Кость это соединительная ткань – 15. Скелетные соединительные ткани. Костные ткани (кость, надкостница, красный костный мозг)

Соединительная ткань — это… Что такое Соединительная ткань?

Соедини́тельная ткань — это ткань живого организма, не отвечающая непосредственно за работу какого-либо органа или системы органов, но играющая вспомогательную роль во всех органах, составляя 60—90 % от их массы. Выполняет опорную, защитную и трофическую функции. Соединительная ткань образует опорный каркас (строму) и наружные покровы (дерму) всех органов. Общими свойствами всех соединительных тканей является происхождение из мезенхимы, а также выполнение опорных функций и структурное сходство.

Большая часть твёрдой соединительной ткани является фиброзной (от лат. fibra — волокно): состоит из волокон коллагена и эластина. К соединительной ткани относят костную, хрящевую, жировую и другие. К соединительной ткани относят также кровь и лимфу. Поэтому соединительная ткань — единственная ткань, которая присутствует в организме в 4-х видах — волокнистом (связки), твёрдом (кости), гелеобразном (хрящи) и жидком (кровь, лимфа, а также межклеточная, спинномозговая и синовиальная и прочие жидкости).

Фасции, мышечные влагалища, связки, сухожилия, кости, хрящи, сустав, суставная сумка, сарколемма и перемизий мышечных волокон, синовиальная жидкость, кровь, лимфа, сосуды, капилляры, сало, межклеточная жидкость, внеклеточный матрикс, склера, радужка, микроглия и многое другое — это всё соединительная ткань.

Соединительная ткань состоит из внеклеточного матрикса и нескольких видов клеток. Клетки, относящиеся к соединительной ткани:

  • фибробласты — производят коллаген и другие вещества внеклеточного матрикса, способны делиться.
  • фиброкласты — клетки, способные поглощать и переваривать межклеточный матрикс; являются зрелыми фибробластами, к делению не способны.
  • меланоциты — сильно разветвлённые клетки, содержащие меланин, присутствуют в радужной оболочке глаз и коже (по происхождению — эктодермальные клетки, производные нервного гребня)
  • макрофаги — клетки, поглощающие болезнетворные организмы и отмершие клетки ткани (по происхождению моноциты крови)
  • эндотелиоциты — окружают кровеносные сосуды, производят внеклеточный матрикс и продуцируют гепарин. Эндотелий по большинству признаков относят к эпителию.
  • тучные клетки — продуцируют метахроматические гранулы, которые содержат гепарин и гистамин.
  • мезенхимные клетки — клетки эмбриональной соединительной ткани

Межклеточное вещество соединительных тканей (внеклеточный матрикс) содержит множество разных органических и неорганических соединений, от количества и состава которых зависит консистенция ткани. Кровь и лимфа, относимые к жидким соединительным тканям, содержат жидкое межклеточное вещество — плазму. Матрикс хрящевой ткани — гелеобразный, а матрикс кости, как и волокна сухожилий — нерастворимые твердые вещества.

Биохимия соединительной ткани

Соединительная ткань — это внеклеточный матрикс вместе с клетками различного типа (фибробласты, хондробласты, остеобласты, тучные клетки, макрофаги) и волокнистыми структурами. Межклеточный матрикс (ВКМ — внеклеточный матрикс) представлен белками — коллагеном и эластином, гликопротеидами и протеогликанами, гликозаминогликанами (ГАГ), а также неколлагеновыми структурными белками — фибронектином, ламинином и др. Соединительная ткань подразделяется на:

  • собственно соединительную ткань,
  • скелетную ткани — костную и хрящевую,
  • соединительную ткани со специфическими свойствами — жировую, слизистую, пигментную, ретикулярную.

Соединительная ткань определяет морфологическую и функциональную целостность организма. Для неё характерны:

  • универсальность,
  • тканевая специализация,
  • полифункциональность,
  • многокомпонентность и полиморфизм,
  • высокая способность к адаптации.

Основными клетками соединительной ткани являются фибробласты. В них осуществляется синтез коллагена и эластина, протеогликанов, ферментов.

Заболевания, связанные с соединительной тканью

В связи со слабостью связочного аппарата, недостаточной прочностью коллагеновых волокон могут развиваться такие заболевания, как

Нарушения иммунитета тоже можно отнести к заболеваниям соединительной ткани, так как за иммунитет отвечает тоже преимущественно она, в основном — лимфатическая и кровеносная системы, которые к ней относятся.

Заболевания и пороки соединительной ткани

См. также

dic.academic.ru

Соединительная ткань Википедия

Соедини́тельная ткань — это ткань живого организма, не отвечающая непосредственно за работу какого-либо органа или системы органов, но играющая вспомогательную роль во всех органах, составляя 60—90 % от их массы. Выполняет опорную, защитную и трофическую функции. Соединительная ткань образует опорный каркас (строму) и наружные покровы (дерму) всех органов. Общими свойствами всех соединительных тканей является происхождение из мезенхимы, а также выполнение опорных функций и структурное сходство.

Строение соединительной ткани

Большая часть твёрдой соединительной ткани является фиброзной (от лат. fibra — волокно): состоит из волокон коллагена и эластина. К соединительной ткани относят костную, хрящевую, жировую и другие. Поэтому соединительная ткань — единственная ткань, которая присутствует в организме в 4-х видах — волокнистом (связки), гелеобразном (хрящи), твёрдом (кости),жидком(кровь,лимфа,межклеточная жидкость, синовиальная жидкость)

Фасции, мышечные влагалища, жир, связка, сухожилия, кости, хрящи, сустав, суставная сумка, сарколемма и перимизий (perimysium) мышечных волокон, синовиальная жидкость, кровь, лимфа, сало, межклеточная жидкость, внеклеточный матрикс, склера, радужка, микроглия и многое другое — это всё соединительная ткань.

