Основы теории вероятности для чайников – .

теория и примеры решения задач

Формула полной вероятности позволяет найти вероятность события A, которое может наступить только с каждым из n исключающих друг друга событий , образующих полную систему, если известны их вероятности , а условные вероятности события A относительно каждого из событий системы равны .

События также называются гипотезами, они являются исключающими друг друга. Поэтому в литературе можно также встретить их обозначение не буквой B, а буквой H (hypothesis).

Для решения задач с такими условиями необходимо рассмотреть 3, 4, 5 или в общем случае n возможностей наступления события A — с каждым событий .

По теоремам сложения и умножения вероятностей получаем сумму произведений вероятности каждого из событий системы на условную вероятность события A относительно каждого из событий системы. То есть, вероятность события A может быть вычислена по формуле

или в общем виде

,

которая и называется формулой полной вероятности.

Пример 1. Имеются три одинаковых на вид урны: в первой 2 белых шара и 3 чёрных, во второй — 4 белых и один чёрный, в третьей — три белых шара. Некто подходит наугад к одной из урн и вынимает из неё один шар. Пользуясь формулой полной вероятности, найти вероятность того, что этот шар будет белым.

Решение. Событие A — появление белого шара. Выдвигаем три гипотезы:

— выбрана первая урна;

— выбрана вторая урна;

— выбрана третья урна.

Вероятности этих гипотез (событий):

.

Условные вероятности события

A относительно каждой из гипотез:

, , .

Применяем формулу полной вероятности, в результате — требуемая вероятность:

.

Пример 2. На первом заводе из каждых 100 лампочек производится в среднем 90 стандартных, на втором — 95, на третьем — 85, а продукция этих заводов составляет соответственно 50%, 30% и 20% всех электролампочек, поставляемых в магазины некоторого района. Найти вероятность приобретения стандартной электролампочки.

Решение. Обозначим вероятность приобретения стандартной электролампочки через A, а события, заключающиеся в том, что приобретённая лампочка изготовлена соответственно на первом, втором и третьем заводах, через . По условию известны вероятности этих событий: , , и условные вероятности события

A относительно каждого из них: , , . Это вероятности приобретения стандартной лампочки при условии её изготовления соответственно на первом, втором, третьем заводах.

Событие A наступит, если произойдут или событие K — лампочка изготовлена на первом заводе и стандартна, или событие L — лампочка изготовлена на втором заводе и стандартна, или событие M — лампочка изготовлена на третьем заводе и стандартна. Других возможностей наступления события A нет. Следовательно, событие A является суммой событий K, L и M, которые являются несовместимыми. Применяя теорему сложения вероятностей, представим вероятность события A в виде

а по теореме умножения вероятностей получим

то есть, частный случай формулы полной вероятности.

Подставив в левую часть формулы значения вероятностей, получаем вероятность события A:

Пример 3. Производится посадка самолёта на аэродром. Если позволяет погода, лётчик сажает самолёт, пользуясь, помимо приборов, ещё и визуальным наблюдением. В этом случае вероятность благополучной посадки равна . Если аэродром затянут низкой облачностью, то лётчик сажает самолёт, ориентируясь только по приборам. В этом случае вероятность благополучной посадки равна ; . Приборы, обеспечивающие слепую посадку, имеют надёжность (вероятность безотказной работы)

P. При наличии низкой облачности и отказавших приборах слепой посадки вероятность благополучной посадки равна ; . Статистика показывает, что в k% случаев посадки аэродром затянут низкой облачностью. Найти полную вероятность события A — благополучной посадки самолёта.

Решение. Гипотезы:

— низкой облачности нет;

— низкая облачность есть.

Вероятности этих гипотез (событий):

;

.

Условная вероятность .

Условную вероятность снова найдём по формуле полной вероятности с гипотезами

— приборы слепой посадки действуют;

— приборы слепой посадки отказали.

Вероятности этих гипотез:

;

.

По формуле полной вероятности

.

Отсюда

.

