Формула а2 в2 – План-конспект урока по алгебре (7 класс) на тему: А сейчас мы начнем наш путь с повторения формул и правил. На доске записана левая честь формулы, нужно продолжить формулу, назвать её и рассказать правило Формула Словесная формулировка (а + в) 2 = а2 + 2ав + в2 квадрат суммы двух выражений Квадрат сум | скачать бесплатно
Формулы сокращенного умножения
Разделы: Математика, Конкурс «Презентация к уроку»
Презентация к уроку
Загрузить презентацию (740 кБ)
Внимание! Предварительный просмотр слайдов используется исключительно в ознакомительных целях и может не давать представления о всех возможностях презентации. Если вас заинтересовала данная работа, пожалуйста, загрузите полную версию.
Цель урока:
Ход урока
А) (а-в)(а+в)=
Б) (а+в)2=
В) (а-в)2=
Г) (а+в)(а2+ав+в2) =
Д) (а-в)( а2+ав+ в2)=
Другая группа оппонентов повторяют правило умножения многочлена на многочлен.
А) (m-2х)(m+n)=
В) (3х-у)(у+х)=
Проверяется на экране, причем в первом задании отрабатывается обучающая роль ошибки: Прочитать верный ответ.
Повторяется правило умножения многочлена на многочлен. На следующем слайде вступают в работу “Исследователи”, которые озвучивают результаты, а затем по щелчку мыши на экране проверяются ответы.
Оппоненты сообщают о том, что 1,2,3,5 являются формулами сокращенного умножения, а 4 нет, т.к. содержится ошибка.
Пример разбирается:
(а+в)( а2 +ав+ в2)= а3 + а2в+а в2+в а2+а в2+ в3= а3 +2 а2в+2а в2+ в3
Чтобы она была формулой сокращенного умножения
необходимо уничтожить слагаемые а
Это можно достичь лишь, когда во второй скобке будет — ав.
2. Геометрическая интерпретация формул сокращённого умножения.
Работа с презентацией. (Рис.1)
- Выразить площадь квадрата со стороной (а+в). S= (а+в)2
- Из каких фигур состоит данный квадрат?
- Как можно по-другому найти площадь этого квадрата
S= а2+ в2+2ав (рис.2)
Доказать геометрически формулу: (а–в)2= а2-2ав+ в2
(а-в)2
Используя этот прием изобразить док-во формулы (а-в)(а+в)
Исследователи включаются в работу.
Оппоненты доказывают аналитически формулы (а+в)3 и (а–в)3
По щелчку мыши проверяются верные ответы.
Исследователи предоставляют свой результат.
3. Закрепление.
На слайде предлагается устно проверить возведение во вторую степень суммы и разности. По щелчку мыши проверяются верные ответы.
Итог урока.
Вставьте пропущенные выражения на следующем слайде. Задание выполняется по уровню сложности: 1 уровень и 2 уровень – выполняется более сильными детьми.
4. Домашнее задание.
Изобразить геометрическую интерпретацию формул:
(а+в)3= а3 + 3 а2в+3а в2+ в3
(а-в)3 = а3 — 3 а2в+3а в2— в3
09 апр. 2013 г. в 15:50
Поделиться страницей:Формулы сокращенного умножения
Цели и задачи урока:
- стремиться к осознанному освоению учениками знаний, умений, навыков преимущественно в форме деятельности: коллективной, парной, индивидуальной;
- регулярный контроль процесса обучения с помощью развитой системы приемов обратной связи;
- максимальное использование возможностей, знаний, интересов самих учащихся с целью повышения результативности процесса образования;
- развитие умений делового общения и сотрудничества, поиска компромиссов;
- вызвать заинтересованность учащихся к предмету; пробудить любознательность;
- развитие культуры эстетического восприятия окружающего мира,
- увеличение степени дисциплинированности, организованности;
- развитие культуры эстетического восприятия окружающего мира;
- снять напряжение и поднять настроение шутливым содержанием задач.
План урока:
- Организационный момент
- Устная работа, работа у доски отдельных учащихся
- Совместная работа
- Работа в парах
- Обсуждение работы в парах
- Информация о Д/З. Итог урока
Ход урока
- Организационный момент
Взаимное приветствие. Проверка готовности к уроку.
Учитель: Сегодня я хотела бы начать урок отрывком из произведения «Автобиография» сербского писателя 19 века Нушича Бранислава:
«— Где ты родился, Спира? — спрашивает учитель математики Спиру Найдановича.