Соединительная ткань состоит из внеклеточного матрикса и нескольких видов клеток. Клетки, относящиеся к соединительной ткани:

  • фиброциты — неактивные фибробласты.
  • фибробласты — производят коллаген и эластин, а также другие вещества внеклеточного матрикса, способны делиться.
  • фиброкласты — клетки, способные поглощать и переваривать межклеточный матрикс; являются зрелыми фибробластами, к делению не способны.
  • меланоциты — сильно разветвлённые клетки, содержащие меланин, присутствуют в радужной оболочке глаз и коже (по происхождению — эктодермальные клетки, производные нервного гребня)
  • макрофаги — клетки, поглощающие болезнетворные организмы и отмершие клетки ткани, чужеродные частицы (по происхождению моноциты крови)Хотя по происхождения в строгом смысле этого слова, макрофаги не относятся к соединительной ткани.
  • эндотелиоциты — окружают кровеносные сосуды, производят внеклеточный матрикс и продуцируют гепарин. Эндотелий сосудов, также, как и синовиальная клетки суставов, относятся к соединительной ткани.
  • тучные клетки, или тканевые базофилы — это иммунные клетки соединительной ткани. Продуцируют метахроматические гранулы, которые содержат гепарин и гистамин. Они сконцентрированы под кожей, вокруг лимфатических узлов и кровеносных сосудов, в селезёнке и красном костном мозге. Отвечают за воспаление и аллергии.
  • мезенхимные клетки — клетки эмбриональной соединительной ткани

Межклеточное вещество соединительных тканей (внеклеточный матрикс) содержит множество разных органических и неорганических соединений, от количества и состава которых зависит консистенция ткани. Кровь и лимфа, относимые к жидким соединительным тканям, содержат жидкое межклеточное вещество — плазму. Матрикс хрящевой ткани — гелеобразный, а матрикс кости, как и волокна сухожилий — нерастворимые твёрдые вещества. Существует несколько видов соединительной ткани. К ней относятся волокнистая, жировая, хрящевая, а также кровь.

Морфология соединительной ткани

Соединительная ткань — это внеклеточный матрикс вместе с клетками различного типа (фибробласты, хондробласты, остеобласты, тучные клетки, макрофаги) гладко мышечные клетки и волокнистыми структурами. Межклеточный матрикс (ВКМ — внеклеточный матрикс) представлен белками — коллагеном и эластином, гликопротеидами и протеогликанами, гликозаминогликанами (ГАГ), а также неколлагеновыми структурными белками — фибронектином, ламинином и др. Соединительная ткань подразделяется на:

  • собственно соединительную ткань (рыхлая волокнистая и плотная волокнистая, плотная волокнистая делится на неоформленную и оформленную),
  • скелетную (опорную) соединительную ткань — костную и хрящевую,
  • трофическую ткань — кровь и лимфа,межклеточная и синовиальная жидкость
  • соединительную ткани со специфическими свойствами — жировую, слизистую, пигментную, ретикулярную.

Соединительная ткань определяет морфологическую и функциональную целостность организма. Для неё характерны:

  • универсальность,
  • тканевая специализация,
  • полифункциональность,
  • многокомпонентность и полиморфизм,
  • высокая способность к адаптации.

Основными клетками соединительной ткани являются фибробласты. В них осуществляется синтез коллагена и эластина, и другие компоненты межклеточного вещества.

Заболевания, связанные с соединительной тканью

В связи со слабостью связочного аппарата, недостаточной прочностью коллагеновых волокон могут развиваться такие заболевания, как

Нарушения иммунитета тоже можно отнести к заболеваниям соединительной ткани, так как за иммунитет отвечает тоже преимущественно она, в основном — лимфатическая и кровеносная системы, которые к ней относятся.

Заболевания и пороки соединительной ткани

Примечания

См. также

wikiredia.ru

Соединительная ткань

1- Ядро

2- Коллагеновые волокна

3- Эластические волокна

 

Р и с у н о к 3

Плотная кость

Расположена на поверхности всех костей и на диафизе длинных костей. В ней преобладает твердый костный матрикс. Придает большую сопротивляемость и выполняет защитную роль; образует твердое покрытие, предохраняющее от ударов и травм.

 

МАТРИКС СОЕДИНИТЕЛЬНОЙ ТКАНИ

В этом параграфе мы детально рассмотрим волокна, составляющие несущую структуру соединительной ткани.

Состав соединительной ткани в его разновидностях сообщает ей особые свойства, которые могут полностью изменять внешний вид рассматриваемой ткани.

Специализация ткани — это процентное изменение ее составных частей, а также разное пространственное расположение этих компонентов.

Функциональность каждой ткани является прямым следствием её состава и возможности использования этих отдельных веществ для синтеза и метаболизма, или же особых способностей, которые обуславливаются их молекулярным и пространственным расположением.

 

Соединительная ткань не является исключением из этого правила, годного для всех типов тканей человеческого тела; мы увидим в дальнейшем, что на практике функция является ни чем иным как результатом микрофункций, обусловленных молекулами протеина и аминокислот.

Матрикс-основа “жилища” называется основным веществом. То, что допускает изменение как функций, так и специализации соединительной ткани, — это наличие особых веществ, которые “приютила” матрикс-основа, называющихся фибриллярными компонентами, таких как эластин,коллаген,ретикулин.

Совокупность этих структур образует среду обитания, подходящую для размещения “постоянных жильцов”, которые определят особый характер конечной функции или же соединительные клетки, варьирующиеся от ткани к ткани:

n фиброцит для волокнистой ткани

n хондроцит для хрящевой ткани

n остеоцит для костной ткани

n синовиоцит для синовиальных мембран

n адипоцит для жировой ткани (модифицированной соединительной ткани)

n плазмацит для крови (модифицированной соединительной ткани)

n лимфоцит для лимфы (модифицированной соединительной ткани)

 

Эта совокупность составляет конечное изменение единой базы, которая, следуя эмбриологическому развитию, совершенствуется в своей специализации, дифферинцируясь также в первичной функции, хотя и сохраняя все основные базовые характеристики соединительной ткани.

