Формула коэффициент вариации онлайн – Как рассчитать коэффициент вариации 🚩 формула коэффициента вариации 🚩 Математика
Онлайн калькулятор: Показатели вариации
Пользователь Мария попросила написать такой калькулятор: Показатели вариации и анализ частотных распределений.
Расчеты не очень сложные, поэтому вот и он. Теория, по уже сложившейся традиции, под калькулятором.
addimport_exportmode_editdeleteИсследуемая совокупность
Размер страницы: 5102050100chevron_leftchevron_rightДля разделения полей можно использовать один из этих символов: Tab, «;» или «,» Пример: -50.5;50
Точность вычисленияЗнаков после запятой: 2
Среднее арифметическое
Размах вариации
Среднее линейное отклонение
Среднее квадратическое отклонение
Коэффициент осцилляции (проценты)
Относительное линейное отклонение (проценты)
Коэффициент вариации (проценты)
Сохранить share extension
Вариация — это различие индивидуальных значений какого-либо признака внутри изучаемой совокупности.
Ну, например, есть класс учеников — изучаемая совокупность, у них есть, скажем, годовая оценка по русскому языку. У кого-то она «5», у кого-то «4» ну и так далее. Набор этих оценок по всему классу, вместе с их частотой (т. е. встречаемостью, скажем, у 10 человек – «5», у 7 человек – «4», у 5 человек – «3») и есть вариация, по которой можно рассчитать массу показателей.
Этим мы сейчас и займемся.
Абсолютные показатели
Размах вариации — разность между максимальным и минимальным значениями признака
- Среднее линейное отклонение — среднее арифметическое отклонение индивидуальных значений от средней.
, где — частота появления значения.
Если индивидуальных значений слишком много, для упрощения расчетов данные могут группировать, т. е. объединять в интервалы. Тогда имеет смысл середины i-го интервала, или среднего значения признака на i-том интервале
- Дисперсия — средняя из квадратов отклонений значений признаков от средней.
Дисперсию также можно рассчитать и таким способом:
, где
- Среднее квадратическое отклонение — , корень из дисперсии.
Относительные показатели
Абсолютные показатели измеряются в тех же величинах, что и сам признак, и показывают абсолютный размер отклонений, поэтому их неудобно применять для сравнения изменчивости разных признаков совокупности. Поэтому дополнительно рассчитывают относительные показатели вариации, которые обычно выражают в в процентах.
Коэффициент осцилляции — характеризует колеблемость крайних значений признака вокруг средней арифметической.
Относительное линейное отклонение или линейный коэффициент вариации — характеризует долю усредненного значения абсолютных отклонений от средней арифметической.
- Коэффициент вариации — характеризует степень однородности совокупности, наиболее часто применяемый показатель.
Совокупность считается однородной при значениях меньше 40%. При значениях больше 40% говорят о большой колеблемости признаков и совокупность считается неоднородной.
planetcalc.ru
Онлайн калькулятор показателей вариации
Следующий онлайн калькулятор способен сделать расчет показателей вариации, а именно расчет дисперсии, размаха вариации, среднего отклонения и не только.
Вариацией называют различие значений по какому-нибудь признаку в середине совокупности, которая в данный момент есть объектом изучения.
Приведем пример, представьте класс учеников — они и есть объект изучения, все они учат английский язык. Берем статистику за весь год (табель) и смотрим. Кто-то знает предмет на 5, кто-то на 4, а еще некоторые на 3. Так вот вариация и есть различие в оценках, приведенная к количеству человек, то есть 10 школьников знают на 5, 8 знают на 4, и например 5 знают на 3. В данном случае количество человек с определенной оценкой в классе называется частотой и встречаемостью вариации.
The field is not filled.
‘%1’ is not a valid e-mail address.
Please fill in this field.
The field must contain at least% 1 characters.
The value must not be longer than% 1 characters.
Field value does not coincide with the field ‘%1’
An invalid character. Valid characters:’%1′.
Expected number.
It is expected a positive number.
