Круговорот в природе химических элементов осуществляемый при участии – Круговорот веществ и превращение энергии в биосфере — ОБЩАЯ БИОЛОГИЯ — ЕГЭ 100 баллов. Биология. Самостоятельная подготовка к ЕГЭ — ЕГЭ 2018 — Произведения школьной программы

Тест по биологии. 10 класс

Задание 1. Задание включает 50 вопросов, к каждому из них предложено 4 варианта ответа. На каждый вопрос выберите только один ответ, который вы считаете наиболее полным и правильным. Индекс выбранного ответа внесите в матрицу ответов.

1. Круговорот в природе химических элементов и воды, осуществляемый при участии живых организмов, изучает раздел науки:

а) палеонтологии;
б) молекулярной биологии;
в) сравнительной физиологии;
г) экологии.

Ответ: б

2. Клетки, сходные по строению, происхождению и выполняемым функциям, образуют:

а) ткани;
б) органы;
в) системы органов;
г) единый организм.

Ответ: а

3. Вирусы, проникая в клетку:

а) питаются рибосомами;
б) поселяются в митохондриях;
в) воспроизводят свой генетический материал;
г) отравляют клетку продуктами распада.

Ответ: в

4. В процессе фотосинтеза растения:

а) получают органические вещества из неорганических;
б) расщепляют сложные органические вещества до простых;

в) поглощают кислород и выделяют углекислый газ;
г) расходуют энергию.

Ответ: а

5. Приспособленность растений к опылению насекомыми характеризуется:

а) образованием большого количества пыльцы;
б) удлинением тычиночных нитей;
в) ранневесенним цветением;
г) наличием у цветка яркого венчика и нектара.

Ответ: г

6. Наличие в составе лишайника цианей обеспечивает:

а) поглощение влаги;
б) фотосинтез;
в) азотфиксацию;
г) защиту от механических повреждений.

Ответ: б

7. У диатомовых водорослей основным компонентом клеточной стенки является:

а) целлюлоза;
б) кремнезем;
в) хитин;
г) муреин.

Ответ: б

8. У гриба пенициллиума плодовое тело:

а) клейстотеций;
б) перитеций;
в) апотеций)

г) отсутствует.

Ответ: г

9. У водоросли хлореллы размножение осуществляется при помощи:

а) зооспор;
б) тетраспор;
в) автоспор;
г) синзооспор.

Ответ: в

10. При хранении в теплом помещении картофель быстро сморщивается, так как в нем:

а) происходит фотосинтез;
б) накапливается крахмал;
в) интенсивно осуществляется процесс дыхания;
г) в нем образуется ядовитое вещество соланин и гормоны.

Ответ: в

11. Из перечисленных включений растительной клетки запасной белок содержит:

а) амилопласт;
б) хромопласт;
в) сферосома;
г) алейроновое зерно.

Ответ: г

12. Конечная почка побега липы называется:

а) верхушечной;
б) боковой;
в) придаточной;
г) спящей.

Ответ:

а

13. Первые видоизмененные листья семенных растений, образующиеся в зародыше, – это:

а) семядоли;
б) семязачатки;
в) семяпочки;
г) семена.

Ответ: а

14. Основная функция палисадной ткани листа — осуществление:

а) газообмена;
б) транспирации;
в) фотосинтеза;
г) накопления воды.

Ответ: в

15. Побег или система побегов, несущие цветки, называется:

а) стеблем;
б) соцветием;
в) филлодием;
г) кладодием.

Ответ: б

16. Последовательная смена растительных сообществ во времени носит название:

а) инвазия;
б) интродукция;
в) реинтродукция;
г) сукцессия.

Ответ: г

17. Подземные метаморфозы побега – это:

а) усики, кладодии;

б) колючки, шипы;
в) корневище, клубень;
г) филлокладии, фасциации.

Ответ: в

18. Опыление цветков с помощью птиц называется:

а) анемофилия;
б) орнитофилия;
в) гидрофилия;
г) энтомофилия.

Ответ: б

19. Соплодие образуется у:

а) томата;
б) земляники;
в) ананаса;
г) граната.

Ответ: в

20. Кровеносная система у нематод:

а) замкнутая;
б) частично замкнутая;
в) незамкнутая;
г) отсутствует.

Ответ: г

21. Органами зрения у пауков являются:

а) 1 пара фасеточных глаз;
б) 4 пары простых глаз;
в) 1 пара фасеточных и 2 пары простых глаз;
г)1 пара фасеточных и 3 пары простых глаз.

Ответ: б

22. Для размножения пиявок и дождевых червей характерно то, что они:

а) раздельнополы;
б) бесполы и размножаются вегетативно;
в) гермафродиты;
г) представлены только партеногенетическими самками.

Ответ: в

23. Какая часть органа слуха, характерная для позвоночных животных, есть у рыб?

а) наружная ушная раковина;
б) внутреннее ухо;
в) барабанная перепонка;
г) слуховые косточки.

Ответ: б

24. Какие из перечисленных органов являются гомологами передних конечностей лошади?

а) щупальца осьминога;
б) крылья бабочки;
в) ласты пингвина;
г) клешни рака.

Ответ: в

25. Из перечисленных ниже акул наиме­нее развитый рострум имеет:

а) китовая акула;
б) сельдевая акула;
в) тигровая акула;
г) катран.

Ответ:

а

26. Основой для прикрепления рулевых перьев в скелете птиц является:

а) эпистрофей;
б)коракоид;
в) цевка;
г) пигостиль.

Ответ: г

27. На крайнем севере России восстанавливается исторический ареал:

а) белого медведя;
б) овцебыка;
в) песца;
г) северного оленя.

Ответ: б

28. Из названных костей черепа не имеет отношения к образованию аппарата среднего уха у млекопи­тающих:

а) гиомандибуляре;
б) квадратная;
в) сочленовная;
г) клиновидная.

Ответ: а

29. Полосатая окраска сумартранского барбуса является примером:

а) мимезии;
б) миметизма;
в) предупреждающей окраски;
г) маскирующей (расчленяющей) окраски.

Ответ: г

30. В биохимических реакциях метаболизма энергия запасается при:

а) синтезе АДФ из АМФ;
б) синтезе АТФ из АДФ и фосфатной группы;
в) соединении двух фосфатных групп;
г) распаде АТФ.

Ответ: б

31. Слюнные железы, постоянно вырабатывающие секрет:

а) околоушные и подчелюстные:
б) подчелюстные и подъязычные;
в) подъязычные и мелкие;
г) мелкие и околоушные.

Ответ: г

32. Фибриноген крови превращается в фибрин во время:

а) транспорта газов;
б) превращения глюкозы в гликоген;
в) превращения гликогена в глюкозу;
г) формирования кровяного сгустка.

Ответ: г

33. Максимальной парциальное давление СО2 в процессе дыхания у человека наблюдается в:

а) альвеолярном воздухе;
б) тканях;
в) составе венозной крови;
г) составе артериальной крови.

Ответ:

б

34. Частоту и глубину дыхания в процессе гуморальной регуляции замедляет:

а) недостаток О2;
б) недостаток СО2;
в) избыток О2;
г) избыток СО2.

Ответ: б

35. Недостаток солей кальция в организме человека в первую очередь отразиться на:

а) проведении нервных импульсов;
б) свертывании крови;
в) росте;
г) пищеварении.

Ответ: б

36. Объем воздуха, который можно вдохнуть после спокойного выдоха называют:

а) резервным объемом вдоха;
б) дыхательным объемом;
в) резервным объемом выдоха;
г) остаточным объемом.

Ответ: а

37. Лимфа по лимфатическим сосудам проводится от тканей и органов непосредственно в:

а) венозное русло большого круга кровообращения;
б) артериальное русло большого круга кровообращения;

в) венозное русло малого круга кровообращения;
г) артериальное русло малого круга кровообращения.

Ответ: а

38. Возбудитель ВИЧ-инфекции (СПИДа) передается:

а) половым путем;
б) при рукопожатии;
в) при использовании общей посуды;
г) воздушно-капельным путем.

Ответ: а

39. Изменение просвета вен у человека происходит за счет ткани:

а) мышечной поперечнополосатой;
б) гладкой мышечной;
в) соединительной;
г) эпителиальной.

Ответ: б

40. В скелете человека неподвижно соединены между собой кости:

а) плечевая и локтевая;
б) грудного отдела позвоночника;
в) мозгового отдела черепа;
г) бедра и голени.

Ответ: в

41. Печень выполняет в организме человека барьерную функцию, так как в ней:

а) глюкоза превращается в гликоген;
б) вырабатывается желчь;
в) обезвреживаются ядовитые вещества;
г) белки могут превращаться в жиры и углеводы.

Ответ: в

42. Наиболее чувствительны к недостатку кислорода клетки:

а) спинного мозга;
б) головного мозга;
в) печени и почек;
г) желудка и кишечника.

Ответ: б

43. У человека парасимпатическая нервная система:

а) усиливает работу кишечника;
б) повышает тонус скелетной мускулатуры;
в) увеличивает концентрацию сахара в крови;
г) учащает пульс.

Ответ: а

44. Белок состоит из 300 аминокислот. Сколько нуклеотидов в гене, который служит матрицей для синтеза белка?

а) 300;
б) 600;
в) 900;
г) 1200.

Ответ:

в

45. Популяция является структурной единицей:

а) отряда;
б) семейства;
в) рода;
г) вида.

Ответ: г

46. Какой основной лимитирующий фактор для растений в степной зоне?

а) недостаток влаги;
б) высокая температура;
в) отсутствие перегноя;
г) интенсивное ультрафиолетовое излучение.

Ответ: а

47. Какие структуры клетки при митозе распределяются поровну между материнской и дочерней клеткой?

а) рибосомы;
б) митохондрии;
в) хлоропласты;
г) хромосомы.

Ответ: г

48. Какие структуры клетки не являются органоидами?

а) вакуоли;
б) лейкопласты;
в) митохондрии;
г) крахмальные зерна.