Пример 5. По объекту производится три одиночных (независимых) выстрела. Вероятность попадания при первом выстреле равна 0,4, при втором 0,5, при третьем 0,7. Для вывода объекта из строя заведомо достаточно трёх попаданий. При двух попаданиях он выходит из строя с вероятностью 0,6, при одном — с вероятностью 0,2. Найти вероятность того, что в результате трёх выстрелов объект будет выведен из строя.

Решение. Обозначаем вероятность вывода объекта из строя через A.

Гипотезы:

— в объект попал один снаряд;

— в объект попали два снаряда;

— в объект попали три снаряда.

Находим вероятность гипотез. Событие представим в виде суммы трёх несовместных вариантов:

= {первый выстрел попал, второй и третий не попали}+ {второй выстрел попал, первый и третий не попали}+{третий выстрел попал, второй и первый не попали}.

Применяем правила сложения и умножения вероятностей:

Аналогично

.

Условные вероятности события A при этих гипотезах равны

;

;

.

По формуле полной вероятности находим:

function-x.ru

НОУ ИНТУИТ | Основы теории вероятностей

Форма обучения:

дистанционная

Стоимость самостоятельного обучения:

бесплатно

Доступ:

свободный

Документ об окончании:

Уровень:

Специалист

Длительность:

7:45:00

Выпускников:

298

Качество курса:

3.86 | 2.57

Теория вероятностей относится к одному из разделов «чистой математики». Она строится на дедуктивных принципах, на основании опыта и умозаключений. Эта наука о возможных взаимоотношениях большого количества случайных событий.

Вероятностно-статистический подход для обработки и интерпретации экспериментальных данных широко используется на всех этапах работы с физической информацией. Это обуславливается тем, что любое отдельное данное, полученное экспериментальным путем, является случайным событием. К таким событиям могут быть отнесены все любые события, объекты, так как данные, собранные на этих объектах другими людьми или в другое время могут быть несколько иными, так как сами объекты со временем изменяются, а положение точек наблюдений и отбора проб выбираются исследователями самостоятельно. Кроме того, из-за наложения помех, связанных с погрешностью приборов, различными неоднородностями, неучтенными вариациями физических объектов и ряда других причин, объект исследования реализуется случайным образом. Следовательно, если на практике исследователь имеет дело с данными, которые с большим основанием оцениваются случайными величинами и процессами, то для выделения полезной информации он обязательно должен использоваться вероятностно-статистический подход. Теоретической базой указанного метода являются теория вероятностей, математическая статистика и их различные приложения.

Теги: beta, анализ, биноминальное распределение, бифуркация, вычисления, графика, дискретная случайная величина, законы, несовместное событие, нормальная функция, ось ординат, полная группа, распределение пуассона, формула полной вероятности, цвета, элементарное события

Дополнительные курсы

 

2 часа 30 минут

www.intuit.ru

Теория вероятностей и математическая статистика

  • Главная
  • Видеотека
    • Естествознание
      • Физика
      • Математика
      • Химия
      • Биология
      • Экология
    • Обществознание
      • Обществознание — как наука
      • Иностранные языки
      • История
      • Психология и педагогика
      • Русский язык и литература
      • Культурология
      • Экономика
      • Менеджмент
      • Логистика
      • Статистика
      • Философия
      • Бухгалтерский учет
    • Технические науки
      • Черчение
      • Материаловедение
      • Сварка
      • Электротехника
      • АСУТП и КИПИА
      • Технологии
      • Теоретическая механика и сопромат
      • САПР
      • Метрология, стандартизация и сертификация
      • Геодезия и маркшейдерия
    • Программирование и сеть
      • Информатика
      • Языки программирования
      • Алгоритмы и структуры данных
      • СУБД
      • Web разработки и технологии
      • Архитектура ЭВМ и основы ОС
      • Системное администрирование
      • Создание программ и приложений
      • Создание сайтов
      • Тестирование ПО
      • Теория информации и кодирования
      • Функциональное и логическое программирование
    • Программы
      • Редакторы и компиляторы
      • Офисные программы
      • Работа с аудио видео
      • Работа с компьютерной графикой и анимацией
      • Автоматизация бизнеса
    • Прочие
      • Музыка
      • Природное земледелие
      • Рисование и живопись
  • Библиотека
    • Естествознание
      • Физика
      • Математика
      • Химия
      • Биология
      • Экология
      • Астрономия

forkettle.ru

Основные теоремы теории вероятностей | LAMPA

Теорема о произведении вероятностей

Вероятность двух A\,AA и BBB равна произведению вероятностей событий: P(A⋅B)=P(A)⋅P(B)P(A\cdot B)=P(A)\cdot P(B)P(A⋅B)=P(A)⋅P(B).

