Какие вещества способствуют разрушению озонового слоя – Вопрос 56. Озон. Озоновая дыра. Какие газы вызывают разрушение озонового слоя. Последствия для живых организмов.

Вещества, которые разрушают озоновый слой

Если бы не озоновый слой, то существование человека и других млекопитающих было бы невозможно, именно он защищает нас от ультрафиолетового солнечного излучения. Для того чтобы возникли все необходимые условия образования озонового слоя, чтобы он окончательно сформировался, понадобились миллиарды лет, человечество же каким-то образом сумело нанести ему урон за последнее столетие. Такое происходит, когда научно-технический прогресс и промышленность опережают развитие «экологического» сознания.

Об озоноразрушающих веществах с научной точки зрения

К веществам, которые разрушают озоновый слой, ученые причисляют органические химические соединения, в которых содержится бром, хлор. Чтобы оценивать их опасность количественно, была введена величина – озоноразрушающий потенциал или сокращенно ОРП. Итак, чем выше ОРП определенного вещества, тем опаснее оно для озонового слоя.

Наиболее высокий ОРП, достигающий 12, у галлонов (органические газы, которые используют, например, для тушения пожаров), низкий – у хлорфторуглеродов.

Вещества, разрушающие озоновый слой, с точки зрения обывателей

Где же эти сложные химические соединения с устрашающими названиями используются?

Химическая промышленность по всему миру очень долго, не задумываясь о последствиях, выпускала их для охладительных установок, противопожарных систем, приспособлений для подачи теплого воздуха. Проще говоря, используя старые холодильники, огнетушители, аэрозоли, растворители и т.п., мы вредили тому, что защищает нас от губительного излучения.

Пожиная последствия

Об озоновой дыре слышали многие, еще бы – ее обнаружили над Антарктидой в уже далеком 1985 году. Некоторые возлагают ответственность за ее появление всецело на химическую промышленность. Однако это неправильно. Да, антропогенные факторы (названные ранее вещества) способствуют гибели молекул озона, однако отрицательно влияют на озоновый слой и некоторые природные факторы: полярный вихрь, полярные зимы.

Но в утончении озонового слоя над городами повинно человечество. Как результат – ухудшение сопротивляемости организма людей болезням, уменьшение урожаев сельхоз культур, это даже влияет на срок службы материалов, уменьшая его, например резины.

Ученые подсчитали, что при уменьшении толщины слоя всего лишь на 1%, в тысячи раз увеличится число случаев заболеваний рака кожи. И это только один пример, поэтому давайте попытаемся остановить разрушение, тем более что альтернативы существуют. Вместо разрушающих озон веществ можно использовать:

нетоксичные пропан и углекислый газ, аммиак (один из лучших хладагентов), природный газ изобутан (как хладагент, вспенивающий агент), циклопентан.

Оцените статью: Поделитесь с друзьями!

theecology.ru

Устный журнал «День охраны озонового слоя» — Информио

Цель: Пропаганда сохранения озонового слоя.

1. Ведущий

Доброе утро, ребята! Сегодня мы пригласили вас в актовый зал для того чтобы вы прослушали небольшой устный журнал, который посвящён Международному дню охраны озонового слоя. Что такое озоновый слой? Что разрушает его? Как его спасти? Вот об этом у нас сегодня пойдёт речь.

В этот день, 16 сентября 1987 года, 36 стран, в том числе и Россия, подписали документ (Монреальский протокол), в котором говорилось, что все страны – участницы должны ограничить, а в дальнейшем полностью прекратить использование веществ, которые разрушают озоновый слой. А в этот день, 16 сентября, все страны должны вести пропаганду защиты озонового слоя. Девизом этого дня стали слова: «Сохрани небо: защити себя – защити озоновый слой!»

 

2. Ведущий

Что же такое озоновый слой? Озоновый слой, этот тонкий газовый щит, защищает Землю от губительного воздействия солнечной радиации, способствуя тем самым сохранению жизни на планете. Озоновый слой простирается над землей огромным покрывалом, уходящим в космос. Если этот слой истощится когда-нибудь, это будет опасно для всей биосферы, для всего живого. От попадания ультрафиолетовых лучей на человека, может возникнуть рак кожи, слепота и другие заболевания.

 

3. Ведущий

Жарким туманным днем в загазованной местности уровень озона может достигнуть угрожающих величин. 

Дыхание озоном очень опасно, так как этот газ разрушает легкие. Пешеходы, вдыхающие большое количество озона, начинают задыхаться и ощущать боль в груди. Деревья и кусты, при высоких концентрациях озона в воздухе перестают нормально расти. Но если озон находится там, где ему положено быть — на большой высоте, то он очень даже полезен для здоровья.

 

1. Ведущий

Озон поглощает ультрафиолетовые лучи. Это те самые лучи, от которых кожа становится загорелой. Но если на кожу падает избыток ультрафиолетового излучения, то можно получить солнечный ожог или заболеть раком кожи.

