Косинус 3х формула – Основные тригонометрические формулы. Формулы приведения тригонометрических функций. Тригонометрические тождества.

Содержание

Основные формулы тригонометрии | umath.ru


1. Определения синуса, косинуса, тангенса и котангенса угла.

Синус угла  (обозначается ) – ордината точки , полученной поворотом точки вокруг начала координат на угол .

Косинус угла (обозначается ) – абсцисса точки , полученной поворотом точки вокруг начала координат на угол .

Тангенс угла (обозначается ) – отношение синуса угла к его косинусу, т.е.


Котангенс угла (обозначается ) – отношение косинуса угла к его синусу, т.е.
2. Основное тригонометрическое тождество:
3. Зависимость между синусом, косинусом, тангенсом и котангенсом:
4. Чётность, нечётность и периодичность тригонометрических функций.

Косинус – чётная функция, а синус, тангенс и котангенс – нечётные функции аргумента :


Синус и косинус – периодические с периодом 2\pi функции, а тангенс и котангенс – периодические с периодом функции:Число является наименьшим положительным периодом синуса и косинуса, а число – наименьшим положительным периодом тангенса и котангенса.
Для любого целого справедливы равенства
5. Формулы сложения:

6. Формулы двойного и тройного аргумента:
7. Формулы понижения степени:
8. Формулы приведения:
9. Формулы суммы и разности синусов:
10. Формулы суммы и разности косинусов:
11. Формулы суммы и разности тангенсов:
12. Преобразование произведения синусов и косинусов в сумму (разность):
13. Выражение синуса и косинуса через тангенс половинного аргумента:

umath.ru

Подготовка школьников к ЕГЭ и ОГЭ в учебном центре «Резольвента» (Справочник по математике — Тригонометрия

Справочник по математикеТригонометрия
Связи между тригонометрическими функциями одного угла
Тригонометрические функции суммы и разности двух углов
Тригонометрические функции двойного угла
Формулы понижения степени для квадратов тригонометрических функций
Формулы понижения степени для кубов синуса и косинуса
Выражение тангенса угла через синус и косинус двойного угла
Преобразование суммы тригонометрических функций в произведение
Преобразование произведения тригонометрических функций в сумму
Выражение тригонометрических функций через тангенс половинного угла
Тригонометрические функции тройного угла

Связи между тригонометрическими функциями одного угла

sin2α + cos2α = 1

Тригонометрические функции суммы и разности двух углов

ФормулаНазвание формулы
sin (α + β) = sin α cos β + cos α sin βСинус суммы
sin (α – β) = sin α cos β – cos α sin βСинус разности
cos (α + β) = cos α cos β – sin α sin βКосинус суммы
cos (α – β) = cos α cos β + sin α sin βКосинус разности
Тангенс суммы
Тангенс разности
Синус суммы
sin (α + β) = sin α cos β +
+ cos α sin β
Синус разности
sin (α – β) = sin α cos β –
– cos α sin β
Косинус суммы
cos (α + β) = cos α cos β –
– sin α sin β
Косинус разности
cos (α – β) = cos α cos β +
+ sin α sin β
Тангенс суммы
Тангенс разности

Тригонометрические функции двойного угла

ФормулаНазвание формулы
sin 2α = 2 sin α cos αСинус двойного угла

cos 2α = cos 2α – sin2α

cos 2α = 2cos 2α – 1

cos 2α = 1 – 2sin 2α

Косинус двойного угла
Тангенс двойного угла
Синус двойного угла
sin 2α = 2 sin α cos α
Косинус двойного угла

cos 2α = cos 2α – sin2α

cos 2α = 2cos 2α – 1

cos 2α = 1 – 2sin 2α

Тангенс двойного угла

Формулы понижения степени для квадратов тригонометрических функций

ФормулаНазвание формулы
Выражение квадрата синуса
через косинус двойного угла
Выражение квадрата косинуса
через косинус двойного угла
Выражение квадрата тангенса
через косинус двойного угла
Выражение квадрата синуса через косинус двойного угла
Выражение квадрата косинуса через косинус двойного угла
Выражение квадрата тангенса через косинус двойного угла

