Нейрон выполняет функцию проведения нервного импульса – Механизм проведения нервного импульса

Структура и функции нейрона

Структурной единицей нервной системы является нервная клетка, или нейрон. Нейроны отличаются от других клеток организма многими особенностями. Прежде всего их популяция, насчитывающая от 10 до 30 млрд. (а быть может, и больше*) клеток, почти полностью «укомплектована» уже к моменту рождения, и ни один из нейронов, если он отомрет, не замещается новым. Принято считать, что после того, как человек минует период зрелости, у него ежедневно отмирает около 10 тысяч нейронов, а после 40 лет этот суточный показатель удваивается.

* Предположение, что нервная система состоит из 30 млрд. нейронов, сделал Пауэлл с сотрудниками (Powell et al., 1980), который показал, что у млекопитающих независимо от вида на 1 мм2 нервной ткани приходится около 146 тысяч нервных клеток. Общая же поверхность человеческого мозга составляет 22 дм2 (Changeux, 1983, р. 72).

Другая особенность нейронов состоит в том, что в отличие от клеток других типов они ничего не продуцируют, не секретируют и не структурируют; единственная их функция заключается в проведении нервной информации.

Структура нейрона

Существует много типов нейронов, структура которых варьирует в зависимости от выполняемых ими в нервной системе функций; сенсорный нейрон отличается по своему строению от моторного нейрона или нейрона мозговой коры (рис. А.28).

Рис. А.28. Различные типы нейронов.

Но какой бы ни была функция нейрона, все нейроны состоят из трех основных частей: тела клетки, дендритов и аксона.

Тело нейрона, как и всякой другой клетки, состоит из цитоплазмы и ядра. Цитоплазма нейрона, однако, особенно богата митохондриями, ответственными за выработку энергии, необходимой для поддержания высокой активности клетки. Как уже отмечалось, скопления тел нейронов образуют нервные центры в виде ганглия, в котором число клеточных тел исчисляется тысячами, ядра, где их еще больше, или, наконец, коры, состоящей из миллиардов нейронов. Тела нейронов образуют так называемое

серое вещество.

Дендриты служат нейрону своего рода антеннами. Некоторые нейроны имеют много сотен дендритов, принимающих информацию от рецепторов или других нейронов и проводящих ее к телу клетки и ее единственному отростку другого типа — аксону.

Аксон представляет собой часть нейрона, ответственную за передачу информации дендритам других нейронов, мышцам или железам. У одних нейронов длина аксона достигает метра, у других аксон очень короткий. Как правило, аксон ветвится, образуя так называемое терминальное дерево; на конце каждой ветви имеется

синоптическая бляшка. Именно она и образует соединение (синапс) данного нейрона с дендритами или телами других нейронов.

Большинство нервных волокон (аксонов) покрыто оболочкой, состоящей из миелина — белого жироподобного вещества, выполняющего функции изоляционного материала. Миелиновая оболочка с регулярными промежутками в 1-2 мм прерывается перетяжками — перехватами Ранвье, которые увеличивают скорость пробегания нервного импульса по волокну, позволяя ему «перепрыгивать» с одного перехвата на другой, вместо того чтобы постепенно распространяться вдоль волокна. Сотни и тысячи собранных в пучки аксонов образуют нервные пути, которые благодаря миелину имеют вид белого вещества.

Нервный импульс

Информация поступает в нервные центры, перерабатывается там и затем передается эффекторам в виде

нервных импульсов, пробегающих по нейронам и соединяющим их нервным путям.

Независимо от того, какую информацию передают нервные импульсы, пробегающие по миллиардам нервных волокон, они ничем не отличаются друг от друга. Почему же в таком случае импульсы, идущие от уха, передают информацию о звуках, а импульсы от глаза — о форме или цвете предмета, а не о звуках или о чем-нибудь совсем ином? Да просто потому, что качественные различия между нервными сигналами определяются не самими этими сигналами, а тем местом, куда они приходят: если это мышца, она будет сокращаться или растягиваться; если это железа, она будет выделять секрет, уменьшать или прекращать секрецию; если это определенная область мозга, в ней будет формироваться зрительный образ внешнего стимула или же сигнал подвергнется расшифровке в виде, например, звуков. Теоретически достаточно было бы изменить ход нервных путей, например, часть зрительного нерва в зону мозга, ответственную за расшифровку звуковых сигналов, чтобы заставить организм «слышать глазами».

Потенциал покоя и потенциал действия

Нервные импульсы передают по дендритам и аксонам не сам внешний стимул как таковой и даже не его энергию. Внешний стимул лишь активирует соответствующие рецепторы, и эта активация преобразуется в энергию электрического потенциала, который создается на кончиках дендритов, образующих контакты с рецептором.

Возникающий при этом нервный импульс можно грубо сравнить с огнем, бегущим вдоль бикфордова шнура и поджигающим расположенный у него на пути патрон с динамитом; «огонь», таким образом, распространяется по направлению к конечной цели за счет небольших следующих друг за другом взрывов. Передача нервного импульса, однако, принципиально отличается от этого тем, что почти сразу же после прохождения разряда потенциал нервного волокна восстанавливается.

Нервное волокно в состоянии покоя можно уподобить маленькой батарейке; с наружной стороны его мембраны имеется положительный заряд, а с внутренней — отрицательный (рис. А.29), и этот потенциал покоя преобразуется в электрический ток только при замыкании обоих полюсов. Именно это и происходит при прохождении нервного импульса, когда мембрана волокна на какое-то мгновение становится проницаемой и деполяризуется. Вслед за этой деполяризацией наступает период рефрактерности, в течение которого мембрана реполяризуется и восстанавливает способность к проведению нового импульса*. Так за счет последовательных деполяризаций и происходит распространение этого потенциала действия (т. е. нервного импульса) с постоянной скоростью, варьирующей в пределах от 0,5 до 120 метров в секунду в зависимости от типа волокна, его толщины и наличия или отсутствия у него миелиновой оболочки.

* Во время периода рефрактерности, длящегося около тысячной доли секунды, нервные импульсы по волокну проходить не могут. Поэтому за одну секунду нервное волокно способно провести не более 1000 импульсов.

Рис. А.29. Потенциал действия. Развитие потенциала действия, сопровождающееся изменением электрического напряжения (от —70 до + 40 мВ), обусловлено восстановлением равновесия между положительными и отрицательными ионами по обе стороны мембраны, проницаемость которой на короткое время увеличивается.