 

2. Ведущий

Еще более тревожит то, что истощение озонового слоя может непредсказуемо изменить климат Земли. Озоновый слой задерживает тепло, рассеивающееся с поверхности Земли. По мере уменьшения количества озона в атмосфере температура воздуха снижается, изменяется направление господствующих ветров и меняется погода. Результатом могут стать засухи, неурожаи, нехватка продовольствия и голод.

 

3. Ведущий

В 80-е годы 20 века ученые сделали открытие: в районе Антарктиды общее содержание озона уменьшилось в 2 раза. Именно тогда появилось название

«озоновая дыра».

 

1. Ведущий

Что разрушает озоновый слой? Об озоновом слое атмосферы ученые узнали в 70  годы. Было сделано открытие, что производные хлор фтор углерода (фреоны).

Фреоны — соединения, применяющиеся в холодильниках, кондиционерах и аэрозольных баллонах — уничтожают озон. Фреоны выделяются в атмосферу при каждом использовании баллончика с дезодорантом или лаком для волос. Поднимаясь в верхние слои атмосферы, молекулы фреонов взаимодействуют с молекулами озона. Под действием солнечной радиации фреоны выделяют хлор, который расщепляет озон с образованием обычного кислорода. 

В месте такого взаимодействия озоновый слой исчезает.

Ядерные взрывы.

При ядерных взрывах выделяется очень много энергии в виде тепла. Температура, равная 6000 С устанавливается уже через несколько секунд после ядерного взрыва. Это энергия огненного шара. В сильно нагретой атмосфере происходят такие преобразования химических веществ, какие при нормальных или не происходят, или протекают очень медленно. Что касается озона, его исчезновения, то наиболее опасными для него являются образующиеся при этих преобразованиях окислы азота. Так, за период с 1952 по 1971 г. в результате ядерных взрывов в атмосфере образовалось около 3 млн. т. окислов азота. Дальнейшая судьба их такова: они в результате перемешивания атмосферы попадают на разные высоты, в том числе и в атмосферу. Там они вступают в химические реакции с участием озона, приводя к его разрушению.

Высотные самолёты.

К разрушению озонного слоя причастны и окислы азота, которые образуются при ядерных взрывах. Но окислы азота образуются и в камерах сгорания турбореактивных двигателей высотных самолётов. Окислы азота образуются из азота и кислорода, которые там находятся. Скорость образования окислов азота тем больше, чем выше температура, т. е. чем больше мощность двигателя.Важна не только мощность двигателя самолёта, но и высота, на которой он летает и выпускает разрушающие озон окислы азота. Чем выше образуется окись или закись азота, тем он губительнее для озона.Общее количество окиси азота, которое выбрасывается в атмосферу в год, оценивается в 1 млрд. т. Примерно треть этого количества выбрасывается самолётами выше среднего уровня тропопаузы (11 км). Что касается самолётов, то наиболее вредными являются выбросы военных самолётов, количество которых исчисляется десятками тысяч. Они летают преимущественно на высотах озонного слоя.

Сжигание топлива.

Закись азота обнаруживается и в дымовых газах электростанций. Собственно, о том, что окись и двуокись азота присутствуют в продуктах сгорания, было известно давно. Но эти высшие окислы не влияют на озон. Они, конечно, загрязняют атмосферу, способствуют образованию в ней смога, но довольно быстро удаляются из тропосферы. Закись же азота, как уже говорилось, опасна для озона. При низких температурах она образуется в таких реакциях:

N2 + O + M = N2O + M,

2NH3 + 2O2 =N2O = 3H2.

Масштаб этого явления очень значителен. Таким путём в атмосфере ежегодно образуется примерно 3 млн. т. закиси азота! Эта цифра говорит о том, что этот источник разрушения озона существенный.

Минеральные удобрения.

Озон в стратосфере может уменьшаться и за счет того, что в стратосферу попадает закись азота N2O, которая образуется при денитрификации связанного почвенными бактериями азота. Такую же денитрификацию связанного азота производят и микроорганизмы в верхнем слое океанов и морей. Процесс денитрификации напрямую связан с количеством связанного азота в почве. Таким образом, можно быть уверенным в том, что с ростом количества вносимых в почву минеральных удобрений будет в такой же мере увеличиваться и количество образованной закиси азота N2O. Далее, из закиси азота образуются окислы азота, которые и приводят к разрушению стратосферного озона.

 

1. Ведущий

Как спасти озоновый слой? Ребята, смотрите как много причин истощения и разрушения озонового слоя. Учёные подсчитали, что даже если мы прекратим всю деятельность, которая разрушает озоновый слой, то на восстановление его в полном объёме уйдёт 100 лет.

Что же в наших силах, чем можем помочь мы:

  • по возможности сократите использование химических средств в баллончиках;
  • старайтесь поменьше ездить на личном автотранспорте;
  • сократите количество отходов и мусора;
  • пользуйтесь экологически чистыми сумками;
  • старые вещи старайтесь не выбрасывать, а раздавать нуждающимся.

Сохранение озонового слоя, а значит и всей нашей планеты, — дело каждого человека!