Ответ: г

49. Почему численность завезенных в Австралию кроликов возросла во много раз?

а) на новой территории не было хищников;
б) на континенте преобладает сухой климат;
в) питаются травянистыми растениями, пища в избытке;
г) для них характерна забота о потомстве.

Ответ: а

50. В процессе эволюции расселение вьюрков на разные острова Галапагосского архипелага привело к:

а) образованию новых видов;
б) обострению конкуренции между особями;
в) усилению действия абиотических факторов;
г) обострению внутривидовой борьбы.

Ответ: а

 

Задание 2. Вам предлагаются тестовые задания с тремя вариантами ответов из шести возможных. Занесите в матрицу правильные ответы, располагая цифры по порядку.

1. Каковы особенности строения и функций рибосом?

1) участвуют в реакциях окисления;
2) участвуют в синтезе белков;
3) отграничены от цитоплазмы мембраной;

4) состоят из двух частиц – большой и малой;
5) размещаются в цитоплазме и на каналах ЭПС;
6) размещаются в аппарате Гольджи.

Ответ: 2, 4, 5

2. По венам большого круга кровообращения у человека кровь течет:

1) от сердца;
2) к сердцу;
3) насыщенная углекислым газом;
4) насыщенная кислородом;
5) быстрее, чем в капиллярах;
6) медленнее, чем в капиллярах.

Ответ: 2, 3, 5

3. К ароморфозам относят:

1) возникновение хорды у животных;
2) образование пятипалых конечностей у наземных позвоночных;
3) наличие у коров четырехкамерного желудка;
4) наличие у комара колюще-сосущего ротового аппарата;
5) появление зеленой окраски покровов у кузнечиков;
6) возникновение полового размножения.

Ответ: 1, 2, 6

4. К безногим земноводным принадлежат:

1) разнозубые червяги;
2) веретеницы;
3) чешуеноги;
4) рыбозмеи;
5) хвостатые червяги;
6) безногие ящерицы.

Ответ: 1, 4, 5

5. К пластинчатожаберным рыбам относятся:

1) китовая акула;
2) латимерия;
3) катран;
4) мегалодон;
5) окунь;
6) корюшка.

Ответ: 1, 3, 4

6. Каково строение и функции митохондрий?

1) расщепляют биополимеры до мономеров;
2) характеризуются анаэробным способом получения энергии;
3) содержат граны;
4) имеют ферментативные комплексы на кристах;
5) окисляют органические вещества с образованием АТФ;
6) двумембранные органоиды.

Ответ: 4, 5, 6

7. Растения семейства Крестоцветные можно узнать по признакам:

1) цветок четырехчленного типа;
2) соцветие кисть;
3) цветок пятичленного типа;
4) соцветие корзинка;
5) плод стручок или стручочек;
6) плод боб.

Ответ: 1, 2, 5

8. Оптическая система глаза состоит из:

1) хрусталика;
2) стекловидного тела;
3) зрительного нерва;
4) желтого пятна сетчатки;
5) роговицы;
6) белочной оболочки.

Ответ: 1, 2, 5

9. В пищевых цепях экосистем:

1) часть содержащейся в пище энергии используется на жизнедеятельность организмов;
2) часть энергии превращается в тепло и рассеивается;
3) вся энергия пищи преобразуется в химическую;
4) значительная часть энергии запасается в молекулах АТФ;
5) происходит колебание численности популяций;
6) от звена к звену биомасса уменьшается.

Ответ: 1, 2, 6

10. Приспособления к жизни в воде, сформировавшиеся в процессе эволюции у китов:

1) превращение передних конечностей в ласты;
2) дыхание кислородом, растворенным в воде;
3) дыхание кислородом воздуха;
4) обтекаемая форма тела;
5) толстый подкожный слой жира;
6) постоянная температура тела.

Ответ: 1, 4, 5

 

Задание 3. Вам предлагаются тестовые задания в виде суждений, с каждым из которых следует либо согласиться, либо отклонить.

  1. Вирусы – неклеточная форма жизни.
  2. Ламинария относится к отделу Бурые водоросли.
  3. На корнях бобовых растений поселяются азотфиксирующие бактерии, называемые гнилостными.
  4. К суккулентам относятся ковыль и типчак.
  5. Устьица у водных растений расположены с нижней стороны листа.
  6. У всех беспозвоночных животных оплодотворение внешнее.
  7. Возбудителем малярии является малярийный плазмодий.
  8. Кишечнополостные животные имеют двустороннюю симметрию тела.
  9. Тело белой планарии покрыто реснитчатым эпителием.
  10. Сердце моллюсков состоит из желудочка и предсердия.
  11. Выделительная система пауков представлена почками.
  12. У рыб позади брюшных плавников имеется три отверстия – анальное, половое и мочевое.
  13. Позвоночник лягушки состоит из 3 отделов – шейного, туловищного и крестцового.
  14. Птицы не различают цвета.
  15. Снижение активности щитовидной железы замедляет рост и развитие у детей.
  16. В выдыхаемом воздухе содержится около 21% кислорода и 79% азота.
  17. Превращение артериальной крови в венозную происходит в капиллярах большого круга кровообращения.
  18. Процесс поглощения и переваривания чужеродных частиц называется пиноцитозом.
  19. Переход предков человека к прямохождению способствовал усилению обмена веществ.
  20. Самые крупные молекулы в живых клетках – молекулы ДНК.

Ответ: Правильно – 1, 2, 7, 9, 12, 15, 17, 20

Задание 4. Вам предлагаются тестовые задания, требующие установления соответствия.

1. Установите соответствие между грибом и типом питания.

Гриб:
А) пеницилл;
Б) фитофтора;
В) спорынья;
Г) дрожжи;
Д) головня;
Е) шампиньон.

Тип питания:
1) сапротрофный;
2) паразитический.

Ответ: А-1, Б-2, В-2, Г-1, Д-2, Е-1

2. Установите соответствие между защитным свойством организма человека и видом иммунитета.

Свойства
А) наличие антител в плазме крови, полученных по наследству;
Б) получение антител с лечебной сывороткой;
В) образование антител в крови в результате вакцинации;
Г) наличие в крови сходных белков-антител у всех особей одного вида;
Д) передача с молоком матери младенцам;
Е) развивается сразу, сохраняется недолго.

Вид иммунитета:
1) активный;
2) пассивный;
3) врожденный.

Ответ: А-3, Б-2, В-1, Г-3, Д-2, Е-2

3. Установите соответствие между признаком и способом регуляции, для которого он характерен.

Признак:
А) скорость проведения информации сравнительно невысокая;
Б) является более древней формой взаимодействия клеток и органов;
В) эволюционно более поздний способ регуляции;
Г) осуществляется посредством электрических импульсов;
Д) осуществляется посредством химически активных веществ, поступающих в кровь, лимфу и тканевую жидкость;
Е) скорость проведения информации сравнительно высокая.

Способ регуляции:
1) нервная;
2) гуморальная.

Ответ: А-2, Б-2, В-1, Г-1, Д-2, Е-1

4. Установите соответствие между признаком моллюска большого прудовика и критерием вида, для которого он характерен.

Признак:
А) органы чувств – одна пара щупалец;
Б) коричневый цвет раковины;
В) населяет пресные водоемы;
Г) питается мягкими тканями растений;
Д) раковина спирально закручена;
Е) гермафродит.

Критерий вида:
1) морфологический;
2) экологический.

Ответ: А-1, Б-1, В-2, Г-2, Д-1, Е-1

Вконтакте

Facebook

Twitter

Google+

Одноклассники

olimpotvet.ru

Круговорот химических элементов

В биосфере, как и в каждой экосистеме, постоянно осуществляется круговорот углерода, азота, водорода, кислорода, фосфора, серы и других веществ.

Углекислый газ поглощается растениями, продуцентами и в процессе фотосинтеза преобразуется в углеводы, белки, липиды и другие органические соединения. Эти вещества с пищей используют животные-консументы.

Одновременно с этим в природе происходит обратный процесс. Все живые организмы дышат, выделяя CO2, который поступает в атмосферу. Мертвые растительные и животные остатки и экскременты животных разлагаются микроорганизмами-редуцентами. CO2 выделяется в атмосферу. Часть углерода накапливается в почве в виде органических соединений.

В процессе круговорота углерода в биосфере образуются энергетические ресурсы: нефть, каменный уголь, горючие газы, торф и древесина.

Круговорот углерода

При разложении растений и животных азот выделяется в виде аммиака. Нитрифицирующие бактерии превращают аммиак в соли азотистой и азотной кислот, которые усваиваются растениями. Некоторые азотфиксирующие бактерии способны усваивать атмосферный азот. Так замыкается круговорот азота в природе.

Круговорот азота

Круговорот кислорода

Круговорот воды

Круговорот серы

Круговорот фосфора

В результате круговорота веществ в биосфере происходит непрерывная биогенная миграция элементов: необходимые для жизни растений и животных химические элементы переходят из среды в организм, при разложении организмов эти элементы снова возвращаются в среду, откуда поступают в организм.

Основа биосферы — круговорот органического вещества, осуществляющийся при участии всех организмов, населяющих биосферу, получила название биотического круговорота.

В закономерностях биотического круговорота заключена основа длительного существования и развития жизни на Земле.

Человек — элемент биосферы и как составная часть биомассы Земли на протяжении всей эволюции находился и находится в непосредственной зависимости от окружающей природы.

С развитием высшей нервной деятельности человек сам становится мощным фактором среды (антропогенный фактор) в дальнейшей эволюции на Земле.

Влияние человека на природу двоякое — положительное и отрицательное. Деятельность человека часто приводит к нарушению природных закономерностей.

Доля массы человечества в биосфере невелика, но деятельность его грандиозна, в настоящее время она стала силой, изменяющей процессы в биосфере.

В. И. Вернадский утверждает, что биосфера закономерно перейдет в ноосферу (от гр. «ноос» — разум» + гр. «сфера» — шар).

По В. И. Вернадскому, ноосфера — это биосфера, преобразованная трудом человека и измененная научной мыслью.