Соединительная ткань включает два базовых компонента (в дальнейшем определяемых как матриксы):

n внеклеточный матрикс, которую мы детально изучим в ее составляющих — коллагеновых волокнах, эластических волокнах и мукополисахаридах (эти последние называются также гликозаминогликанами, аморфным матриксом)

n клеточный матрикс, состоящий из гаммы клеток, которые мы еще будем иметь случай изучить более углубленно.

Совокупность матриксов представлена на рисунках 4-5, где приводятся схематические изображения соединительной ткани со всеми элементами (“постоянными жильцами”), участвующими в его составлении.

 

 

Р и с у н о к 4


Похожие статьи:

poznayka.org

Соединительная ткань — Медицинская энциклопедия

Соедини́тельная ткань

(textus connectivus)

развивающаяся из мезенхимы ткань животного организма, выполняющая опорную, трофическую, защитную и репаративную функцию.

Особенностью строения С. т. являются хорошо развитые межклеточные структуры (волокна и основное вещество). В зависимости от клеточного состава, строения и свойств межклеточных структур, их ориентации С. т. подразделяют на собственно соединительную, костную (см. Кость) и хрящевую (см. Хрящ) ткань. Собственно С. т. представлена рыхлой и плотной волокнистой неоформленной и плотной волокнистой оформленной С. т. К рыхлой волокнистой неоформленной С. т. относят подкожную клетчатку, С. т., заполняющую прослойки между органами, расположенную по ходу кровеносных сосудов и нервов и формирующую строму (интерстициальную ткань) паренхиматозных органов. Выделяют также С. т. со специальными свойствами — ретикулярную, являющуюся основой кроветворных и лимфоидных органов, эластическую (с большим количеством эластических волокон), жировую, а также пигментную, богатую пигментными клетками, например в сосудистой оболочке глаза. Перечисленные виды С. т. вместе с кровью и лимфой объединяют в систему тканей внутренней среды.

Наиболее распространенной С. т. человека и млекопитающих является рыхлая волокнистая ткань. Ее составляют практически все виды клеток и межклеточных структур, встречающиеся в различных типах С. т. Межклеточное вещество представлено волокнистыми структурами (коллагеновые, ретикулярные и эластические волокна) и основным веществом (аморфным компонентом межклеточного вещества), в которое заключены клетки и волокна. В состав коллагеновых и ретикулярных волокон входит коллаген различных типов, отличающихся молекулярной структурой.

Основное вещество представляет собой вязкий гель, состоящий в основном из макромолекул полисахаридов и большого количества тканевой жидкости, связанной с этими макромолекулами. Полисахариды основного вещества представлены преимущественно гликозаминогликанами, из которых важнейшими являются гиалуроновая кислота, гепарансульфат, хондроитин-4-сульфат, хондроитин-6-сульфат и дерматансульфат. Макромолекулярные комплексы, большая часть которых состоит из сульфатированных гликозаминогликанов, получила название протеогликанов. В составе основного вещества С. т. в небольшом количестве присутствуют гликопротеиды.

Различные виды С. т. отличаются между собой по типу и количеству секретируемых гликозаминогликанов. С возрастом содержание полисахаридов в С. т. уменьшается. Основное вещество С. т. обеспечивает диффузию кислорода и питательных веществ от капилляров к клеткам. В обратном направлении поступают продукты клеточного обмена.

Главной клеточной формой С. т. являются фибробласты, которые вырабатывают и секретируют проколлаген, проэластин и гликозаминогликаны. Они также продуцируют белок микрофибрилл, входящий в состав эластических волокон. Доказано, что одна и та же клетка может синтезировать коллаген двух типов. Морфологически различают фибробласты, способные к делению и активно синтезирующие белки, и малоактивные клетки — фиброциты, потерявшие способность к делению. В фибробластах сильно развиты гранулярная эндоплазматическая сеть, пластинчатый комплекс (комплекс Гольджи) и другие структуры, характерные для секреторных клеток.

Фибробласты участвуют в заживлении ран, инкапсуляции инородных тел, регенерации и многих других физиологических и патологических процессах. По некоторым данным, фибробласты могут фагоцитировать и разрушать коллаген, участвуя т. о. в перестройке соединительной ткани. Наряду с типичными фибробластами выделяют так называемые миофибробласты, занимающие по функциональным и ультраструктурным признакам промежуточное положение между фибробластами и гладкомышечными клетками. Миофибробласты обеспечивают смыкание краев ран при их заживлении, прорезывание зубов и т.д.

Относительно происхождения фибробластов до сих пор нет единого мнения. Предполагают, что в эмбриональном периоде они дифференцируются непосредственно из мезенхимных клеток. В постнатальном онтогенезе, при регенерации С. т., источником фибробластов считают малодифференцированные клетки, располагающиеся вдоль капилляров. Согласно другой точке зрения, предшественники фибробластов локализуются в костном мозге и способны к миграции, что подтверждается обнаружением в периферической крови клеток, дающих начало колониям фибробластов в жидкостных культурах (КОКф). Опыты с различными индукторами, особенно с деминерализованным костным матриксом, показывают, что среди фибробластов имеются клетки, способные к трансформации в другие типы так называемых механоцитов (хондробласты, остеобласты, ретикулярные клетки) с переключением при этом на синтез коллагенов, свойственных данному типу механоцитов. Выявлены антигенные, метаболические и функциональные особенности фибробластов различной органной локализации.