Поэтому не думайте, что от вас ничего не зависит!

www.informio.ru

Ученые выявили вещества, разрушающие озоновый слой «не хуже» фреона

Британские ученые обнаружили в атмосфере Земли ранее неизвестный класс химических веществ

17.02.2015 в 14:22, просмотров: 40296

 Ученые обнародовали тревожный факт: оказывается, химикаты, которые не контролируются соглашением ООН, разработанным для защиты озонового слоя, ускоряют его истощение. Концентрация «короткоживущих субстанций» (веществ, в состав которых входят атомы галогенов, в том числе йода, брома и хлора) в 50 раз превышает концентрацию фреона, который раньше считался главной угрозой для озонового слоя. В Nature Geoscience ученые сообщили, что содержание в атмосфере одной из этих очень короткоживущих субстанций (VSLS) быстро увеличивается.

Nature Geoscience.

 «Нам нужно продолжить наблюдения за состоянием атмосферы и концентрацией этих газов для того, чтобы определить их источник. Сейчас озоновый слой все еще испытывает благоприятные эффекты от запрета фреонов, но растущая концентрация дихлорметана в атмосфере может нейтрализовать их и внести массу неопределенностей в наши прогнозы по будущему состоянию озона и климата», — заявил Мартин Чипперфилд из университета Лидса.

Он и его коллеги раскрыли новый класс органических веществ, разрушающих озоновый слой, наблюдая за изменениями в концентрации антропогенных и природных соединений, содержащих в себе атомы галогенов — хлора, брома, йода.

Как отмечают исследователи, подобные молекулы широко встречаются в природе и промышленности и они легко разрушают озон, однако экологи не обращали на них особого внимания из-за того, что они распадаются очень быстро и живут в атмосфере не дольше полугода. По этой причине ученые часто называют их VSLS — «короткоживущими субстанциями».

Исследователи решили проверить, насколько высока их концентрация в воздухе сегодня и влияют ли они, хоть в какой-либо степени, на состояние озонового щита в стратосфере Земли. Первые же замеры показали, что доля VSLS в воздухе была не просто высокой, но и достаточно быстро росла на протяжении последних 20 лет. В некоторых уголках планеты, отмечают ученые, их концентрация выросла в два раза, а в целом доля содержащих хлор веществ из этого класса в 50 раз больше, чем концентрация хлоровых фреонов в атмосфере.

По расчетам ученых, на долю человека пока приходится лишь 10% от общего числа молекул озона, уничтоженных VSLS, но их «вклад» в разрушение озонового слоя продолжает расти. Кроме того, эти вещества разлагают озон не только в стратосфере, где находится озоновый слой, но и в нижней части атмосферы, что может заметным образом влиять на климат планеты (озон является сильным парниковым газом).

Эксперты выделили естественные источники очень короткоживущих субстанций, например, морские водоросли, и промышленные источники, чтобы выяснить вклад каждой из групп, отмечает innovanews.ru. Итак, сегодня естественно выделяемые VSLS по сравнению с промышленными разрушают озон в соотношении 9 к 1. Но вклад промышленных источников растет и продолжит увеличиваться с годами.

Считается, что причиной уменьшения озона в стратосфере и образование озоновых дыр является производство и применение хлор- и бромсодержащих фреонов. Попадая после использования в атмосферу, они разлагаются под воздействием ультрафиолетового излучения Солнца. Высвободившиеся компоненты активно взаимодействуют с озоном в так называемом галогеновом цикле распада атмосферного озона.

Подписание и ратификация странами ООН Монреальского протокола привело к уменьшению производства озоноразрушающих фреонов и способствует восстановлению озонового слоя Земли.

В связи с пагубным влиянием озоноразрушающего фреона R-22, его использования год от года сокращается в США и Европе, где с 2010 года официально запрещено применять этот фреон. В России c 2011 года прекращен импорт холодильного оборудования, в том числе кондиционеров промышленного и полу-промышленного класса, однако сам фреон пока производится в стране. На замену фреону R-22 должен прийти фреон R-410A, а также ретрофиты R-407C, R-422D.

www.mk.ru

Озоноразрушающие вещества и экологически безопасные альтернативы

До тех пор, пока не было обнаружено, что озоновый слой разрушается вследствие выбросов в атмосферу хлорфторуглеродов (ХФУ), эти вещества активно использовались в холодильной и климатической технике.

В 1990-х годах в холодильном и климатическом оборудовании, а также в производстве пеноматериалов стали активно применяться гидрохлорфторуглероды (ГХФУ), рассматривавшиеся в то время в качестве вполне приемлемой переходной альтернативы ХФУ. Эти озоноразрушающие вещества были включены в Приложение С к Монреальскому протоколу, и для них были установлены меры регулирования. Предполагалось, что использование ГХФУ, являющихся, как и ХФУ, озоноразрушающими веществами, но имеющих значительно меньший, чем у ХФУ, озоноразрушающий потенциал (ОРП), будет временной мерой, а в последующем их производство и потребление также будет ликвидировано в рамках Монреальского протокола. Однако опасность ГХФУ заключается не только в их способности разрушать озоновый слой, но и в том, что они обладают высоким потенциалом глобального потепления (ПГП), и на основании этого отнесены к парниковым газам. Парниковыми газами являются и гидрофторуглероды (ГФУ), рассматривавшиеся ранее в качестве озонобезопасной замены ГХФУ, и их использование способно принести заметный вред окружающей среде. В рамках Проекта ЮНИДО/ГЭФ по поэтапному выводу из оборота ГХФУ предполагается исключить данные озоноразрушающие вещества из производства и осуществить переход на альтернативные холодильные и вспенивающие агенты, не обладающие ПГП.