В настоящее время наступил такой период, когда человек должен планировать свою хозяйственную деятельность так, чтобы она не нарушала сложившиеся в гигантской экосистеме, какой является биосфера, закономерности, не способствовала сокращению биомассы.


shkolo.ru

ХИМИЧЕСКИЕ ЭЛЕМЕНТЫ В ПРИРОДЕ – КРУГОВОРОТ И МИГРАЦИЯ

Содержание статьи

ХИМИЧЕСКИЕ ЭЛЕМЕНТЫ В ПРИРОДЕ – КРУГОВОРОТ И МИГРАЦИЯ. Между литосферой, гидросферой, атмосферой и живыми организмами Земли постоянно происходит обмен химическими элементами. Этот процесс имеет циклический характер: переместившись из одной сферы в другую, элементы вновь возвращаются в первоначальное состояние. Круговорот элементов имел место в течение всей истории Земли, насчитывающей 4,5 млрд. лет.

Гигантские массы химических веществ переносятся водами Мирового океана. В первую очередь это относится к растворенным газам – диоксиду углерода, кислороду, азоту. Холодная вода высоких широт растворяет газы атмосферы. Поступая с океаническими течениями в тропический пояс, она их выделяет, так как растворимость газов при нагревании уменьшается. Поглощение и выделение газов происходит также при смене теплых и холодных сезонов года.

Огромное влияние на природные циклы некоторых элементов оказало появление жизни на планете. Это, в первую очередь, относится к круговороту главных элементов органического вещества – углерода, водорода и кислорода, а также таких жизненно важных элементов как азот, сера и фосфор. Живые организмы оказывают влияние и на круговорот многих металлических элементов. Несмотря на то, что суммарная масса живых организмов Земли меньше массы земной коры в миллионы раз, растения и животные играют важнейшую роль в перемещении химических элементов.

Деятельность человека также оказывает влияние на круговорот элементов. Особенно заметным оно стало в последнее столетие. При рассмотрении химических аспектов глобальных изменений в круговоротах химических элементов следует учитывать не только изменения в природных круговоротах за счет добавления или удаления присутствующих в них химических веществ в результате обычных циклических и/или вызванных человеком воздействий, но и поступление в окружающую среду химических веществ, ранее не существовавших в природе. Рассмотрим несколько наиболее важных примеров циклического перемещения и миграции химических элементов.

Углерод

– основной элемент жизни – содержится в атмосфере в виде диоксида углерода. В океане и пресных водах Земли углерод находится в двух главных формах: в составе органического вещества и в составе взаимосвязанных неорганических частиц: гидрокарбонат-иона НСО3, карбонат иона СО32– и растворенного диоксида углерода СО2. Большое количество углерода сосредоточено в виде органических соединений в животных и растениях. Много «неживого» органического вещества имеется в почве. Углерод литосферы содержится также в карбонатных минералах (известняк, доломит, мел, мрамор). Часть углерода входит в состав нефти, каменного угля и природного газа.

Связующим звеном в природном круговороте углерода является диоксид углерода (рис. 1).

Рис. 1. УПРОЩЕННАЯ СХЕМА глобального цикла углерода. Числа в рамках отражают размеры резервуаров в миллиардах тонн – гигатоннах (Гт). Стрелки показывают потоки, а связанные с ними числа выражены в Гт/год.

Самыми крупными резервуарами углерода являются морские отложения и осадочные породы на суше. Однако бoльшая часть этого вещества не взаимодействует с атмосферой, а подвергается круговороту через твердую часть Земли в геологических временных масштабах. Поэтому эти резервуары играют лишь второстепенную роль в сравнительно быстром цикле углерода, протекающем с участием атмосферы. Следующим по величине резервуаром является морская вода. Но и здесь глубинная часть океанов, где содержится основное количество углерода, не взаимодействует с атмосферой так быстро, как их поверхность. Самыми маленькими резервуарами являются биосфера суши и атмосфера. Именно небольшой размер последнего резервуара делает его чувствительным даже к незначительным изменениям процентного содержания углерода в других (больших) резервуарах, например, при сжигании ископаемых топлив.

Современный глобальный цикл углерода состоит из двух меньших циклов. Первый из них заключается в связывании диоксида углерода в ходе фотосинтеза и новом образовании его в процессе жизнедеятельности растений и животных, а также при разложении органических остатков. Второй цикл обусловлен взаимодействием диоксида углерода атмосферы и природных вод:

СО2 + Н2О Н2СО3

Н2СО3 НСО3+ Н+

НСО3 СО32–+ Н+

СО32–+ Са2+ = СаСО3Ї

В последнее столетие в углеродный цикл существенные изменения внесла хозяйственная деятельность человека. Сжигание ископаемого топлива – угля, нефти и газа – привело к увеличению поступления диоксида углерода в атмосферу. Это не очень сильно влияет на распределение масс углерода между оболочками Земли, но может иметь серьезные последствия из-за усиления парникового эффекта. См. также УГЛЕРОД.

Кислород

на Земле содержится, в основном, в литосфере в виде диоксида кремния и силикатов. Кроме того, кислород есть в составе воды, образующей гидросферу. В атмосфере кислород находится в молекулярном виде. Он является продуктом процессов жизнедеятельности растений и в то же время одним из основных условий существования жизни на Земле. Образование свободного кислорода связано со световой энергией Солнца. Исходным сырьем для образования кислорода служит вода. Почти весь свободный кислород на Земле – это результат реакции фотосинтеза органического вещества из воды и диоксида углерода. Некоторое количество кислорода образуется при разложении воды в верхних слоях атмосферы. Кислород входит в состав многих органических соединений. Между живыми организмами и атмосферой происходит постоянный обмен кислородом.

Несмотря на выделение кислорода зелеными растениями, его содержание в атмосфере не увеличивается. Одновременно с фотосинтезом происходит разложение органического вещества, при этом поглощается практически весь выделившийся кислород. Часть кислорода расходуется на окисление неорганических веществ. Незначительное количество атмосферного кислорода участвует в цикле образования и разрушения озона. См. также КИСЛОРОД.

Водород

на Земле находится, преимущественно, в гидросфере в составе воды. Содержание его в литосфере и атмосфере сравнительно невелико. Он входит также в состав органических веществ. Огромные массы водорода, наряду с кислородом, участвуют в круговороте воды – одном из наиболее мощных циклических процессов на планете.

Особенностью водорода является его способность (наряду с гелием) уходить из поля тяготения Земли благодаря своей малой атомной массе. Эти потери компенсируются выделением водорода из мантии. Молекулярный водород поступает в атмосферу Земли в результате вулканической деятельности, его выделяют также некоторые бактерии. После появления на нашей планете живых организмов водород стал связываться в органическом веществе. См. также ВОДОРОД.

Азот,

вследствие исключительной прочности молекулы N2, почти полностью сосредоточен в атмосфере. Часть газообразного азота растворена в природных водах, которые содержат и растворенные азотсодержащие органические вещества и неорганические ионы: катион аммония, нитрит-ион и нитрат-ион. Поскольку азот не образует нерастворимых солей, он только в редких случаях накапливается в литосфере. Так, в южноамериканской пустыне Атакама есть скопления нитрата натрия, который, несмотря на высокую растворимость в воде, сохраняется благодаря исключительно сухому климату.

Слово «азот» буквально означает «безжизненный», поскольку он не поддерживает дыхание. Однако этот элемент является обязательной составной частью белков. Поэтому азот в значительном количестве содержится в живых организмах и «мертвом» органическом веществе. Азот непрерывно перемещается между атмосферой, океаном, живыми организмами и почвой.

В атмосфере под действием электрических разрядов азот переходит сначала в монооксид азота, а затем в диоксид азота. Влага воздуха и кислород превращают диоксид азота в азотную кислоту

4NO2 + 2H2O + O2 = 4HNO3

Соединения азота легко растворяются в атмосферных осадках и попадают на поверхность Земли.

Большое значение в связывании атмосферного азота имеет жизнедеятельность клубеньковых бактерий, обитающих на корнях бобовых растений. Ферменты этих бактерий превращают молекулярный азот в соединения, которые затем усваиваются растениями. Из растений связанный азот поступает в организмы животных, в основном, в виде аминокислот и белков. После гибели живых организмов органические вещества превращаются в неорганические соединения, снова усваиваемые растениями. Часть азота в почвах превращается в молекулярный азот и переходит в атмосферу. Молекулярный азот образуется также при полном окислении органических веществ.

Соединения азота попадают в атмосферу с выбросами промышленных предприятий и транспорта, а в природные воды – с бытовыми и промышленными отходами.

Слишком большое количество растворимых соединений азота в почве приводит к росту их содержания в продуктах питания и питьевой воде, это может стать причиной серьезных заболеваний. Соединения азота накапливаются в водоемах и вызывают зарастание озер и водохранилищ. Пока подобные явления наблюдаются лишь в отдельных районах, где в окружающую среду попадает много соединений азота. В целом же природа пока справляется с тем количеством связанного азота, которое производится человеком.

См. также АЗОТ.

Сера

содержится в атмосфере в небольших количествах, в основном, в виде сероводорода и диоксида серы. Довольно много этого элемента (в виде сульфат-ионов) находится в гидросфере. В литосфере сера встречается в виде простого вещества (самородная сера) и в составе многочисленных минералов – сульфидов и сульфатов металлов. Кроме того, соединения серы есть в углях, сланцах, нефти, природном газе. Сера входит в состав многих белков, поэтому она всегда содержится в организмах животных и растений.

Выделяясь из глубин Земли, газообразные соединения серы (преимущественно диоксид серы и сероводород) растворяются в подземных водах. Здесь они образуют малорастворимые сульфиды (главным образом пирит – дисульфид железа FeS2) и сульфаты (в частности, сульфат кальция CaSO4). Образуется также самородная сера:

2H2S + SO2 = 3S + 2H2O

Газообразные соединения серы попадают в почву, атмосферу и Мировой океан, где их поглощают серные бактерии. Поглощение соединений серы бактериями происходит и в почве.