Закон «всё или ничего». Поскольку каждому нервному волокну присущ определенный электрический потенциал, распространяющиеся по нему импульсы независимо от интенсивности или каких-либо других свойств внешнего стимула всегда имеют одни и те же характеристики. Это означает, что импульс в нейроне может возникнуть только в том случае, если его активация, вызванная стимуляцией рецептора или импульсом от другого нейрона, будет превосходить некий порог, ниже которого активация неэффективна; но, если порог достигнут, сразу же возникает «полномерный» импульс. Этот факт получил название закона «всё или ничего».

Синаптическая передача

Синапс. Синапсом называют область соединения между окончанием аксона одного нейрона и дендритами или телом другого. Каждый нейрон может образовать до 800-1000 синапсов с другими нервными клетками, а плотность этих контактов в сером веществе мозга составляет боле 600 млн. на 1 мм3 (рис. А.30)*.

*Это значит, что если за одну секунду отсчитывать по 1000 синапсов, то для их полного пересчета потребуется от 3 до 30 тысяч лет (Changeux, 1983, р. 75).

Рис. А.30. Синаптическое соединение нейронов (в середине — область синапса при большем увеличении). Терминальная бляшка пресинаптического нейрона содержит пузырьки с запасом нейромедиатора и митохондрии, доставляющие энергию, необходимую для передачи нервного сигнала.

Место перехода нервного импульса с одного нейрона на другой представляет собой, собственно, не точку контакта, а скорее узкий промежуток, называемый синоптической щелью. Речь идет о щели шириной от 20 до 50 нанометров (миллионных долей миллиметра), которая с одной стороны ограничена мембраной пресинаптической бляшки нейрона, передающего импульс, и с другой — постсинаптической мембраной дендрита или тела другого нейрона, принимающего нервный сигнал и затем передающего его дальше.

Нейромедиаторы. Именно в синапсах происходят процессы, в результате которых химические вещества, освобождаемые пресинаптической мембраной, передают нервный сигнал с одного нейрона на другой. Эти вещества, получившие название нейромедиаторов (или просто медиаторов),-своего рода «мозговые гормоны» (нейрогормоны) — накапливаются в пузырьках синаптических бляшек и освобождаются, когда по аксону сюда приходит нервный импульс.

После этого медиаторы диффундируют в синаптическую щель и присоединяются к специфическим рецепторным участкам постсинаптической мембраны, т. е. к таким участкам, к которым они «подходят, как ключ к замку». В результате этого проницаемость постсинаптической мембраны изменяется, и таким образом сигнал передается с одного нейрона на другой; медиаторы могут также и блокировать передачу нервных сигналов на уровне синапса, уменьшая возбудимость постси-наптического нейрона.

Выполнив свою функцию, медиаторы расщепляются или нейтрализуются ферментами либо всасываются обратно в пресинаптическое окончание, что приводит к восстановлению их запаса в пузырьках к моменту прихода следующего импульса (рис. А.31).

Рис. А.31. la. Медиатор А, молекулы которого освобождаются из концевой бляшки нейрона I, связывается специфическими рецепторами на дендритах нейрона II. Молекулы X, которые по своей конфигурации не подходят к этим рецепторам, занять их не могут и потому не вызывают каких-либо синаптических эффектов.

1б. Молекулы M (например, молекулы некоторых психотропных препаратов) сходны по своей конфигурации с молекулами нейромедиатора А и поэтому могут связываться с рецепторами для этого медиатора, таким образом мешая ему выполнять свои функции. Например, ЛСД мешает серотонину подавлять проведение сенсорных сигналов.

2а и 2б. Некоторые вещества, называемые нейромодуляторами, способны воздействовать на окончание аксона, облегчая или подавляя высвобождение нейромедиатора.

Возбуждающая или тормозная функция синапса зависит главным образом от типа выделяемого им медиатора и от действия последнего на постсинаптическую мембрану. Некоторые медиаторы всегда оказывают только возбуждающее действие, другие — только тормозное (ингибирующее), а третьи в одних отделах нервной системы играют роль активаторов, а в других-ингибиторов.

Функции главных нейромедиаторов. В настоящее время известно несколько десятков этих нейрогормонов, но их функции изучены пока недостаточно. Сказанное, например, относится к

ацетилхолину, который участвует в мышечном сокращении, вызывает замедление сердечного и дыхательного ритма и инактивируется ферментом ацетилхолинэстеразой*. Не вполне изучены и функции таких веществ из группы моноаминов, как норадреналин, отвечающий за бодрствование мозговой коры и учащение сердечного ритма, дофамин, присутствующий в «центрах удовольствия» лимбической системы и некоторых ядрах ретикулярной формации, где он участвует в процессах избирательного внимания, или серотонин, который регулирует сон и определяет объем информации, циркулирующей в сенсорных путях. Частичная инактивация моноаминов происходит в результате их окисления ферментом моноаминоксидазой. Этот процесс, обычно возвращающий активность мозга к нормальному уровню, в некоторых случаях может приводить к чрезмерному ее снижению, что в психологическом плане проявляется у человека в чувстве подавленности (депрессии).

* По-видимому, недостаток ацетилхолина в некоторых ядрах промежуточного мозга-одна из главных причин болезни Альцгеймера, а недостаток дофамина в скорлупе (одно из базальных ядер) может быть причиной болезни Паркиисона.

Гамма-аминомасляная кислота (ГАМК) представляет собой нейро-медиатор, выполняющий примерно ту же физиологическую функцию, что и моноаминоксидаза. Ее действие состоит главным образом в снижении возбудимости мозговых нейронов по отношению к нервным импульсам.

Наряду с нейромедиаторами существует группа так называемых нейромодуляторов, которые в основном участвуют в регуляции нервного ответа, взаимодействуя с медиаторами и видоизменяя их эффекты. В качестве примера можно назвать вещество Р и брадикинин, участвующие в передаче болевых йпгналов. Освобождение этих веществ в синапсах спинного мозга, однако, может быть подавлено секрецией эндорфинов и энкефалина, которая таким образом приводит к уменьшению потока болевых нервных импульсов (рис. А.31, 2а). Функции модуляторов выполняют и такие вещества, как фактор S, играющий, по-видимому, важную роль в процессах сна, холецистокинин, ответственный за чувство сытости, ангиотензин, регулирующий жажду, и другие агенты.

Нейромедиаторы и действие психотропных веществ. В настоящее время известно, что различные психотропные препараты действуют на уровне синапсов и тех процессов, в которых участвуют нейромедиаторы и нейромодуляторы.