Формулы понижения степени для кубов синуса и косинуса

ФормулаНазвание формулы
Выражение куба синуса через
синус угла и синус тройного угла
Выражение куба косинуса через
косинус угла и косинус тройного угла
Выражение куба синуса через
синус угла и синус тройного угла
Выражение куба косинуса через
косинус угла и косинус тройного угла

Выражение тангенса через синус и косинус двойного угла

Преобразование суммы тригонометрических функций в произведение

ФормулаНазвание формулы
Сумма синусов
Разность синусов
Сумма косинусов
Разность косинусов
Сумма тангенсов
Разность тангенсов
Сумма синусов
Разность синусов
Сумма косинусов
Разность косинусов
Сумма тангенсов
Разность тангенсов

Преобразование произведения тригонометрических функций в сумму

ФормулаНазвание формулы
Произведение синусов
Произведение косинусов
Произведение синуса и косинуса
Произведение синусов
Произведение косинусов
Произведение синуса и косинуса

Выражение тригонометрических функций через тангенс половинного угла

ФормулаНазвание формулы
Выражение синуса угла через
тангенс половинного угла
Выражение косинуса угла через
тангенс половинного угла
Выражение тангенса угла через
тангенс половинного угла
Выражение синуса угла через тангенс половинного угла
Выражение косинуса угла через тангенс половинного угла
Выражение тангенса угла через тангенс половинного угла

Тригонометрические функции тройного угла

ФормулаНазвание формулы
sin 3α = 3sin α – 4sin3αСинус тройного угла
cos 3α = 4cos3α –3cos αКосинус тройного угла
Тангенс тройного угла
Синус тройного угла
sin 3α = 3sin α – 4sin3α
Косинус тройного угла
cos 3α = 4cos3α –3cos α
Тангенс тройного угла

      На нашем сайте можно также ознакомиться с разработанными преподавателями учебного центра «Резольвента» учебными материалами для подготовки к ЕГЭ по математике.

    Приглашаем школьников (можно вместе с родителями) на бесплатное тестирование по математике, позволяющее выяснить, какие разделы математики и навыки в решении задач являются для ученика «проблемными».

Запись по телефону (495) 509-28-10

      Для школьников, желающих хорошо подготовиться и сдать ЕГЭ по математике или русскому языку на высокий балл, учебный центр «Резольвента» проводит

подготовительные курсы для школьников 10 и 11 классов

      У нас также для школьников организованы

индивидуальные занятия с репетиторами по математике и русскому языку

МОСКВА, СВАО, Учебный центр «РЕЗОЛЬВЕНТА»

www.resolventa.ru

73 формулы тригонометрии

На странице вы найдете все формулы тригонометрии в удобном для использования оформлении. Формулы структурированы в блоки по количеству аргументов, степеням, арифметическим операциям над ними.

Все формулы тригонометрии

Основные тригонометрические тождества

{\tg \alpha = \dfrac {\sin \alpha}{ \cos \alpha} = \dfrac{1}{\ctg \alpha}}


{\ctg \alpha = \dfrac {\cos \alpha}{ \sin \alpha} = \dfrac{1}{\tg \alpha}}
{\sin ^2 \alpha + \cos ^2 \alpha = 1}
{1+\tg^2\alpha=\dfrac{1}{\cos^2\alpha}}
{1+\ctg^2\alpha=\dfrac{1}{\sin^2\alpha}}
{\tg\alpha \cdot \ctg\alpha=1}

Формулы двойного угла (аргумента)