Пусть, например, одновременно бросают два кубика. Количество очков, выпавших на кубиках, можно считать независимыми событиями. Поэтому вероятность того, что на обоих кубиках выпадет 666 очков, равна 16⋅16=136\frac{1}{6}\cdot \frac{1}{6}=\frac{1}{36}61​⋅61​=361​.

Вероятность произведения двух A\,AA и BBB равна произведению вероятности одного из них на другого, найденную в предположении, что первое событие уже наступило: P(A⋅B)=P(A)⋅P(B∣A)P(A\cdot B)=P(A)\cdot P(B|A)P(A⋅B)=P(A)⋅P(B∣A).

Приведем пример пары событий, для которых выполняется формула P(A⋅B)=P(A)⋅P(B∣A)P(A\cdot B)=P(A)\cdot P(B|A)P(A⋅B)=P(A)⋅P(B∣A), но не выполняется формула P(A⋅B)=P(A)⋅P(B)P(A\cdot B)=P(A)\cdot P(B)P(A⋅B)=P(A)⋅P(B). Для любого дня в октябре вероятность того, что в Лондоне идет дождь, равна 0,30,30,3. При этом если в какой-то день шел дождь, то вероятность того, что на следующий день пойдет дождь, равна 0,70,70,7. Найдем вероятность того, что и 1-го и 2-го октября следующего года в Лондоне будет идти дождь: она равна P(A⋅B)=P(A)⋅P(B∣A)=0,3⋅0,7=0,21P(A\cdot B)=P(A)\cdot P(B|A)=0,3\cdot 0,7=0,21P(A⋅B)=P(A)⋅P(B∣A)=0,3⋅0,7=0,21. В последнем равенстве события AAA и BBB соответственно означают, что 1-го и 2-го октября следующего года будет идти дождь.
Легко видеть, что если вычислять вероятность по формуле P(A⋅B)=P(A)⋅P(B)P(A\cdot B)=P(A)\cdot P(B)P(A⋅B)=P(A)⋅P(B), то мы получим заниженную оценку: 0,090,090,09. Это связано с тем, что события AAA и BBB — зависимые, поскольку вероятность дождя 2-го октября зависит от того, был ли дождь 1-го октября.

Рассмотрим еще один пример:

Во время смешали шарики из двух ваз и вытащили случайный шарик.
Рассмотрим :
AAA: шарик красного цвета,
BBB: шарик из первой вазы.
В первой вазе было 242424 шарика, а во второй — 121212. Поэтому вероятность того, что шарик из первой вазы, равна P(B)=23P(B)=\frac{2}{3}P(B)=32​. Поскольку доля красных шариков в первой вазе равна 13\frac{1}{3}31​, то P(A∣B)=13P(A|B)=\frac{1}{3}P(A∣B)=31​.
Тогда P(A⋅B)=P(B)P(A∣B)=23⋅13=29P(A\cdot B)=P(B)P(A|B)=\frac{2}{3}\cdot \frac{1}{3}=\frac{2}{9}P(A⋅B)=P(B)P(A∣B)=32​⋅31​=92​.
Можно проверить результат: всего в двух вазах 363636 шариков, из них 888 красные из первой вазы. Поэтому P(A⋅B)=836=29P(A\cdot B)=\frac{8}{36}=\frac{2}{9}P(A⋅B)=368​=92​.

Теорема о сумме вероятностей

Вероятность двух A\,AA и BBB равна сумме вероятностей этих событий: P(A+B)=P(A)+P(B)P(A+B)=P(A)+P(B)P(A+B)=P(A)+P(B).