Соединительная ткань богата макрофагами-гистиоцитами, относящимися к системе мононуклеарных фагоцитов (Система мононуклеарных фагоцитов) и выполняющими защитную функцию. Они фагоцитируют инородные частицы, бактерии, погибшие клетки. Макрофаги активно участвуют в воспалительных и иммунных реакциях, а также являются источниками целого ряда факторов-регуляторов клеточной пролиферации и дифференцировки. Предшественники макрофагов — кроветворные стволовые клетки, локализующиеся в костном мозге (Костный мозг).

В соединительной ткани находятся лаброциты (тучные клетки), также являющиеся потомками кроветворных стволовых клеток. Они содержат гепарин, гистамин и другие биологически активные вещества. Постоянно присутствуют в С. т. жировые, пигментные, плазматические клетки и различные виды лейкоцитов. Повсеместное распространение рыхлой С. т., ее роль в трофике клеток, защитных процессах делает эту ткань участником практически всех физиологических и патологических реакций (физиологическая и репаративная регенерация, воспаление, заживление ран, склеротические процессы и др.). Для С. т. с выраженной трофической (защитной) функцией характерно относительно большое количество и разнообразие клеток, в т.ч. лейкоцитов крови. В соединительной ткани преимущественно опорного типа преобладают межклеточные структуры, а клетки представлены только фибробластами или другими механоцитами (хрящевыми клетками, костными клетками).

В биохимическом отношении основными компонентами С. т. являются Коллагены, эластины, протеогликаны, Гликозаминогликаны и другие структурные гликопротеиды. К последним относятся адгезивные белки (фибронектин, ламинин и др.), обладающие сродством к другим белкам С. т. и участвующие в их объединении («склеивании»). Эти компоненты С. т. представляют собой высокополимерные вещества, которые локализуются во внеклеточном веществе (матриксе). Их биосинтез осуществляется в основном фибробластами, хондроцитами и др., в небольших количествах они синтезируются также эпителиальными, мышечными и нервными клетками.

Эти полимеры синтезируются в виде предшественников, которые после выхода в межклеточное вещество подвергаются «созреванию». Важно отметить, что полимеры матрикса функционально активны только в том случае, если они прошли весь путь созревания. Нарушение этого процесса, например отщепление от коллагена пептидных участков, ведет к тому, что не происходит формирования фибрилл, и ткани, в норме содержащие коллаген, теряют прочность и упругость (см. Элерса — Данлоса синдром). Аналогичный симптомокомплекс развивается и в случае нарушения образования поперечных связей между полипептидными цепочками, а также когда не происходит окисления некоторых аминокислот в белке. Нарушением формирования поперечных связей в белках С. т. можно объяснить ряд патологических проявлений, характерных для заболеваний, сопровождающихся гомоцистинурией. В некоторых случаях биохимической основой заболеваний С. т. является синтез молекул белка, больших по размерам, чем в норме. Так, при Марфана синдроме одна из полипептидных цепочек коллагена содержит на 20 аминокислот больше, чем нормальная цепь.

Нарушения метаболизма С. т. играют важную роль и в развитии многих приобретенных заболеваний. Так, избыточный синтез коллагена наблюдается при фиброзирующих процессах в легких, печени, нарушении регенерации при заживлении ран (келоидные рубцы). Различные нарушения обмена веществ, по-видимому, лежат в основе диффузных заболеваний соединительной ткани (Диффузные заболевания соединительной ткани).

Распад (катаболизм) С. т. осуществляется во внеклеточном веществе под воздействием специфических ферментов — коллагеназы, эластазы, протеазы, гликозидазы. Продуцируют эти ферменты те же клетки С. т., которые участвуют в синтезе ее белков. Известно, что клетки злокачественных опухолей синтезируют специфические и неспецифические протеазы, расщепляющие ткани, которые окружают опухоль, что способствует метастазированию. Усиленная деградация С. т., обусловленная повышенным синтезом протеолитических ферментов, наблюдается также при артрозах (см. Остеоартроз).

Изменения метаболизма С. т. играют важную роль в делении и дифференцировке клеток, формообразовании органов и тканей, а также в процессах развития и старения организма. Показано, что пролиферация и движение клеток на определенных стадиях онтогенеза контролируются уровнем синтеза адгезивных белков матрикса (фибронектина, ламинина и др.). Взаимодействие клеток с этими белками обусловлено тем, что на поверхности клетки имеются специальные рецепторы для каждого из этих белков. Нарушение взаимодействия рецепторов с белком С. т. во взрослом организме может быть причиной того, что клетки выходят из-под контроля окружающих тканей, приобретают способность к неконтролируемому росту. Имеются основания предполагать, что на этом основана малигнизация клеток.

При старении организма уменьшается растворимость коллагенов и эластинов, увеличивается содержание поперечных связей в белках, снижается содержание в ткани протеогликанов и гликозаминогликанов. Характерно также общее уменьшение клеточных элементов в С. т. Эти изменения определяют свойственные старению повышенную ломкость костей, они снижение эластичности кожи и стенок сосудов, ригидность суставов и т.д.

Биохимические методы, используемые при анализе метаболизма С. т. в норме и при патологии, характеризуются большим разнообразием приемов и подходов, из которых наиболее перспективными являются: методы генной инженерии; определение специфических метаболитов (оксипролина, пептидных фрагментов) белков С. т. в крови, моче, биопсийном материале; тестирование активности различных ферментов (коллагеназы, гиалуронидазы и др.) в суставной и других биологических жидкостях. Широко используется анализ обменных процессов С. т. в модельных системах (культурах клеток и тканей, бесклеточных системах белкового синтеза). Широкое применение нашли иммунохимические, цитохимические, электронно-микроскопические методы изучения биосинтеза и структуры биополимеров.