{\sin(2\alpha)=2 \cdot \cos \alpha \cdot \sin \alpha}


{\sin(2\alpha)=\dfrac{2 \cdot \tg \alpha}{1+\tg ^2 \alpha}=\dfrac{2 \cdot \ctg \alpha}{1+\ctg ^2 \alpha}=\dfrac{2}{\tg \alpha + \ctg \alpha}}
{\cos(2\alpha)=\cos ^2 \alpha- \sin ^2 \alpha = 2 \cdot \cos ^2 \alpha- 1 = 1- 2 \cdot \sin ^2 \alpha}
{\cos(2\alpha)=\dfrac{1 -\tg ^2 \alpha}{1+\tg ^2 \alpha}=\dfrac{\ctg ^2 \alpha- 1}{\ctg ^2 \alpha +1}=\dfrac{\ctg \alpha-\tg \alpha}{\ctg \alpha + \tg \alpha}}
{\tg(2\alpha) = \dfrac{2 \cdot \tg \alpha}{1-\tg ^2 \alpha}=\dfrac{2 \cdot \ctg \alpha}{\ctg ^2 \alpha- 1}=\dfrac{2}{\ctg \alpha- \tg \alpha}}
{\ctg(2\alpha) = \dfrac{\ctg ^2 \alpha-1}{2 \cdot \ctg \alpha}=\dfrac{\ctg \alpha- \tg \alpha}{2}}

Формулы тройного угла (аргумента)

{\sin(3\alpha)=3 \cdot \sin \alpha- 4 \cdot \sin ^3 \alpha}


{\cos(3\alpha)= 4 \cdot \cos ^3 \alpha- 3 \cdot \cos \alpha}
{\tg(3\alpha)= \dfrac{3 \cdot \tg \alpha- \tg ^3 \alpha}{1-3 \cdot \tg ^2 \alpha}}
{\ctg(3\alpha)= \dfrac{\ctg ^3 \alpha- 3 \cdot \ctg \alpha}{3 \cdot \ctg ^2 \alpha -1}}

Формулы понижения степени тригонометрических функций

Вторая степень

{\sin ^2 \alpha = \dfrac{1-\cos(2\alpha)}{2}}
{\cos ^2 \alpha = \dfrac{1+\cos(2\alpha)}{2}}
{\tg ^2 \alpha = \dfrac{1-\cos(2\alpha)}{1+\cos(2\alpha)}}
{\ctg ^2 \alpha = \dfrac{1+\cos(2\alpha)}{1-\cos(2\alpha)}}
{(\sin \alpha- \cos \alpha)^2=1-\sin(2 \alpha)}
{(\sin \alpha+ \cos \alpha)^2=1+\sin(2 \alpha)}

Третья степень

{\sin ^3 \alpha = \dfrac{3 \cdot \sin(\alpha)-\sin(3 \alpha)}{4}}
{\cos ^3 \alpha = \dfrac{3 \cdot \cos(\alpha)+\cos(3 \alpha)}{4}}
{\tg ^3 \alpha = \dfrac{3 \cdot \sin (\alpha)-\sin(3 \alpha)}{3 \cdot \cos (\alpha)+\cos(3 \alpha)}}
{\ctg ^3 \alpha = \dfrac{3 \cdot \cos (\alpha)+\cos(3 \alpha)}{3 \cdot \sin (\alpha)-\sin(3 \alpha)}}

Четвёртая степень

{\sin ^4 \alpha = \dfrac{3-4 \cdot \cos(2 \alpha)+\cos(4 \alpha)}{8}}
{\cos ^4 \alpha = \dfrac{3+4 \cdot \cos(2 \alpha)+\cos(4 \alpha)}{8}}

Пятая степень

{\sin ^5 \alpha = \dfrac{10 \cdot \sin(\alpha)-5 \cdot \sin(3 \alpha)+\sin(5 \alpha)}{16}}
{\cos ^5 \alpha = \dfrac{10 \cdot \cos(\alpha)+5 \cdot \cos(3 \alpha)+\cos(5 \alpha)}{16}}

Формулы половинного угла (аргумента)