Малорастворимые сульфиды, содержащиеся в горных породах, в результате жизнедеятельности некоторых бактерий частично окисляются, превращаясь в легко растворимые сульфаты:

FeS + 2O2 = FeSO4

Водорастворимые сульфаты выносятся с поверхности суши с речным стоком, поставляя сульфат-ионы в Мировой океан.

В результате активного связывания серы в земной коре, гидросфере и живых организмах, содержание сероводорода и диоксида серы в атмосфере мало и непостоянно. Под действием кислорода и озона эти вещества постепенно превращаются в серную кислоту:

2SO2 + О2 2SО3

SO2 + О3 = SО3 + О2

3+ H2О = H2SO4

H2S+ 2О3 = H2SO4 + О2

Серная кислота возвращается на землю с атмосферными осадками

Хозяйственная деятельность людей приводит к увеличению содержания соединений серы в атмосфере и гидросфере. В результате изменений в методах животноводства и земледелия (выпас, вспашка, мелиорация) увеличились выбросы серосодержащих соединений в виде пыли. Еще больше серы попадает в атмосферу в форме диоксида серы при обжиге сульфидных руд. Это, в свою очередь, вызывает увеличение потока серы, попадающей из атмосферы в океаны и на поверхность суши. Природные воды загрязняются также удобрениями с полей и стоками промышленных предприятий.

Таким образом, человеческая деятельность существенно изменила круговорот серы между атмосферой, океанами и поверхностью суши. Эти изменения сильнее, чем воздействие человека на цикл углерода. Как и в случае глобального цикла углерода, техногенные выбросы серы в окружающую среду мало влияют на распределение масс этого элемента на поверхности Земли. Однако повышенное содержание серы в промышленных и бытовых отходах создают опасность для жизни на обширных территориях. Массированный выброс диоксида серы в атмосферу порождает кислотные дожди, которые могут выпадать далеко за пределами индустриальных районов. Загрязнение природных вод растворимыми соединениями серы несет угрозу живым организмам внутренних водоемов и прибрежных областей морей.

См. также СЕРА.

Фосфор

содержится в земной коре и живых организмах в небольших количествах; тем не менее, он имеет очень большое значение для растений и животных. Без этого элемента невозможен синтез белков. Кроме того, фосфор входит в состав костей и зубов. Именно недостаточное количество фосфора чаще всего ограничивает рост массы живого вещества. Значительная часть фосфора содержится в почвах. Фосфор образует многочисленные минералы (например, фосфориты), однако они не часто встречаются в горных породах в больших количествах. В атмосфере фосфор практически отсутствует.

В природных водах фосфор присутствует в составе органических соединений и взвешенных твердых частиц. Лишь небольшая его часть находится в растворе в виде ортофосфат-иона РО43– и гидроортофосфат-иона НРО42–.

В океане «органический» фосфор многократно переходит от одного живого организма к другому и медленно накапливается в донных отложениях в виде малорастворимых фосфатов. Эти потери фосфора компенсируются только из одного источника – выветривающихся горных пород суши, куда они попадают со дна океанов в результате длительных геологических процессов.

Деятельность человека нарушила природный круговорот фосфора. Соединения фосфора используются для производства удобрений и моющих средств. Это приводит к загрязнению водоемов соединениями фосфора. В таких условиях фосфор перестает быть элементом, ограничивающим рост массы живых существ, особенно водорослей и других водных растений. См. также ФОСФОР.

Натрий

– один из главных элементов, аккумулированных в земной коре в процессе ее выплавления. Он легко освобождается из структур силикатов при выветривании кристаллических пород. Катион Na+ переносится с континентальным стоком в океан. С «солеными ветрами» натрий частично возвращается на сушу. Существенно меньшее количество элемента выносится с поверхности суши в океан с ветровой пылью.

Натрий постоянно присутствует в почвах. Он принимает активное участие в засолении почв, в которых образует соли с хлорид- и сульфат-ионами.

В организмах соли натрия играют существенную роль. Хлорид натрия является обязательным компонентом жидких тканей животных и клеточного сока растений, поэтому он в больших количествах поглощается растительными и особенно животными организмами. Из растительных остатков соли натрия легко выщелачиваются. Натрий активно адсорбируется осадками морей, поэтому большая его масса содержится в осадочной оболочке.

Хлор,

в отличие от натрия, содержится в гранитном слое в небольших количествах. Он вовлекается в круговорот не за счет разрушения горных пород, а благодаря процессам дегазации мантии и выносу вулканических газов.

Этот элемент перемещается между оболочками Земли параллельно с натрием. Он аккумулируется в океанской воде в форме хлорид-ионов. Значительные массы хлора, так же как и натрия, многие миллионы лет мигрируют с поверхности суши в Мировой океан. Вторая особенность глобального геохимического цикла хлора, выраженная еще более сильно, чем в цикле натрия – активная миграция в атмосфере в составе аэрозолей и возврат значительных масс этого элемента на сушу. На территориях, где отсутствуют стоки, хлор вместе с натрием накапливается в почве и замкнутых водоемах.

Хлор имеет важное физиологическое значение. Он содержится в живых организмах в виде хлороводородной кислоты, ее солей (преимущественно хлорида натрия). Поэтому значительные массы хлора, наряду с натрием, участвуют в биологическом круговороте. См. также ХЛОР.

Кальций

относится к главным элементам земной коры. Содержание этого элемента уменьшается от глубин Земли к гранитному слою литосферы. Кальций в земной коре образует многочисленные минералы. При выветривании силикатов освобождается большое количество этого элемента. Его водорастворимые соединения, главным образом гидрокарбонат, поступают в природные воды и мигрируют с ними в океан. Хотя этот процесс развивается на протяжении более 2 млрд. лет, концентрация элемента в океанической воде всего лишь в 30 раз больше, чем в речных водах. Это обусловлено низкой растворимостью карбоната кальция, а главное – активным поглощением элемента планктонными организмами и выведением его в осадок. Данные процессы способствуют накоплению кальция в составе мощных толщ известняков, доломитов, известковых глин.

Кальций играет важную роль в физиологии организмов. В растениях он участвует в углеводном и азотном обмене, животным он необходим для построения костного скелета. Кальций участвует и во многих других биохимических процессах.

Таким образом, для процессов глобального массообмена кальция главное значение имеют биологический круговорот и водная миграция иона в системе суша – океан. См. также КАЛЬЦИЙ.

Калий

вместе с другими щелочными и щелочно-земельными химическими элементами аккумулировался в земной коре в процессе ее выплавления. Калий входит в состав наиболее распространенных силикатов. При их разрушении этот элемент, в основном, переходит в глинистые минералы. В то же время он частично высвобождается и вовлекается в водную миграцию. Ионы калия активно абсорбируются дисперсным минеральным веществом, а также поглощаются высшими растениями, поэтому калий более прочно удерживается в пределах суши, чем кальций и натрий. В океан некоторое количество калия выносится в виде ионов, однако большая масса элемента переносится в форме взвесей глинистых частиц. Калий активно мигрирует в системе поверхность океана – атмосфера – поверхность океана в составе аэрозолей.

Этот элемент играет важную роль в жизни растений и животных. Он принимает участие в фотосинтезе, влияет на обмен веществ, частично сохраняется в мертвом органическом веществе.

Широкое использование минеральных удобрений пока не оказывает заметного влияние на круговорот калия, однако миграция его сильно возросла в результате эрозии почв.

Кремний

– второй (после кислорода) по массе элемент земной коры. Он интенсивно накапливался в веществе литосферы в процессах его выплавления. Кремний в виде высокодисперсного кремнезема (SiO2) повсеместно содержится в природных водах и используется многими морскими организмами для построения скелета. Биологический круговорот кремния в океане обусловлен преимущественно жизнедеятельностью диатомовых и радиоляриевых планктонных водорослей и последующим растворением их скелетов.

Для водной миграции кремния характерно преобладающее движение от суши к океану, которое не компенсируется в обратном направлении. Значительное количество кремния перемещается в виде растворимых соединений, однако в составе обломочного материала его выносится во много раз больше. См. также КРЕМНИЙ.

Свинец

накапливается в земной коре не только за счет выплавления его из вещества мантии, но и в результате радиоактивного распада изотопов урана (238U, 235U) и тория (232Th). При выветривании горных пород катионы свинца высвобождаются, большая часть их сорбируется высокодисперсными глинистыми частицами и гидроксидами железа, а меньшая поступает в грунтовые воды. В составе взвесей, а также в виде органических соединений, простых и комплексных ионов свинец выносится с речным стоком и осаждается преимущественно в дельтах и узкой прибрежной полосе шельфа. Небольшое количество свинца, попадающее в океан, выпадает в осадок благодаря биофильтрации морской воды организмами планктона. Таким образом, Мировой океан – глобальный аккумулятор растворимых форм свинца.

На суше свинец поглощается растениями. Во время лесных пожаров значительные массы элемента поступают в атмосферу (в виде дыма). Кроме того, свинец содержится в высокодисперсной минеральной пыли. «Время жизни» свинецсодержащих аэрозолей составляет около 7 суток.

Годовая добыча свинца значительно превышает и вынос растворимых форм, и годовой захват растительностью этого элемента. Техногенное рассеяние свинца, в отличие от рассеяния газообразных веществ, не распространяется на большие пространства, а сосредотачивается, в основном, вдоль автомагистралей, это связано с использованием тетраэтилсвинца в качестве антидетонатора автомобильных бензинов. См. также СВИНЕЦ.

Цинк

обычно сопутствует свинцу в земной коре, однако биосферная геохимия этих элементов существенно различается. В отличие от свинца, цинк – один из главных микроэлементов, он входит в состав многих ферментов, участвует в синтезе рибонуклеиновых кислот и хлорофилла. Большая часть цинка в растениях связана с легко разрушающимися тканями и быстро удаляется из растительных остатков (в отличие от свинца, который прочно фиксирован в растительных остатках). Водорастворимые формы цинка составляют очень небольшую часть от общей массы металла, однако они активно вовлекаются в водную миграцию. Цинк активно участвует в массообмене между сушей и атмосферой. С атмосферными осадками на поверхность суши водорорастворимых форм цинка выпадает значительно больше, чем захватывается ветром в атмосферу в виде минеральной пыли.