Вероятность суммы двух A\,AA и BBB равна сумме вероятностей этих событий минус вероятность их произведения: P(A+B)=P(A)+P(B)−P(A⋅B)P(A+B)=P(A)+P(B)-P(A\cdot B)P(A+B)=P(A)+P(B)−P(A⋅B).

Если изобразить события AAA и BBB в виде множеств на плоскости, то легко убедиться, что эти утверждения выполняются.

Следующие примеры иллюстрируют эти утверждения:

1. Несовместные события. Вероятность того, что на кубике выпало число очков, кратное трем равно сумме вероятностей того, что на кубике выпало 333 очка и 666 очков.
2. Совместные события. Пусть событие AAA состоит в том, что число очков на кубике кратно 333, а BBB в том, что оно кратно двум. Событие AAA состоит из двух результатов, а BBB — из трех: A=3,6A={3,6}A=3,6, B=2,4,6B={2,4,6}B=2,4,6. Сумма событий A+BA+BA+B состоит из четырех результатов: 2,3,4,6{2,3,4,6}2,3,4,6, а пересечение — из одного результата: A⋅B=6A\cdot B={6}A⋅B=6. Легко видеть что последнее равенство выполняется: P(A+B)=46=26+36−16=P(A)+P(B)−P(A⋅B)P(A+B)=\frac{4}{6}=\frac{2}{6}+\frac{3}{6}-\frac{1}{6}=P(A)+P(B)-P(A\cdot B)P(A+B)=64​=62​+63​−61​=P(A)+P(B)−P(A⋅B).

Формула полной вероятности

Если B1,B2,…,BnB_1,B_2,…,B_nB1​,B2​,…,Bn​ — и в сумме дают , то вероятность события AAA можно вычислить, зная вероятности событий B1,B2,…,BnB_1, B_2,…,B_nB1​,B2​,…,Bn​, а также этого события в предположении событий B1,B2,…,BnB_1, B_2,…,B_nB1​,B2​,…,Bn​. Выполняется следующая формула:

P(A)=P(A∣B1)⋅P(B1)+P(A∣B2)⋅P(B2)+…+P(A∣Bn)⋅P(Bn).P(A)=P(A|B_1)\cdot P(B_1)+P(A|B_2)\cdot P(B_2)+…+P(A|B_n)\cdot P(B_n).P(A)=P(A∣B1​)⋅P(B1​)+P(A∣B2​)⋅P(B2​)+…+P(A∣Bn​)⋅P(Bn​).

Следующий пример показывает, что эта формула верна:

Во время смешали шарики из двух ваз и вытащили случайный шарик.
Рассмотрим :
AAA: шарик красного цвета,
B1B_1B1​: шарик из первой вазы,
B2B_2B2​: шарик из второй вазы.
Поскольку доля красных шариков в первой вазе равна 13\frac{1}{3}31​, а во второй вазе равна 12\frac{1}{2}21​, то условные вероятности равны P(A∣B1)=13P(A|B_1)=\frac{1}{3}P(A∣B1​)=31​ и P(A∣B2)=12P(A|B_2)=\frac{1}{2}P(A∣B2​)=21​.
В первой вазе 242424 шарика, а во второй — 121212 шариков. Поэтому вероятности событий B1B_1B1​ и B2B_2B2​: P(B1)=23P(B_1)=\frac{2}{3}P(B1​)=32​, P(B2)=13P(B_2)=\frac{1}{3}P(B2​)=31​.
Тогда вероятность вытащить красный шарик:
P(A)=P(A∣B1)⋅P(B1)+P(A∣B2)⋅P(B2)=P(A)=P(A|B_1)\cdot P(B_1)+P(A|B_2)\cdot P(B_2)=P(A)=P(A∣B1​)⋅P(B1​)+P(A∣B2​)⋅P(B2​)=13⋅23+12⋅13=29+16=718\frac{1}{3}\cdot \frac{2}{3} +\frac{1}{2}\cdot \frac{1}{3}=\frac{2}{9}+\frac{1}{6}=\frac{7}{18}31​⋅32​+21​⋅31​=92​+61​=187​.
Можно проверить результат: всего в двух вазах 363636 шариков, из них 141414 красных. Поэтому P(A)=1436=718P(A)=\frac{14}{36}=\frac{7}{18}P(A)=3614​=187​.

lampa.io

Основы теории вероятностей для актуариев

Вероятность: основные правила

Формула полной вероятности

Формула Байеса

Случайные величины и их характеристики

Время жизни как случайная величина

Функция выживания

Характеристики продолжительности жизни

Аналитические законы смертности

 

Все на свете происходит детерминировано или случайно…
Аристотель


Вероятность: основные правила

Теория вероятностей вычисляет вероятности различных событий. Основным в теории вероятностей является понятие случайного события.