{\sin \Big( \dfrac{\alpha}{2} \Big)=\pm \sqrt{\dfrac{1-\cos \alpha}{2}}}


{\cos \Big( \dfrac{\alpha}{2} \Big)=\pm \sqrt{\dfrac{1+\cos \alpha}{2}}}
{\tg \Big( \dfrac{\alpha}{2} \Big)= \dfrac{1-\cos \alpha}{\sin \alpha}= \dfrac{\sin \alpha}{1+\cos \alpha}}
{\ctg \Big( \dfrac{\alpha}{2} \Big)= \dfrac{1+\cos \alpha}{\sin \alpha}= \dfrac{\sin \alpha}{1-\cos \alpha}}

Формулы понижения степени половинного угла (аргумента)

{\sin ^2 \Big( \dfrac{\alpha}{2} \Big)=\dfrac{1-\cos \alpha}{2}}


{\cos ^2 \Big( \dfrac{\alpha}{2} \Big)=\dfrac{1+\cos \alpha}{2}}
{\tg ^2 \Big( \dfrac{\alpha}{2} \Big)=\dfrac{1-\cos \alpha}{1+\cos \alpha}}
{\ctg ^2 \Big( \dfrac{\alpha}{2} \Big)=\dfrac{1+\cos \alpha}{1-\cos \alpha}}

Формулы сложения аргументов

{\sin(\alpha + \beta)=\sin \alpha \cdot \cos \beta + \cos \alpha \cdot \sin \beta}


{\cos(\alpha + \beta)=\cos \alpha \cdot \cos \beta- \sin \alpha \cdot \sin \beta}
{\tg(\alpha + \beta)= \dfrac{\tg \alpha + \tg \beta}{1-\tg \alpha \cdot \tg \beta}}
{\ctg(\alpha + \beta)= \dfrac{\ctg \alpha \cdot \ctg \beta-1}{\ctg \alpha + \ctg \beta}}

Формулы вычитания аргументов

{\sin(\alpha- \beta)=\sin \alpha \cdot \cos \beta- \cos \alpha \cdot \sin \beta}


{\cos(\alpha- \beta)=\cos \alpha \cdot \cos \beta+ \sin \alpha \cdot \sin \beta}
{\tg(\alpha- \beta)= \dfrac{\tg \alpha- \tg \beta}{1+\tg \alpha \cdot \tg \beta}}
{\ctg(\alpha- \beta)= \dfrac{\ctg \alpha \cdot \ctg \beta+1}{\ctg \alpha- \ctg \beta}}

Формулы суммы тригонометрических функций

{\sin \alpha+ \sin \beta=2 \cdot \sin \big( \dfrac{\alpha + \beta}{2} \big) \cdot \cos \big( \dfrac{\alpha- \beta}{2} \big)}


{\cos \alpha+ \cos \beta=2 \cdot \cos \big( \dfrac{\alpha + \beta}{2} \big) \cdot \cos \big( \dfrac{\alpha- \beta}{2} \big)}
{\tg \alpha + \tg \beta = \dfrac{\sin(\alpha + \beta)}{\cos \alpha \cdot \cos \beta}}
{\ctg \alpha + \ctg \beta = \dfrac{\sin(\alpha + \beta)}{\cos \alpha \cdot \cos \beta}}
{\sin (\alpha)+\cos(\alpha)=\sqrt{2} \cdot \sin \Big( \alpha+ \dfrac{\pi}{4} \Big)}

Формулы разности тригонометрических функций

{\sin \alpha- \sin \beta=2 \cdot \sin \big( \dfrac{\alpha- \beta}{2} \big) \cdot \cos \big( \dfrac{\alpha+ \beta}{2} \big)}


{\cos \alpha- \cos \beta=-2 \cdot \sin \big( \dfrac{\alpha + \beta}{2} \big) \cdot \sin \big( \dfrac{\alpha- \beta}{2} \big)}
{\tg \alpha- \tg \beta = \dfrac{\sin(\alpha- \beta)}{\cos \alpha \cdot \cos \beta}}
{\ctg \alpha- \ctg \beta = \dfrac{\sin(\alpha + \beta)}{\sin \alpha \cdot \sin \beta}}
{\sin (\alpha)-\cos(\alpha)=\sqrt{2} \cdot \sin \Big( \alpha- \dfrac{\pi}{4} \Big)}