Подробнее об озоноразрушающих веществах:

  • Классификация озоноразрушающих веществ
  • Озоноразрушающие вещества (ХФУ и галоны) в Российской Федерации: ХФУ 11, ХФУ 12, ХФУ13, ХФУ 113, ХФУ 115, Галон 2402, Галон 1211, Галон 1301
  • Переходные озоноразрушающие вещества или гидрохлорфторуглероды: ГХФУ 21, ГХФУ 22, ГХФУ 141b, ГХФУ 142b
  • Применение ХФУ и ГХФУ в различных секторах потребления

Экологически безопасные альтернативы:

Аммиак (R717)

Аммиак не является газом, разрушающим озоновый слой (ОРП = 0), он также не вносит прямого вклада в увеличение парникового эффекта (ПГП = 0). По термодинамическим свойствам аммиак – один из лучших хладагентов: по объемной холодопроизводительности он значительно превышает R12, R11, R22 и R502, имеет более высокий коэффициент теплоотдачи, что позволяет применять в теплообменных аппаратах трубы меньшего диаметра.

Пары аммиака легче воздуха, он хорошо растворяется в воде (один объем воды может растворить 700 объемов аммиака, что исключает замерзание влаги в системе).

Из-за резкого запаха аммиака появление течи в холодильной системе легко обнаруживается органолептически обслуживающим персоналом. Кроме того, хладагент R717 имеет низкую стоимость, т.к. объемы его производства (для иных нужд) значительны.

Особенность аммиака как хладагента – более высокое значение температуры нагнетания по сравнению с R22 и R12. В связи с этим предъявляются жесткие требования к термической стабильности холодильных масел, используемых в сочетании с аммиаком в течение длительного времени при эксплуатации установки. Конденсатор должен иметь развитую поверхность теплообмена, в результате чего возрастает его металлоемкость.
Кроме того, следует учитывать, что аммиак вреден для здоровья человека, предельно допустимая концентрация в воздухе – 0,02 мг/дм 3, что соответствует объемной доле 0,0028%. В соединении с воздухом при объемной доле 16…26,8% и наличии открытого пламени аммиак взрывоопасен. Температура воспламенения с воздухом 651oС.

Диоксид углерода (R744)

Углекислый газ (СО 2) – дешевое нетоксичное, негорючее и практически экологически чистое вещество (ОРП = 0, ПГП = 1). Его преимущества: низкая цена, простое обслуживание, совместимость с минеральными маслами, электроизоляционными и конструкционными материалами. Вместе с тем, при использовании диоксида углерода требуется водяное охлаждение конденсатора холодильной машины, увеличивается металлоемкость холодильной установки (по сравнению с металлоемкостью установок, работающих на галоидопроизводных хладагентах). Перспективно применение диоксида углерода в низкотемпературных двухкаскадных установках и системах кондиционирования воздуха автомобилей и поездов, а также в бытовых холодильниках и тепловых насосах.

Кроме того, диоксид углерода (в жидком виде и в смеси с водой) может применяться для получения эластичных и эластомерных пен.

Пропан (R290)

Пропан нетоксичен, характеризуется низкой стоимостью, имеет хорошие экологические характеристики (ОРП = 0, ПГП = 3). При использовании данного хладагента не возникает проблем с выбором конструкционных материалов деталей компрессора, конденсатора и испарителя. Пропан хорошо растворяется в минеральных маслах.

Принципиальный недостаток пропана – пожароопасность. Кроме того, габариты компрессора при использовании пропана будут больше, чем у компрессора аналогичной холодопроизводительности на R22.

Пропан можно сразу же запускать в систему, где до этого применялся озоноопасный хладагент. Он работает с теми же минеральными маслами, требует такой же электроизоляции, тех же уплотняющих материалов, труб того же диаметра. Как показали исследования, в этом случае теряется до 10% холодопроизводительности, если в системе ранее был R22, и 15% – если R502. Процедура сервисного обслуживания практически не изменяется.

Изобутан (R600a)

Этот природный газ не является разрушителем озона и озонового слоя (ОРП = 0) и не способствует появлению парникового эффекта (ПГП = 0,001). Масса хладагента, циркулирующего в холодильном агрегате при использовании изобутана, значительно сокращается (примерно на 30%). Изобутан хорошо растворяется в минеральном масле, имеет более высокий, чем R12, холодильный коэффициент, что приводит к снижению энергопотребления.

При этом изобутан горюч, легко воспламенятся и взрывоопасен в соединении с воздухом при объемной доле хладагента 1,3…8,5%. Температура возгорания равна 460oС.

В настоящее время R600a широко применяется в бытовой холодильной технике. В частности, компрессоры, работающие на изобутане, выпускает международный концерн Electrolux. Холодильные агрегаты с R600a характеризуются меньшим уровнем шума из-за низкого давления в рабочем контуре хладагента.