Например, вы бросаете монету, она случайным образом падает на герб или решку. Заранее вы не знаете, на какую сторону монета упадет. Вы заключаете договор страхования, заранее вы не знаете, будут или нет проводиться выплаты.

В актуарных расчетах нужно уметь оценивать вероятность различных событий, поэтому теория вероятностей играет ключевую роль. Ни одна другая область математики не может оперировать с вероятностями событий.

Рассмотрим более подробно подбрасывание монеты. Имеется 2 взаимно исключающих исхода: выпадение герба или выпадение решки. Исход бросания является случайным, так как наблюдатель не может проанализировать и учесть все факторы, которые влияют на результат. Какова вероятность выпадения герба? Большинство ответит ½, но почему?

Пусть формально А обозначает выпадение герба. Пусть монета бросается n раз. Тогда вероятность события А можно определить как долю тех бросков, в результате которых выпадает герб:

(1)

где n общее количество бросков, n(A) число выпадений герба.

Отношение (1) называется частотой события А в длинной серии испытаний.

Оказывается, в различных сериях испытаний соответствующая частота при больших n группируется около некоторой постоянной величины Р(А). Эта величина называется вероятностью события А и обозначается буквой Р – сокращение от английского слова probability – вероятность.

Формально имеем:

(2)

Этот закон называется законом больших чисел.

Если монета правильная (симметричная), то вероятность выпадения герба равняется вероятности выпадения решки и равняется ½.

Пусть А и В некоторые события, например, произошел или нет страховой случай. Объединением двух событий называется событие, состоящее в выполнении события А, события В, или обоих событий вместе. Пересечением двух событий А и В называется событие, состоящее в осуществлении как события А, так и события В.

Основные правила исчисления вероятностей событий следующие:

1. Вероятность любого события заключена между нулем и единицей:

2. Пусть А и В два события, тогда:

(3)

Читается так: вероятность объединения двух событий равна сумме вероятностей этих событий минус вероятность пересечения событий. Если события являются несовместными или непересекающимися, то вероятность объединения (суммы) двух событий равна сумме вероятностей. Этот закон называется законом сложения вероятностей.

Мы говорим, что события является достоверным, если его вероятность равна 1. При анализе тех или иных явлений возникает вопрос, как влияет наступление события В на наступление события А. Для этого вводится условная вероятность:

(4)

Читается так: вероятность наступления А при условии В равняется вероятности пересечения А и В, деленной на вероятность события В.
В формуле (4) предполагается, что вероятность события В больше нуля.

Формулу (4) можно записать также в виде:

(5)

Это формула умножения вероятностей.

Условную вероятность называют также апостериорной вероятностью события А – вероятность наступления А после наступления В.

В этом случае саму вероятность называют априорной вероятностью. Имеется еще несколько важных формул, которые интенсивно используются в актуарных расчетах.

Формула полной вероятности

Допустим, что проводится опыт, об условиях которого можно заранее сделать взаимно исключающие друг друга предположения (гипотезы):

Мы предполагаем, что имеет место либо гипотеза , либо … либо. Вероятности этих гипотез известны и равны:

Тогда имеет место формула полной вероятности:

(6)

Вероятность наступления события А равна сумме произведений вероятности наступления А при каждой гипотезе на вероятность этой гипотезы.


Формула Байеса

Формула Байеса позволяет пересчитывать вероятность гипотез в свете новой информации, которую дал результат А.

Формула Байеса в известном смысле является обратной к формуле полной вероятности.

(7)

Рассмотрим следующую практическую задачу.