Формулы произведения тригонометрических функций

{\sin \alpha \cdot \sin \beta = \dfrac{\cos (\alpha- \beta)-\cos(\alpha + \beta)}{2}}


{\sin \alpha \cdot \cos \beta = \dfrac{\sin (\alpha- \beta)+\sin(\alpha + \beta)}{2}}
{\cos \alpha \cdot \cos \beta = \dfrac{\cos (\alpha- \beta)+\cos(\alpha + \beta)}{2}}
{\tg \alpha \cdot \tg \beta = \dfrac{\cos(\alpha- \beta)- \cos(\alpha+\beta)}{\cos(\alpha- \beta)+ \cos(\alpha+\beta)}=\dfrac{\tg \alpha + \tg \beta}{\ctg \alpha + \ctg \beta}}
{\ctg \alpha \cdot \ctg \beta = \dfrac{\cos(\alpha- \beta)+ \cos(\alpha+\beta)}{\cos(\alpha- \beta)- \cos(\alpha+\beta)}=\dfrac{\ctg \alpha + \ctg \beta}{\tg \alpha + \tg \beta}}
{\tg \alpha \cdot \ctg \beta = \dfrac{\sin(\alpha- \beta)+ \sin(\alpha+\beta)}{\sin(\alpha+ \beta)- \sin(\alpha-\beta)}}

Формулы произведения тригонометрических функций в степени

{\sin ^2 (\alpha) \cdot \cos ^2 (\alpha) = \dfrac{1-\cos(4 \alpha)}{8}}


{\sin ^3 (\alpha) \cdot \cos ^3 (\alpha) = \dfrac{3 \cdot \sin(2 \alpha)- \sin(6 \alpha)}{32}}
{\sin ^4 (\alpha) \cdot \cos ^4 (\alpha) = \dfrac{3-4 \cdot \cos(4 \alpha)+ \cos(8 \alpha)}{128}}
{\sin ^5 (\alpha) \cdot \cos ^5 (\alpha) = \dfrac{10 \cdot \sin (2 \alpha)-5 \cdot \sin(6 \alpha)+\sin (10 \alpha)}{512}}

Все формулы тригонометрии на одном листе

На этой картинке собраны все формулы тригонометрии для печати. Листо можно распечатать и использовать при решении задач ЕГЭ или вырезать таблицы и использовать как шпаргалку. Распечатанный лист можно применять как справочный материал при решении задач по тригонометрии в 10 и 11 классе.

Все формулы тригонометрии на одном листе

Ваша оценка

[Оценок: 8 Средняя: 5]

Просмотров страницы: 786

mnogoformul.ru

cos 3x

Начнем с анализа заданного тригонометрического выражения.
Выражение содержит косинус от нечетного угла, следовательно, не может быть применена формула для двойного угла этой функции. Разложим аргумент 3х на сумму двух аргументов — х и 2х:

   

Распишем полученное выражение с помощью формулы для косинуса суммы и получим:

   

Избавимся от двойных аргументов под знаками синуса и косинуса с помощью формул для тригонометрических функций от двойных углов:

   

Раскроем скобки в выражении и обратим внимание на подобные слагаемые, при сложении которых выражение значительно упроститься:

   

Далее вынесем косинус за скобку, а от квадрата синуса перейдем к квадрату косинуса, используя основное тригонометрическое уравнение:

   

Раскроем скобки, приведем подобные слагаемые и снова раскроем скобки, после чего получим:

   

Получили, что косинус тройного угла можно выразить через разность косинусов одинарного аргумента, то один из членов разности — кубический косинус.
Тождеством удобно пользоваться, если нужно избавиться от тройного аргумента. Но не стоит забывать, что вместо тройного аргумента появляется разность с кубом.

ru.solverbook.com

Тригонометрические выражения и тригонометрические формулы [wiki.eduVdom.com]

subjects:mathematics:тригонометрические_выражения_и_формулы

Отметим на координатной оси Ох справа от точки О точку А и построим окружность с центром в точке О и радиусом ОА (так называемым начальным радиусом).