Библиогр.: Мазуров В.И. Биохимия коллагеновых белков, М., 1974; Никитин В.Н., Перский Е.Э. и Утевская Л.А. Возрастная и эволюционная биохимия коллагеновых структур, Киев, 1977; Серов В.В. и Шехтер А.Б. Соединительная ткань, М., 1981; Хэм А. и Кормак Д. Гистология, т. 2—3, пер. с англ., М., 1983.

Источник: Медицинская энциклопедия на Gufo.me

gufo.me

Виды соединительной ткани

Соединительные ткани разнообразны по своему строению, так как выполняют опорную, трофическую и защитную функции. Они состоят из клеток и межклеточного вещества, которого по количеству больше, чем клеток. Эти ткани обладают высокой регенеративной способностью, пластичностью, приспособлением к изменению условий существования. Рост и развитие их происходит за счет размножения, трансформации малодиференцирванных молодых клеток.

Соединительные ткани произошли из мезенхимы, т.е. эмбриональной соединительной ткани, которая сформировалась из среднего зародышевого листка - мезодермы.

Различают несколько видов соединительной ткани:

·   Кровь и лимфа;

·   Рыхлая волокнистая неоформленная ткань;

·   Плотная волокнистая (оформленная и неоформленная) ткань;

·   Ретикулярная ткань;

·   Жировая;

·   Хрящевая;

·   Костная;

Из этих видов плотная волокнистая, хрящевая и костная выполняют опорную функцию, остальные ткани – защитную и трофическую.

Рыхлая волокнистая неоформленная соединительная ткань:

1 — коллагеновые волокна, 2 — эластические волокна, 3 — макрофаги, 4 -фибробласты, 5 — плазматическая клетка

 Рыхлая волокнистая неоформленная соединительная ткань

Эта ткань состоит из различных клеточных элементов и межклеточного вещества. Она входит в состав всех органов, во многих из них образует строму органа. Она сопровождает кровеносные сосуды, через нее происходит обмен веществ между кровью и клетками органов и, в частности, переход питательных веществ из крови в ткани.

В межклеточное вещество входят три рода волокон: коллагеновые, эластические и ретикулярные. Коллагеновые волокна располагаются в различных направлениях в виде прямых или волнообразно изогнутых тяжей толщиной 1-3 мк и более. Эластические волокна тоньше коллагновых, анастомозируют друг с другом и образуют более или менее широкоплетистую сеть. Ретикулярные волокна тонкие, образуют нежную сетку.

Основное вещество — это студнеобразная, бесструктурная масса, заполняющая пространство между клетками и волокнами соединительной ткани.

К клеточным элементам рыхлой волокнистой ткани относят следующие клетки: фибробласты, макрофаги, плазматические, тучные, жировые, пигментные и адвентициальные.

Фибробласты — это наиболее многочисленные плоские клетки, имеющие на срезе веретенообразную форму, часто с отростками. Они способны к размножению. Принимают участие в образовании основного вещества, в частности образуют волокна соединительной ткани.

Макрофаги — клетки способные поглощать и переваривать микробные тела. Различают макрофаги, находящиеся в спокойном состоянии — гистоциты и блуждающие – свободные макрофаги. Они могут быть круглые, вытянутые и неправильной формы. Способны к амебовидным передвижениям, уничтожают микроорганизмы, нейтрализуют токсины, участвуют в формировании иммунитета.

Плазматические клетки встречаются в рыхлой соединительной ткани кишечника, лимфатических узлах, костном мозге. Они небольшие, округлой или овальной формы. Играют большую роль в защитных реакциях организма, например, принимают участие в синтезе антител. В них вырабатываются глобулины крови.

Тучные клетки — в их цитоплазме имеется зернистость (гранулы). Они находятся во всех органах, где имеется прослойка рыхлой неоформленной соединительной ткани. Форма разнообразна; гранулы содержат гепарин, гистамин, гиалуроновую кислоту. Значение клеток заключается в секреции этих веществ и регуляции микроциркуляции.

Жировые клетки — это клетки способные откладывать в цитоплазме резервный жир в виде капель. Они могут вытеснять другие клетки и образуют жировую ткань. Клетки имеют сферическую форму.

Адвентициальные клетки располагаются по ходу кровеносных каппиляров. Они имеют вытянутую форму с ядром в центре. Способны к размножению и превращению в другие клеточные формы соединительной ткани. При отмирании ряда клеток соединительной ткани, их пополнение происходит за счет этих клеток.

Плотная волокнистая соединительная ткань

Эта ткань делится на плотную оформленную и неоформленную.

Плотная неоформленная ткань состоит из, относительно, большого количества плотно расположенных соединительнотканных волокон и незначительного числа клеточных элементов между волокнами.

Плотная оформленная ткань характеризуется определенным расположением соединительнотканных волокон. Из этой ткани построены сухожилия, связки и некоторые другие образования. Сухожилия состоят из плотно расположенных параллельных пучков коллагеновых волокон. Между ними располагается тонкая эластичная сеть и небольшие пространства заполнены основным веществом. Из клеточных форм в сухожилиях имеются только фиброциты.

Разновидность плотной соединительной ткани является эластическая волокнистая соединительная ткань. Из нее построены некоторые связки, например, голосовые. В этих связках толстые округлые или уплощенные эластические волокна располагаются параллельно рядом, но часто ветвятся. Пространство между ними заполнено рыхлой неоформленной соединительной тканью. Эластическая ткань образует оболочку круглых сосудов, входит в состав стенок трахеи и бронхов.

Хрящевая ткань

Эта ткань состоит из клеток, большого количества межклеточного вещества и выполняет механическую функцию.

Различают два вида хрящевых клеток:

·   Хондроциты — это овальные клетки имеющие ядро. Они расположены в особых капсулах, окруженных межклеточным веществом. Клетки располагаются в одиночку или по 2-4 клетки и более, их называют изогенными группами.