Expected integer.
It is expected a positive integer.
The value should be in the range of [%1 .. %2]
The ‘% 1’ is already present in the set of valid characters.
The field must be less than 1%.
The first character must be a letter of the Latin alphabet.
Su
Mo
Tu
We
Th
Fr
Sa
January
February
March
April
May
June
July
August
September
October
November
December
century
B.C.
%1 century
An error occurred while importing data on line% 1. Value: ‘%2’. Error: %3
Unable to determine the field separator. To separate fields, you can use the following characters: Tab, semicolon (;) or comma (,).
%3.%2.%1%4
%3.%2.%1%4 %6:%7
s.sh.
u.sh.
v.d.
z.d.
yes
no
Wrong file format. Only the following formats: %1
Please leave your phone number and / or email.
minutes
minutes
minute
minutes
minutes
minutes
minutes
minutes
minutes
minutes
minutes
minutes
minutes
hour
hours
hours
hours
hours
hours
hours
hours
hours
hours
hours
days
day
day
day
day
days
days
days
days
days
days
month
month
month
month
months
months
months
months
months
months
months
year
of the year
of the year
of the year
years
years
years
years
years
years
years
ago
%1 minutes ago
%1 minutes ago
%1 minutesу ago
%1 minutes ago
%1 minutes ago
%1 minutes ago
%1 minutes ago
%1 minutes ago
%1 minutes ago
%1 minutes ago
%1 minutes ago
%1 minutes ago
%1 minutes ago
%1 hour ago
%1 hours ago
%1 hours ago
%1 hours ago
%1 hours ago
%1 hours ago
%1 hours ago
%1 hours ago
%1 hours ago
%1 hours ago
%1 hours ago
%1 days ago
%1 day ago
%1 day ago
%1 day ago
%1 day ago
%1 days ago
%1 days ago
%1 days ago
%1 days ago
%1 days ago
%1 days ago
%1 days ago
%1 month ago
%1 month ago
%1 month ago
%1 month ago
%1 months ago
%1 months ago
%1 months ago
%1 months ago
%1 months ago
%1 months ago
%1 months ago
%1 year ago
%1 of the year ago
%1 of the year ago
%1 of the year ago
%1 years ago
%1 years ago
%1 years ago
%1 years ago
%1 years ago
%1 years ago
%1 years ago
Среднее арифметическое:
Размах вариации:
Среднее линейное отклонение:
Среднее квадратическое отклонение:
Коэффициент осцилляции (проценты):
Относительное линейное отклонение (проценты):
Коэффициент вариации (проценты):
hostciti.net
Задача №48. Расчёт показателей вариации
У инвестора имеется две альтернативы вложения денежных средств в деятельность торговых компаний А и В. Анализ показал, что рентабельность аналогичных компаний за последние 5 лет составила:
Организации | 1 год | 2 год | 3 год | 4 год | 5 год |
---|---|---|---|---|---|
Компания А (Рентабельность продаж,%) | 21 | 14 | 30 | 29 | 12 |
Компания В (Рентабельность продаж,%) | 17 | 24 | 25 | 28 | 15 |
Исходя из критерия риска, выберите и обоснуйте наиболее предпочтительный для инвестора вариант (рассчитайте среднее квадратическое отклонение и коэффициент вариации).
Решение:
Рассчитаем среднее значение рентабельности продаж по формуле средней арифметической простой:
Построим вспомогательную таблицу расчётных данных:
Год | Компания А | Компания В | ||
---|---|---|---|---|
Рентабельность продаж,% | Рентабельность продаж,% | |||
1 | 21 | 0,04 | 17 | 23,04 |
2 | 14 | 51,84 | 24 | 4,84 |
3 | 30 | 77,44 | 25 | 10,24 |
4 | 29 | 60,84 | 28 | 38,44 |
5 | 12 | 84,64 | 15 | 46,24 |
Итого | 106 | 274,8 | 109 | 122,8 |
Среднее | 21,2 | 54,96 | 21,8 | 24,56 |
Среднее квадратическое отклонение | — | 7,413501 | — | 4,955805 |
Коэффициент вариации, % | — | 34,96935 | — | 22,73305 |
Средняя рентабельность продаж для организации А:
Средняя рентабельность продаж для организации В:
Дисперсия — это средняя арифметическая квадратов отклонений каждого значения признака от средней арифметической.