Окружность с центром в точке О и радиусом ОА

Рис.1

Пусть при повороте на угол a против часовой стрелки начальный радиус ОА переходит в радиус ОВ.

Тогда:

  • Синусом (sin α) угла α называется отношение ординаты точки В к длине радиуса.

  • Косинусом (cos α) угла α называется отношение абсциссы точки В к длине радиуса.

  • Тангенсом (tg α) угла α называется отношение ординаты точки В к ее абсциссе.

  • Котангенсом (ctg α) угла α называется отношение абсциссы точки В к ее ординате.

  • Секанс определяется как sec α = 1/(cos α)

  • Косеканс определяется как cosec α = 1/(sin α)

  • В западной литературе тангенс, котангенс и косеканс обозначаются tan x, cot x, csc x

Если координаты точки В равны x и y, то:

$$\sin{\alpha} = \frac{y}{R}\;;\; \cos{\alpha} = \frac{x}{R}\;;\; {\rm tg}\, \alpha = \frac{y}{x}\;;\; {\rm ctg}\, \alpha = \frac{x}{y}$$

Таблица значений sin α, cos α, tg α, ctg α

Приведем таблицу значений тригонометрических функций некоторых углов (прочерк сделан, когда выражение не имеет смысла):

Таблица значений sin α, cos α, tg α, ctg α

0 рад

30º
$$\frac{\pi}{6}$$
45º
$$\frac{\pi}{4}$$
60º
$$\frac{\pi}{3}$$
90º
$$\frac{\pi}{2}$$
180º

$$\pi$$

270º
$$\frac{3\pi}{2}$$
360º

$$2\pi$$

$$\sin \alpha$$ 0 $$\frac{1}{2}$$ $$\frac{\sqrt{2}}{2}$$ $$\frac{\sqrt{3}}{2}$$ 1 0 -1 0
$$\cos \alpha$$ 1 $$\frac{\sqrt{3}}{2}$$ $$\frac{\sqrt{2}}{2}$$ $$\frac{1}{2}$$ 0 -1 0 1
$${\rm tg}\, \alpha$$ 0 $$\frac{1}{\sqrt{3}}$$ 1 $$\sqrt{3}$$ 0 0
$${\rm ctg}\, \alpha$$ $$\sqrt{3}$$ 1 $$\frac{1}{\sqrt{3}}$$ 0 0

Свойства sin, cos, tg и ctg

Свойства синуса (sin), косинуса (cos), тангенса(tg) и котангенса(ctg):

  1. Определение знака

    • Если α-угол I или II координатной четверти, то sin α > 0;

    • Если α-угол III или IV координатной четверти, то sin α < 0;

    • Если α-угол I или IV координатной четверти, то cos α > 0;

    • Если α-угол II или III координатной четверти, то cos α < 0;

    • Если α-угол I или III координатной четверти, то tg α > 0 и ctg α > 0;

    • Если α-угол II или IV координатной четверти, то tg α < 0 и ctg α < 0.

  2. Синус, тангенс и котангенс — нечетные функции; косинус — четная функция.

    • Для чётной функции справедливо равенство: y(-x) = y(x). Примеры чётных функций: y = cos(x), y = x2.

    • Для НЕчётной функции справедливо равенство: y(-x) = -y(x). Примеры НЕчётных функций: y = sin(x), y = x.

  3. При изменении угла на целое число оборотов значения тригонометрических функций не меняются.

1 радиан — это мера центрального угла, которому соответствует длина дуги, равная длине радиуса окружности.

Связь радианов с градусами: $1° =\frac{\pi}{180}\text{рад; 1 рад }=\frac{180°}{\pi}$.