Из приведенных примеров круговоротов и миграции различных элементов видно, что глобальная система циклической миграции химических элементов обладает высокой способностью к саморегуляции, при этом огромную роль в круговороте химических элементов играет биосфера.

В то же время хозяйственная деятельность человека вызывает деформацию природных циклов массообмена и, следовательно, изменение состава окружающей среды. Эти изменения происходят значительно быстрее, чем совершаются процессы генетической адаптации организмов и видообразования. Зачастую хозяйственные действия настолько непродуманны или несовершенны, что создают острую экологическую опасность. Изучение процессов массообмена, связывающих в единое целое все оболочки Земли, должно помочь в создании системы контроля за эколого-геохимическим состоянием окружающей среды и разработке научно обоснованного прогноза экологических последствий хозяйственных действий и новых технологий.

Елена Савинкина

www.krugosvet.ru

Круговорот химических элементов в биосфере

Круговорот химических элементов в биосфере

Природные ресурсы

Каждое животное или растение является звеном в цепях питания своей экосистемы, обменивается веществами с неживой природой, а следовательно — включено в круговорот веществ биосферы. Химические элементы в составе различных соединений циркулируют между живыми организмами, атмосферой и почвой, гидросферой и литосферой. Начавшись в одних экосистемах, круговорот заканчивается в других. Вся биомасса планеты участвует в круговороте веществ, это придает биосфере целостность и устойчивость. Живые организмы существенно влияют на перемещение и превращение многих соединений. В биологическом круговороте задействованы прежде всего элементы, входящие в состав органических веществ: С, N, S, Р, О, Н, а также ряд металлов (Fe, Ca, Mg и др.).

Циркуляция соединений осуществляется в основном за счет энергии Солнца. Зеленые растения, аккумулируя его энергию и потребляя из почвы минеральные соединения, синтезируют органические вещества. Органика распространяется в биосфере по цепям питания. Редуценты разрушают растительную и животную органику до минеральных соединений, замыкая биологический цикл.

В верхних слоях океана и на поверхности суши преобладает образование органического вещества, а в почве и глубинах моря — его минерализация. Миграция птиц, рыб, насекомых способствует и переносу накопленных ими элементов. Существенно на круговорот элементов влияет деятельность человека.

Круговорот воды. Нагреваемые солнцем воды планеты испаряются. Выпадающая живительным дождем влага возвращается обратно в океан в качестве речных вод или очищенных фильтрацией грунтовых вод, перенося огромное количество неорганических и органических соединений. Живые организмы активно участвуют в круговороте воды, являющейся необходимым компонентом процессов метаболизма (о биологической роли воды см. § 1). На суше большая часть вод испаряется растениями, уменьшая водосток и препятствуя эрозии почвы. Поэтому при вырубке лесов поверхностный сток увеличивается сразу в несколько раз и вызывает интенсивный размыв почвенного покрова. Лес замедляет таяние снега, и талая вода, постепенно стекая, хорошо увлажняет поля. Уровень грунтовых вод повышается, а весенние наводнения редко бывают разрушительными.

Влажные тропические леса смягчают жаркий экваториальный климат, задерживая и постепенно испаряя воду (это явление называют транспирацией). Вырубка тропических лесов вызывает в близлежащих районах катастрофические засухи. Хищническое уничтожение лесов способно превратить в пустыни целые страны, как это уже случилось в северной Африке. Круговорот воды, регулируемый растительностью, — важнейшее условие поддержания жизни на Земле.

Круговорот углерода. В процессе фотосинтеза растения поглощают углерод в составе углекислого газа. Продуцируемые ими органические вещества содержат значительное количество углерода, распространяющегося в экосистеме по цепям питания. В процессе дыхания организмы выделяют углекислый газ. Органические остатки в море и на суше минерализуются редуцентами. Один из продуктов минерализации — углекислый газ — возвращается в атмосферу, замыкая цикл.

В течение 6-8 лет живые существа пропускают через себя весь углерод атмосферы. Ежегодно в процесс фотосинтеза вовлекается до 50 млрд. т углерода. Часть его накапливается в почве и на дне океанов — в скелетах водорослей и моллюсков, коралловых рифах. Существенный запас углерода содержится в составе осадочных пород. На основе ископаемых растений и планктонных организмов сформированы месторождения каменного угля, органогенного известняка и торфа, природного газа и, возможно, нефти (некоторые ученые предполагают абиогенное происхождение нефти). Природное топливо при сгорании пополняет количество атмосферного углерода. Ежегодно содержание углерода в атмосфере увеличивается на 3 млрд. т и может нарушить устойчивость биосферы. Если темп прироста сохранится, то интенсивное таяние полярных льдов, вызванное парниковым эффектом углекислого газа, приведет к затоплению обширных прибрежных территорий по всему миру.

Круговорот азота. Значение азота для живых организмов определяется в основном его содержанием в белках и нуклеиновых кислотах. Азот, как и углерод, входит в состав органических соединений, круговороты этих элементов тесно связаны. Главный источник азота — атмосферный воздух. Благодаря фиксации живыми организмами азот поступает из воздуха в почву и воду. Ежегодно синезеленые связывают около 25 кг/га азота. Эффективно фиксируют азот и клубеньковые бактерии.

Растения поглощают соединения азота из почвы и синтезируют органические вещества. Органика распространяется по цепям питания вплоть до редуцентов, разлагающих белки с выделением аммиака, преобразующегося далее другими бактериями до нитритов и нитратов. Аналогичная циркуляция азота происходит между организмами бентоса и планктона. Денитрифицирующие бактерии восстанавливают азот до свободных молекул, возвращающихся в атмосферу. Небольшое количество азота фиксируется в виде оксидов молниевыми разрядами и попадает в почву с атмосферными осадками, а также поступает от вулканической деятельности, компенсируя убыль в глубоководные отложения. Азот поступает в почву также в виде удобрений после промышленной фиксации из воздуха атмосферы.

Круговорот азота — более замкнутый цикл, нежели круговорот углерода. Лишь незначительное его количество вымывается реками или уходит в атмосферу, покидая границы экосистем.

Круговорот серы. Сера входит в состав ряда аминокислот и белков. Соединения серы поступают в круговорот в основном в виде сульфидов из продуктов выветривания пород суши и морского дна. Ряд микроорганизмов (например, хемосинтезирующие бактерии) способны переводить сульфиды в доступную для растений форму — сульфаты. Растения и животные отмирают, минерализация их остатков редуцентами возвращает соединения серы в почву. Так, серобактерии окисляют до сульфатов образующийся при разложении белков сероводород. Сульфаты способствуют переводу труднорастворимых соединений фосфора в растворимые. Количество минеральных соединений, доступных растениям, возрастает, улучшаются условия для их питания.

Ресурсы серосодержащих полезных ископаемых весьма значительны, а избыток этого элемента в атмосфере, приводящий к кислотным дождям и нарушающий процессы фотосинтеза вблизи промышленных предприятий, уже беспокоит ученых. Количество серы в атмосфере существенно увеличивается при сжигании природного топлива.

Круговорот фосфора. Этот элемент содержится в ряде жизненно важных молекул. Его круговорот начинается вымыванием фосфорсодержащих соединений из горных пород и поступлением их в почву. Часть фосфора уносится в реки и моря, другая — усваивается растениями. Биогенный круговорот фосфора происходит по общей схеме: продуцентыконсументыредуценты.

Значительные количества фосфора вносятся на поля с удобрениями. Около 60 тыс. т фосфора ежегодно возвращается на материк с выловом рыбы. В белковом рационе человека рыба составляет от 20% до 80%, некоторые малоценные сорта рыб перерабатываются на удобрения, богатые полезными элементами, в т. ч. фосфором.

Ежегодная добыча фосфорсодержащих пород составляет 1-2 млн. т. Ресурсы фосфорсодержащих пород пока велики, но в будущем человечеству, вероятно, придется решать проблему возвращения фосфора в биогенный круговорот.

Природные ресурсы. Возможность нашей жизни, ее условия находятся в зависимости от природных ресурсов. Биологические и особенно пищевые ресурсы служат материальной основой жизни. Минеральные и энергетические ресурсы, включаясь в производство, служат основой стабильного уровня жизни.

Ресурсы принято делить на неисчерпаемые и исчерпаемые. Энергия Солнца и ветра, атмосферный воздух и вода практически неисчерпаемы. Однако при современном неэкологичном промышленном производстве воду и воздух можно лишь условно считать неисчерпаемыми ресурсами. Во многих районах в связи с загрязнением возник дефицит чистой воды и воздуха. Для того, чтобы эти ресурсы оставались неисчерпаемыми, необходимо бережное отношение к природе.

Исчерпаемые ресурсы делят на невозобновляемые и возобновляемые. К невозобновляемым относятся утраченные виды животных и растений, большинство полезных ископаемых. Возобновляемыми ресурсами являются древесина, промысловые животные и рыбы, растения, а также некоторые полезные ископаемые, например, торф.

Интенсивно потребляя природные ресурсы, человеку необходимо соблюдать природное равновесие. Сбалансированность ресурсов в круговороте веществ определяет устойчивость биосферы.

Вопросы

1. Каким образом живые организмы участвуют в круговороте веществ? Где преобладает образование органического вещества, где происходит его минерализация?
2. Опишите круговорот воды. Какова роль лесов в его регуляции?
3. Как происходит круговорот углерода? Можно ли исключить из круговорота растения?
4. В чем особенности круговоротов азота, серы, фосфора?
5. Какие ресурсы требуют особенно бережного отношения?