·   Хондробласты — это молодые, уплощенные клетки, расположенные по периферии хряща.

Различают три вида хряща: глиановый, эластический и коллагеновый.

Глиановый хрящ. Встречается во многих органах: в ребрах, на суставных поверхностях костей, на протяжении воздухоносных путей. Его межклеточное вещество однородно и полупрозрачно.

Эластический хрящ. В его межклеточном веществе имеются хорошо развитые эластические волокна. Из этой ткани построены надгортанник, хрящи гортани и она входит в состав стенки наружных слуховых проходов.

Коллагеновый хрящ. Его промежуточное вещество состоит из плотной волокнистой соединительной ткани, т.е. включает параллельные пучки коллагеновых волокон. Из этой ткани построены межпозвоночные диски, она встречается в грудино-ключичном и нижнечелюстном суставах.

Все виды хряща покрыты плотной волокнистой тканью, в которой обнаружены коллагеновые и эластические волокна, а так же клетки сходные с фибробластами. Эта ткань называется надхрящницей; богато снабжена сосудами и нервами. Рост хряща происходит за счет надхрящницы путем трансформации ее клеточных элементов в хрящевые клетки. В межклеточном веществе зрелого хряща нет сосудов и его питание происходит путем диффузии веществ из сосудов надхрящницы.

Костная ткань

Эта ткань состоит из клеток и плотного межклеточного вещества. Она отличается тем, что ее межклеточное вещество обызвествлено. Это придает кости твердость, необходимую для выполнения опорной функции. Из данной ткани построены кости скелета.

К клеточным элементам костной ткани принадлежат костные клетки, или остеоциты, остеобласты и остеокласты.

Остеоциты — имеют отростчатую форму и компактное, темноокрашивающееся ядро. Клетки лежат в костных полостях, которые повторяют контуры остеоцитов. Остеоциты не способны к размножению.

Костные клетки:

 1 — отросчатые; 2 — межклеточное вещество

Остеобласты – клетки, создающие костную ткань. Они округлой формы, иногда содержат несколько ядер, располагаются в надкостнице.

Остеокласты – клетки, принимающие активное участие в разрушении обызвествленного хряща и кости. Это многоядерные, довольно большие клетки. В течение всей жизни происходит разрушение структурных частей костной ткани и одновременно образование новых, как на месте разрушения, так и со стороны надкостницы. В этом процессе и принимают участие остеокласты и остеобласты.

Межклеточное вещество костной ткани состоит из аморфного основного вещества, в котором расположены оссеиновые волокна. Различают грубоволокнистую ткань, которая представлена у эмбрионов, и пластинчатую костную ткань, имеющуюся у взрослых и детей.

Структурной единицей костной ткани является костная пластинка. Она образована костными клетками, лежащими в капсулах, и тонковолокнистым межклеточным веществом, пропитанным солями кальция. Оссеиновые волокна этих пластинок лежат параллельно друг другу в определенном направлении. В соседних пластинках волокна обычно имеют перпендикулярное к ним направление, что обеспечивает большую прочность костной ткани. Костные пластинки в разных костях располагаются в определенном порядке. Из них построены почти все плоские, трубчатые и смешанные кости скелета.

В диафизе трубчатой кости пластинки образуют сложные системы, в которых различают три слоя:

1) наружный, в котором пластинки не образуют полных колец и перекрываются на поверхности следующим слоем пластинок; 2) средний слой образован остеонами. В остеоне костные пластинки расположены концентрически вокруг кровеносных сосудов; 3) внутренний слой пластинок отграничивает костномозговое пространство, где располагается костный мозг.

Схема строения остеона: в левой половине показаны костные полости и канальцы, в правой — направление волокон в отдельных пластинках

Кость растет и восстанавливается за счет надкостницы, которая покрывает наружную поверхность кости и состоит из тонковолокнистой соединительной ткани и остеобластов.



biofile.ru

Соединительная ткань — это… Что такое Соединительная ткань?

развивающаяся из мезенхимы ткань животного организма, выполняющая опорную, трофическую, защитную и репаративную функцию. Особенностью строения С. т. являются хорошо развитые межклеточные структуры (волокна и основное вещество). В зависимости от клеточного состава, строения и свойств межклеточных структур, их ориентации С. т. подразделяют на собственно соединительную, костную (см. Кость) и хрящевую (см. Хрящ) ткань. Собственно С. т. представлена рыхлой и плотной волокнистой неоформленной и плотной волокнистой оформленной С. т. К рыхлой волокнистой неоформленной С. т. относят подкожную клетчатку, С. т., заполняющую прослойки между органами, расположенную по ходу кровеносных сосудов и нервов и формирующую строму (интерстициальную ткань) паренхиматозных органов. Выделяют также С. т. со специальными свойствами — ретикулярную, являющуюся основой кроветворных и лимфоидных органов, эластическую (с большим количеством эластических волокон), жировую, а также пигментную, богатую пигментными клетками, например в сосудистой оболочке глаза. Перечисленные виды С. т. вместе с кровью и лимфой объединяют в систему тканей внутренней среды. Наиболее распространенной С. т. человека и млекопитающих является рыхлая волокнистая ткань. Ее составляют практически все виды клеток и межклеточных структур, встречающиеся в различных типах С. т. Межклеточное вещество представлено волокнистыми структурами (коллагеновые, ретикулярные и эластические волокна) и основным веществом (аморфным компонентом межклеточного вещества), в которое заключены клетки и волокна. В состав коллагеновых и ретикулярных волокон входит коллаген различных типов, отличающихся молекулярной структурой. Основное вещество представляет собой вязкий гель, состоящий в основном из макромолекул полисахаридов и большого количества тканевой жидкости, связанной с этими макромолекулами. Полисахариды основного вещества представлены преимущественно гликозаминогликанами, из которых важнейшими являются гиалуроновая кислота, гепарансульфат, хондроитин-4-сульфат, хондроитин-6-сульфат и дерматансульфат. Макромолекулярные комплексы, большая часть которых состоит из сульфатированных гликозаминогликанов, получила название протеогликанов. В составе основного вещества С. т. в небольшом количестве присутствуют гликопротеиды.