Также изобутан может применяться в качестве вспенивающего агента для получения полиуретановых пен.

Циклопентан

Использование циклопентана в качестве вспенивающего агента при получении жестких полиуретановых изоляционных пенопластов началось в 90-х годах. Переход на циклопентан обусловлен его экологичностью. Однако из-за более высокой температуры кипения и худшего коэффициента теплопроводности он уступает по эффективности R11. Уменьшение прочности при сжатии готовых пенопластов обычно приводит к повышению плотности изделий и трудностям при формовании. Увеличение веса пены, высокая стоимость циклопентана, затраты на переоборудование предприятия, связанные с безопасностью работы с горючими вспененными агентами, приводят к росту издержек производства. Кроме того, такие летучие органические соединения, как циклопентан, могут способствовать образованию фотохимического смога, в котором проходят реакции, приводящие к образованию тропосферного озона – третьего по степени влияния на климат парникового газа.

Презентации и программное обеспечение

Дополнительные материалы

Перейти к странице «Европейский опыт F-регулирования»

www.ozoneprogram.ru

Разрушение озонового слоя земли хлорфторуглеводородами

XX век принес человечеству немало благ, связанных с бурным развитием научно-технического прогресса, и в то же время поставил жизнь на Земле на грань экологической катастрофы. Рост населения, интенсификация добычи и выбросов, загрязняющих Землю, приводят к коренным изменениям в природе и отражаются на самом существовании человека. Часть из таких изменений чрезвычайно сильна и настолько широко распространена, что возникают глобальные экологические проблемы. Имеются серьезные проблемы загрязнения (атмосферы, вод, почв), кислотных дождей, радиационного поражения территории, а также утраты отдельных видов растений и живых организмов, оскудения биоресурсов, обезлесения и опустынивания территорий.

В 1985 г. специалисты по исследованию атмосферы из Британской Антарктической Службы сообщили о совершенно неожиданном факте: весеннее содержание озона в атмосфере над станцией Халли-Бей в Антарктиде уменьшилось за период с 1977 по 1984 г. на 40%. Вскоре этот вывод подтвердили другие исследователи, показавшие также, что область пониженного содержания озона простирается за пределы Антарктиды и по высоте охватывает слой от 12 до 24 км, т.е. значительную часть нижней стратосферы.


Уменьшение озонового слоя. Изображение предоставлено NASA Earth Observatory

Наиболее подробным исследованием озонного слоя над Антарктидой был международный Самолетный Антарктический Озонный Эксперимент. В его ходе ученые из 4 стран несколько раз поднимались в область пониженного содержания озона и собрали детальные сведения о ее размерах и проходящих в ней химических процессах. Фактически это означало, что в полярной атмосфере имеется озонная «дыра». В начале 80-х годов по измерениям со спутника «Нимбус-7» аналогичная дыра была обнаружена и в Арктике, правда она охватывала значительно меньшую площадь и падение уровня озона в ней было не так велико — около 9%. В среднем по Земле с 1979 по 1990 г. содержание озона упало на 5%.

Это открытие обеспокоило как ученых, так и широкую общественность, поскольку из него следовало, что слой озона, окружающий нашу планету, находится в большей опасности, чем считалось ранее. Утончение этого слоя может привести к серьезным последствиям для человечества. Содержание озона в атмосфере менее 0.0001%, однако, именно озон полностью поглощает жесткое ультрафиолетовое излучение солнца с длиной волны l<280 нм и значительно ослабляет полосу УФ-Б с 280<l<315 нм, наносящие серьезные поражения клеткам живых организмов. Падение концентрации озона на 1% приводит в среднем к увеличению интенсивности жесткого ультрафиолета у поверхности земли на 2%. Эта оценка подтверждается измерениями, проведенными в Антарктиде (правда, из-за низкого положения солнца, интенсивность ультрафиолета в Антарктиде все еще ниже, чем в средних широтах).

По своему воздействию на живые организмы жесткий ультрафиолет близок к ионизирующим излучениям, однако, из-за большей, чем у g-излучения длины волны он не способен проникать глубоко в ткани, и поэтому поражает только поверхностные органы. Жесткий ультрафиолет обладает достаточной энергией для разрушения ДНК и других органических молекул, что может вызвать рак кожи, в особенности быстротекущую злокачественную меланому, катаракту и иммунную недостаточность. Естественно, жесткий ультрафиолет способен вызывать и обычные ожоги кожи и роговицы. Уже сейчас во всем мире заметно увеличение числа заболевания раком кожи, однако, значительно количество других факторов (например, возросшая популярность загара, приводящая к тому, что люди больше времени проводят на солнце, таким образом, получая большую дозу УФ облучения) не позволяет однозначно утверждать, что в этом повинно уменьшение содержания озона. Жесткий ультрафиолет плохо поглощается водой и поэтому представляет большую опасность для морских экосистем. Эксперименты показали, что планктон, обитающий в приповерхностном слое, при увеличении интенсивности жесткого УФ может серьезно пострадать и даже погибнуть полностью. Планктон находится в основании пищевых цепочек практически всех морских экосистем, поэтому без преувеличения можно сказать, что практически вся жизнь в приповерхностных слоях морей и океанов может исчезнуть. Растения менее чувствительны к жесткому УФ, но при увеличении дозы могут пострадать и они. Если содержание озона в атмосфере значительно уменьшится, человечество легко найдет способ защититься от жесткого УФ излучения но при этом рискует умереть от голода.