Расчёт дисперсии в дискретных рядах распределения производится по формуле:
Среднее квадратическое отклонение определим по формуле:
Коэффициент вариации рассчитывается по формуле:
По величине коэффициента вариации можно судить о степени вариации рентабельности продаж. Чем больше его величина, тем больше разброс значения признаков вокруг средней, тем более рискован проект.
Вложения денежных средств в деятельность торговой компании А подвержены большему риску, так как коэффициент вариации больше и он очень высокий. Поэтому для вложения денежных средств наиболее предпочтителен вариант инвестирования в деятельность торговой компании В.
ecson.ru
Расчет НМЦК по 44-ФЗ (online калькулятор)
Калькулятор для расчета НМЦК (начальной максимальной цены контракта) используется для расчета цены с помощью сопоставления рыночных цен согласно Методическим рекомендациям по применению методов определения начальной (максимальной) цены контракта; цены контракта, заключаемого с единственным поставщиком (подрядчиком, исполнителем), утвержденными Приказом Министерства экономического развития РФ от 2 октября 2013 г. N 567 (далее – Методические рекомендации).
Внимание! Расчет НМЦК с поиском цен и ТЗ для обоснования и документирования закупки доступен в нашем программном обеспечении! Подробнее…
Калькулятор рассчитывает коэффициент вариации цены, среднее квадратичное отклонение, приводит цены прошлых периодов (более шести месяцев от периода определения НМЦК) к текущему уровню цен, а также корректирует цены товаров, работ, услуг в зависимости от способа осуществления закупки, явившейся источником информации о цене товара, работы, услуги.
Корректировка цен прошлых периодов (более шести месяцев от периода определения НМЦК) производится в соответствии с п.3.18 Методических рекомендаций. При корректировке применяются общие индексы потребительских цен (без учета индексов потребительских цен на отдельные группы и виды товаров, работ, услуг) на месяц в процентах к предыдущему месяцу, установленные Федеральной службой государственной статистики (официальный сайт в сети «Интернет» www.gks.ru).
НМЦК калькулятор on-line
Обоснование НМЦК заключается в расчете цены с приложением справочной информации и документов, на основании которых был выполнен расчет. При этом, в обосновании НМЦК, которое в обязательном порядке подлежит размещению в открытом доступе на официальном сайте закупок, не указываются наименования поставщиков, которые предоставили информацию о цене. Оригиналы использованных при определении, обосновании НМЦК документов, снимки экрана, содержащие изображения соответствующих страниц сайтов с указанием даты и времени их формирования, целесообразно хранить с иными документами о закупке, подлежащими хранению в соответствии с требованиями 44-ФЗ.
Полезная информация? Поделись: Бесплатная On-line консультацияgood-tender.ru
Расчет показателей вариации в Excel
Оригинал http://statanaliz.info/index.php/excel/formuly/37-raschet-pokazatelej-variatsii-v-excel
Добрый день, уважаемые любители статистического анализа данных, а сегодня еще и программы Excel.
Проведение любого статанализа немыслимо без расчетов. И сегодня в рамках рубрики «Работаем в Excel» мы научимся рассчитывать показатели вариации. Теоретическая основа была рассмотрена ранее в ряде статей о вариации данных. Кстати, на этом указанная тема не закончилась, к выпуску планируются новые статьи – следите за рекламой! Однако сухая теория без инструментов реализации – вещь не сильно полезная. Поэтому по мере появления теоретических выкладок, я стараюсь не отставать с заметками о соответствующих расчетах в программе Excel.
