем, а также некоторого практического опыта.
И сейчас наша задача освоить эти самые производные технически. Очень хорошая новость состоит в том, что научиться брать производные не так сложно, существует довольно чёткий алгоритм решения (и объяснения) этого задания, интегралы или пределы, например, освоить труднее.
Советую следующий порядок изучения темы: во-первых, эта статья. Затем нужно прочитать важнейший урок Производная сложной функции. Эти два базовых занятия позволят поднять Ваши навыки с полного нуля. Далее можно будет ознакомиться с более сложными производными в статье Сложные производные.
Логарифмическая производная. Если планка окажется слишком высока, то сначала прочитайте вещьПростейшие типовые задачи с производной. Помимо нового материала, на уроке рассмотрены другие, более простые типы производных, и есть прекрасная возможность улучшить свою технику дифференцирования. Кроме того, в контрольных работах почти всегда встречаются задания на нахождение производных функций, которые заданы неявно или параметрически. Такой урок тоже есть:Производные неявных и параметрически заданных функций.
Я попытаюсь в доступной форме, шаг за шагом, научить Вас находить производные функций. Вся информация изложена подробно, простыми словами.
Собственно, сразу рассмотрим пример: Пример 1
Найти производную функции Решение:
Это простейший пример, пожалуйста, найдите его в таблице производных элементарных функций. Теперь посмотрим на решение и проанализируем, что же произошло? А произошла следующая вещь:
у нас была функция , которая в результате решения превратилась в функцию.
Говоря совсем просто, для того чтобы найти производную
функции, нужно по определенным правилам превратить её в другую функцию. Посмотрите еще раз на таблицу производных – там функции превращаются в другие функции. Единственным
исключением является экспоненциальная функция , которая
превращается сама в себя. Операция нахождения производной называется дифференцированием.
Обозначения: Производную обозначаютили.
ВНИМАНИЕ, ВАЖНО! Забыть поставить штрих (там, где надо), либо нарисовать лишний штрих (там, где не надо) –ГРУБАЯ ОШИБКА! Функция и её производная – это две разные функции!
Вернемся к нашей таблице производных. Из данной таблицы желательно запомнить наизусть: правила дифференцирования и производные некоторых элементарных функций, особенно:
производную константы:
, где– постоянное число; производную степенной функции:
, в частности:,,.
Зачем запоминать? Данные знания являются элементарными знаниями о производных. И если Вы не сможете ответить преподавателю на вопрос «Чему равна производная числа?», то учеба в ВУЗе может для Вас закончиться (лично знаком с двумя реальными случаями из жизни). Кроме того, это наиболее распространенные формулы, которыми приходится пользоваться практически каждый раз, когда мы сталкиваемся с производными.
Вреальности простые табличные примеры – редкость, обычно при нахождении производных сначала используются правила дифференцирования, а затем – таблица производных элементарных функций.
Вэтой связи переходим к рассмотрению правил дифференцирования:
1) Постоянное число можно (и нужно) вынести за знак производной
, где– постоянное число (константа)Пример 2
Найти производную функции
Смотрим в таблицу производных. Производная косинуса там есть, но у нас .
Решаем:
Самое время использовать правило, выносим постоянный множитель за знак производной:
А теперь превращаем наш косинус по таблице:
Ну и результат желательно немного «причесать» – ставим минус на первое место, заодно избавляясь от скобок:
Готово.
2) Производная суммы равна сумме производных
Найти производную функции
Решаем. Как Вы, наверное, уже заметили, первое действие, которое всегда выполняется при нахождении производной, состоит в том, что мы заключаем в скобки всё выражение и ставим штрих справа вверху:
Применяем второе правило:
Обратите внимание, что для дифференцирования все корни, степени нужно представить в виде , а если они находятся в знаменателе, то
переместить их вверх. Как это сделать – рассмотрено в моих методических материалах.
Теперь вспоминаем о первом правиле дифференцирования – постоянные множители (числа) выносим за знак производной:
Обычно в ходе решения эти два правила применяют одновременно (чтобы не переписывать лишний раз длинное выражение).