Молекулы этих препаратов по своей структуре сходны с молекулами определенных медиаторов, что и позволяет им «обманывать» различные механизмы синаптической передачи. Таким образом они нарушают действие истинных нейромедиаторов, либо занимая их место на рецепторных участках, либо мешая им всасываться обратно в пресинаптические окончания или подвергаться разрушению специфическими ферментами (рис. А.31, 26).

Установлено, например, что ЛСД, занимая серотониновые рецепторные участки, мешает серотонину затормаживать приток сенсорных сигналов. Таким образом ЛСД открывает доступ к сознанию для самых разнообразных стимулов, непрерывно атакующих органы чувств.

Кокаин усиливает эффекты дофамина, занимая его место в рецепторных участках. Подобным же образом действуют морфин и другие опиаты, мгновенный эффект которых объясняется тем, что они быстро успевают занять рецепторные участки для эндорфинов*.

* Несчастные случаи, связанные с передозировкой наркотиков, объясняются тем, что связывание чрезмерного количества, например, героина зндорфиновыми рецепторами в нервных центрах продолговатого мозга приводит к резкому угнетению дыхания, а иногда и к полной его остановке (Besson, 1988, Science et Vie, Hors série, n° 162).

Действие амфетаминов обусловлено тем, что они подавляют обратное поглощение норадреналина пресинаптическими окончаниями. В результате накопление избыточного количества нейрогормона в синаптической щели приводит к чрезмерной степени бодрствования мозговой коры.

Принято считать, что эффекты так называемых транквилизаторов (например, валиума) объясняются главным образом их облегчающим влиянием на действие ГАМК в лимбической системе, что приводит к усилению тормозных эффектов этого медиатора. Наоборот, как антидепрессанты действуют главным образом ферменты, инактивирую-шие ГАМК, или такие препараты, как, например, ингибиторы моноаминоксидазы, введение которых увеличивает количества моноаминов в синапсах.

Смерть от некоторых отравляющих газов наступает вследствие удушья. Такое действие этих газов связано с тем, что их молекулы блокируют секрецию фермента, разрушающего ацетилхолин. Между тем ацетилхолин вызывает сокращение мышц и замедление сердечного и дыхательного ритма. Поэтому его накопление в синаптических пространствах приводит к угнетению, а затем и полной блокаде сердечной и дыхательной функций и одновременному повышению тонуса всей мускулатуры.

Изучение нейромедиаторов еще только начинается, и можно ожидать, что в скором времени будут открыты сотни, а может быть и тысячи этих веществ, многообразные функции которых определяют их первостепенную роль в регуляции поведения.

studfiles.net

Виды нейронов, их взаимосвязь, проведение нервного импульса по аксону нейрона.

Поиск Лекций

Нейрон, его строение, функции и свойства.

Нейрон — структурный элемент ЦНС. Мозг содержит от 50-100млрд.

Нервные клетки располагаются вне ЦНС:

— периферический отдел ВНС

— афферентные нейроны спинномозговых ганглиях

— клетки сплетений желудочно-кишечном тракта

Нейрон образует колонки, слои, которые выполняют определенные функции.

Нейроны имеют разнообразную форму: звёздочки, шары и различная окраска — черная, желтая, красная.

Функция нейронов:

— рецепторная — восприятие раздражителей

интегративная — обработка и хранение информации

— эффекторная — передача сигнала другим нервным клеткам либо рабочим органам

Нейрон состоит из тела и отростков: коротких дендритов и длинного аксона

Тело нейрона выполняет информативную и трофическую функцию по отношению к своим отросткам.

Тело, лишенное связи с отростками погибает.

Тело заключено в мембрану. Все, что находится в мембране, кроме ядра, называется цитоплазмой. В ней содержатся цитоплазматические органеллы: рибосомы, базофильное вещество, аппарат Гольджи, митохондрии, лизосомы, нейротрубочки

Нейротрубочки — пронизывают сому и принимают участие в хранении и передачи информации.

Ядро нейрона — содержат генетическую информацию, что обеспечивает дифференцировку конечной формы клетки.

Аксон — длинный отросток, приспособленный для проведения информации, собранной дендритами, переданные аксону через аксонный холмик.

Аксонный холмик — место выхода аксона из нейрона.

Аксоны многих нейронов покрыты изолированной миелиновой оболочкой, образованной на периферии швановских клеток, а в ЦНС — олигодендритами.

Миелиновая оболочка через равные промежутки прерывается образуя свободные от миелина участки — перехват Ранвье. Обеспечивается экономное и быстрое проведения возбуждение по аксону.

Дендриты — многочисленные отростки. Восприятия импульсов, приходящих от других нейронов. Необходимость таких ветвей дендритов обеспечивает большое количество входов.

 

Виды нейронов, их взаимосвязь, проведение нервного импульса по аксону нейрона.

Нейрон — структурный элемент ЦНС. Мозг содержит от 50-100млрд

Классификация нейронов:

В зависимости от отделов:

— соматическая нервная система

— вегетативная нервная система

По направлению передачи информации:

— Афферентные — воспринимается с помощью рецепторов информация от внешней и внутренней среды организма и передача её в высшие отделы ЦНС. Расположено вне ЦНС.

— Эфферентные — передача информации к работающему организму.

— Вставочные — обеспечивает взаимодействие между нейронами. Расположена в ЦНС.

Классификация нейронов по влиянию:

— возбуждающие

— тормозящие

По специфичности воспринимаемой сенсорной информации:

— Моно — нейроны слуховой сенсорной системы

— Би — нейроны зрительной сенсорной системы, которые реагируют на звук и свет

— Полимодальные — нейроны, которые реагируют на раздражение рецепторов кожного, зрительного и слухового анализатора

Классификация по активности:

— фоновоактивные

— молчащие т. е. возбуждения только в ответ на раздражитель

По строению нейроны:

— униполярные истиноуниполярные, псевдоуниполярные

— биполярные аксон, дендрит

— мультиполярные аксон, несколько дендритов

Истиноуниполярные находятся в среднем мозге, в ядре тропического нерва, обеспечивают проприоцептивую чувствительных жевательных мышц.

Псевдоуниполярные — имеют 2 отростка, которые сливаются вблизи тела или сомы в единый отросток 1-ый отросток несет информацию от периферии, 2-ой поставляет информацию в высшие отделы ЦНС. Данные нейроны обеспечивают восприятия тактильной чувствительности.

Биполярные — встречаются в слуховой, зрительной сенсорной системе.

Мультиполярные — имеет 1 аксон и несколько дендритов, тела нейронов, как и их аксоны окружены глиальными клетками.