Различные виды С. т. отличаются между собой по типу и количеству секретируемых гликозаминогликанов. С возрастом содержание полисахаридов в С. т. уменьшается. Основное вещество С. т. обеспечивает диффузию кислорода и питательных веществ от капилляров к клеткам. В обратном направлении поступают продукты клеточного обмена.

Главной клеточной формой С. т. являются фибробласты, которые вырабатывают и секретируют проколлаген, проэластин и гликозаминогликаны. Они также продуцируют белок микрофибрилл, входящий в состав эластических волокон. Доказано, что одна и та же клетка может синтезировать коллаген двух типов. Морфологически различают фибробласты, способные к делению и активно синтезирующие белки, и малоактивные клетки — фиброциты, потерявшие способность к делению. В фибробластах сильно развиты гранулярная эндоплазматическая сеть, пластинчатый комплекс (комплекс Гольджи) и другие структуры, характерные для секреторных клеток. Фибробласты участвуют в заживлении ран, инкапсуляции инородных тел, регенерации и многих других физиологических и патологических процессах. По некоторым данным, фибробласты могут фагоцитировать и разрушать коллаген, участвуя т. о. в перестройке соединительной ткани. Наряду с типичными фибробластами выделяют так называемые миофибробласты, занимающие по функциональным и ультраструктурным признакам промежуточное положение между фибробластами и гладкомышечными клетками. Миофибробласты обеспечивают смыкание краев ран при их заживлении, прорезывание зубов и т.д. Относительно происхождения фибробластов до сих пор нет единого мнения. Предполагают, что в эмбриональном периоде они дифференцируются непосредственно из мезенхимных клеток. В постнатальном онтогенезе, при регенерации С. т., источником фибробластов считают малодифференцированные клетки, располагающиеся вдоль капилляров. Согласно другой точке зрения, предшественники фибробластов локализуются в костном мозге и способны к миграции, что подтверждается обнаружением в периферической крови клеток, дающих начало колониям фибробластов в жидкостных культурах (КОКф). Опыты с различными индукторами, особенно с деминерализованным костным матриксом, показывают, что среди фибробластов имеются клетки, способные к трансформации в другие типы так называемых механоцитов (хондробласты, остеобласты, ретикулярные клетки) с переключением при этом на синтез коллагенов, свойственных данному типу механоцитов. Выявлены антигенные, метаболические и функциональные особенности фибробластов различной органной локализации. Соединительная ткань богата макрофагами-гистиоцитами, относящимися к системе мононуклеарных фагоцитов (Система мононуклеарных фагоцитов) и выполняющими защитную функцию. Они фагоцитируют инородные частицы, бактерии, погибшие клетки. Макрофаги активно участвуют в воспалительных и иммунных реакциях, а также являются источниками целого ряда факторов-регуляторов клеточной пролиферации и дифференцировки. Предшественники макрофагов — кроветворные стволовые клетки, локализующиеся в костном мозге (Костный мозг). В соединительной ткани находятся лаброциты (тучные клетки), также являющиеся потомками кроветворных стволовых клеток. Они содержат гепарин, гистамин и другие биологически активные вещества. Постоянно присутствуют в С. т. жировые, пигментные, плазматические клетки и различные виды лейкоцитов. Повсеместное распространение рыхлой С. т., ее роль в трофике клеток, защитных процессах делает эту ткань участником практически всех физиологических и патологических реакций (физиологическая и репаративная регенерация, воспаление, заживление ран, склеротические процессы и др.). Для С. т. с выраженной трофической (защитной) функцией характерно относительно большое количество и разнообразие клеток, в т.ч. лейкоцитов крови. В соединительной ткани преимущественно опорного типа преобладают межклеточные структуры, а клетки представлены только фибробластами или другими механоцитами (хрящевыми клетками, костными клетками). В биохимическом отношении основными компонентами С. т. являются Коллагены, эластины, протеогликаны, Гликозаминогликаны и другие структурные гликопротеиды. К последним относятся адгезивные белки (фибронектин, ламинин и др.), обладающие сродством к другим белкам С. т. и участвующие в их объединении («склеивании»). Эти компоненты С. т. представляют собой высокополимерные вещества, которые локализуются во внеклеточном веществе (матриксе). Их биосинтез осуществляется в основном фибробластами, хондроцитами и др., в небольших количествах они синтезируются также эпителиальными, мышечными и нервными клетками. Эти полимеры синтезируются в виде предшественников, которые после выхода в межклеточное вещество подвергаются «созреванию». Важно отметить, что полимеры матрикса функционально активны только в том случае, если они прошли весь путь созревания. Нарушение этого процесса, например отщепление от коллагена пептидных участков, ведет к тому, что не происходит формирования фибрилл, и ткани, в норме содержащие коллаген, теряют прочность и упругость (см. Элерса — Данлоса синдром). Аналогичный симптомокомплекс развивается и в случае нарушения образования поперечных связей между полипептидными цепочками, а также когда не происходит окисления некоторых аминокислот в белке. Нарушением формирования поперечных связей в белках С. т. можно объяснить ряд патологических проявлений, характерных для заболеваний, сопровождающихся гомоцистинурией. В некоторых случаях биохимической основой заболеваний С. т. является синтез молекул белка, больших по размерам, чем в норме. Так, при Марфана синдроме одна из полипептидных цепочек коллагена содержит на 20 аминокислот больше, чем нормальная цепь. Нарушения метаболизма С. т. играют важную роль и в развитии многих приобретенных заболеваний. Так, избыточный синтез коллагена наблюдается при фиброзирующих процессах в легких, печени, нарушении регенерации при заживлении ран (келоидные рубцы). Различные нарушения обмена веществ, по-видимому, лежат в основе диффузных заболеваний соединительной ткани (Диффузные заболевания соединительной ткани). Распад (катаболизм) С. т. осуществляется во внеклеточном веществе под воздействием специфических ферментов — коллагеназы, эластазы, протеазы, гликозидазы. Продуцируют эти ферменты те же клетки С. т., которые участвуют в синтезе ее белков. Известно, что клетки злокачественных опухолей синтезируют специфические и неспецифические протеазы, расщепляющие ткани, которые окружают опухоль, что способствует метастазированию. Усиленная деградация С. т., обусловленная повышенным синтезом протеолитических ферментов, наблюдается также при артрозах (см. Остеоартроз). Изменения метаболизма С. т. играют важную роль в делении и дифференцировке клеток, формообразовании органов и тканей, а также в процессах развития и старения организма. Показано, что пролиферация и движение клеток на определенных стадиях онтогенеза контролируются уровнем синтеза адгезивных белков матрикса (фибронектина, ламинина и др.). Взаимодействие клеток с этими белками обусловлено тем, что на поверхности клетки имеются специальные рецепторы для каждого из этих белков. Нарушение взаимодействия рецепторов с белком С. т. во взрослом организме может быть причиной того, что клетки выходят из-под контроля окружающих тканей, приобретают способность к неконтролируемому росту. Имеются основания предполагать, что на этом основана малигнизация клеток.

