Основные производные – Таблица производных (основных)

1.3. Основные правила дифференцирования

Теорема 1. Если функции идифференцируемы в данной точке, то в той же точке дифференцируема и их сумма, причем производная суммы равна сумме производных слагаемых:

.

Формула обобщается на случай любого конечного числа слагаемых.

Теорема 2. Если функции идифференцируемы в данной точкех, то в этой же точке дифференцируемо и их произведение, при этом:

.

Следствие. Постоянный множитель можно выносить за знак производной:

, где .

Теорема 3. Если в данной точке х функции идифференцируемы и, то в той же точке дифференцируемо и их частное, причем

.

1.4. Обратная функция и ее производная

Рассмотрим функцию y = f (x) с областью определения (a, b) и множеством значений (c, d). Пусть эта функция такова, что всякая прямая, проходящая через точку интервала (c, d) параллельно оси Ох, пересекает ее график только в одной точке, т.е. уравнение

y = f (x) для каждого y(c, d) определяет единственное значение x(a, b). В этом случае каждому значению y(c, d) соответствует единственное значение x(a, b), т.е. на интервале (c, d) задана функция, множество значений которой есть интервал (a, b). Эта функция называется обратной по отношению к функции y
= f (x) и обозначается . Очевидно, что для функцииобратной является функция. Поэтому обе эти функции называютсявзаимно обратными.

Теорема. Если функция y = f (x) монотонна и дифференцируема в некотором интервале и имеет в точке x этого интервала производную , не равную нулю, то обратная функция

в соответствующей точкеy имеет производную, причем или иначе.

1.5. Производная сложной функции

Если и, тоестьсложная функция независимого аргумента x с промежуточным аргументом u.

Теорема. Если имеет производнуюв точкеx, а функция

имеет производнуюв соответствующей точкеu, то сложная функция в данной точкеx имеет производную , которая находится по следующей формуле.

Часто пользуются следующей формулировкой этой теоремы: производная сложной функции равна произведению производной внешней функции по промежуточному аргументу на производную внутренней функции по независимому аргументу.

Сложная функция может быть составлена не из двух функций, а из большого их числа. В таких случаях теорема применяется последовательно несколько раз.

В частности, если функция

такова, что,,, то производнаянаходится по формуле.

1.6. Производные основных элементарных функций.

Таблица производных

Используя определение производной, можно найти производные основных элементарных функций.

1. Производная степенной функции .

2. Производная показательной функции .

В частности,

.

3. Производная логарифмической функции , ,. В частности,.

4. Производные тригонометрических функций ,,,.

Найдем, например, производную функции . По определению производной имеем:

.

Производную функции можно найти по правилу дифференцирования частного двух функций:

.

5. Производные обратных тригонометрических функций ,.

Найдем, например, производную функции . Функция,обратная к функции,. По правилу дифференцирования обратной функции. На интервале

имеем .

Запишем таблицу производных для где.

1.

8.

2.

9.

3.

10.

4.

11.

5.

12.

6.

13.

7.

14.

Применяя формулы и правила дифференцирования, найдем производные следующих функций:

1) .

Применим правило дифференцирования произведения двух функций:

.

2) .

Применим правило дифференцирования частного двух функций:

.

3) .

Применим правило дифференцирования сложной функции:

.

studfiles.net

Производные некоторых основных элементарных функций (Лекция №5)

  1. y = xn. Если n – целое положительное число, то, используя формулу бинома Ньютона:

    (a + b)n = an+n·an-1·b + 1/2∙n(n – 1)an-2b2+ 1/(2∙3)∙n(n – 1)(n – 2)an-3b3+…+ bn,

    можно доказать, что

    Итак, если x получает приращение Δx, то f(xx) = (x + Δx)n, и, следовательно,

    Δy=(xx)nxn =n·xn-1·Δx + 1/2·n·(n–1)·xn-2·Δx2 +…+Δxn.