Все функции, находящиеся под штрихами, являются элементарными табличными функциями, с помощью таблицы осуществляем превращение:
Можно всё оставить в таком виде, так как штрихов больше нет, и производная найдена. Тем не менее, подобные выражения обычно упрощают:
Все степени вида желательно снова представить в виде корней,
степени с отрицательными показателями – сбросить в знаменатель. Хотя этого можно и не делать, ошибкой не будет.
Пример 4
Найти производную функции
Попробуйте решить данный пример самостоятельно (ответ в конце урока).
3) Производная произведения функций
Вроде бы по аналогии напрашивается формула …., но неожиданность состоит в том, что:
Эта необычное правило (как, собственно, и другие)следует из определения производной. Но с теорией мы пока повременим – сейчас важнее научиться решать:
Пример 5
Найти производную функции
Здесь у нас произведение двух функций, зависящих от . Сначала применяем наше странное правило, а затем превращаем функции по таблице производных:
Сложно? Вовсе нет, вполне доступно даже для чайника.
Пример 6
Найти производную функции
В данной функции содержится сумма и произведение двух функций – квадратного трехчленаи логарифма. Со школы мы помним, что умножение и деление имеют приоритет перед сложением и вычитанием.
Здесь всё так же. СНАЧАЛА мы используем правило дифференцирования произведения:
Теперь для скобки используем два первых правила:
В результате применения правил дифференцирования под штрихами у нас остались только элементарные функции, по таблице производных превращаем их в другие функции:
Готово.
При определенном опыте нахождения производных, простые производные вроде не обязательно расписывать так подробно. Вообще, они обычно решаются устно, и сразу записывается, что.
Пример 7
Найти производную функции Это пример для самостоятельного решения (ответ в конце урока)
4) Производная частного функций
В потолке открылся люк, не пугайся, это глюк. А вот это вот суровая действительность:
Пример 8
Найти производную функции
Чего здесь только нет – сумма, разность, произведение, дробь…. С чего бы начать?! Есть сомнения, нет сомнений, но, В ЛЮБОМ СЛУЧАЕ для начала рисуем скобочки и справа вверху ставим штрих:
Теперь смотрим на выражение в скобках, как бы его упростить? В данном случае замечаем множитель, который согласно первому правилу целесообразно вынести за знак производной:
Заодно избавляемся от скобок в числителе, которые теперь не нужны. Вообще говоря, постоянные множители при нахождении производной
можно и не выносить, но в этом случае они будут «путаться под ногами», что загромождает и затрудняет решение.
Смотрим на наше выражение в скобках. У нас есть сложение, вычитание и деление. Со школы мы помним, что деление выполняется в первую очередь. И здесь – сначала применяем правило дифференцирования частного:
Таким образом, наша страшная производная свелась к производным двух простых выражений. Применяем первое и второе правило, здесь это сделаем устно, надеюсь, Вы уже немного освоились в производных:
Штрихов больше нет, задание выполнено.
На практике обычно (но не всегда) ответ упрощают «школьными» методами:
Пример 9
Найти производную функции
Это пример для самостоятельного решения (ответ в конце урока). Время от времени встречаются хитрые задачки:
Пример 10
Найти производную функции
Смотрим на данную функцию. Здесь снова дробь. Однако перед тем как использовать правило дифференцирования частного (а его можно использовать), всегда имеет смысл посмотреть, а нельзя ли упростить саму дробь, или вообще избавиться от нее?
Дело в том, что формула достаточно громоздка, и применять ее совсем не хочется.
В данном случае можно почленно поделить числитель на знаменатель. Преобразуем функцию:
Ну вот, совсем другое дело, теперь дифференцировать просто и приятно:
Готово.
Пример 11
Найти производную функции
Здесь ситуация похожа, превратим нашу дробь в произведение, для этого поднимем экспоненту в числитель, сменив у показателя знак:
Произведение все-такидифференцировать проще:
Пример 12
Найти производную функции Это пример для самостоятельного решения (ответ в конце урока).
5) Производная сложной функции
Данное правило также встречается очень часто. Но о нём рассказать можно очень много, поэтому я создал отдельный урок на тему Производная сложной функции.
Желаю успехов!
Ответы:
Пример 4: . В ходе решения
данного примера следует обратить внимание, на тот факт, что и– постоянные числа, не важно чему они равны, важно, что это — константы. Поэтомувыносится за знак производной, а.