Глиальные клетки более многочисленны, чем нейроны, составляют более 50% ЦНС. Соотношение глиальных нервных клеток к нейронам 10.

Глиальные нервные клетки способны к делению в течении жизни размеры в 3,4 раза меньше нейронов, с возрастом количество нейронов уменьшается.

Глиальные клетки: астроциты, олигодендроциты, микроглия.

Астроциты расположены между нейронами и капиллярами, выполняя роль каркаса мозга, они обеспечивают транспорт питательных веществ из крови в мозг и в обратном направлении.

Олигодендроциты участвуют в миелизации аксона миелиновая оболочка, участвует в метаболизме неронов и питании.

Микроглия — способна к вигацитозу пожирание бактерий.

Механизм проведения возбуждения по безмиелиновым нервным волокнам.

Данный механизм связан с возникновением локальных потенциалов, которые проявляются между возбужденными и невозбужденными участками мембраны нервного волокна.

Возбуждающий участок мембраны — деполяризован, не возбуждающий — поляризован, то есть снаружи имеет положительный заряд, отрицательный внутри.

Между различными заряженными участками мембраны возникает электрический ток, который действует как раздражитель для невозбужденного участка и вызывает появление потенциала действия в соседнем участке. В исходной зоне возбуждение восстанавливается потенциалом покоя.

Механизм проведения возбуждения по миелиновому нервному волокну.

Миелиновом нервном волокне участки мембраны покрыты миелиновой оболочкой являются не возбудимыми. Возбуждение может возникнуть только в области перехвата Ранвье и передаётся скачками. Такое проведение потенциала действия виде скачков называется сальтаторным.

Проведения возбуждения по нервному волокну.

Двухстороннее проведения возбуждения

Если раздражитель действует на средний участок изолированного нерва, то распространение раздражителя регистрируется как проксимальным так и дистальном участке. В условиях организма двухстороннее проведение осуществляется в аксоном холмике. Возникший в этом месте потенциал действия распространяется не только на аксон, но и на сому клетки.

Изолированное проведения возбуждения

Возбуждение распространяется по волокну входящему в состав нерва, но не передается на соседние нервные волокна.

Большая скорость проведения возбуждения 120 мс

Малая утомляемость нервного волокна

Расход энергии в нервном волокне на 1 массы тела, в 16 раз меньше, чем в целом организме в условиях обмена веществ.

Проведения возбуждения по нервному волокну может распространиться только в случае его морфологической и функциональной целостности. Разрыв нерва нарушает проведения потенциала действия, что в свою очередь не может привести к нормальному функционированию нерва.

 


Рекомендуемые страницы:

poisk-ru.ru

Функции нейронов: как работают и какую задачу выполняют

Наше тело состоит из бесчисленного множества клеток. Приблизительно 100.000.000 из них являются нейронами. Что такое нейроны? Каковы функции нейронов? Вам интересно узнать, какую задачу они выполняют и что вы можете благодаря им делать? Рассмотрим это подробнее.

Функции нейронов

Вы когда-нибудь задумывались о том, как информация проходит через наше тело? Почему, если что-то причиняет нам боль, мы сразу же неосознанно одёргиваем руку? Где и как мы распознаём эту информацию? Всё это – действия нейронов. Как мы понимаем, что это холодное, а это – горячее…а это мягкое или колючее? За получение и передачу этих сигналов по нашему телу отвечают нейроны. В этой статье мы подробно расскажем о том, что такое нейрон, из чего он состоит, какова классификация нейронов и как улучшить их формирование.

Основные понятия о функциях нейронов

Прежде, чем рассказывать о том, каковы функции нейронов, необходимо дать определение того, что такое нейрон и из чего он состоит.

Вы хотите знать, как работает ваш мозг? Каковы ваши сильные и, возможно, ослабленные когнитивные функции? Присутствуют ли симптомы, свидетельствующие о наличии какого-либо расстройства? Какие способности можно улучшить? Получите ответы на все эти вопросы менее, чем за 30-40 минут, пройдя Общий когнитивный тест CogniFit

Нейроны – это клетки, формирующие нервную систему, другими словами, нервные клетки. Самыми главными функциями нейронов являются получение информации и её передача посредством электрических импульсов по всем каналам коммуникации, по всей нервной системе. Для того, чтобы нейроны могли осуществлять свои функции, им необходимы следующие части, образующие структуру нейрона:

  • Сома: тело или главная часть нейрона. В ней находится ядро.
  • Аксоны: речь идёт о нервном волокне, через которое электрические импульсы передаются другим нейронам. В наиболее отдалённой от сомы части этого волокна находится много нервных окончаний, которые одновременно связываются с огромным количеством нейронов.
  • Дендриты: разветвлённые отростки нейрона, через которые нейрон получает информацию от других нейронов.

Форма, посредством которой могут между собой общаться нейроны (отправлять информацию и получать её от других нейронов) называется Синапс. Речь идёт о процессе, при котором аксон одного нейрона передаёт информацию дендритам другого нейрона (канал между двумя частями нейронов называют “синаптическая щель”).

Функции нейронов

Наше тело выполняет много задач и обрабатывает огромный объем информации, идущей от мозга через всю нервную систему. Вследствие этого нейронам необходимо иметь специализацию. По этой причине, несмотря на то, что основной функцией нейронов является получение и передача информации, существуют различные типы нейронов, различающихся по:

Функциям нейронов:

  • Моторные или эфферентные: отвечают за передачу информации в виде электрических импульсов от центральной нервной системы к мышцам или железам.
  • Чувствительные или афферентные: нейроны, которые связывают наш мозг с внешним миром. Это нейроны, которые получают информацию от различных чувств, ощущений, таких как боль, давление, температура… Включая более специализированные нейроны, “говорящие” о вкусах и запахах.
  • Промежуточные/интеркалярные или ассоциативные нейроны: нейроны, обеспечивающие коммуникации между афферентными и эфферентными нейронами.

Структуре:

  1. Униполярные: нейроны, обладающие только одним раздваивающимся отростком, выходящим из сомы, и работающие одновременно как дендрит и как аксон (вход и выход). В своём большинстве это сенсорные нейроны.
  2. Биполярные нейроны: имеют два отростка, один из которых работает как дендрит (вход), а другой как аксон (выход). Этот вид нейронов находится в сетчатке, улитке или передней части ушного лабиринта, вестибулярной системе и обонятельной области слизистой оболочки носа.
  3. Мультиполярные: этот вид нейронов преобладает в нашей центральной нервной системе. Обладают большим количеством входных отростков (дендритов) и только одним выходным (аксон). Находятся в головном или спинном мозге.