    Заметим, что в каждом из пропущенных слагаемых есть множитель Δx в степени выше 3.

    Найдем предел

    Мы доказали эту формулу для n Î N. Далее увидим, что она справедлива и при любом

    n Î R.

  2. y= sin x. Вновь воспользуемся определением производной.

    Так как, f(xx)=sin(xx), то

    Таким образом,

  3. Аналогично можно показать, что

  4. Рассмотрим функцию y= ln x.

    Имеем f(xx)=ln(xx). Поэтому

    Итак,

  5. Используя свойства логарифма можно показать, что

Формулы 3 и 5 докажите самостоятельно.

ОСНОВНЫЕ ПРАВИЛА ДИФФЕРЕНЦИРОВАНИЯ

Применяя общий способ нахождения производной с помощью предела можно получить простейшие формулы дифференцирования. Пусть u=u(x),v=v(x) – две дифференцируемые функции от переменной x.

  1. .
  2. (справедлива для любого конечного числа слагаемых).
  3. .
  4. .

    а) .

    б) .

Формулы 1 и 2 докажите самостоятельно.

Доказательство формулы 3.

Пусть y = u(x) + v(x). Для значения аргумента xx имеем y(xx)=u(xx) + v(xx).

Тогда

Δy=y(xx) – y(x) = u(xx) + v(xx)u(x)v(x) = Δuv.

Следовательно,

.

Доказательство формулы 4.

Пусть y=u(x)·v(x). Тогда y(xx)=u(xxv(xx), поэтому

Δy=u(xxv(xx) – u(xv(x).

Заметим, что поскольку каждая из функций u и v дифференцируема в точке x, то они непрерывны в этой точке, а значит u(xx)→u(x), v(xx)→v(x), при Δx→0.

Поэтому можем записать

На основании этого свойства можно получить правило дифференцирования произведения любого числа функций.

Пусть, например, y=u·v·w. Тогда,

y ‘ = u ‘·(w) + u·(v ·w) ‘ = u ‘·v·w + u·(v ‘·w +v·w ‘) = u ‘·v·w + u·v ‘·w + u·v·w ‘.

Доказательство формулы 5.

Пусть . Тогда

При доказательстве воспользовались тем, что v(x+Δx)v(x) при Δx→0.

Примеры.

  1. Если , то
  2. y = x3 – 3x2 + 5x + 2. Найдем y ‘(–1).

    y ‘ = 3x2 – 6x+ 5. Следовательно, y ‘(–1) = 14.

  3. y = ln x · cos x, то y ‘ = (ln x) ‘ cos x + ln x (cos x) ‘ =1/x∙cos x – ln x · sin x.
  4. Таким образом,

  5. Аналогично для y= ctgx,

ТЕОРЕМА О ПРОИЗВОДНОЙ СЛОЖНОЙ ФУНКЦИИ

Пусть y = f(u), а u= u(x). Получаем функцию y, зависящую от аргумента x: y = f(u(x)). Последняя функция называется функцией от функции или сложной функцией.

Областью определения функции y = f(u(x)) является либо вся область определения функции u=u(x) либо та ее часть, в которой определяются значения u, не выходящие из области определения функции y= f(u).

Операция «функция от функции» может проводиться не один раз, а любое число раз.

Установим правило дифференцирования сложной функции.

Теорема. Если функция u= u(x) имеет в некоторой точке x0 производную и принимает в этой точке значение u0 = u(x0), а функция y= f(u) имеет в точке u0 производную yu= f ‘(u0), то сложная функция y = f(u(x)) в указанной точке x0 тоже имеет производную, которая равна yx= f ‘(u0u ‘(x0), где вместо u должно быть подставлено выражение u= u(x).

Таким образом, производная сложной функции равна произведению производной данной функции по промежуточному аргументу u на производную промежуточного аргумента по x.

Доказательство. При фиксированном значении х0 будем иметь u0=u(x0), у0=f(u0). Для нового значения аргумента x0x:

Δu= u(x0 + Δx) – u(x0), Δy=f(u0u) – f(u0).