Пример 7:
Пример 9:
Пример 12:
studfiles.net
Как найти производную по определению?
Поиск ЛекцийСоставить отношение и вычислить предел .
Откуда появилась таблица производных и правила дифференцирования? Благодаря единственному пределу . Кажется волшебством, но в действительности – ловкость рук и никакого мошенничества. На уроке Что такое производная? я начал рассматривать конкретные примеры, где с помощью определения нашёл производные линейной и квадратичной функции. В целях познавательной разминки продолжим тревожить таблицу производных, оттачивая алгоритм и технические приёмы решения:
Пример 1
Найти производную функции , пользуясь определением производной
По сути, требуется доказать частный случай производной степенной функции, который обычно фигурирует в таблице: .
Решение технически оформляется двумя способами. Начнём с первого, уже знакомого подхода: лесенка начинается с дощечки, а производная функция – с производной в точке.
Рассмотрим некоторую (конкретную) точку , принадлежащую области определения функции , в которой существует производная. Зададим в данной точке приращение (разумеется, не выходящее за рамки о/о-я) и составим соответствующее приращение функции:
Вычислим предел:
Неопределённость 0:0 устраняется стандартным приёмом, рассмотренным ещё в первом веке до нашей эры. Домножим числитель и знаменатель на сопряженное выражение :
Техника решения такого предела подробно рассмотрена на вводном уроке о пределах функций.
Итак, .
Поскольку в качестве можно выбрать ЛЮБУЮ точку интервала , то, осуществив замену , получаем:
Ответ: по определению производной:
Готово.
В который раз порадуемся логарифмам:
Пример 2
Найти производную функции , пользуясь определением производной
Решение: рассмотрим другой подход к раскрутке той же задачи. Он точно такой же, но более рационален с точки зрения оформления. Идея состоит в том, чтобы в начале решения избавиться от подстрочного индекса и вместо буквы использовать букву .
Рассмотрим произвольную точку , принадлежащую области определения функции (интервалу ), и зададим в ней приращение . А вот здесь, кстати, как и в большинстве случаев, можно обойтись без всяких оговорок, поскольку логарифмическая функция дифференцируема в любой точке области определения.
Тогда соответствующее приращение функции:
Найдём производную:
Простота оформления уравновешивается путаницей, которая может возникнуть у начинающих (да и не только). Ведь мы привыкли, что в пределе изменяется буква «икс»! Но тут всё по-другому: – античная статуя, а – живой посетитель, бодро шагающий по коридору музея. То есть «икс» – это «как бы константа».
Устранение неопределённости закомментирую пошагово:
(1) Используем свойство логарифма .
(2) В скобках почленно делим числитель на знаменатель.
(3) В знаменателе искусственно домножаем и делим на «икс» чтобы воспользоваться замечательным пределом , при этом в качестве бесконечно малой величины выступает .
Ответ: по определению производной:
Или сокращённо:
Предлагаю самостоятельно сконструировать ещё две табличные формулы:
Пример 3
Найти производную по определению
В данном случае составленное приращение сразу же удобно привести к общему знаменателю. Примерный образец оформления задания в конце урока (первый способ).
Пример 3:Решение: рассмотрим некоторую точку , принадлежащую области определения функции . Зададим в данной точке приращение и составим соответствующее приращение функции:
Найдём производную в точке :
Так как в качестве можно выбрать любую точку области определения функции , то и
Ответ: по определению производной
Пример 4
Найти производную по определению
А тут всё необходимо свести к замечательному пределу . Решение оформлено вторым способом.
Аналогично выводится ряд других табличных производных. Полный список можно найти в школьном учебнике, или, например, 1-м томе Фихтенгольца. Не вижу особого смысла переписывать из книг и доказательства правил дифференцирования – они тоже порождены формулой .
Пример 4:Решение: рассмотрим произвольную точку , принадлежащую , и зададим в ней приращение . Тогда соответствующее приращение функции:
Найдём производную:
Используем замечательный предел
Ответ: по определению
Пример 5
Найти производную функции , используя определение производной
Решение: используем первый стиль оформления. Рассмотрим некоторую точку , принадлежащую , изададим в ней приращение аргумента . Тогда соответствующее приращение функции:
Возможно, некоторые читатели ещё не до конца поняли принцип, по которому нужно составлять приращение . Берём точку (число) и находим в ней значение функции: , то есть в функцию вместо «икса» следует подставить . Теперь берём тоже вполне конкретное число и так же подставляем его в функцию вместо «икса»: . Записываем разность , при этом необходимо полностью взять в скобки.