Основные тригонометрические тождества

Формулы приведения

X$\frac{\pi}{2}-\alpha$$\frac{\pi}{2}+\alpha$$\pi-\alpha$$\pi+\alpha$$\frac{3\pi}{2}-\alpha$$\frac{3\pi}{2}+\alpha$$2\pi-\alpha$$2\pi+\alpha$
sin xcos αcos αsin α-sin α-cos α-cos α-sin αsin α
cos xsin α-sin α-cos α-cos α-sin αsin αcos αcos α
tg xctg α-ctg α-tg αtg αctg α-ctg α-tg αtg α
ctg xtg α-tg α-ctg αctg αtg α-tg α-ctg αctg α

Формулы сложения

Формулы двойного угла

Формулы двойного угла или двойного аргумента:

Формулы половинного аргумента

Формулы половинного аргумента (для sin и cos — формулы понижения степени):

Формулы суммы и разности

Формулы произведения

Соотношения между sin x, cos x и tg(x/2)

Один из способов использования: свести всё к tg(x/2) и путём замены получить обычное алгебраическое выражение.

Простейшие тригонометрические уравнения

Дополнительно

subjects/mathematics/тригонометрические_выражения_и_формулы.txt · Последние изменения: 2014/02/26 22:10 —

wiki.eduvdom.com

как вывести забытую тригонометрическую формулу?

На олимпиаде по математике с большой степенью вероятности, а на внешнем независимом тестировании – уж наверняка встретятся задания по тригонометрии. Тригонометрию часто не любят за необходимость зубрить огромное количество трудных формул, кишащих синусами, косинусами, тангенсами и котангенсами. На сайте уже когда-то давались советы, как вспомнить забытую формулу, на примере формул Эйлера и Пиля.

А в этой статье мы постараемся показать, что достаточно твёрдо знать всего пять простейших тригонометрических формул, а об остальных иметь общее представление и выводить их по ходу дела. Это как с ДНК: в молекуле не хранятся полные чертежи готового живого существа. Там содержатся, скорее, инструкции по его сборке из имеющихся аминокислот. Так и в тригонометрии, зная некоторые общие принципы, мы получим все необходимые формулы из небольшого набора тех, которые нужно обязательно держать в голове.

Будем опираться на следующие формулы:

  1. Основное тригонометрическое тождество: sin2a+cos2a = 1
  2. Определение тангенса:
  3. Определение котангенса:
  4. Формула синуса суммы: sin(a+b) = sinacosb+cosasinb
  5. Формула косинуса суммы: cos(a+b) = cosacosbsinasinb

Из формул синуса и косинуса сумм, зная о чётности функции косинуса и о нечётности функции синуса, подставив -b вместо b, получаем формулы для разностей:

  1. Синус разности: sin(a-b) = sinacos(-b)+cosasin(-b) = sinacosbcosasinb
  2. Косинус разности: cos(a-b) = cosacos(-b)sinasin(-b) = cosacosb+sinasinb

Поставляя в эти же формулы a = b, получаем формулы синуса и косинуса двойных углов:

  1. Синус двойного угла: sin2a = sin(a+a) = sinacosa+cosasina = 2sinacosa
  2. Косинус двойного угла: cos2a = cos(a+a) = cosacosasinasina = cos2asin2a

Аналогично получаются и формулы других кратных углов:

  1. Синус тройного угла: sin3a = sin(2a+a) = sin2acosa+cos2asina = (2sinacosa)cosa+(cos2asin2a)sina = 2sinacos2a+sinacos2asin3a = 3sinacos2asin3a = 3sina(1-sin2a)-sin3a = 3sina-4sin3a
  2. Косинус тройного угла: cos3a = cos(2a+a) = cos2acosasin2asina = (cos2asin2a)cosa-(2sinacosa)sina = cos3a-sin2acosa-2sin2acosa = cos3a-3sin2acosa = cos3a-3(1-cos2a)cosa = 4cos3a-3cosa