Хозяйственная деятельность человека и глобальные экологические проблемы

Около 10-15% поверхности суши распахано, 25% представляют собой полностью или частично окультуренные пастбища. Если к этому добавить 3-5% поверхности, занятой транспортной сетью, промышленностью, зданиями и сооружениями, и около 1-2% территории Земли, поврежденной разработками полезных ископаемых, то окажется, что почти половина поверхности суши видоизменена деятельностью человека.

С развитием цивилизации ее негативный вклад в биосферные круговороты увеличивается. На каждую тонну промышленной продукции приходится 20-50 т отходов. На каждого человека в крупных городах приходится более 1 т пищевого и бытового мусора в год. Дисгармония в биосфере отражается как на растительном и животном мире, так и на здоровье людей. Множество загрязняющих веществ, попадая в почву, атмосферу и водоемы, накапливаются в тканях растений и животных и через пищевые цепи заражают организм человека. Токсичные соединения способны заметно увеличивать количество мутаций, приводящих к врожденным и наследственным отклонениям. Сопоставление данных по различным регионам планеты привело ученых к выводу, что не менее 80% раковых заболеваний вызваны химическим загрязнением среды.

Загрязнение атмосферы в основном происходит от сжигания природного топлива транспортом, коммунальным хозяйством, промышленностью. В городах на долю транспорта приходится более 60% загрязняющих веществ, на предприятия теплоэнергетики — около 15%, и 25% выбросов приходятся на промышленные и строительные предприятия. Основные загрязнители воздуха — оксиды серы, азота, метан и угарный газ. У растений загрязнение атмосферы ведет к серьезным нарушениям метаболизма и различным заболеваниям. От сернистого газа разрушается хлорофилл и затрудняется развитие пыльцевых зерен, высыхают и опадают листья и хвоя. Не менее пагубно воздействие и других загрязняющих веществ.

Ежегодно в атмосферу выбрасывается около 100 млн. т оксидов серы, более 70 млн. т оксидов азота, 180 млн. т угарного газа.

Кислотные осадки. Высокая концентрация загрязняющих веществ приводит к образованию кислотных дождей и смога. Кислотные осадки (дождь, снег, туман) образуются при растворении в воде диоксидов серы и азота (SО2, NО2). Кислые осадки вымывают из листьев растений белки, аминокислоты, сахар, калий, повреждают верхний защитный слой. Растворы кислот вносят в почву кислую среду, вызывают вымывание гумуса, снижая количество жизненно важных солей кальция, калия, магния. Кислотные почвы бедны микроорганизмами, в них замедляется скорость деструкции опада, сокращение численности редуцентов нарушает сбалансированность экосистем.

Кислотные дожди уничтожают громадные экосистемы, вызывают гибель растений и лесов, превращают озера и реки в безжизненные водоемы. В США за последние 100 лет кислотные дожди стали в 40 раз более кислыми, около 200 озер остались без рыбы, в Швеции 20% озер находятся в катастрофическом состоянии. Более 70% шведских кислых дождей вызвано выбросами других стран. Около 20% кислых дождей в Европе — следствие выбросов окислов серы в Северной Америке.

Смог. В нижних слоях атмосферы под действием солнечного света загрязняющие вещества образуют крайне вредные для живых организмов соединения, наблюдаемые как туман. В больших городах количество солнечного света из-за смога уменьшается на 10-15%, ультрафиолетовых лучей — на 30%.

Озоновые дыры. В атмосфере на высоте 20-25 км расположено большое количество молекул озона (О3), поглощающего жесткую часть солнечного спектра, губительную для живых организмов. В 1982 г. ученые обнаружили дыру в озоновом слое над Антарктидой, в 1987 г. — над Северным полюсом. Ученые опасаются, не возникнут ли дыры и над обитаемой частью земного шара. Это может привести к всплеску заболеваний раком кожи, катарактой, к нарушениям лесных и морских экосистем.

По каким же причинам возникают озоновые дыры? Ученые предполагают, что главной из них является накопление фреонов (хлорфторуглеродов СFСl3, СF2Сl2), используемых при изготовлении аэрозолей и в холодильной промышленности. Эти газы сохраняются в атмосфере десятилетиями. Попадая в стратосферу, они разлагаются солнечной радиацией с образованием атомов хлора, катализирующих превращение озона в кислород.

Парниковый эффект. Некоторые атмосферные газы хорошо пропускают видимый свет и поглощают тепловое излучение планеты, вызывая общее потепление. Парниковый эффект на 50% обусловлен присутствием углекислого газа, 18% вносит метан и 14% фреоны. Увеличение количества СО2 в атмосфере вызвано в основном сжиганием топлива и сведением лесов под распашку, а также интенсивной минерализацией гумуса обширных пахотных земель.

Метан поступает в атмосферу из болотистых районов, от переувлажненных почв рисовых плантаций, от многочисленных скотоводческих хозяйств, при вскрытии угольных месторождений. Метан — один из основных продуктов метаболизма жвачных, придающий характерный острый запах их выделениям. В ХХ в. количество СО2 в атмосфере выросло на 25%, а метана — на 100%, что повысило среднюю температуру на 0,5°С. При такой тенденции в ближайшие 50 лет температура может подняться на 3-5°С. Расчеты показывают, что таяние полярных льдов приведет к повышению уровня мирового океана на 0,5-1,5 м. В Египте окажутся затопленными 20-30% плодородных земель дельты Нила, под угрозой окажутся прибрежные селения и крупные города Китая, Индии и США. Общее количество осадков увеличится, но в центральных частях материков климат может стать более засушливым и пагубным для урожая, прежде всего зерновых и риса (для 60% населения Азии рис — основной продукт).

Таким образом, даже небольшие изменения в газовом составе атмосферы опасны для природных экосистем.

Нарушения в гидросфере. Крупномасштабные ошибки в сельскохозяйственной деятельности привели к разрушению многих природных экосистем. Отвод стоков Амударьи и Сырдарьи под орошение хлопковых плантаций стал причиной катастрофического падения уровня Аральского моря. Пыльные бури в его высыхающем ложе вызвали засоление почв на огромных территориях. Деградация природных экосистем Приаралья — результат недостатка воды и опустынивания.

Хищнический забор воды на орошение, на нужды промышленного производства (на выплавку 1 т никеля уходит 4000 м3 воды, на производство 1 т бумаги — 100 м3, 1 т синтетического волокна — до 5000 м3), уничтожение водоохранных лесов и осушение болот привели к массовому исчезновению рек. Если в 1785 г. в районе Калуги было более 1 млн. речек, то в 1990 г. их осталось всего 200!

Экосистемы рек очень чувствительны и уязвимы. Огромное количество удобрений, смываемых с полей, отходов животноводства и канализационных вод вызывает рост концентрации в водоемах соединений азота и фосфора. В водных экосистемах начинается бурное развитие синезеленых водорослей, вытесняющих необходимые зоопланктону диатомовые водоросли. Рыбы гибнут от голода. Синезеленые накапливаются на дне и гниют (разлагаются бактериями), отравляя воду и истощая запасы кислорода. Живописные водоемы превращаются в дурно пахнущие, покрытые тиной и пеной сточные канавы. Если вода не отравлена, то на каждом квадратном метре насчитывается до 15 моллюсков, каждый из которых за сутки тщательно фильтрует до 50 л воды. Эти существа гибнут с поступлением в водоемы посторонних химических веществ. Самыми устойчивыми к загрязнению воды являются пиявки, асцидии и личинки стрекоз.

Составные части биосферы взаимосвязаны круговоротом веществ и пищевыми цепями, нарушение одной экосистемы вызывает смещение экологического равновесия в других. Когда в северном полушарии насекомых стали травить ДДТ, вскоре значительные количества этого яда обнаружили в организмах антарктических пингвинов, получивших его с рыбой. Многие ядохимикаты очень устойчивы и способны длительное время накапливаться в тканях организмов, многократно умножаясь на каждом следующем пищевом уровне.

Вследствие неразумной хозяйственной деятельности человека природные водоемы оказались отравленными солями тяжелых металлов — ртути, свинца, а также меди и цинка. Эти соединения накапливаются в иле, в тканях рыб, а через пищевые цепи попадают в организм человека, вызывая тяжелейшие отравления. Содержание свинца в тканях организмов жителей индустриальных районов США за последние 100 лет выросло в 50-1000 раз. Даже в ледниках Памиро-Алтая содержание ртути увеличилось в пять раз. Ничтожнейшие количества многих химикатов нарушают поведение рыб, омаров и других водных видов. На этих признаках основана регистрация минимальных концентраций меди, ртути, кадмия, фенолов. Один из самых распространенных пестицидов — токсафен — при содержании 1:108 (1 часть на 100 млн.) вызывает гибель некоторых рыб (например, гамбузий), необратимые изменения в печени и жабрах сомов и форели.

Утечка нефти при добыче и транспортировке приводит к образованию на поверхности рек и морей нефтяной пленки (более 40% всей нефти добывается на шельфе). По наблюдениям со спутников, загрязнено около 10-15% поверхности мирового океана. Нефть с поверхности постепенно испаряется и разлагается бактериями, но это происходит медленно. Гибнет множество водных птиц, уничтожается планктон, а вслед за ним и его основные потребители — обитатели морских глубин. «Бентическая пустыня» в Балтийском море охватывает более 20% поверхности дна. Нефть препятствует обогащению вод кислородом. В результате нарушается газовый баланс гидросферы с атмосферой и смещается экологическое равновесие.

Массовую гибель рыб вызвало строительство плотин электростанций. Горбуша, например, всегда нерестится только в той речке, где она родилась. Рыба проплывает для этого в океане тысячи километров, находит родную речку, а она оказывается перегороженной. Рыба мечется, выбрасывается на берег и погибает. Перегораживаются реки — исчезает рыба. Когда Волга текла свободно, она проходила путь от верховья до устья за 50 дней, теперь — за 2 года. Вода заиливается, загнивает, в ней быстро размножаются паразиты, уничтожающие ослабленную рыбу. Не менее пагубным по своим последствиям может стать поворот северных рек.

Интенсивная добыча рыбы и моллюсков истощила многие шельфовые экосистемы.