Т.к. u – дифференцируема в точке x0, то u – непрерывна в этой точке. Поэтому при Δx→0 Δu→0. Аналогично при Δu→0 Δy→0.

По условию . Из этого соотношения, пользуясь определением предела, получаем (при Δu→0)

,

где α→0 при Δu→0, а, следовательно, и при Δx→0.

Перепишем это равенство в виде:

Δy= yuΔu+α·Δu.

Полученное равенство справедливо и при Δu=0 при произвольном α, так как оно превращается в тождество 0=0. При Δu=0 будем полагать α=0. Разделим все члены полученного равенства на Δx

.

По условию . Поэтому, переходя к пределу при Δx→0, получим yx= yu·u ‘x . Теорема доказана.

Итак, чтобы продифференцировать сложную функцию y = f(u(x)), нужно взять производную от «внешней» функции f, рассматривая ее аргумент просто как переменную, и умножить на производную от «внутренней» функции по независимой переменной.

Если функцию y=f(x) можно представить в виде y=f(u), u=u(v), v=v(x), то нахождение производной y ‘x осуществляется последовательным применением предыдущей теоремы.

По доказанному правилу имеем yx= yu·ux . Применяя эту же теорему для ux получаем , т.е.

yx = yx· uv· vx = fu (uuv (vvx (x).

Примеры.

  1. y = sin x2. Тогда .

ПОНЯТИЕ ОБРАТНОЙ ФУНКЦИИ

Начнем с примера. Рассмотрим функцию y= x3. Будем рассматривать равенство y= x3 как уравнение относительно x. Это уравнение для каждого значения у определяет единственное значение x: . Геометрически это значит, что всякая прямая параллельная оси Oxпересекает график функции y= x3 только в одной точке. Поэтому мы можем рассматривать x как функцию от y. Функция называется обратной по отношению к функции y= x3.

Прежде чем перейти к общему случаю, введем определения.

Функция y = f(x) называется возрастающей на некотором отрезке, если большему значению аргумента x из этого отрезка соответствует большее значение функции, т.е. если x2>x1, то f(x2) > f(x1).

Аналогично функция называется убывающей, если меньшему значению аргумента соответствует большее значение функции, т.е. еслих2 < х1 , то f(x2) > f(х1).

Итак, пусть дана возрастающая или убывающая функция y= f(x), определенная на некотором отрезке [a; b]. Для определенности будем рассматривать возрастающую функцию (для убывающей все аналогично).

Рассмотрим два различных значения х1 и х2. Пусть y1=f(x1), y2=f(x2). Из определения возрастающей функции следует, что если x1<x2, то у1<у2. Следовательно, двум различным значениям х1 и х2 соответствуют два различных значения функции у1 и у2. Справедливо и обратное, т.е. если у1<у2, то из определения возрастающей функции следует, чтоx1<x2. Т.е. вновь двум различным значениям у1 и у2 соответствуют два различных значенияx1 и x2. Т.о., между значениями x и соответствующими им значениями y устанавливается взаимно однозначное соответствие, т.е. уравнение y=f(x) для каждого y (взятого из области значений функции y=f(x)) определяет единственное значение x, и можно сказать, что x есть некоторая функция аргумента y: x= g(у).

Эта функция называется обратной для функции y=f(x). Очевидно, что и функция y=f(x) является обратной для функции x=g(у).

Заметим, что обратная функция x=g(y) находится путем решения уравнения y=f(x) относительно х.

Пример. Пусть дана функция y = ex. Эта функция возрастает при –∞ < x <+∞. Она имеет обратную функцию x = lny. Область определения обратной функции 0 < y < + ∞.

Сделаем несколько замечаний.

Замечание 1. Если возрастающая (или убывающая) функция y=f(x) непрерывна на отрезке [a; b], причем f(a)=c, f(b)=d, то обратная функция определена и непрерывна на отрезке [c; d].