Типу нейротрансмиттера (нейромедиатора), усиливающего функцию нейрона:

  1. Серотонинергические – производят Серотонин (связан с настроением).
  2. Дофаминергические – производят Дофамин (связан с удовольствием).
  3. ГАМК-ергические – производят ГАМК (основной тормозной нейротрансмиттер).
  4. Глутаматергические – производят Глутамат (основной возбуждающий нейротрансмиттер, связанный с памятью и воспоминаниями).
  5. Холинергические – производят Ацетилхолин (Нейромедиатор, широко распространённый в Центральной Нервной Системе. Многосторонни).
  6. Норадренергические – производят Норадреналин/норэпинефрин (действует как нейротрансмиттер и как гормон. Связан с увеличением сердечного ритма и кровяным давлением).
  7. Вазопрессинергические – производят Вазопрессин (играет ключевую роль в гомеостатическом регулировании жидкости, глюкозы и солей в крови).
  8. Окситоцинергические – производят Окситоцин (связан с любовью, романтическими отношениями и сексуальным поведением…).

Могут ли для улучшения функций нейронов образовываться новые нервные клетки ?

Ранее считалось, что на протяжении человеческой жизни новые нейроны в мозге не образуются. Однако группа учёных Каролинского Медицинского Института (Швеция) провела эксперимент с использованием углерода-14, который показал, что в человеческом мозге, а именно, в Гиппокампе, ежедневно могут рождаться 1400 клеток. Однако с возрастом эта цифра сокращается.

Этот процесс формирования нейронов называется Нейрогенез. Тот факт, что даже в зрелом возрасте возникают новые нейроны, играет важнейшую роль для их функций, а также пластичности и способности мозга адаптироваться к новым ситуациям.

Советы: как улучшить функции нейронов

Как и всегда, здоровые привычки играют важную роль в оптимальном развитии функций нейронов. Наш мозг благодарит нас за заботу о теле. Как говорится, “в здоровом теле – здоровый дух”. Что мы можем сделать, чтобы улучшить пластичность мозга и нейрогенез?

  1. Спать, отдыхая: необязательно спать строго 8 часов. У каждого из нас свой ритм сна, и есть люди, для которых вполне достаточно спать 7 или 7,5 часов. Однако важно, чтобы сон был восстанавливающим.
  2. Использовать умеренные физические нагрузки и стимуляции: нейрогенез происходит для адаптации к окружающему миру. Это связано с преодолением трудностей для достижения наших целей, что, в свою очередь, задействует наши навыки принятия решений.
  3. Избегать чрезмерного стресса: небольшой уровень стресса полезен, но всегда надо знать когда мы “переходим черту”.
  4. Заниматься сексом: это отличный способ стимуляции и борьбы со стрессом, а также физическая нагрузка.
  5. Делать упражнения для мозга: CogniFit (“КогниФит”) является лидером среди программ по когнитивной стимуляции, все упражнения можно выполнять онлайн с помощью любого устройства – компьютера, телефона, планшета. Нейропсихологи и нейроучёные разработали увлекательные упражнения в виде простых игр, с помощью которых можно профессионально “тренировать” основные функции головного мозга. Эта программа была высоко оценена научным сообществом и в настоящее время применяется в различных медицинских учреждениях, школах, колледжах и университетах по всему миру. Откройте для себя этот простой инструмент, с помощью которого каждый сможет профессионально протестировать и потренировать свой мозг.

Нейронная пластичность: CogniFit (“КогниФит”)

Недостаток сна, однообразие, постоянная рутина и высокий уровень стресса приводят к замедлению нейрогенеза.

Могут ли нейроны умереть?

Конечно, и это происходит по разным причинам.

  • По программе (Апоптоз): В детстве, когда мы развиваемся, наш мозг производит клеток больше, чем мы используем. В определённый момент все эти незадействованные клетки программируют свою гибель. Это же происходит и в старости – с нейронами, которые уже не могут получать и передавать информацию.
  • Из-за асфиксии: Нейронам, как и нам, нужен кислород. Если они перестают его получать, то погибают.
  • Из-за болезней: Альцгеймер, Паркинсон, СПИД…
  • Из-за сильных ударов по голове: серьёзные травмы вызывают гибель нейронов. Это хорошо известно, например, в мире бокса.
  • Из-за интоксикации: Употребление алкоголя и других веществ может нанести урон нейронам, и как следствие, их разрушение.

Вы подозреваете у себя или своих близких депрессию? Проверьте, присутствуют ли симптомы депрессии с помощью инновационного нейропсихологического теста CogniFit на депрессию прямо сейчас!

Выводы о нейронных функциях

Мы с вами узнали о том, что нейроны – это маленькие связные, которые передвигаются по всему нашему телу. Таким образом, функции нейронов заключаются в получении и передаче информации, как от различных структур (мышц и желез), так и от других нейронов.

Сейчас мы уже можем ответить на вопрос, который был задан в самом начале статьи: почему, если что-то причиняет нам боль, мы сразу же неосознанно одёргиваем руку? Чувствительные нейроны получают информацию о боли, а моторные нейроны в ответ посылают сигнал убрать руку.

Мы увидели, что внутри нашего тела на протяжении всей жизни, всё время, каждую секунду, проходят бесконечные информационные, коммуникационные потоки и электрические импульсы.

Также мы с вами узнали о том, что наш организм постоянно находится в процессе развития, с момента рождения до старости. Наша нейронная структура в гиппокампе также меняется, благодаря нейрогенезу и гибели нейронов.

Призываю вас вести здоровый образ жизни, развлекаться, учиться и стремиться к личностному росту. Это поможет вам сберечь нейроны, ваших маленьких почтальонов.

В статье есть ссылки на другие материалы, в которых можно подробнее прочитать информацию по той или иной теме. Если вам интересна тема Нейрогенеза, рекомендую также прочитать вот эту интересную статью о том, как предотвратить деменцию.

Будем признательны за ваши вопросы и комментарии.

Перевела с испанского Анна Иноземцева

Psicóloga Sanitaria especialista en Psicología clínica.
Enamorada de las relaciones entre pensamientos, emociones y comportamiento humano.
Descubramos conocimientos compartiendo información
“Cada uno es dueño exclusivo de sus pensamientos, hasta que decide compartirlos a través de sus conductas”

This post is also available in: Испанский Французский Немецкий

blog.cognifit.com

Помогите пожалуйста по биологии! Заранее СПАСИБО!