Разрушение почв. Обширная распашка степей в нашей стране и США стала причиной пыльных бурь, унесших миллионы гектаров плодороднейших земель. Для воссоздания сантиметрового слоя почвы природе требуется 100-300 лет! В настоящее время около 1/3 обрабатываемых угодий утратили 50% плодородного слоя из-за различных видов эрозии. Ежегодно из-за эрозии теряется около 3 млн. га, по причине опустынивания — 2 млн. га, вследствие отравления химическими веществами — 2 млн. га.

Почвы многих сельскохозяйственных районов оказались засоленными. В Приаралье это произошло в результате пыльных соляных бурь, в других районах — от неправильной организации стока оросительных вод. Избыток воды вызывает подъем к поверхности богатых солями грунтовых вод. Интенсивное испарение производит засоление верхних горизонтов почвы, и через несколько лет на таких землях становится невозможным выращивать сельскохозяйственные культуры. Засоление почвы еще 4000 лет назад привело к упадку сельского хозяйства в Месопотамии. Ирригационные воды сначала обеспечивали там хорошие урожаи, но вследствие интенсивного испарения вызвали химическую деградацию почвы.

Большая проблема связана и с физической деградацией обрабатываемых земель — сильным уплотнением тяжелыми сельскохозяйственными машинами.

Утрата природного разнообразия видов. Значительная часть животных и растений обитает в лесных биоценозах. Если 1500 лет назад леса занимали 7 млрд. га планеты, то сегодня — не более 4 млрд. га. Особенно варварски идет вырубка тропических лесов, в которых сосредоточено около 80% всех видов растений планеты. Тропические леса расположены в основном в слаборазвитых странах, для которых продажа древесины — один из основных источников дохода. Леса в тропиках сократились до 7% территории суши, и если темпы их уничтожения сохранятся, то к 2030 г. от них останется лишь четверть.

В Центральной России практически уничтожены хвойные леса, интенсивно вырубаются самые ценные и наиболее доступные для техники лесные массивы Сибири и Дальнего Востока. С уничтожением лесов нарушается климат, деградируют почвы, умирают реки, исчезают животные и растения.

Уникальный лес в бассейне Амазонки вырубают на 2% в год. В Гаити еще 20 лет назад леса занимали 80% территории, сегодня — только 9%. Из-за хищнической вырубки каждый год безвозвратно исчезают тысячи видов растений, на грани исчезновения находятся около 20 тыс. видов цветковых, 300 видов млекопитающих, 350 видов птиц. С исчезновением каждого вида растений вымирает от 5 до 35 видов животных (в основном, беспозвоночных), экологически с ним связанных.

Ежегодно в Европе уничтожается около 300 млн. мигрирующих и зимующих птиц, 55 млн. особей болотной, полевой и лесной дичи, в США — 2,5 млн. траурных голубей, в Греции — 3 млн. скворцов, на о. Майорка — 3,5 млн. дроздов.

С развитием сельского хозяйства почти полностью исчезли степи в Евразии. Варварски разрушаются экосистемы тундры. Во многих районах океана находятся под угрозой исчезновения коралловые рифы.

Видовое разнообразие — это не только красота, но и необходимый фактор устойчивости биосферы. Экосистемы способны противостоять внешним биотическим, климатическим, токсическим воздействиям, если населены достаточно большим количеством разнообразных видов. В одном из исследований ученые вносили в экосистемы ядовитое вещество фенол. Нейтрализуют фенол только бактерии, но оказалось, что нейтрализация эффективнее совершается в экосистеме с большим разнообразием организмов. Исчезновение видов — это невосполнимая потеря для биосферы и реальная опасность для выживания человечества.

Разнообразие растительности расширяет возможности для поддержания здоровья. Огромное количество лекарств сегодня производится из дикорастущих растений. Мы еще не знаем всех полезных качеств растений, не можем предположить, какие из них нам понадобятся. В 1960 г. выживали только 20% детей, больных лейкемией, сегодня — 80%, т.к. в одном из лесных тропических растений Мадагаскара ученым удалось найти активные вещества для борьбы с этой болезнью. Теряя видовое разнообразие, мы теряем свое будущее.

В настоящее время существует международная программа по сохранению редких и исчезающих видов флоры и фауны.

Радиоактивное заражение атмосферы. Радиоактивные частицы в атмосферных потоках быстро распространяются на большие расстояния, заражая почву и водоемы, растения и животных. Через четыре месяца после каждого ядерного взрыва на атоллах Тихого океана радиоактивный стронций обнаруживался в молоке европейских женщин.

Радиоактивные изотопы особенно опасны тем, что способны замещать в организмах другие элементы. Стронций-90 по свойствам близок к кальцию и накапливается в костях, цезий-137 сходен с калием и концентрируется в мышцах. Особенно много радиоактивных элементов накапливается в организмах консументов, потреблявших зараженные растения и животных. Так, в организмах эскимосов Аляски, питавшихся мясом оленей, было обнаружено чрезвычайно много цезия-137. Олени питаются лишайниками, накапливающими за свою продолжительную жизнь значительные количества радиоактивных изотопов. Их содержание в лишайниках в тысячи раз превышает почвенное. В тканях оленей это количество возрастает еще втрое, а в организмах эскимосов радиоактивного цезия оказывается вдвое больше, чем у оленей. Смертность населения некоторых арктических районов от злокачественных образований заметно выше средней.

Особенно долго сохраняется радиация после аварий на АЭС. Во время чернобыльской катастрофы радиоактивные частицы поднялись на высоту 6 км. Атмосферными потоками они в первый же день распространились над Украиной и Белоруссией. Затем облако разделилось, одна его часть на второй-четвертый день оказалась над Польшей и Швецией, к концу недели пересекла Европу и на 10-й день достигла Турции, Ливана и Сирии. Другая часть облака за неделю пересекла Сибирь, на 12-й день оказалась над Японией, и на 18-й день после аварии радиоактивное облако посетило Северную Америку.

Изучение биосферных процессов помогает понять важность каждой частички сотворенного мира и осознать болезненное состояние разума современного человека. На Западе, а теперь и в России преобладает стремление к комфортному американскому образу жизни как наивысшему благу. Что же такое Америка глазами эколога? Это 5,5% населения планеты, 40% потребления природных ресурсов и 70% вредных выбросов! Такова цена роскошной жизни за счет других народов и будущего планеты.

Пришло время трезво отнестись к желаниям все больших материальных благ и понять, что стратегия индустриально-потребительского общества ведет нас к катастрофе. Если в ближайшие десятилетия мы не перейдем к правильным духовным ориентирам, то нашим потомкам достанется проблема выживания. Мы должны вспомнить о бережном отношении друг к другу и к нашей родной планете — бесценному богатству, вверенному нам Творцом.

Вопросы

1. Опишите четыре основных следствия загрязнения атмосферы. Как распространяются загрязняющие вещества?
2. Чем опасно ирригационное земледелие?
3. Каковы негативные последствия избытка удобрений?
4. Почему ученые считают опасным для человека сокращение видового многообразия экосистем?
5. Является ли загрязнение окружающей среды следствием бездуховности нашей цивилизации? С чего необходимо начать оздоровление планеты?

 

 


© Все права защищены http://www.portal-slovo.ru

portal-slovo.ru

Тесты по биологии 9-11 классы (ЕГЭ). Часть 1. Вариант 1

Подробности
Категория: Тесты

«Биология. 9-11 классы». Интерактивные тесты (ЕГЭ)

Часть 1. Вариант 1
(Могут быть использованы как тренировочные тесты для подготовки к ЕГЭ)

При выполнении заданий данной части выберите правильный ответ, щелкнув мышью на кнопке с его номером.


Тест 1

Вопрос. Круговорот в природе химических элементов и воды, осуществляемый при участии живых организмов, изучает раздел науки


Тест 2

Вопрос. Клетки, сходные по строению и выполняемым функциям, образуют


Тест 3

Вопрос.   В процессе фотосинтнза растения


Тест 4

Вопрос. Какие структуры клетки распределяются строго равномерно между дочерними клетками в процессе митоза?


Тест 5

Вопрос.   Вирусы, проникая в клетку хозяина,


Тест 6

Вопрос.  Каково значение вегетативного размножения?


Тест 7

Вопрос. Сколько типов гамет может образоваться в результате нормального гаметогенеза у особи с генотипом CcDd?


Тест 8

Вопрос. Какова вероятность рождения детей с веснушками у супружеской пары, если генотип женщины Аа, а у мужчины — аа (А — наличие веснушек) ?


Тест 9

Вопрос.  Узкая норма реакции характерна для признака:


Тест 10

Вопрос.  Какая наука изучает многообразие организмов и объединяет их в группы на основе родства?


Тест 11

Вопрос. Растения в отличие от животных в процессе питания не используют


Тест 12

Вопрос. Для голосеменных растений, в отличие от покрытосеменных, характерно


Тест 13

Вопрос.  Принадлежность инфузории-туфельки к подцарству Простейшие подтверждается её


Тест 14

Вопрос. Какая часть органа слуха, характерная для позвоночных животных, есть у рыб?


Тест 15

Вопрос.  Печень выполняет в организме человека барьерную функцию, так как в ней


Тест 16

Вопрос.  В скелете человека неподвижно соединены между собой кости


Тест 17

Вопрос.  Избыток воды, минеральных солей, жидкие конечные продукты обмена удаляются из организма через систему органов


Тест 18

Вопрос.  Клетки каких органов наиболее чувствительны к недостатку кислорода?


Тест 19

Вопрос.  Употребление в пищу человеком сырых овощей и фруктов способствует


Тест 20

Вопрос.  Популяция является структурной единицей


Тест 21

Вопрос.  Процесс, в результате которого выживают и оставляют потомство преимущественно особи с полезными в данных условиях среды наследственными признаками, называют?


Тест 22

Вопрос.  Приспособленность растений к опылению насекомыми характеризуется


Тест 23

Вопрос.  Какой фактор в эволюции человека утратил своё значение в настоящее время?