Ученые уже открыли вещества, которые разрушают озоновый слой — в основном это хлорфторуглероды (ХФУ). В их присутствии нарушается естественный процесс образования и разрушения молекул озона в атмосфере. Фреоны (хлорфторуглероды) нашли применение в холодильных установках и аэрозольных баллончиках. Их ни в чем никогда не подозревали по причине их исключительной инертности. Но именно эта химическая инертность, как потом выяснилось, позволяла фреонам в неизменном виде забираться на высоту 18-20 км.: туда, где располагался озоновый слой. Здесь молекулы хлорфторуглерода под влиянием коротковолновой солнечной радиации «разваливались» на куски, высвобождая атомы хлора. Последний, действуя как катализатор, способен длительное время разрушать озоновый слой, превращая озон в кислород.

Одна молекула ХФУ способна разрушить десять тысяч молекул озона. ХФУ используются в морозильных газах, аэрозолях, чистящих и моющих средствах и в производстве некоторых пластиковых изделий.

Внимание к проблеме озонового слоя планеты ученые стали проявлять еще в середине 70-х годов. Так, например, в 1974 году ученые Ф. Шервуд Роланд и Марио Д. Молина установили связь между ХФУ и истощением озонового слоя. Согласно их заявлению, если уровень производства ХФУ останется на уровне 1974 года, то к концу 21 века будет разрушено до 13% озонового слоя. Со спутника были получены данные, которые показывают, что над Антарктидой озоновый слой истощился на 50%. Как бы там ни было, исследования, проведенные в 1980 году показывают, что озоновый слой над северным полушарием уменьшился на 8% по сравнению с предыдущим десятилетием.

Если разрушение озонового слоя будет продолжаться такими темпами, то только в США 60 миллионов случаев заболеванием раком кожи и 17 миллионов случаев катаракты прибавится к нынешнему количеству больных.

Австралийские работники здравоохранения говорят о том, что из-за воздействия ультрафиолетовых лучей и истощения озонового слоя численность больных раком кожи в южном полушарии увеличилась в 3 раза!

Истощение озонового слоя вызывает не только проблемы связанные со здоровьем людей. Существует целая серия крупных экологических проблем, причина которых истощение озонового слоя. Это и изменение климата, повреждение структуры биологических связей, разрушение и повреждение различных искусственных материалов, таких как пластик, резина, а также разрушение листвы лесов, уменьшение планктона и, как следствие, уменьшение численности рыб и другие проблемы.



biofile.ru

Вопрос 56. Озон. Озоновая дыра. Какие газы вызывают разрушение озонового слоя. Последствия для живых организмов.

Озоновый слой — это широкий атмосферный пояс, простирающийся на высоте от 10 до 50 км над поверхностью Земли. Химически озон — это молекула, состоящая из трех атомов кислорода (молекула кислорода содержит два атома). Концентрация озона в атмосфере очень мала, и небольшие изменения количества озона приводят к серьезным изменениям интенсивности ультрафиолета, достигающего земной поверхности. В отличии от обычного кислорода озон неустойчив, он легко переходит в двухатомную, устойчивую форму кислорода. Озон – гораздо более сильный окислитель, чем кислород, и это делает его способным убивать бактерии, подавлять рост и развитие растений. Впрочем, из-за его низкой в обычных условиях концентрации в приземных слоях воздуха эти его особенности практически не влияют на состояние живых систем.

Гораздо важнее его другое свойство, делающее этот газ совершенно необходимым для всей жизни на суше. Это свойство – способность озона поглощать жесткое (коротковолновое) ультрафиолетовое (УФ) излучение Солнца. Кванты жесткого УФ обладают энергией, достаточной для разрыва некоторых химических связей, поэтому его относят к ионизирующим излучениям. Как и другие излучения этого рода, рентгеновское и гамма-излучение, оно вызывает многочисленные нарушения в клетках живых организмов. Озон образуется под воздействием высокоэнергетичной солнечной радиации, стимулирующей реакцию между О2 и свободными атомами кислорода. Под воздействием умеренной радиации он распадается, абсорбируя энергию этой радиации. Таким образом, этот цикличный процесс «съедает» опасный ультрафиолет.

Молекулы озона, как и кислорода, электрически нейтральные, т.е. не несут электрического заряда. Поэтому само по себе магнитное поле Земли не влияет на распределение озона в атмосфере. Верхний слой атмосферы – ионосфера, практически совпадает с озоновым слоем.