Составленное приращение функции бывает выгодно сразу же упростить. Зачем? Облегчить и укоротить решение дальнейшего предела.
Используем формулы , раскрываем скобки и сокращаем всё, что можно сократить:
Индейка выпотрошена, с жаркое никаких проблем:
В итоге:
Поскольку в качестве можно выбрать любое действительное число, то проведём замену и получим .
Ответ: по определению.
В целях проверки найдём производную с помощью правил дифференцирования и таблицы:
Всегда полезно и приятно знать правильный ответ заранее, поэтому лучше мысленно либо на черновике продифференцировать предложенную функцию «быстрым» способом в самом начале решения.
Пример 6
Найти производную функции по определению производной
Это пример для самостоятельного решения. Результат лежит на поверхности:
Пример 6:Решение: рассмотрим некоторую точку , принадлежащую , и зададим в ней приращение аргумента . Тогда соответствующее приращение функции:
Вычислим производную:
Таким образом:
Поскольку в качестве можно выбрать любое действительное число, то и
Ответ: по определению.
Вернёмся к стилю №2:
Пример 7
Пользуясь определением, найти производную функции
Давайте немедленно узнаем, что должно получиться. По правилу дифференцирования сложной функции:
Решение: рассмотрим произвольную точку , принадлежащую , зададим в ней приращение аргумента и составим приращение функции:
Найдём производную:
(1) Используем тригонометрическую формулу .
(2) Под синусом раскрываем скобки, под косинусом приводим подобные слагаемые.
(3) Под синусом сокращаем слагаемые, под косинусом почленно делим числитель на знаменатель.
(4) В силу нечётности синуса выносим «минус». Под косинусом указываем, что слагаемое .
(5) В знаменателе проводим искусственное домножение, чтобы использовать первый замечательный предел . Таким образом, неопределённость устранена, причёсываем результат.
Ответ: по определению
Как видите, основная трудность рассматриваемой задачи упирается в сложность самого предела + небольшое своеобразие упаковки. На практике встречаются и тот и другой способ оформления, поэтому я максимально подробно расписываю оба подхода. Они равноценны, но всё-таки, по моему субъективному впечатлению, чайникам целесообразнее придерживаться 1-го варианта с «икс нулевым».
Пример 8
Пользуясь определением, найти производную функции
Пример 8:Решение: рассмотрим произвольную точку , принадлежащую , зададим в ней приращение и составим приращение функции:
Найдём производную:
Используем тригонометрическую формулу и первый замечательный предел:
Ответ: по определению
Разберём более редкую версию задачи:
Пример 9
Найти производную функции в точке , пользуясь определением производной.
Во-первых, что должно получиться в сухом остатке? Число
Вычислим ответ стандартным способом:
Решение: с точки зрения наглядности это задание значительно проще, так как в формуле вместо рассматривается конкретное значение.
Зададим в точке приращение и составим соответствующее приращение функции:
Вычислим производную в точке:
Используем весьма редкую формулу разности тангенсов и в который раз сведём решение к первому замечательному пределу:
Ответ: по определению производной в точке.
Задачу не так трудно решить и «в общем виде» – достаточно заменить на или просто в зависимости от способа оформления. В этом случае, понятно, получится не число, а производная функция.
Пример 10
Используя определение, найти производную функции в точке
Пример 10:Решение: Зададим приращение в точке . Тогда приращение функции:
Вычислим производную в точке:
Умножим числитель и знаменатель на сопряженное выражение:
Ответ: по определению производной в точкеЗаключительная бонус-задача предназначена, прежде всего, для студентов с углубленным изучением математического анализа, но и всем остальным тоже не помешает:
Пример 11
Будет ли дифференцируема функция в точке ?
Решение: очевидно, что кусочно-заданная функция непрерывна в точке , но будет ли она там дифференцируема?
Алгоритм решения, причём не только для кусочных функций, таков:
1) Находим левостороннюю производную в данной точке: .