Задача 1

Предположим, произошла авиакатастрофа и эксперты заняты исследованием ее причин. Заранее известны 4 причины, по которым произошла катастрофа: либо причина, либо , либо , либо . По имеющейся статистике эти причины имеют следующие вероятности:



При осмотре места катастрофы найдены следы воспламенения горючего, согласно статистике вероятность этого события при тех или иных причинах такая:




Вопрос: какая причина катастрофы наиболее вероятна?

Вычислим вероятности причин при условия наступления события А.




Отсюда видно, что наиболее вероятной является первая причина, так как ее вероятность максимальна.

Задача 2

Рассмотрим посадку самолета на аэродром.

При посадке погодные условия могут быть такими: низкой облачности нет (), низкая облачность есть (). В первом случае вероятность благополучной посадки равна P1. Во втором случае – Р2. Ясно, что P1>P2.

Приборы, обеспечивающие слепую посадку, имеют вероятность безотказной работы Р. Если есть низкая облачность и приборы слепой посадки отказали, вероятность удачного приземления равна Р3, причем Р3<Р2. Известно, что для данного аэродрома доля дней в году с низкой облачностью равна .

Найти вероятность благополучной посадки самолета.

Имеем:

Нужно найти вероятность .

Имеются два взаимно исключающих варианта: приборы слепой посадки действуют, приборы слепой посадки отказали, поэтому имеем:

Отсюда по формуле полной вероятности:

Задача 3

Страховая компания занимается страхованием жизни. 10% застрахованных в этой компании являются курильщиками. Если застрахованный не курит, вероятность его смерти на протяжении года равна 0.01 Если же он курильщик, то эта вероятность равна 0.05.

Какова доля курильщиков среди тех застрахованных, которые умерли в течение года?

Варианты ответов: (А) 5%, (Б) 20%, (В) 36 %, (Г) 56%, (Д) 90%.

Решение

Введём события:

  1. = {застрахованный – курильщик}

  2. = {застрахованный – не курильщик}

  3. = {застрахованный умер в течение года}

Условие задачи означает, что

Кроме того, поскольку события и образуют полную группу попарно несовместимых событий, то .
Интересующая нас вероятность – это .

Используя формулу Байеса, мы имеем:

поэтому верным является вариант (В).

Задача 4

Страховая компания продаёт договора страхования жизни трёх категорий: стандартные, привилегированные и ультрапривилегированные.

50% всех застрахованных являются стандартными, 40% — привилегированными и 10% — ультрапривилегированными.

Вероятность смерти в течение года для стандартного застрахованного равна 0.010, для привилегированного – 0.005, а для ультра привилегированного – 0.001.

Чему равна вероятность того, что умерший застрахованный является ультрапривилегированным?

Решение

Введем в рассмотрение следующие события:

  1. = {застрахованный является стандартным}

  2. = {застрахованный является привилегированным}

  3. = {застрахованный является ультрапривилегированным}

  4. = {застрахованный умер в течение года}

В терминах этих событий интересующая нас вероятность – это . По условию:

Поскольку события , , образуют полную группу попарно несовместимых событий, используя формулу Байеса мы имеем:

Случайные величины и их характеристики

Пусть некоторая случайная величина, например, ущерб от пожара или величина страховых выплат.
Случайная величина полностью характеризуется своей функцией распределения.

Определение. Функция называется функцией распределения случайной величины ξ.

Определение. Если существует такая функция , что для произвольных a<b выполнено

,

то говорят, что случайная величина ξ имеет плотность распределения вероятности f(x).

Определение. Пусть . Для непрерывной функции распределения F теоретической α-квантилью называется решение уравнения .

Такое решение может быть не единственным.

Квантиль уровня ½ называется теоретической медианой, квантили уровней ¼ и ¾ нижней и верхней квартилями соответственно.

В актуарных приложениях важную роль играет неравенство Чебышева:

при любом

— символ математического ожидания.

Читается так: вероятность того, что модуль больше меньше или равняется математическому ожиданию величины модуль , деленному на .

Время жизни как случайная величина

Неопределенность момента смерти является основным фактором риска при страховании жизни.