Сегодняшняя публикация будет посвящена расчету в Excel следующих показателей вариации:
— максимальное и минимальное значение
— среднее линейное отклонение
— дисперсия (по генеральной совокупности и по выборке)
— среднее квадратическое отклонение (по генеральной совокупности и по выборке)
— коэффициент вариации
Факт возможности расчета упомянутых показателей в Excel свидетельствует о практическом их использовании. И, несмотря на очевидность некоторых моментов, я постараюсь расписать все подробно.
Максимальное и минимальное значение
Начнем с формул максимума и минимума. Что такое максимальное и минимальное значение, уверен, знают почти все. Максимум – самое большое значение из анализируемого набора данных, минимум – самое маленькое (может быть и отрицательным числом). Это крайние значения в совокупности данных, обозначающие границы их вариации. Примеры реального использования каждый может придумать сам – их полно. Это и минимальные/максимальные цены на что-нибудь, и выбор наилучшего или наихудшего решения задачи, и всего, чего угодно. Минимум и максимум – весьма информативные показатели. Давайте теперь их рассчитаем в Excel.
Как нетрудно догадаться, делается сие элементарно – как два клика об асфальт. В Мастере функций следует выбрать: МАКС – для расчета максимального значения, МИН – для расчета минимального значения. Для облегчения поиска перечень всех функций можно отфильтровать по категории «Статистические».
Выбираем нужную формулу, в следующем окошке указываем диапазон данных (в котором ищется максимальное или минимальное значение) и жмем «ОК».
Функции МАКС и МИН достаточно часто используются, поэтому разработчики Экселя предусмотрительно добавили соответствующие кнопки в ленту. Они находятся там же, где суммаи среднее значение – в разворачивающемся списке.
В общем, для вызова функции максимума или минимума действий потребуется не больше, чем для расчета средней арифметической. Все архипросто.
Среднее линейное отклонение
Среднее линейное отклонение, напоминаю, представляет собой среднее из абсолютных (по модулю) отклонений от средней арифметической в анализируемой совокупности данных. Математическая формула имеет вид:
где
a – среднее линейное отклонение,
x – анализируемый показатель, с черточкой сверху – среднее значение показателя,
n – количество значений в анализируемой совокупности данных.
В Excel эта функция называется СРОТКЛ.
После выбора функции СРОТКЛ указываем диапазон данных, по которому должен произойти расчет. Нажимаем «ОК». Наслаждаемся результатом.
Дисперсия
Дисперсия — это средний квадрат отклонений, мера характеризующая разброс данных вокруг среднего значения. Математическая формула дисперсии по генеральной совокупности имеет вид:
где
D – дисперсия,
x – анализируемый показатель, с черточкой сверху – среднее значение показателя,
n – количество значений в анализируемой совокупности данных.
Excel также предлагает готовую функцию для расчета генеральной дисперсии ДИСП.Г.
При анализе выборочных данных, следует использовать выборочную дисперсию, так как генеральная оказывается смещенной в сторону занижения.
Математическая формула выборочной дисперсии имеет вид:
в Excel выборочная дисперсия рассчитывает через функцию ДИСП.В.
Выбираем в Мастере функций нужную дисперсию (генеральную или выборочную), указываем диапазон, жмем кнопку «ОК». Полученное значение может оказаться очень большим из-за предварительного возведения отклонений в квадрат, поэтому дисперсия сама по себе мало о чем говорит. Ее обычно используют для дальнейших расчетов.
Среднее квадратическое отклонение
Среднеквадратическое отклонение по генеральной совокупности – это корень из генеральной дисперсии.
Выборочное среднеквадратическое отклонение – это корень из выборочной дисперсии.
Для расчета можно извлечь корень из формул дисперсии, указанных чуть выше, но в Excel есть и готовые функции:
— Среднеквадратическое отклонение по генеральной совокупности СТАНДОТКЛОН.Г
— Среднеквадратическое отклонение по выборке СТАНДОТКЛОН.В.
С названием этого показателя может возникнуть путаница, т.к. часто можно встретить синоним «стандартное отклонение». Пугаться не нужно – смысл тот же.