Нейроны проводят нервные импульсы — от рецепторов в центральную нервную систему (чувствительные нейроны) ; — от центральной нервной системы к исполнительным органам (двигательные нейроны) ; — соединяют между собой несколько других нервных клеток (вставочные нейроны) . Исполнительных нейронов нет, есть двигательные

1. чувствительные н. проводят информацию об ощущениях (нервный импульс) от органов в мозг 2. вставочные н. анализируют полученную информацию и принимают решения 3. исполнительные н. проводят импульс от головного и спинного мозга к рабочим органам все это конечно фигурально выражаясь. зато просто и понятно х)

от рецепторов в центральную нервную систему (чувствительные нейроны) ; — от центральной нервной системы к исполнительным органам (двигательные нейроны) ; соединяют между собой несколько других нервных клеток (вставочные нейроны)

1/ Одни нейроны, чувствительные, передают импульсы от органов чувств в спинной и головной мозг. Тела чувствительных нейронов лежат на пути к центральной нервной системе в нервных узлах. 2. Вставочный нейрон — мелкая короткоаксонная клетка центральной нервной системы: — осуществляющая связь между сенсорными и двигательными нейронами; — выполняющая роль возбуждающих и тормозных нейронов. Вставочные нейроны: — имеют синаптические контакты только с другими нейронами; — способны к генерации высокочастотной импульсной активности. 3. Посредством исполнительных нейронов нервная система побуждает к действию клетки рабочих (исполнительных) органов. Таким действием становится соответствующее возникшей ситуации уменьшение или увеличение выработки клетками биологически активных веществ (секрета) , расширение или сужение кровеносных сосудов, сокращение или расслабление мышц.

touch.otvet.mail.ru

ПЕРЕДАЧА НЕРВНОГО ИМПУЛЬСА ОТ НЕЙРОНА ОСУЩЕСТВЛЯЕТСЯ В

Нервный импульс, волна возбуждения, распространяющаяся по нервному волокну, в ответ на раздражение нейронов. Нейроны — важнейшие элементы нервной системы.

Нервная система человеческого тела состоит из отдельных клеток – нейронов, которые принимают, проводят и передают электрические сигналы. Значение этих сигналов зависти от того, какую роль данная клетка играет в функционировании нервной системы.

Дендриты представляют собой систему ветвящихся отростков, которые отходят от тела нейрона и увеличивают поверхность, способную принимать сигналы от других клеток. Аксон тоже отросток клетки, но обычно он только один и гораздо длиннее дендритов. Аксон проводит потенциалы действия от тела клетки к удаленной мишени, дальний конец аксона обычно ветвится, что позволяет передавать сигнал одновременно во много пунктов.

Большая часть поверхности нейрона покрыта прилегающими к нему глиальными, или шванновскими клетками. Несмотря на различные значения сигналов, природа их во всех случаях одинакова и состоит в изменении электрического потенциала на плазматической мембране нейрона. Передача сигналов основана на том, что электрическое возмущение, возникшее в одном участке клетки, распространяется на другие участки.

На коротких расстояниях затухание незначительно, и многие нейроны проводят сигналы пассивно, без усиления. Поэтому у нейронов с длинными отростками в ходе эволюции выработался активный сигнальный механизм, представляющий собой одно из самых удивительных и характерных свойств нейрона. Потенциал действия передает информацию с одного конца нейрона на другой без затухания со скоростью до 100 м/с, а в некоторых нейронах еще быстрее.

Проведение нервного импульса это:

Заряд переносят через мембрану нервной клетки небольшие неорганические ионы, главным образом Na+ , K+, Сl- и Са2+, причем проходят они через липидный бислой только по специальным каналам. При открывании или закрывании ионных каналов распределение зарядов изменяется и происходит сдвиг мембранного потенциала. Таким образом, передача сигнала нервными клетками зависит от каналов с регулируемой проницаемостью — так называемых каналов с «воротами».

Эти два типа каналов свойственны не только нейронам, они найдены также и в других клетках, например в мышечных волокнах, где выполняют сходные функции. Подобно всем другим клеткам, нейроны расходуют много метаболической энергии на откачивание из клетки ионов Na+ в обмен на К+ с помощью Na+ К+ -АТФазы, находящейся в плазматической мембране.

Зависимость мембранного потенциала от проницаемости мембраны составляет основу любой электрической активности нейронов. В действительности именно это и происходит на короткий момент во время прохождения импульса (потенциала действия) в результате открывания потенциал-зависимых натриевых каналов. В отличие от каналов утечки эти каналы почти все закрыты, когда нейрон находится в состоянии покоя, и открываются только при изменении мембранного потенциала.

Это наводит на мысль о каком-то простом механизме «включения» и «выключения» каналов. Но в случае натриевых каналов, ответственных за потенциал действия, этот механизм несколько сложнее, и существенную роль в нем играет временная задержка.

Если мембранный потенциал поддерживать на уровне нормального потенциала покоя (примерно -70 мВ), натриевый ток практически отсутствует; это указывает на то, что почти все натриевые каналы закрыты.

Значит, каналы открылись на какой-то момент и вновь закрылись. Закрывшись, каналы переходят в инактивированное состояние, которое явно отличается от их первоначального закрытого состояния, когда они еще были способны открыться в ответ на деполяризацию мембраны.

Мембрана нервной клетки содержит много тысяч натриевых каналов с потенциал-зависимыми воротами, и общий натриевый ток складывается из токов, протекающих через все эти каналы. Вместо этого отельные каналы после деполяризации могли бы внезапно открываться и закрываться по принципу «всё или ничего», но действовать асинхронно, несогласованно.

Если плотность расположения каналов невелика, а диаметр носика пипетки меньше 1 мкм, то в выделенном участке мембраны каналов будет немного — иногда только один или вообще ни одного. На рис. 2.5.-2 представлено несколько типичных записей тока в одном потенциал — зависимом натриевом канале из мышечной клетки крысы. Видно, что канал открывается по принципу «всё или ничего».

Три представленные здесь записи тока получены при трех повторениях опыта на одном и том же участке мембраны. Этот суммарный ток эквивалентен натриевому току, который проходил бы через относительно большой участок мембраны, содержащий 228 каналов. Изменение суммарного тока во времени отражает изменение вероятности того, что какой-либо отдельный канал будет находиться в открытом состоянии.