2) Находим правостороннюю производную в данной точке: .
3) Если односторонние производные конечны и совпадают: , то функция дифференцируема в точке и геометрически здесь существует общая касательная (см. теоретическую часть урока Определение и смысл производной). Если получены два разных значения: (одно из которых может оказаться и бесконечным), то функция не дифференцируема в точке .
Если же обе односторонние производные равны бесконечности (пусть даже разных знаков), то функция не дифференцируема в точке , но там существует бесконечная производная и общая вертикальная касательная к графику (см. Пример 5 урока Уравнение нормали).
! Примечание: таким образом, между вопросами «Будет ли дифференцируема функция в точке?» и «Существует ли производная в точке?» есть разница!
Всё очень просто!
1) При нахождении левосторонней производной приращение аргумента отрицательно: , а слева от точки расположена парабола , поэтому приращение функции равно:
И соответствующий левосторонний предел численно равен левосторонней производной в рассматриваемой точке:
2) Справа от точки находится график прямой и приращение аргумента положительно: . Таким образом, приращение функции:
Правосторонний предел и правосторонняя производная в точке:
3) Односторонние производные конечны и различны:
Ответ: функция не дифференцируема в точке .
Ещё легче доказывается книжный случай недифференцируемости модуля в точке , о котором я в общих чертах уже рассказал на теоретическом уроке о производной.
Некоторые кусочно-заданные функции дифференцируемы и в точках «стыка» графика, например, котопёс обладает общей производной и общей касательной (ось абсцисс) в точке . Кривой, да дифференцируемый на ! Желающие могут убедиться в этом самостоятельно по образцу только что решённого примера.
Рекомендуемые страницы:
poisk-ru.ru
Калькулятор онлайн — Найти (с решением) производную функции
Этот математический калькулятор онлайн поможет вам если нужно найти производную функции. Программа решения производной не просто даёт ответ задачи, она приводит подробное решение с пояснениями, т.е. отображает процесс решения производной функции.
Данная программа может быть полезна учащимся старших классов общеобразовательных школ при подготовке к контрольным работам и экзаменам, при проверке знаний перед ЕГЭ, родителям для контроля решения многих задач по математике и алгебре. А может быть вам слишком накладно нанимать репетитора или покупать новые учебники? Или вы просто хотите как можно быстрее сделать домашнее задание по математике или алгебре? В этом случае вы также можете воспользоваться нашими программами с подробным решением.
Таким образом вы можете проводить своё собственное обучение и/или обучение своих младших братьев или сестёр, при этом уровень образования в области решаемых задач повышается.
Вы можете посмотреть теорию о производной функции и правила дифференцирования и таблицу производных, т.е. список формул для нахождения производных от некоторых элементарных функций.
Если вам нужно найти уравнение касательной к графику функции, то для этого у нас есть задача Уравнение касательной к графику функции.
Примеры подробного решения >>
Введите выражение функции
Обнаружено что не загрузились некоторые скрипты, необходимые для решения этой задачи, и программа может не работать.
Возможно у вас включен AdBlock.
В этом случае отключите его и обновите страницу.
Определение производной
Определение. Пусть функция \( y = f(x) \) определена в некотором интервале, содержащем внутри себя точку \( x_0 \). Дадим аргументу приращение \( \Delta x \) такое, чтобы не выйти из этого интервала. Найдем соответствующее приращение функции \( \Delta y \) (при переходе от точки \( x_0 \) к точке \( x_0 + \Delta x \) ) и составим отношение \( \frac{\Delta y}{\Delta x} \). Если существует предел этого отношения при \( \Delta x \rightarrow 0 \), то указанный предел называют производной функции \( y=f(x) \) в точке \( x_0 \) и обозначают \( f'(x_0) \).
$$ \lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x} = f'(x_0) $$
Для обозначения производной часто используют символ y’. Отметим, что y’ = f(x) — это новая функция, но, естественно, связанная с функцией y = f(x), определенная во всех точках x, в которых существует указанный выше предел. Эту функцию называют так: производная функции у = f(x).