В полярных зонах, где силовые линии магнитного поля Земли замыкаются на ее поверхности, искажения ионосферы весьма значительны. Количество ионов, в том числе и ионизированного кислорода, в верхних слоях атмосферы полярных зон снижено. Но главная причина малого содержания озона в области полюсов – малая интенсивность солнечного облучения, падающего даже во время полярного дня под малыми углами к горизонту, а во время полярной ночи отсутствуют вовсе. Площадь полярных «дыр» в озоновом слое – надежный показатель изменений общего содержания озона в атмосфере.

Содержание озона в атмосфере колеблется вследствие многих естественных причин. Периодические колебания связаны с циклами солнечной активности; многие компоненты вулканических газов способны разрушать озон, поэтому повышение вулканической активности ведет к снижению его концентрации. Благодаря высоким, сверураганным скоростям воздушных потоков в стратосфере разрушающие озон вещества разносятся на большие площади. Переносятся не только разрушители озона, но и он сам, поэтому нарушения концентрации озона быстро разносятся на большие площади, а локальные небольшие «дыры» в озоновом щите, вызванные, например, запуском ракеты, сравнительно быстро затягиваются. Только в полярных областях воздух малоподвижен, вследствие чего исчезновение там озона не компенсируется его заносом из других широт, и полярные «озонные дыры», особенно на Южном полюсе, весьма устойчивы.

Озон разрушается под воздействием соединений хлора, известных как фреоны, которые, также разрушаясь под воздействием солнечной радиации, освобождают хлор, «отрывающий» от молекул озона «третий» атом. Хлор в соединения не образовывает, но служит катализатором «разрыва». Таким образом, один атом хлора способен «погубить» много озона. 

Разрушение озона происходит из-за воздействия ультрафиолетовой радиации, космических лучей, некоторых газов: соединений азота, хлора иброма, фторхлоруглеродов (фреонов).

Последствия разрушения озонового слоя— это повышенное количество излучения, которое исходит от Солнца и быстро достигает Земли.

Это негативно сказывается не только на всех живых существах: людях, животных, растениях, тропических лесах, но и на предметах. Например, если озоновый слой станет слишком тонким, резина, используемая в хозяйстве, прослужит намного меньше. Водные организмы, обитающие в верхних слоях воды, прекратят свое существование. Окончательно погибнет фауна амазонских джунглей с питонами ипопугаями. Рыбные уловы и сельскохозяйственные урожаи значительно уменьшатся. Несомненно, разрушение озонового слоя отразится и на людях. Человечество станет болеть в два раза больше, потому что иммунитет значительно ослабнет. Вероятность заболевания раком кожи и катарактой увеличится.

Ученые предполагают, что уменьшение озонового слоя на 1% приведет к активному распространению болезней. Например, случаи заболевания раком кожи увеличатся на 10 тысяч раз, а катарактой глаз — на 100 тысяч. Склонность человека к заболеваниям дыхательных путей и легких будет стремительно расти. Сегодня мировое сообщество ищет способы предотвращения катастрофы мирового масштаба.

studfiles.net

Разрушение озонового слоя

Количество просмотров публикации Разрушение озонового слоя — 1513

В 70-х гᴦ. ХХ в. появилось сообщение о региональных снижениях содержания озона в стратосфере. Особенно заметной стала сезонно пульсирующая озоновая дыра над Антарктидой площадью более 10 млн. км2, где содержание озона за 80-е гᴦ. уменьшилось почти на 50%. Другие, “блуждающие” озоновые дыры, правда, меньшие по размеру и не с таким значительным снижением, стали наблюдаться в зимнее время и в северном полушарии, в зонах антициклонов – над Гренландией, Северной Канужной и Якутией. Средняя скорость уменьшения кон-центрации озона за период с 1980 по 1995 гᴦ. оценена в 0,5–0,7% в год.

Ослабление озонового экрана чрезвычайно опасно для всœей наземной биоты, в т.ч. и для здоровья людей, поскольку озоновый слой, расположенный в стратосфере на высоте около 25 км, защищает Землю от агрессивного воздействия жесткого, коротко-волнового ультрафиолетового излучения Солнца, поглощая его на 99%.

Большинство ученых склоняется к мнению о техногенном происхождении озоновых дыр.
Размещено на реф.рф
Основным разрушителœем озонового щита считают синтезируемые людьми соединœения – фторхлор-углеводороды (фреоны), используемые в холодильниках, в средствах пожаротушения, в аэрозольных упаковках. Фреоны летучи, они поднимаются в стратосферу, где разлагаются, высвобождая атомарный хлор, который разрушает озон. Возможны и другие пути заноса разрушителœей озона в стратосферу: атомные взрывы, выбросы высотных сверхзвуковых самолетов, запуски ракет и пр.
Размещено на реф.рф
Не исключено, что частично разрушение озонового слоя связано с вековыми колебаниями аэрохимических свойств атмосферы и независимыми изменениями климата.

В 1985 ᴦ. мировое сообщество ввело ограничение на выбросы фреонов (Венская конвенция об охране озонового слоя).

Фреоны способны находиться в атмосфере, не разрушаясь 70— 100 лет, в связи с этим они всœегда достигают озонового слоя и разрушают его. При этом каждый атом хлора как катализатор способен разрушить до 100 тыс. атомов озона. До недавнего времени в мире производилось около 1,3 млн. т озоноразрушающих веществ. Около 35% производимого объёма приходилось на США, 40% — на страны ЕС, 10—12% — Японию, 7-10% — Россию.