Спира молчит, хлопает глазами и смотрит в потолок.
— Где ты родился, Спира? — повторяет учитель.
Спира молчит, хлопает глазами и смотрит в потолок.
— Бог ты мой, ты что, не знаешь, где ты родился?
— Я забыл.
— А что же ты тогда знаешь? Ну, скажи мне, что ты знаешь, если ты даже не знаешь, где ты родился?
— А плюс В в квадрате равно А в квадрате плюс два АВ плюс В в квадрате! — выпаливает Спира, как из пулемета.».
Чем же этот отрывок связан с нашим уроком?
Сегодня у нас обобщающий урок по теме «Формулы сокращенного умножения», мы посмотрим, а как же мы выучили формулы сокращенного умножения и как же мы их можем применять. Откройте тетради, запишите число, классная работа, тему урока
- Устная работа
Для начала потренируемся в устном счете, а 1 ученик покажет нам знание ФСУ.
- На доске запись:
Квадрат суммы
Разность квадратов
Куб разности
Разность кубов
Квадрат суммы трех выражений
Сумма квадратов
Сумма кубов
Квадрат разности
Куб суммы
Устный счет – работа с классом (вопрос каждому – быстрый темп):
Проверка классом правильности формул
(а + в) 2 =
(а – в) 2 = а2 – 2ав + в2
а2 – в2 = (а – в)(а + в)
а3 + в3 = (а + в)(а2 – ав + в2)
а3 + в3 = (а – в)(а2 + ав + в2)
(а + в) 3 = а3 + 3а2в + 3ав2 + в3
(
(а + в + с) 2 = а2 + в2 + с2 + 2ав +2ас+2вс.
а2 + в2 — формула не существует
Совместная работа
Кроме того, что ФСУ применяются как рациональный способ счета, где еще применяются ФСУ? (Разложение многочленов на множители, решение уравнений, решение задач).
Работа по карточкам с уравнениями: (5 человек у доски, остальные в тетрадях) – смотри документ.
Решение задачи (совместно): (1 человек у доски – подробный разбор задачи)
Я считаю себя отличным хозяином. Все, что касается домашних дел, я решаю сам. Вот и вчера я купил напольное покрытие, длина которого была на 1,6 метра больше его ширины. При укладке пришлось отрезать вдоль и поперек покрытия полосы шириной 20 см (0,2 м) , в результате чего его площадь сократилась на 1,2 м2. Найдите площадь комнаты, которой я любуюсь вот уже второй день?
(Примечание: покрытие легло ровно на всю поверхность пола.)
|
Было |
Изменилось |
Стало |
a |
|
|
|
b |
|
|
|
S |
|
|
|
Работа по группам (4 группы готовят свое подробное объяснение решения задачи или уравнения за то время, когда класс решает совместно задачу).
Выступление групп
1 группа
Решить уравнение (применив способ группировки и разложив левую часть на множители, подготовить развернутый устный ответ и решение):
4x3—32x2—9x+72=0 .
2 группа
В специальный ящик в форме прямоугольного параллелепипеда, у которого длина больше ширины на 3 см, а высота меньше ширины на 2 см, я умудрился уложить большое количество куриных яиц. Затем я взял другой ящик, в форме куба, со стороной, равной ширине первого ящика. Я был поражен, что во второй ящик, я уместил столько же яиц. Какие размеры имел первый ящик, учитывая, что куриные яйца я укладывал и в первый и во второй ящики, уминая ногами с одинаковой силой?
(рассказать план решения, составить схему решения в виде таблицы и составить уравнение к данной задаче)
|
a |
b |
c |
V=abc |
1 ящик |
|
|
|
|
2 ящик |
|
|
|
|
3 группа
Решить уравнение (разложив левую часть на множители и далее, применив необходимую формулу сокращенного умножения подготовить развернутый устный ответ и решение)
xx+2x+5—4xx+2=0 .
4 группа
У одного царя-батюшки было три дочки и прямоугольное царство, длина которого на 11 км больше ширины. Первой вышла замуж за соседского принца младшая дочка и получила в приданое сразу такое число км2, сколько составляет половина от ширины царства. Средняя, выходя замуж за воеводу-ветерана, получила в приданое квадратную часть со стороной равной ширине царства, которое было изначально у батюшки. Старшей дочери, когда она наконец уговорила Иванушку, ее батюшка — царь выделил площадь в 50 км2. Вычислите площадь царства, которое было до замужества всех дочерей у царя, если жилплощадь, которая осталась у царя-батюшки равна 13 км2.
|
a |
b |
S=ab |
Было царство |
|
|
|
Мл.дочь |
|
|
|
Ср.дочь |
|
|
|
Ст.дочь |
|
|
|
Осталось |
|
|
|
Группы по очереди готовят таблицу и рассказывают ход решения, что обозначают за х и как составляют уравнение (Можно воспользоваться кодоскопом – это экономит время). Отвечают на вопросы.