При старении организма уменьшается растворимость коллагенов и эластинов, увеличивается содержание поперечных связей в белках, снижается содержание в ткани протеогликанов и гликозаминогликанов. Характерно также общее уменьшение клеточных элементов в С. т. Эти изменения определяют свойственные старению повышенную ломкость костей, они снижение эластичности кожи и стенок сосудов, ригидность суставов и т.д.

Биохимические методы, используемые при анализе метаболизма С. т. в норме и при патологии, характеризуются большим разнообразием приемов и подходов, из которых наиболее перспективными являются: методы генной инженерии; определение специфических метаболитов (оксипролина, пептидных фрагментов) белков С. т. в крови, моче, биопсийном материале; тестирование активности различных ферментов (коллагеназы, гиалуронидазы и др.) в суставной и других биологических жидкостях. Широко используется анализ обменных процессов С. т. в модельных системах (культурах клеток и тканей, бесклеточных системах белкового синтеза). Широкое применение нашли иммунохимические, цитохимические, электронно-микроскопические методы изучения биосинтеза и структуры биополимеров. Библиогр.: Мазуров В.И. Биохимия коллагеновых белков, М., 1974; Никитин В.Н., Перский Е.Э. и Утевская Л.А. Возрастная и эволюционная биохимия коллагеновых структур, Киев, 1977; Серов В.В. и Шехтер А.Б. Соединительная ткань, М., 1981; Хэм А. и Кормак Д. Гистология, т. 2—3, пер. с англ., М., 1983.

dic.academic.ru

Соединительная ткань | Компетентно о здоровье на iLive

Клетки соединительной ткани

Фибробласты являются основными клетками соединительной ткани. Они веретенообразные, от поверхности фибробластов отходят тонкие короткие и длинные отростки. Количество фибробластов в разных типах соединительной ткани различное, особенно много их в рыхлой волокнистой соединительной ткани. Фибробласты имеют овальное ядро, заполненное мелкими глыбками хроматина, четко различимыми ядрышком и базофильной цитоплазмой, содержащей множество свободных и прикрепленных рибосом.

Клетки соединительной ткани

Волокнистые соединительные ткани

Волокнистые соединительные ткани включают рыхлую и плотную волокнистые соединительные ткани. Плотная волокнистая соединительная ткань, в свою очередь, имеет две разновидности — неоформленную и оформленную плотную соединительную ткань. 

Волокнистые соединительные ткани

Ткани со специальными свойствами

К соединительным тканям со специальными свойствами относятся жировая, ретикулярная и слизистая. Они расположены лишь в определенных органах и участках тела и характеризуются особыми чертами строения и своеобразными функциями. 

Ткани со специальными свойствами

Кровь

Кровь является разновидностью соединительной ткани. Ее межклеточное вещество жидкое — это плазма крови. В плазме крови находятся («плавают») ее клеточные элементы: эритроциты, лейкоциты, а также тромбоциты (кровяные пластинки). У человека с массой тела 70 кг в среднем 5,0-5,5 л крови (это 5-9 % от всей массы тела). Функциями крови являются перенос кислорода и питательных веществ к органам и тканям и выведение из них продуктов обмена веществ.

Плазма крови представляет собой жидкость, остающуюся после удаления из нее форменных элементов — клеток. Она содержит 90-93 % воды, 7-8 % различных белковых веществ (альбумины, глобулины, липопротеиды, фибриноген), 0,9 % солей, 0,1 % глюкозы. В плазме крови имеются также ферменты, гормоны, витамины и другие необходимые организму вещества. Белки плазмы участвуют в процессе свертывания крови, обеспечивают постоянство ее реакции (рН 7,36), давления в сосудах, вязкость крови, препятствуют оседанию эритроцитов. В плазме крови содержатся иммуноглобулины (антитела), участвующие в защитных реакциях организма.

Содержание глюкозы в крови у здорового человека составляет 80-120 мг% (4,44-6,66 ммоль/л). Резкое уменьшение количества глюкозы (до 2,22 ммоль/л) приводит к резкому повышению возбудимости клеток мозга. Дальнейшее снижение содержания глюкозы в крови ведет к нарушению дыхания, кровообращения, сознания и может быть смертельным для человека.  

ilive.com.ua