Во-первых, такие каналы избирательно проницаемы для определенных ионов. Во-вторых, они не открываются постепенно, а скачком переходят из одной дискретной конформации в другую. Каналы очень редко будут принимать квазистабильные конформаций с высокой энергией, обычно они находятся в низкоэнергетических состояниях. Потенциал-зависимые натриевые каналы делают нервную клетку чувствительной к действию электрического поля и дают ей возможность проводить импульсы (потенциалы действия).

Заметим, что второй потенциал действия не может возникнуть до тех пор, пока натриевые каналы не выйдут из состояния инактивации, которым закончился предыдущий потенциал действия. Эти каналы, подобно натриевым, открываются в ответ на деполяризацию мембраны, но происходит это относительно медленно. Чтобы открылось достаточное для запуска этого процесса число натриевых каналов, начальное снижение мембранного потенциала должно деполяризовать мембрану до некоторого порогового уровня.

Читайте также:

Проведение нервного импульса обусловлено способностью мембран нейронов изменять свой электрохимический потенциал. Эту бегущую волну возбуждения называют потенциалом действия или нервным импульсом. Na+ и К+ — наиболее важные ионы, участвующие в проведении импульсов в большинстве нейронов. Способность вырабатывать нервные импульсы — одно из основополагающих свойств нейронов. Частота следования может варьировать от единиц до сотни нервных импульсов в секунду.

Другие посетители сайта сейчас читают:

zdravbaza.ru

Передача нервного импульса в синапсе осуществляется – пкп физиология

Детали строения и работы химических синапсов могут отличаться, но общий принцип деятельности един:

1) когда ПД достигает терминали аксона, в синаптическую щель через пресинаптическую мембрану выбрасывается порция медиатора (химического вещества – посредника). При этом соблюдаются принципы: а) один нейрон – один тип медиатора, б) один импульс – одна порция медиатора, в) сколько бы терминалей (концевых разветвлений) не образовал аксон, порция медиатора в каждом синапсе остается неизменной.

2) Медиатор воздействует на рецептор-зависимые каналы постсинаптической мембраны, вызывая локальное возбуждение (или торможение). Возникает возбуждающий (ВПСП) или тормозной (ТПСП – гиперполяризация, приводящая к торможению) постсинаптический потенциал.

3) Когда (если) значение ВПСП достигает уровня ПорП, то на тех участках мембраны, где расположены φ-зависимые каналы развивается ПД.

4) Медиатор удаляется из синаптической щели.

Остановимся подробнее на нервно-мышечном и межнейронных синапсах.

а) Нервно-мышечное (мионеврального) соединение.

Скелетные мышцы иннервируются мотонейронами. Каждое двигательное волокно в мышце ветвится и иннервирует группу мышечных волокон. Концевые веточки нервных волокон (диаметром 1 —1,5 мкм) лишены миелиновой оболочки и имеют расширенную колбовидную форму. Пресинаптическое окончание содержит множество субмикроскопических образований — синаптических пузырьков (везикул) с медиатором диаметром около 50 нм.

Пресинаптические окончания аксона образуют синаптические соединения со специализированной областью сарколеммы – концевой двигательной пластинкой. Последняя формирует углубления, складки, увеличивающие площадь поверхности постсинаптической мембраны.

Ширина синаптической щели больше, чем в других синапсах и составляет 50—100 нм. Это обеспечивает рассеивание медиатора по постсинаптической мембране.

Медиатор — ацетилхолин. Когда под действием ПД происходит деполяризация мембраны нервного окончания, синаптические пузырьки экзоцитируют в синаптическую щель.

Ацетилхолин выбрасывается порциями по 4*104 молекул, что соответствует содержимому нескольких пузырьков. Один нервный импульс вызывает синхронное выделение 100—200 порций медиатора менее чем за 1 мс. Всего же запасов ацетилхолина в окончании хватает на 2500— 5000 импульсов. (к оглавлению)

Молекулы ацетилхолина диффундируют через щель и достигают внешней стороны постсинаптической мембраны, где связываются со специфическими рецепторами. Число рецепторов составляет примерно 13000 на 1 мкм2; они отсутствуют в других участках мышечной мембраны. Возникает возбуждающий постсинаптический потенциал (ВПСП) (в данном случае – потенциал концевой пластинки – ПКП). Время от момента появления нервного импульса в пресинаптическом окончании до возникновения ВПСП называется синаптической задержкой. Она составляет 0,2—0,5 мс.

На каждый импульс от мотонейрона в мышце всегда возникает потенциал действия. Это обусловлено тем, что пресинаптическое окончание выделяет определенное количество порций медиатора и ВПСП всегда достигает пороговой величины. ПД по системе Т-трубочек распространяется вглубь мышечного волокна (см. тему «мышечная ткань»).

Медиатор выполнил свою функцию и должен быть удален из синаптической щели. Эту функцию выполняет локализованный здесь же фермент – ацетилхолинэстераза, которая гидролизует ацетилхолин до ацетата и холина. Мембрана реполяризуется. Этот процесс идет очень быстро: весь выделившийся в щель ацетилхолин расщепляется за 20 мс.

Образовавшиеся продукты расщепления — ацетат и холин — большей частью транспортируются обратно в пресинаптические окончания, где используются в ресинтезе ацетилхолина при участии фермента холин-ацетилтрансферазы

Токсин ботулизма даже в следовых количествах блокирует освобождение ацетилхолина в синапсах и вызывает мышечный паралич. Яд кураре, связываясь с рецепторными белками, препятствуют действию ацетилхолина и подавляют ВПСП.

б) Химические межнейронные синапсы.

Особенности:

1) синаптическая щель уже, чем в невно-мышечном соединении – около 20 нм;

2) в отличие от потенциала концевой пластинки (ПКП) мышц возбуждающий потенциал (ВПСП), возникающий в нейроне при деполяризации одиночной синаптической бляшки, недостаточен (1—2 мВ) для порогового изменения мембранного потенциал (с -70–80 до -50 мВ). В связи с этим, ПД возникает на постсинаптическом нейроне лишь при одновременной активации нескольких синапсов – пространственная суммация, или при повторных разрядах в одном синапсе – временнАя суммация (см. ниже «интеграция нейронных связей»).

3) Генерация распространяющегося потенциала действия в нейронах происходит не на стыке с постсинаптической мембраной, как в нервно-мышечном соединении, а на мембране аксонного холмика.

4) Химические межнейронные синапсы могут быть не только возбуждающими, но и тормозными.

Различия обусловлены природой медиатора и спецификой постсинаптической клетки. Медиатор может либо деполяризовать постсинаптическую мембрану, либо гиперполяризовать ее. В первом случае повышается проницаемость мембраны для ионов Na+, и возникает ВПСП; во втором случае растет проницаемость лишь для К+ и С1 и генерируется тормозной постсинаптический потенциал (ТПСП).