Относительно момента смерти отдельного человека нельзя сказать ничего определенного. Однако если мы имеем дело с большой однородной группой людей и не интересуемся судьбой отдельных людей из этой группы, то мы находимся в рамках теории вероятностей как науки о массовых случайных явлениях, обладающих свойством устойчивости частот.

Соответственно, мы можем говорить о продолжительности жизни как о случайной величине Т.

Функция выживания

В теории вероятностей описывают стохастическую природу любой случайной величины Т функцией распределения F (x), которая определяется как вероятность того, что случайная величина Т меньше, чем число x:

.

В актуарной математике приятно работать не с функцией распределения, а с дополнительной функцией распределения . Применительно к продолжительной жизни – это вероятность того, что человек доживет до возраста x лет.

Функция

называется функцией выживания (survival function):

Функция выживания обладает следующими свойствами:

  1. убывает при ;
  2. ;
  3. ;
  4. непрерывна.

В таблицах продолжительности жизни обычно считают, что существует некоторый предельный возраст (limiting age) (как правило, лет) и соответственно при x >.

При описании смертности аналитическими законами обычно считают, что время жизни неограниченно, однако подбирают вид и параметры законов так, чтобы вероятность жизни свыше некоторого возраста была пренебрежимо мала.

Функция выживания имеет простой статистический смысл.

Допустим, что мы наблюдаем за группой из новорожденных (как правило, ), которых мы наблюдаем и можем фиксировать моменты их смерти.

Обозначим число живых представителей этой группы в возрасте через . Тогда:

.

Символ E здесь и ниже используется для обозначения математического ожидания.

Итак, функция выживания равна средней доле доживших до возраста из некоторой фиксированной группы новорожденных.

В актуарной математике часто работают не с функцией выживания , а с только что введенной величиной (зафиксировав начальный размер группы ).

Функция выживания может быть восстановлена по плотности:

Характеристики продолжительности жизни

С практической точки зрения важны следующие характеристики:

1. Среднее время жизни

,
2. Дисперсия времени жизни

,
где
,

Корень квадратный из дисперсии называется стандартным отклонением (standard deviation). Это более удобная величина, чем дисперсия, так как имеет ту же размерность, что исходные данные.

3. Медиана времени жизни , которая определяется как корень уравнения
.

Медиана времени жизни – это возраст, до которого доживает ровно половина представителей исходной группы новорожденных.

Аналитические законы смертности

Для упрощения расчетов, теоретического анализа и т.д. естественно попытаться описать получаемые эмпирическим путем данные о функции выживания или интенсивности смертности с помощью простых аналитических формул.

Простейшее приближение было введено в 1729 году де Муавром (de Moivre), который предложил считать, что время жизни равномерно распределено на интервале , где — предельный возраст.

В модели де Муавра при 0<x<

Сравнение графиков этих функций с реальными графиками функции выживания , функции смертей , интенсивности смертности , показывает, что закон де Муавра является не очень хорошим приближением.

Например, первая формула означает, что кривая смертей является горизонтальной линией, в то время как эмпирические данные указывают на пик в районе 80 лет.

В модели, которую предложил в 1825 году Гомпертц (Gompertz), интенсивность смертности приближается показательной функцией вида , где >0 и B>0 – некоторые параметры. Соответствующая функция выживания имеет вид

,

а кривая смертей:

.

Мэйкхам (Makeham) в 1860 году обобщил предыдущую модель, приблизив интенсивность смертности функцией вида .

Постоянное слагаемое позволяет учесть риски для жизни, связанные с несчастными случаями (которые мало зависят от возраста), в то время как член учитывает влияние возраста на смертность.

В этой модели
,
.

Второй закон Мэйкхама, введенный в 1889 году, приближает интенсивность смертности функцией вида . В этой модели
,
.

Вейбулл (Weibull) в 1939 году предложил приближать интенсивность смертности более простой степенной функцией вида . В этой модели
, .

В практике страхования эти параметры неизвестны и оцениваются по реальным данным.

Связанные определения:
Вероятность события
Независимые повторные испытания Бернулли
Независимые события

В начало

Содержание портала

statistica.ru