Далее, как обычно, указываем нужный диапазон и нажимаем на «ОК». Среднее квадратическое отклонение имеет те же единицы измерения, что и анализируемый показатель, поэтому является сопоставимым с исходными данными. Об этом ниже.
Коэффициент вариации
Все показатели, рассмотренные выше, имеют привязку к масштабу исходных данных и не позволяют получить образное представление о вариации анализируемой совокупности. Для получения относительной меры разброса данных используют коэффициент вариации, который рассчитывается путем деления среднего квадартического отклонения на среднее арифметическое значение. Математическая формула такова:
В Экселе нет готовой функции для расчета коэффициента вариации, что не есть большая проблема. Расчет можно произвести простым делением стандартного отклонения на среднее значение. Для этого в строке формул пишем:
=СТАНДОТКЛОН.Г(диапазон)/СРЗНАЧ(диапазон)
В скобках должен быть указан диапазон данных. При необходимости используется среднее квадратическое отклонение по выборке (СТАНДОТКЛОН.В).
Коэффициент вариации обычно выражается в процентах, поэтому ячейку с формулой можно обрамить процентным форматом. Нужная кнопка находится на ленте на закладке «Главная»:
Изменить формат также можно, выбрав «Формат ячеек» из выпадающего списка после выделения нужной ячейки правой кнопкой мышки.
Коэффициент вариации, в отличие от других показателей разброса значений, используется как самостоятельный и весьма информативный индикатор вариации данных. В статистике принято считать, что если коэффициент вариации менее 33%, то совокупность данных является однородной, если более 33%, то – неоднородной. Эта информация может быть полезна для предварительного описания данных и определения возможностей проведения дальнейшего анализа. Кроме того, коэффициент вариации, измеряемый в процентах, позволяет сравнивать степень разброса различных данных независимо от их масштаба и единиц измерений. Полезное свойство.
В целом, с помощью Excel все, или почти все, статистические показатели рассчитываются очень просто. Если что-то непонятно, всегда можно воспользоваться окошком для поиска в Мастере функций. Ну, и Гугл в помощь.
Легкой работы в Excel и до встречи на блоге statanaliz.info.
Оригинал и другие статьи http://statanaliz.info/index.php/excel/formuly/37-raschet-pokazatelej-variatsii-v-excel
vniioh.ru
Онлайн калькулятор: Показатели вариации. Показатели вариации.
Из всех показателей вариации среднеквадратическое отклонение в наибольшей степени используется для проведения других видов статистического анализа. Однако среднеквадратическое отклонение дает абсолютную оценку меры разбросанности значений и чтобы понять, насколько она велика относительно самих значений, требуется относительный показатель. Такой показатель называется он коэффициент вариации .
Формула коэффициента вариации:
Данный показатель измеряется в процентах (если умножить на 100%).
В статистике принято, что, если коэффициент вариации
меньше 10%, то степень рассеивания данных считается незначительной,
от 10% до 20% — средней,
больше 20% и меньше или равно 33% — значительной,
значение коэффициента вариации не превышает 33%, то совокупность считается однородной,
если больше 33%, то – неоднородной.
Средние, рассчитанные для однородной совокупности – значимы, т.е. действительно характеризуют эту совокупность, для неоднородной совокупности – незначимы, не характеризуют совокупность из-за значительного разброса значений признака в совокупности.
Возьмем пример с расчетом среднего линейного отклонения.
И график для напоминания
По этим данным рассчитаем: среднее значение, размах вариации, среднее линейное отклонение, дисперсию и стандартное отклонение.
Среднее значение – это обычная средняя арифметическая.
Размах вариации – разница между максимумом и минимумом:
Среднее линейное отклонение считается по формуле:
Дисперсия считается по формуле:
Среднеквадратическое отклонение – квадратный корень из дисперсии:
Расчет сведем в табличку.
Вариация показателя отражает изменчивость процесса или явления. Ее степень может измеряться с помощью нескольких показателей.
Размах вариации – разница между максимумом и минимумом. Отражает диапазон возможных значений.