Замечание 2. Если функция y=f(x) не является ни возрастающей, ни убывающей на некотором интервале, то она может иметь несколько обратных функций.

Пример. Функция y=x2 определена при –∞<x<+∞. Она не является ни возрастающей, ни убывающей и не имеет обратной функции. Однако, если мы рассмотриминтервал 0≤x<+∞, то здесь функция является возрастающей и обратной для нее будет . На интервале – ∞ <x≤ 0 функция – убывает и обратная для нее .

Замечание 3. Если функции y=f(x) и x=g(y) являются взаимно обратными, то они выражают одну и ту же связь между переменными x и y. Поэтому графикомих является одна и та же кривая. Но если аргумент обратной функции мы обозначим снова через x, а функцию через y и построим их в одной системе координат, то получим уже два различных графика. Легко заметить, что графики будут симметричны относительно биссектрисы 1-го координатного угла.

ТЕОРЕМА О ПРОИЗВОДНОЙ ОБРАТНОЙ ФУНКЦИИ

Докажем теорему, позволяющую находить производную функции y=f(x), зная производную обратной функции.

Теорема. Если для функции y=f(x) существует обратная функция x=g(y), которая в некоторой точке у0 имеет производную g ‘(v0), отличную от нуля, то в соответствующей точке x0=g(x0) функция y=f(x) имеет производную f ‘(x0), равную , т.е. справедлива формула.

Доказательство. Т.к. x=g(y) дифференцируема в точке y0, то x=g(y) непрерывна в этой точке, поэтому функция y=f(x) непрерывна в точке x0=g(y0). Следовательно, при Δx→0 Δy→0.

Покажем, что .

Пусть . Тогда по свойству предела . Перейдем в этом равенстве к пределу при Δy→0. Тогда Δx→0 и α(Δx)→0, т.е. .

Следовательно,

,

что и требовалось доказать.

Эту формулу можно записать в виде .

Рассмотрим применение этой теоремы на примерах.

Примеры.

  1. y = ex. Обратной для этой функции является функция x= ln y. Мы уже доказали, что . Поэтому согласно сформулированной выше теореме

    Итак, (ex) ‘ = ex

  2. Аналогично можно показать, что (ax) ‘ = ax·lna. Докажите самостоятельно.
  3. y = arcsin x. Рассмотрим обратную функцию x = sin y. Эта функция в интервале – π/2<y<π/2 монотонна. Ее производная x ‘ = cos y не обращается в этом интервале в нуль. Следовательно, по теореме о производной обратной функции

    .

    Но на (–π/2; π/2) .

    Поэтому

  4. Аналогично

    Докажите самостоятельно.

  5. y = arctg x. Эта функция по определению удовлетворяет условию существования обратной функции на интервале –π/2< y < π/2. При этом обратная функция x = tg y монотонна. По ранее доказанному .

    Следовательно, y ‘ = cos2y . Но .

    Поэтому

  6.  

  7. Используя эти формулы, найти производные следующих функций:

www.toehelp.ru

Свойства производных с примерами

Пусть функции и являются дифференцируемыми, и – произвольные константы. Тогда имеют место следующие соотношения:

1. Линейность:

   

ПРИМЕР

2. Производная произведения:

   

ПРИМЕР

3. Производная частного:

   

ПРИМЕР

4. Постоянный множитель можно выносить за знак производной:

   

ПРИМЕР

5. Производная сложной функции: если задана функция , у которой аргумент есть в свою очередь функцией от то производная равна:

   

ПРИМЕР

6. Производная обратной функции: если функция , является обратной к функции то их производные связаны соотношением:

   

ПРИМЕР
Рассмотрим функцию , обратной к ней есть функция Найдем производные:

   

   

то есть

   

ru.solverbook.com

Производные основных элементарных функций

 

Теорема 1. Пусть функция , непрерывна, строго монотонна на отрезке и дифференцируема во внутренней точке этого отрезка, причем . Тогда обратная функция дифференцируема в точке , причем .