Геометрический смысл производной состоит в следующем. Если к графику функции у = f(x) в точке с абсциссой х=a можно
провести касательную, непараллельную оси y, то f(a) выражает угловой коэффициент касательной:
\( k = f'(a) \)
Поскольку \( k = tg(a) \), то верно равенство \( f'(a) = tg(a) \) .
А теперь истолкуем определение производной с точки зрения приближенных равенств. Пусть функция \( y = f(x) \) имеет
производную в конкретной точке \( x \):
$$ \lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x} = f'(x) $$
Это означает, что около точки х выполняется приближенное равенство \( \frac{\Delta y}{\Delta x} \approx f'(x) \), т.е.
\( \Delta y \approx f'(x) \cdot \Delta x \).
Содержательный смысл полученного приближенного равенства заключается в следующем: приращение функции «почти пропорционально»
приращению аргумента, причем коэффициентом пропорциональности является значение производной в заданной точке х.
Например, для функции \( y = x^2 \) справедливо приближенное равенство \( \Delta y \approx 2x \cdot \Delta x \).
Если внимательно проанализировать определение производной, то мы обнаружим, что в нем заложен алгоритм ее нахождения.
Сформулируем его.
Как найти производную функции у = f(x) ?
1. Зафиксировать значение \( x \), найти \( f(x) \)
2. Дать аргументу \( x \) приращение \( \Delta x \), перейти в новую точку \( x+ \Delta x \), найти \( f(x+ \Delta x) \)
3. Найти приращение функции: \( \Delta y = f(x + \Delta x) — f(x) \)
4. Составить отношение \( \frac{\Delta y}{\Delta x} \)
5. Вычислить $$ \lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x} $$
Этот предел и есть производная функции в точке x.
Если функция у = f(x) имеет производную в точке х, то ее называют дифференцируемой в точке х. Процедуру нахождения производной функции у = f(x) называют дифференцированием функции у = f(x).
Обсудим такой вопрос: как связаны между собой непрерывность и дифференцируемость функции в точке.
Пусть функция у = f(x) дифференцируема в точке х. Тогда к графику функции в точке М(х; f(x)) можно провести касательную, причем, напомним, угловой коэффициент касательной равен f'(x). Такой график не может «разрываться» в точке М, т. е. функция обязана быть непрерывной в точке х.
Это были рассуждения «на пальцах». Приведем более строгое рассуждение. Если функция у = f(x) дифференцируема в точке х, то выполняется приближенное равенство \( \Delta y \approx f'(x) \cdot \Delta x \). Если в этом равенстве \( \Delta x \) устремить к нулю, то и \( \Delta y \) будет стремиться к нулю, а это и есть условие непрерывности функции в точке.
Итак, если функция дифференцируема в точке х, то она и непрерывна в этой точке.
Обратное утверждение неверно. Например: функция у = |х| непрерывна везде, в частности в точке х = 0, но касательная к графику функции в «точке стыка» (0; 0) не существует. Если в некоторой точке к графику функции нельзя провести касательную, то в этой точке не существует производная.
Еще один пример. Функция \( y=\sqrt[3]{x} \) непрерывна на всей числовой прямой, в том числе в точке х = 0. И касательная к графику функции существует в любой точке, в том числе в точке х = 0. Но в этой точке касательная совпадает с осью у, т. е. перпендикулярна оси абсцисс, ее уравнение имеет вид х = 0. Углового коэффициента у такой прямой нет, значит, не существует и \( f'(0) \)
Итак, мы познакомились с новым свойством функции — дифференцируемостью. А как по графику функции можно сделать вывод о ее дифференцируемости?
Ответ фактически получен выше. Если в некоторой точке к графику функции можно провести касательную, не перпендикулярную оси абсцисс, то в этой точке функция дифференцируема. Если в некоторой точке касательная к графику функции не существует или она перпендикулярна оси абсцисс, то в этой точке функция не дифференцируема.
Правила дифференцирования
Операция нахождения производной называется дифференцированием.
При выполнении этой операции часто приходится работать с частными, суммами, произведениями функций, а также с «функциями функций»,
то есть сложными функциями. Исходя из определения производной, можно вывести правила дифференцирования, облегчающие эту работу.