Среднее линейное отклонение – отражает среднее из абсолютных (по модулю) отклонений всех значений анализируемой совокупности от их средней величины.
Дисперсия – средний квадрат отклонений.
Среднеквадратическое отклонение – корень из дисперсии (среднего квадрата отклонений).
Коэффициент вариации – наиболее универсальных показатель, отражающий степень разбросанности значений независимо от их масштаба и единиц измерения. Коэффициент вариации измеряется в процентах и может быть использован для сравнения вариации различных процессов и явлений.
Таким образом, в статистическом анализе существует система показателей, отражающих однородность явлений и устойчивость процессов. Часто показатели вариации не имеют самостоятельного смысла и используются для дальнейшего анализа данных. Исключением является коэффициент вариации, который характеризует однородность данных, что является ценной статистической характеристикой.
Коэффициент вариации в статистике применяется для сравнения разброса двух случайных величин с разными единицами измерения относительно ожидаемого значения. В итоге можно получить сопоставимые результаты. Показатель наглядно иллюстрирует однородность временного ряда.
Коэффициент вариации используется также инвесторами при портфельном анализе в качестве количественного показателя риска, связанного с вложением средств в определенные активы. Особенно эффективен в ситуации, когда у активов разная доходность и различный уровень риска. К примеру, у одного актива высокая ожидаемая доходность, а у другого – низкий уровень риска.
Как рассчитать коэффициент вариации в Excel
Коэффициент вариации представляет собой отношение среднеквадратического отклонения к среднему арифметическому. Для расчета в статистике используется следующая формула:
CV = σ / ǩ,
- CV – коэффициент вариации;
- σ – среднеквадратическое отклонение по выборке;
- ǩ – среднеарифметическое значение разброса значений.
Коэффициент вариации позволяет сравнить риск инвестирования и доходность двух и более портфелей активов. Причем последние могут существенно отличаться. То есть показатель увязывает риск и доходность. Позволяет оценить отношение между среднеквадратическим отклонением и ожидаемой доходностью в относительном выражении. Соответственно, сопоставить полученные результаты.
При принятии инвестиционного решения необходимо учитывать следующий момент: когда ожидаемая доходность актива близка к 0, коэффициент вариации может получиться большим. Причем показатель значительно меняется при незначительном изменении доходности.
В Excel не существует встроенной функции для расчета коэффициента вариации. Но можно найти частное от стандартного отклонения и среднего арифметического значения. Рассмотрим на примере.
Доходность двух ценных бумаг за предыдущие пять лет:
Наглядно это можно продемонстрировать на графике:
Обычно показатель выражается в процентах. Поэтому для ячеек с результатами установлен процентный формат.
Значение коэффициента для компании А – 33%, что свидетельствует об относительной однородности ряда. Формула расчета коэффициента вариации в Excel:
Сравните: для компании В коэффициент вариации составил 50%: ряд не является однородным, данные значительно разбросаны относительно среднего значения.
Интерпретация резу
gikk.ru
Онлайн калькуляторы для расчета статистических показателей
Выбор статистического метода
В данном сервисе реализован алгоритм выбора оптимальной методики статистического анализа, который позволит исследователю на основании информации о количестве сравниваемых совокупностей, типе распределения, шкале измерения переменных, отпределить наиболее подходящий статистический метод, статистический критерий.
перейти к сервису
Расчет относительных величин
Калькулятор позволит найти значение любой относительной величины по заданным параметрам: числителю, знаменателю, десятичному коэффициенту. Учитывается вид относительной величины для правильного обозначения вводимых данных и формирования грамотного ответа. Для каждого результата также выводится средняя ошибка m.
перейти к вычислениям
Оценка значимости различий средних величин по t-критерию Стьюдента
Данный статистический метод служит для сравнения двух средних величин (M), рассчитанных для несвязанных между собой вариационных рядов. Для вычислений также понадобятся значения средних ошибок средних арифметических (m). Примеры сравниваемых величин: среднее артериальное давление в основной и контрольной группе, средняя длительность лечения пациентов, принимавших препарат или плацебо.