Доказательство. Заметим, что в условиях теоремы обратная функция существует, непрерывна и строго монотонна на отрезке в силу теоремы из § 19 главы 1.

Придадим значению приращение . Тогда получит приращение

(так как функция строго монотонна). Поэтому можно записать . Поскольку при в силу непрерывности обратной функции и и, по условию, существует , имеем . Отсюда следует существование и равенство . Теорема доказана.

Пример 1. Найдем производные функций arcsin x, arccos x, arctg x, arcctg x/

Решение. По теореме 1 имеем (поскольку , имеем и корень берем со знаком плюс).

Аналогично,

,

, .

Теорема 2. Если функции и имеют производные в точке , то в точке имеют производные и функции (если ) и справедливы формулы

а) ; б) ; в) .

Доказательство. а) Пусть . Дадим приращение . Тогда функции u, v, y получат приращения , причем

. Отсюда и и равенство а) доказано.

б) Пусть . Аналогично пункту а) имеем

, , , т.е. имеет место формула б).

в) Пусть . Имеем , , , т.е. имеет место формула в).

Теорема доказана.

Следствия. 1) Если , то .

2) Формула а) имеет место для любого конечного числа слагаемых.

3) .

Доказательство. 1) Поскольку , имеем .

2) Например, имеем .

3) Например, имеем .

В общем случае следствия 2) и 3) доказываются методом математической индукции.

Рассмотрим показательно-степенную функцию , где u и v – некоторые функции от х. Найдем производную функции у в точке, в которой дифференцируемы функции u и v .Для этого представим функцию у в виде .По правилу дифференцирования сложной функции, в силу теоремы 2 и примера 1 § 1 имеем

.

Таким образом,

.

Заметим, что в полученной формуле первое слагаемое есть результат дифференцирования как показательной функции, а второе – как степенной функции. Примененный прием дифференцирования называется логарифмическим дифференцированием. Им бывает удобно пользоваться и тогда, когда дифференцируемая функция является произведением нескольких сомножителей.

Перейдем теперь к параметрическому заданию функций. Если зависимость функции у от аргумента х устанавливается не непосредственно, а с помощью некоторой третьей переменной t, называемой параметром, формулами

, (3.1)

то говорят, что функция у от х задана параметрически.

Если х и у рассматривать как прямоугольные координаты точки на плоскости, то уравнения (3.1) ставят в соответствие каждому значению точку на плоскости. С изменением t точка опишет некоторую кривую на плоскости. Уравнения (3.1) называются параметрическими уравнениями этой кривой. Например, уравнения

(3.2)

являются параметрическими уравнениями эллипса с полуосями а и b.

Если в (3.1) уравнение разрешается относительно t, , то параметрическое задание функции можно свести к явному:

.

Найдем производную функции, заданной параметрически. Для этого предположим, что функции и дифференцируемы, причем на некотором промежутке, а для функции существует обратная функция , имеющая конечную производную . Тогда по правилу дифференцирования сложной и обратной функций находим: . Таким образом,

. (3.3)

Например, производная функции, определяемой уравнениями (3.2) имеет вид

.

Уравнение касательной к кривой, заданной параметрически, в точке , соответствующей значению параметра , получается из уравнения (1.4), если вместо подставить :

,

отсюда при имеем

. (3.4)

Аналогично из уравнения (1.5) получаем уравнение нормали:

или . (3.5)

Запишем теперь сводные таблицы производных основных элементарных функций и правил дифференцирования, полученных ранее.

Правила дифференцирования

1. . 2. . 3. . 4. .

5. Если , то . 6. Если то .

7. Если – обратная функция, то . 8. .

Таблица производных основных элементарных функций

1. , где . 2. , в частности,

3. . 4. . .

5. . 6. .

7. . 8. .

9. . 10. .

11. , в частности, . 12. , в частности, .