Тест 24

Вопрос.  Основной ограничивающий фактор для растений в степной зоне —


Тест 25

Вопрос.  Определите консумента II порядка в цепи питания: листья
липы ⇒ гусеница непарного шелкопряда ⇒ жук пахучий красотел ⇒ обыкновенный скворец ⇒ ястреб-перепелятник.


Тест 26

Вопрос.  Устойчивость биогеоценоза определяется


Тест 27

Вопрос.  Какие структуры клетки, запасающие питательные вещества, не относят к органоидам?


Тест 28

Вопрос.  Белок состоит из 300 аминокислот. Сколько нуклеотидов в гене, который служит матрицей для синтеза белка?


Тест 29

Вопрос.  Прикрепление нитей веретена деления к хромосомам происходит в


Тест 30

Вопрос.  При скрещивании гетерозиготы с рецессивной гомозиготой доля гомозигот в потомстве составляет


Тест 31

Вопрос.  При скрещивании близкородственных животных у потомства наблюдается


Тест 32

Вопрос.  Какую функцию выполняют цианобактерии в составе лишайника?


 

buzani.ru

Круговорот элементов в природе — 9 класс — Для учителя — Каталог файлов

9 класс

Билет №26

1. Круговороты химических элементов в природе (на примере углерода, кислорода и азота). Роль живых существ в круговороте химических элементов.

Круговороты химических элементов на Земле — повторяющиеся процессы превращения и перемещения веществ в природе, имеющиеся более или менее циклический характер. Общий круговорот веществ складывается из отдельных процессов (круговорот воды, газов, химических элементов), которые не являются полностью обратимыми, т.к. происходит рассеивание вещества, изменение его состава и др.

С появлением жизни на Земле огромную роль в круговороте веществ играют живые организмы (круговорот кислорода, углерода, водорода, азота, кальция и др.биогенных элементов). Глобальное влияние на круговорот веществ и хим. элементов имеет деятельность человека, в результате которой возникают новые и изменяются сложившиеся в природе пути миграции веществ, появляются новые вещества и т.д.

Глубокое изучение превращений веществ и энергии в природе и учёт последствий деятельности человека – необходимое условие сохранения окружающей среды.

Рассмотрим круговороты некоторых химических элементов
Круговорот углерода
В природе происходит непрерывный процесс разрушения одних углеродосодержащих веществ и образование других. Органические вещества разрушаются при сгорании топлива, при дыхании, при гниении. Из них образуются более простые вещества, в том числе углекислый газ. Углекислый газ выделяется при разложении некоторых неорганических веществ, например, при обжиге известняка. Однако, его количество в атмосфере увеличивается медленно. Это объясняется тем, что оксид углерода (IV) участвует в фотосинтезе и атомы углерода снова переходят в состав органических веществ растений. Многие из них употребляются в пищу животными и человеком. Так происходит непрерывный круговорот углерода в природе. 

Минералы и горные породы 
(нефть, природный газ, уголь, графит — сжигание,
известняк, доломиты — прокаливание), вулканические газы

углекислый газ

растения
поглощают углекислый газ при фотосинтезе,
элемент углерод переходит в органические вещества

животные
органические вещества растений входят в состав пищи
для животных и человека

углекислый газ
процессы дыхания, брожения, гниения
сопровождаются образованием углекислого газа
(органические вещества превращаются в углекислый газ в результате реакций окисления)

Круговорот кислорода

Состав атмосферы за последние столетия изменился незначительно. В состав воздуха входят: азот (78%), кислород (21%), углекислый газ (0,03 %) и инертные газы (около 1%). Живые организмы в течение эволюции приспособились к определённому составу атмосферы, и даже небольшие изменения состава отрицательно влияют на живые организмы.

Кислород расходуется в огромных количествах на многие химические реакции: дыхание живых организмов, процессы гниения; хозяйственная деятельность человека: сжигание топлива, выплавка, резка и сварка металлов, многие производства (лекарственных веществ, азотной и серной кислот, удобрений, синтетических волокон, взрывчатых веществ, пластмасс и др.).

Но всё же общая масса кислорода в воздухе заметно не изменяется. Это объясняется процессом фотосинтеза, происходящего в зелёных растениях на свету. В результате фотосинтеза растения поглощают углекислый газ и выделяют кислород. В результате этого процесса масса кислорода в воздухе пополняется.

Кислород атмосферы

растения, животные, человек
поглощают при дыхании кислород, а выделяют углекислый газ

углекислый газ
растения поглощают углекислый газ и выделяют кислород,
этот процесс называется фотосинтезом

кислород атмосферы
растения выделяют кислород при фотосинтезе

Круговорот азота

Химический элемент азот в виде простого вещества составляет большую часть атмосферы, в которой содержится по объёму 78%, входит в состав органических веществ, в частности в состав белков, из которых состоят живые организмы. В почве азот содержится в виде ионов аммония Nh5+ и нитрат-ионов NO3-.

Зелёные растения нуждаются в азоте, он является основным питательным элементов наряду с фосфором и калием. Азот влияет на рост зелёной массы растений, при недостатке азота замедляется и прекращается их рост. При выращивании растений почва постепенно обедняется азотом, и может стать бесплодной.
При гниении и горении органических веществ часть связанного азота освобождается и уходит в атмосферу. Однако, в естественных условиях содержание связанного азота в почве не уменьшается, масса свободного азота в атмосфере так же не увеличивается. Чем это можно объяснить?

Оказывается, существуют бактерии, как свободно живущие в почве, так и поселяющиеся на корнях бобовых растений, которые усваивают атмосферный азот, переводя его в состав органических соединений. Небольшие количества азота связываются при грозовых разрядах: при этом образуются оксиды азота, оксид азота (IV) соединяясь с водой превращается в азотную кислоту, которая превращается в почве в нитраты.

В результате этих процессов происходит круговорот химических элементов в природе. При уборке урожая с полей выносится значительная часть азота, поэтому необходимо вносить азотные удобрения в почву, чтобы восполнить эту убыль.

Азот атмосферы
(содержание азота в атмосфере постоянно, составляет по объёму 78%)

Азот усваивают азотофиксирующие бактерии
превращают его в нитратную и аммонийную форму и органические вещества

Растения
(в растениях азот находится в виде органических веществ – белков, растительный белок служит пищей для животных и человека)

Животные и человек
Гниение, продукты обмена веществ, горение органических веществ

Азот атмосферы

Итак, рассмотрев круговороты некоторых химических элементов, мы убедились в том, что для них характерна цикличность, в круговороте участвуют различные звенья живой и неживой природы. В результате круговорота веществ поддерживается постоянный состав атмосферы, почвы, гидросферы.

Большую роль в круговороте веществ играют живые организмы: растения, животные и человек. В зелёных растениях неорганические вещества превращаются в органические в процессе фотосинтеза, в организме животных создаётся белки, необходимые для жизни человека (животные белки содержат все аминокислоты). Человек влияет на круговорот веществ своей хозяйственной деятельностью, очень часто его влияние оказывает вред природе.

Всякое неразумное вмешательство человека вызывает нарушение природного равновесия, поэтому необходимо изучать все стороны и звенья круговорота веществ и учитывать их особенности, для того, чтобы не нарушить естественное равновесие в природе.

orucezkaya.ucoz.ru

Круговорот веществ в биосфере и природе

Жизнедеятельность всех организмов в биосфере сопряжена с извлечением из окружающего пространства больших объемов минеральных веществ. После естественной гибели живых организмов присутствующие в их телах химические элементы снова попадают в окружающую среду. Таким образом, проявляется биогенный (при участии живых организмов) круговорот веществ в биосфере. Другими словами вещества циркулируют между живыми организмами и атмосферой, гидросферой, литосферой. Круговорот веществ – это неоднократно повторяющийся процесс трансформации и перемещения веществ в биосфере, который характеризуется более или менее выраженной цикличностью.

Все без исключения живые организмы принимают участие в круговороте веществ в природе. Они поглощают из окружающего пространства одни соединения и выделяют другие. К примеру, растения всасывают воду с растворенными минеральными веществами и углекислый газ, образуя в процессе фотосинтеза кислород и выделяя его в окружающую среду. Кислород вдыхают животные, выделяя в пространство углекислый газ, они также съедают растения, поглощая органические вещества, синтезированные растениями из углекислого газа и воды. Остатки непереваренной животными пищи, а также погибшие животные и растения подвергаются разложению с участием бактерий и грибов с образованием углекислого газа и минеральных веществ, которые затем снова усваиваются растениями.

Вследствие непрерывного круговорота веществ в биосфере атомы основных химических элементов регулярно мигрируют из одного живого организма в другой, а также из организмов растений и животных — в атмосферу, почвенный покров литосферы, гидросферу и в обратном направлении. Данные процессы происходят бесчисленное множество раз. Так, установлено, что весь запас кислорода атмосферы проходит через живое вещество за два тысячелетия, а весь углекислый газ – за два-три столетия.

Замкнутые круги постоянной циркуляции химических элементов в биосфере называются биогеохимическими циклами. Значение такой циркуляции состоит в том, что запасы минеральных веществ на Земле ограничены. Для обеспечения бесконечности жизни химические элементы совершают круговорот в биосфере. Круговорот каждого конкретно взятого химического элемента находится в тесной взаимосвязи с циркуляциями других элементов.

Так же, как и все процессы, осуществляющиеся в природе, круговорот веществ требует определенных энергетических затрат. Приток энергии обеспечивается за счет солнечной радиации. Именно солнечная энергия лежит в основе биогенного круговорота веществ. В различных звеньях пищевых цепочек количество связанной в органических веществах энергии уменьшается в связи с ее расходованием при отдаче тепла в окружающее пространство и при осуществлении процессов жизнедеятельности в живых организмах. Так, в биосфере поток энергии преобразуется и перемещается.

Биосфера может быть устойчивой целостной системой при условии непрерывного круговрота веществ и постоянного притока энергии Солнца.

Похожие материалы:

geografya.ru