Возбуждающими медиаторами являются ацетилхолин (в окончаниях мотонейронов и парасимпатических нервных волокон), норадреналин (в окончаниях симпатических нервов, в ряде отделов головного мозга), дофамин (в подкорковых ганглиях головного мозга).

Тормозные медиаторы – гамма-аминомасляная кислота и глицин.

Кроме того, хотя каждый нейрон во всех своих синаптических окончаниях выделяет один и тот же медиатор, но он может связываться с разными рецепторами постсинаптической мембраны и вызывать различный эффект.

Торможение, возникающее в нервно-мышечных или нервно-железистых соединениях, называется периферическим, а реализуемое в структурах ЦНС — центральным. Явление центрального торможения было открыто в 1862 г. И. М. Сеченовым. Дальнейшую разработку теории торможения существенный вклад внесли Н. Е.

Структура синапса. Медиаторы. Синаптическая передача нервного импульса.

Введенский, Ч. Шеррингтон, А. А. Ухтомский и др.

В настоящее время торможение рассматривают как самостоятельный активный нервный процесс, вызываемый возбуждением и проявляющийся в ослаблении или подавлении другого возбуждения.

В отличие от возбуждения, проявляющегося в двух формах — локального (местного) потенциала и потенциала действия, торможение развивается только в форме локального процесса и всегда связано с действием специфических тормозных нейронов и тормозных медиаторов.

В межнейронных синапсах различают два вида торможения — постсинаптическое и пресинаптическое.

Постсинаптическое торможение возникает вследствие снижения возбудимости сомы и дендритов нейрона.

В основе этого снижения лежит гиперполяризация мембраны воспринимающего нейрона тормозными нейронами. Этот вид торможения, по-видимому, преобладает в ЦНС позвоночных.

Пресинаптическое торможение возникает при уменьшении или прекращении высвобождения медиатора из пресинаптических нервных окончаний, контактирующих с данной клеткой. В основе этого явления лежит гиперполяризация мембраны пресинаптического волокна тормозным медиатором специальных вставочных нейронов. Этот процесс локализуется, следовательно, не на теле нейронов, а на терминалях аксона. Пресинаптическое торможение свойственно главным образом соматическим и вегетативным афферентным нейронам (т.е. характерно для периферичекого торможения). По времени оно обычно длительнее, чем постсинаптическое торможение.

Постсинаптическое торможение (слева). Пресинаптическое торможение (справа).

Поскольку на теле и дендритах одной нервной клетки (например, мотонейрона) могут разветвляться окончания и возбуждающих и тормозных нейронов, реакция клетки на поступающие импульсы является интегративной. То есть, возникновение нервного импульса зависит от величины суммарного потенциала, образующегося в результате сложения всех возникающих ВПСП и ТПСП. Таким образом, в основе межнейронных связей лежит взаимодействие процессов возбуждения и торможения.

(к оглавлению)

Дата публикования: 2015-07-22; Прочитано: 443 | Нарушение авторского права страницы

laservirta.ru

Нейрон

Нейрон — это функциональная единица нервной системы, строение и функции которой приспособлены к передаче и интеграции информации. В каждом нейроне различают четыре различные области: тело, дендриты, аксон и аксонные окончания (терминали). Все эти области выполняют строго определенные функции. Центр процессов синтеза в нервной клетке — ее тело, или сома, — содержит ядро, рибосомы, эндоплазматический ретикулум и другие органеллы. Здесь синтезируются медиаторы, клеточные белки и другие важнейшие компоненты. Сома имеет первостепенное значение для существования и целости нейрона. При ее разрушении дегенерирует вся клетка, включая аксон с его терминалями и дендриты. Главная функция аксона состоит в проведении нервных импульсов к другим клеткам — нервным, мышечным или секреторным. Большинство аксонов представляет собой длинные нитевидные отростки, исходящие из сомы. До переключения на воспринимающие отростки других нейронов они проходят путь от нескольких миллиметров до нескольких метров. Ряд аксонов соединяет центральную нервную систему (головной и спинной мозг) с периферической. Аксоны чувствительных (сенсорных) нейронов передают информацию от расположенных на периферии рецепторов к центральной нервной системе (ЦНС). Аксоны двигательных (моторных) нейронов проводят нервные импульсы от центральной нервной системы к мышцам туловища и конечностей. Другие аксоны соединяют центральную нервную систему с рецепторами, мышечными и секреторными клетками внутренних органов.

Специфической функцией аксона является проведение нервных импульсов. Эти импульсы возникают в результате небольших изменений проницаемости мембраны аксона, приводящих к возникновению электрического потенциала; последний потенциал, подобно волне, пробегает по всей длине аксона — от сомы до окончаний.

Ближе к окончанию аксон ветвится и образует тонкую кисточку из конечных ветвей (аксонных терминалей, или окончаний). На конце каждая терминанта образует специатизированный контакт, или синапс, с постсинаптической клеткой (нервной, мышечной или слизистой). Подавляющее большинство синапсов центральной нервной системы образовано окончаниями аксонов одних нейронов на дендритах других.

Специальная функция синапса заключается в передаче информации от клетки к клетке. Когда к окончанию аксона приходит нервный импульс, в этом окончании образуется небольшое количество особого химического вещества — нейромедиатора. Высвобождаясь из окончания, медиатор связывается с мембраной дендрита постсинаптического нейрона и изменяет ее проницаемость, что приводит к сдвигу ее электрического потенциала. Возникающий в результате этого синаптический потенциал может быть возбуждающим или тормозным. В первом случае он увеличивает вероятность генерации нервного импульса в постсинаптическом нейроне; тормозной же постсинаптический потенциал, напротив, этому препятствует.

Дендриты образуются в результате древовидного разветвления отростков нервной клетки, отходящих от ее тела; их специальная функция заключается в восприятии синаптических влияний. На дендритах типичной нервной клетки оканчиваются терминали аксонов сотен или тысяч нейронов. Эти терминали покрывают всю поверхность дендритов. В активном состоянии каждая терминать высвобождает медиатор, вызывающий местное изменение проницаемости мембраны дендрита. В результате этого меняется электрический потенциал. Это изменение потенциала (си-наптический потенциап) передается от дендритов к начальному сегменту аксона. Если синаптический потенциал возбуждающий, то частота генерации нервных импульсов возрастает, если же он тормозной — уменьшается.

psyera.ru