 


Похожие статьи:

poznayka.org

2. Основные и производные физические величины

ГОСТустанавливает единицы физических величин, а также наименования, обозначения и правила применения этих единиц. В соответствии с ним подлежат обязательному применению единицы Международной системы единиц (а также десятичные кратные и дольные от них), представляющие собой основу для унификации единиц физических величин во всем мире [4].

Стандарт не распространяется на единицы величин, оцениваемых в условных шкалах, например, шкалам твердости Роквелла, Виккерса и др.

2.1. Единицы международной системы

Международная система единиц (международное сокращенное наименование – SI, в русской транскрипции —СИ) принята в в1960 г.

Сокращенное наименование Международной системы единиц следует произносить и писать «единицы СИ», а не «единицы системыСИ», так как слово «система» уже входит в наименование в виде буквы «С».

Наименования и обозначения основных и дополнительных единиц приведены в таблице 1.

В качестве основныхединиц измерения выбраносемь(наименование, размерность, величина, обозначение: международное и русское):

1. метр —L(длина)m, м;

2. килограмм —M(масса)kg, кг;

3.секунда –T(время)s, с;

4. ампер —I(сила тока)A, А;

5. кельвин –θ(температура)K, К;

6. моль –N(количество вещества)mol, моль;

7. кандела –J(сила света)cd, кд.

Система включает также две дополнительныеединицы:радиан для плоского истерадиандля телесного угла.

Таблица 1

Основные и дополнительныеединицы

Международной системы единиц

Кроме температуры по шкале Кельвина(обозначаемойT) допускается применять температуру по шкалеЦельсия(обозначаемуюt):t = TT0, где T0 = 273,15 К по определению. Градусы Цельсия имеют обозначение (международное и русское)0С. По размеру градус Цельсия равен градусу Кельвина.

Производные единицы СИ образуются с помощью простейших уравнений связи из основных и дополнительных единиц по правилам образования когерентных* производных единиц.

(* Когерентность –«лат. сцепление, связь» — физ. согласованное протекание во времени нескольких колебательных процессов, разность фаз которых постоянна; когерентные волны при сложении либо усиливают, либо ослабляют друг друга).

В таблице 2приведеныпроизводные единицыСИ, образованные из наименований единиц основных, дополнительных и имеющих специальные наименования единиц (величина, размерность, наименование, обозначение: международное и русское):

Таблица 2

Примеры производныхединиц СИ, наименования которых

образованы из наименований основных, дополнительных

и имеющих специальные наименования единиц

Продолжение таблицы 2

Продолжение таблицы 2

2.2. Единицы, не входящие в си

Существует ограниченная группа единиц, которые не во всех случаях можно заменить единицами СИ. В таблице 3 помещен перечень единиц, допускаемых к при­менению наравне с единицами СИ без ограничения срока. Однако стандарт допу­скает их применение лишь в обоснованных случаях, т. е. тогда, когда замена их еди­ницами СИ при современном состоянии соответствующих областей техники и на­родного хозяйства вызвала бы неоправданные затруднения.

В стандарт включены единицы: массы (тонна), объема и вместимости (литр), времени (минута, час, сутки), плоского угла (градус, минута, секунда).

Без ограничения срока разрешается применять относительные и логарифмиче­ские единицы. Эти единицы не связаны с какой-либо системой единиц, так как не зависят от выбора основных единиц и во всех системах остаются неизменными. К относительным величинам (безразмерное отношение физической величины к одно­именной физической величине, принимаемой за исходную) относятся: КПД, относи­тельное удлинение, относительная плотность, относительные диэлектрическая и магнитная проницаемости и др.

Таблица 3

Внесистемныеединицы, допускаемые к применению

наравне с единицами СИ

Все единицы других систем, которые допускались к применению до 1 января 1980 г., заменены единицами СИ, за исключением восьми единиц: карат, оборот в секунду, оборот в минуту, бар, текс, непер, морская миля, узел.

studfiles.net