Прежде чем двигаться дальше, рассмотрим одну задачу.
Дано: угол — острый.
Найти его косинус, если
Решение, данное одним учеником:
Т.к. , то sina = 3,а cosa = 4.
(Из математического юмора)

Итак, определение тангенса связывает эту функцию и с синусом, и с косинусом. Но можно получить формулу, дающую связь тангенса только с косинусом. Для её вывода возьмём основное тригонометрическое тождество: sin2a+cos2a = 1 и разделим его на cos2a. Получим:

  1. Связь тангенса и косинуса:

Так что решением этой задачи будет:

(Т.к. угол острый, при извлечении корня берётся знак +)

  1. Аналогично получаем связь котангенса и синуса:

Формула тангенса суммы – ещё одна, тяжело поддающаяся запоминанию. Выведем её так:

  1. Формула тангенса суммы: . Разделив числитель и знаменатель на произведение косинусов, получим:

Сразу выводится и

  1. Формула тангенса двойного угла:

Из формулы косинуса двойного угла можно получить формулы синуса и косинуса для половинного. Для этого к левой части формулы косинуса двойного угла:

cos2a = cos2asin2a
прибавляем единицу, а к правой – тригонометрическую единицу, т.е. сумму квадратов синуса и косинуса.
cos2a+1 = cos2asin2a+cos2a+sin2a
2cos2a = cos2a+1
Выражая cosa через cos2a и выполняя замену переменных, получаем:

  1. Косинус половинного угла:

Знак берётся в зависимости от квадранта.

Аналогично, отняв от левой части равенства единицу, а от правой — сумму квадратов синуса и косинуса, получим:
cos2a-1 = cos2asin2acos2asin2a
2sin2a = 1-cos2a

  1. Cинус половинного угла:

И, наконец, чтобы преобразовать сумму тригонометрических функций в произведение, используем следующий приём. Допустим, нам нужно представить в виде произведения сумму синусов sina+sinb. Введём переменные x и y такие, что a = x+y, b+x-y. Тогда
sina+sinb = sin(x+y)+sin(x-y) = sinxcosy+cosxsiny+sinxcosy-cosxsiny = 2sinxcosy. Выразим теперь x и y через a и b.

Поскольку a = x+y, b = x-y, то . Поэтому

  1. Представление суммы синусов в виде произведения:

Сразу же можно вывести

  1. Формулу для разбиения произведения синуса и косинуса в сумму: sinacosb = 0.5(sin(a+b)+sin(a-b))

Рекомендуем потренироваться и вывести самостоятельно формулы для преобразования в произведение разности синусов и суммы и разности косинусов, а также для разбиения в сумму произведений синусов и косинусов. Проделав эти упражнения, вы досконально освоите мастерство вывода тригонометрических формул и не потеряетесь даже на самой сложной контрольной, олимпиаде или тестировании.

intelmath.narod.ru

Все формулы тригонометрии

В таблице приведены формулы приведения для тригонометрических функций (sin, cos, tg, ctg).

 

Тригонометрические формулы преобразования разности аргументов

 

 

 

 

 

 


Формулы преобразования функций двойного угла (2α) в выражение через одинарный угол (α)

 

sin(2α)- через sin и cos:

 

sin(2α)- через tg и ctg:

 

cos(2α)- через sin и cos:

 

cos(2α)- через tg и ctg:

 

 

tg(2α) и сtg(2α):

 

 


 

Формулы преобразования функций (синус, косинус, тангенс, котангенс), тройного угла (3α) в выражение через одинарный угол (α):

 

 

 

 

 


Уравнения разложения тригонометрических функций:

квадрат синус альфа, косинус альфа, тангенс альфа, котангенс альфа.

 

 

 

 

 


 

 

 

sin(α)=OA

cos(α)=OC

tg(α)=DE

ctg(α)=MK

R=OB=1

 

 

 

 

 

 

Значения функций для некоторых углов, α

 

 

 


zdesformula.ru