перейти к вычислениям
Оценка значимости изменений средних величин при помощи парного t-критерия Стьюдента
Парный t-критерий Стьюдента используется для сравнения связанных совокупностей — результатов, полученных для одних и тех же исследуемых (например, артериальное давление до и после приема препарата, средний вес пациентов до и после применения диеты).
перейти к вычислениям
Анализ динамического ряда
Этот калькулятор позволит вам быстро рассчитать все основные показатели динамического ряда, состоящего из любого количества данных. Вводимые данные: количество лет, значение первого года, уровни ряда. Результат: показатели динамического ряда, значения, полученные при его выравнивании, а также графическое изображение динамического ряда.
перейти к вычислениям
Расчет демографических показателей
7)€: aперейти к вычислениям
Прямой метод стандартизации
Здесь вы сможете быстро решить любую задачу по стандартизации, с использованием прямого метода. Вводите данные о сравниваемых совокупностях, выбирайте один из четырех способов расчета стандарта, задавайте значение коэффициента, используемого для расчета относительных величин. Результаты применения метода стандартизации выводятся в виде таблицы.
перейти к вычислениям
Расчет относительного риска
Относительный риск — позволяет проводить количественную оценку вероятности исхода, связанной с наличием фактора риска. Находит широкое применение в современных научных исследованиях, выборки в которых сформированы когортным методом. Наш онлайн-калькулятор позволит выполнить расчет относительного риска (RR) с 95% доверительным интервалом (CI), а также дополнительных показателей, таких как разность рисков, число пациентов, трующих лечения, специфичность, чувствительность.
перейти к вычислениям
Расчет отношения шансов
Метод отношения шансов (OR), как и относительный риск, используется для количественной оценки взаимосвязи фактора риска и исхода, но применяется в исследованиях, организованных по принципу «случай-контроль».
перейти к вычислениям
Анализ четырехпольной таблицы
В данном калькуляторе представлены все основные статистические методы, используемые для анализа четырехпольной таблицы (фактор риска есть-нет, исход есть-нет). Выполняется проверка важнейших статистических гипотез, рассчитываются хи-квадрат, точный критерий Фишера и другие показатели.
перейти к вычислениям
Расчет показателей вариационного ряда
Онлайн-калькулятор в автоматизированном режиме поможет рассчитать все основные показатели вариационного ряда: средние величины (средняя арифметическая, мода, медиана), стандартное отклонение, среднюю ошибку средней арифметической. Поддерживается ввод как простых, так и взвешенных рядов.
перейти к вычислениям
Расчет критерия Манна-Уитни
При помощи данного сервиса вы сможете рассчитать значение U-критерия Манна-Уитни — непараметрического критерия, используемого для сравнения двух выборок, независимо от характера их распределения.
перейти к вычислениям
Корреляционно-регрессионный анализ
Онлайн-калькулятор для проведения корреляционного анализа используется для выявления и изучения связи между количественными признаками при помощи расчета коэффициента корреляции Пирсона. Также выводится уравнение парной линейной регрессии, используемое при описании статистической модели.
перейти к вычислениям
Расчет коэффициента корреляции Спирмена
Данный калькулятор используется для расчета рангового критерия корреляции Спирмена, являющегося методом непараметрического анализа зависимости одного количественного признака от другого. Оценка значимости корреляционной связи между переменными выполняется как по коэффициенту Спирмена, так и по t-критерию Стьюдента.
перейти к вычислениям
Анализ произвольных сопряженных таблиц при помощи критерия χ2 (хи-квадрат)
Критерий хи-квадрат является непараметрическим аналогом дисперсионного анализа для сравнения нескольких групп по качественному признаку. Онлайн калькулятор по расчету критерия хи-квадрат позволяет оценить связь между двумя качественными признаками по частоте их значений. Число сравниваемых групп может быть от 2 до 9.
перейти к вычислениям
www.medstatistic.ru