Если C — постоянное число и f=f(x), g=g(x) — некоторые дифференцируемые функции, то справедливы следующие правила дифференцирования:
$$ f’_x(g(x)) = f’_g \cdot g’_x $$
Таблица производных некоторых функций
$$ \left( \frac{1}{x} \right) ‘ = -\frac{1}{x^2} $$ $$ ( \sqrt{x} ) ‘ = \frac{1}{2\sqrt{x}} $$ $$ \left( x^a \right) ‘ = a x^{a-1} $$ $$ \left( a^x \right) ‘ = a^x \cdot \ln a $$ $$ \left( e^x \right) ‘ = e^x $$ $$ ( \ln x )’ = \frac{1}{x} $$ $$ ( \log_a x )’ = \frac{1}{x\ln a} $$ $$ ( \sin x )’ = \cos x $$ $$ ( \cos x )’ = -\sin x $$ $$ ( \text{tg} x )’ = \frac{1}{\cos^2 x} $$ $$ ( \text{ctg} x )’ = -\frac{1}{\sin^2 x} $$ $$ ( \arcsin x )’ = \frac{1}{\sqrt{1-x^2}} $$ $$ ( \arccos x )’ = \frac{-1}{\sqrt{1-x^2}} $$ $$ ( \text{arctg} x )’ = \frac{1}{1+x^2} $$ $$ ( \text{arcctg} x )’ = \frac{-1}{1+x^2} $$www.mathsolution.ru
Подготовка школьников к ЕГЭ в учебном центре «Резольвента» (Справочник по математике — Элементы математического анализа
Пример 1. Найти производную функции
y = cos 2x
Решение. Воcпользовавшись формулой для производной сложной функции y = cos (kx + b) в случае, когда k = 2, b = 0, получим
(cos 2x)’ = – 2sin 2x .
Замечание. Очень часто школьники, а также и студенты, при решении примера 1 пишут:
(cos 2x)’ = – sin 2x .
Это ошибка !!!
Перепишем верный ответ еще раз:
(cos 2x)’ = – 2sin 2x .
Приведем также верные ответы в похожих примерах:
Пример 2. Найти производную функции
y = sin3x
Решение. Воcпользовавшись формулой для производной сложной функции y = ( f (x)) c в случае, когда f (x) = sin x , а c = 3, получим
Ответ:
Пример 3. Найти производную функции
y = (3x – 7)5 .
Решение. Воcпользовавшись формулой для производной сложной функции y = (kx + b)c в случае, когда k = 3, b = – 7, а c = 5, получим
y’ = 15(3x – 7)4 .
Ответ:
Пример 4 . Найти производную функции
Решение. Поскольку
,
то исходную функцию можно переписать в виде
Воcпользовавшись формулой для производной сложной функции y = ( f (x)) c в случае, когда
,
а c = 8, получим
Ответ:
Пример 5 . Найти производную функции
Решение. Воcпользовавшись правилом 5 для вычисления производной частного двух функций и формулой для производной сложной функции y = arccos (kx + b) в случае, когда k = 3, b = 0, получим
Ответ:
.Пример 6. Найти производную функции
Решение. Воcпользовавшись правилом 4 для вычисления производной произведения двух функций, формулой для производной сложной функции y = arctg (kx + b) в случае, когда k = 5, b = 0, и формулой для производной сложной функции y = akx + b в случае, когда a = 3, k = 2, b = 0, получим
Ответ:
Пример 7 . Найти производную функции
Решение. Поскольку
то, воcпользовавшись формулой для производной сложной функции y = e f (x) в случае, когда , и формулой для производной сложной функции y = (kx + b)c в случае, когда с = – 1, k = 7, b = – 1, получим
Ответ:
На нашем сайте можно также ознакомиться с разработанными преподавателями учебного центра «Резольвента» учебными материалами для подготовки к ЕГЭ по математике.
Приглашаем школьников (можно вместе с родителями) на бесплатное тестирование по математике, позволяющее выяснить, какие разделы математики и навыки в решении задач являются для ученика «проблемными». Запись по телефону (495) 509-28-10 |
Для школьников, желающих хорошо подготовиться и сдать ЕГЭ по математике или русскому языку на высокий балл, учебный центр «Резольвента» проводит
У нас также для школьников организованы
МОСКВА, СВАО, Учебный центр «РЕЗОЛЬВЕНТА»
www.resolventa.ru