Из других техногенных причин разрушения озонового слоя называют уничтожение лесов, как базовых поставщиков кислорода в атмосферу. Зарегистрировано также разрушение озона при ядерных взрывах в атмосфере, крупных пожарах и других явлениях, сопровождающихся поступлением в верхние слои атмосферы оксидов азота и некоторых углеводородов. Установлено также, что уничтожают озон полеты сверхзвуковых самолетов в стратосфере, запуски космических ракет. Только один запуск авиакосмической системы ʼʼШаттлʼʼ приводит к потерям 10 млн. т озона. 300 таких запусков в год — и практически весь озон будет уничтожен.

В последнее время ученые высказывают предположение о существенном вкладе природных явлений в процессы разрушения озона и возникновении ʼʼозоновых дырʼʼ. К таковым относятся, к примеру, 11-летние циклы солнечной активности, выход озонразрушающих газов (водород, метан) из разломов земной коры, наличие своеобразных нисходящих вихрей над Антарктидой, способствующих рассеиванию озона.

Антропогенное воздействие на ближний Космос. Околоземное космическое пространство (ОКП) представляет собой внешнюю газовую оболочку, которая окружает планету. Оно играет роль в сложнейших солнечно- земных взаимосвязях, определяющих условия жизни на Земле.

Антропогенные воздействия на ОКП, связанные с началом космической эры, весьма опасны, они оказались значительнее уровня (олее продолжительного влияния человека на любую другую природную среду, к примеру приземную атмосферу (тропосферу). ОКП уязвимее, нежели другие среды, поскольку количество вещества в ней неизмеримо меньше, а энергетика процессов гораздо слабее по сравнению с тропосферой, а тем более гидро- и литосферой.

Выделяют следующие виды воздействия человека на эту среду:

1) выброс химических веществ вследствие работы двигателœей ракет; 2) создание энергетических и динамических возмущений в результате полетов ракет; 3) загрязнение твердыми фрагментами, космическим мусором; 4) электромагнитное излучение радиопередающих систем; 5) радиоактивное загрязнение и жесткое излучение от ядерных энергетических установок, используемых на космических аппаратах; 6) попадание загрязнителœей из приземной атмосферы.

Наиболее опасными в плане изменения свойств ОКП в негативную сторону признается выброс химических веществ. Так, в результате пролета одной тяжелой ракеты ʼʼПротонʼʼ (РФ) в ОКП поступает около 100 т воды и более 90 т диоксида углерода. Для американского ʼʼШаттлаʼʼ эти показатели выше: 470 и ПО т, соответственно. Указанные химические вещества активно реагируют с ионами кислорода ионосферы, причем оказалось, что процесс идет гораздо быстрее, нежели в естественных условиях. В результате резко возрастает скорость рекомбинации ионосферной плазмы и падает концентрация заряженных частиц, ᴛ.ᴇ. образуются так называемые ʼʼионосферные дырыʼʼ.Сообщалось, что наиболее крупномасштабные нарушения были зарегистрированы после запуска ракет ʼʼСатурн-5ʼʼ (США): горизонтальные размеры ʼʼдырыʼʼ составили тысячи километров, а содержание электронов уменьшилось в них в несколько раз. Напомним также, что диоксид углерода, который при запуске ракет распространяется на сотни километров, играет большую роль в тепловом балансе термосферы.

Как считают специалисты, сохранение ОКП как внешней защитной оболочки Земли возможно только при условии ограничения пусков ракет и принципиального изменения технических средств и методов выведения космических кораблей на орбиту.

8.3. ʼʼПарниковый эффектʼʼ

Парниковый эффект и изменения климата. С конца ХIХ в. по настоящее время наблюдается отчетливая тенденция повышения общей температуры атмосферы. За последние 100 лет она повысилась на 0,60С. Причина – уменьшение спектральной прозрачности атмосферы для длинноволнового обратного излучения от поверхности земли, т. е. усиление парникового эффекта. Парниковый эффект создается увеличением концентрации газов – СО, СО2, СН4, NОх, ХФУ (хлорфторуглеводороды) и других, названных парниковыми газами.

По оценкам Всемирной метеорологической службы, при существующем уровне выбросов парниковых газов средняя глобальная температура в текущем столетии будет повышаться со скоростью 0,250С за 10 лет. К концу столетия по разным сценариям (в зависимости от принятия тех или иных мер) она может составить от 1,5 до 40С. В северных и средних широтах потепление скажется сильнее, чем на экваторе. Произойдет существенное перераспределœение осадков на планете. Уровень Мирового океана за счёт таяния льдов повысится к 2050 году на 30–40 см, а к концу столетия – от 60 до100 см. Это создаст угрозу затопления.

Различная температура на полюсах и экваторе – основная движущая сила циркуляции атмосферы. Более сильное потепление на полюсах приведет к ее ослаблению. Это изменит всю картину циркуляции и связанный с ней перенос теплоты и влаги, что повлечет за собой глобальные изменения климата.

referatwork.ru