Информация о Д/З. Итог урока.
videouroki.net
Применение формул сокращённого умножения при решении задач
Данные об автореАвтор(ы):
Парфёнов Владимир Александрович на основе разработки Крючковой НатальиМесто работы, должность:
МБОУ Кирская СОШ пос.Киря Алатырский район Чувашская Республика , учитель математики.
Регион:
Республика Чувашия Характеристики урока (занятия)Уровень образования:
основное общее образованиеЦелевая аудитория:
Учитель (преподаватель)Класс(ы):
7 классПредмет(ы):
МатематикаЦель урока:
Формирование учебно-познавательнойкомпетенции
1.Образовательные:
а)закрепление знаний и умений по данной теме;
б)формирование умения преобразовывать выражения с помощью формул сокращённого умножения
2.Воспитательные:
а)формирование интереса к математике;
б)воспитание чувства взаимопомощи,самоконтроля,математической культуры,умение сотрудничать и работать в группе
3.Развивающие:
а)развитие внимания;
б)развитие логического мышления;
в)умение систематизировать и применять полученные знания;
г)навыки самостоятельной и творческой работы.
Тип урока:
Урок закрепления знанийУчеников в классе:
20Используемые учебники и учебные пособия:
Учебник «Алгебра для 7 класса» под редакцией А.Г.Мордковича.
Используемое оборудование:
Написанные на доске примеры для устной и самостоятельной работы;
Листы с заданиями;
Учебник;
Карточки.
Краткое описание:
Применение технологии работы в группах для отработки навыков применения вормул сокращенного умножения при решении задач.1. Организационный момент.
2. Устная работа. Учащиеся выполняют задание в группах по 4-5 человек.
Каждая группа получает карточки из которых надо сложить формулу и дать словестную формулировку формулам
1)
(а+в)2
а2+2ав+в2
2)
(а-в)2
а2-2ав+в2
3)
а2-в2
(а-в) (а+в)
4)
(а2+ав+в2) (а-в)
а3-в3
5)
(а+в) (а2-ав+в2)
а3+в3
Работа с листами 1 и 2 на которых написаны задания. Выполните их.
ЛИСТ 1.
При записи формул сокращенного умножения были допущены ошибки. Найдите и исправьте их.
(а+в)2=а2+ав+в2
(а-в)2= а2-2ав+в2
а2-в2= (а-в) (а-в)
а3+в3=(а+в) (а2-ав+в2)
а3-в3=(а+в) (а2-ав+в2)
В таблицах представлены выражения, которые после перемножения образуют сумму или разность кубов.
Докажите, что значение выражения (а+4) (а-4) – (а-5) (а+5) не зависит от значения переменной
Представьте в виде произведения
а)2Х+8ХУ-4ХРУ
б)Найдите значение дроби 39,52-3,52/57,52-14,52
Некое число нужно возвести в квадрат, потом из него вычесть данное число, увеличенное в 14 раз. Если к получившемуся выражению добавить 49, то в итоге получиться 0. Найдите это число.
Найдите два целых последовательных нечетных числа, произведение которых равно -15.
Известно, что одно из них на 2 единицы больше другого.
VII. Докажите, что значение выражения 533+467делится на 200.
Лист 2 – устно.
ЛИСТ 2.
Саша получила оценку на уроке. В качестве ответа на вопрос Димы об отметке она использовала задачу. Сумма квадрата оценки и числа 16 равна произведению оценки и числа 8.
Найдите ошибки которые допустил в решении Дима и помогите ему узнать, какую
оценку получила Саша.
Решение Димы:
Пусть х оценка, которую получила Саша.
Составим уравнение по условию задачи
Х2+16=8х
Х2+8х+16=0
(х+4)2=0
х+4=0
х=-4
Саша на уроке получила оценку «-4»
Учитель высказал предположение, что любое число равно числу, в 2 раза большему его.
Доказательство.
Пустьх – любое число
х2-х2=х2-х2 – тождество
правую его часть разложим на множители по формуле разности квадратов, а в левой части вынесем х за скобки.
(х+х) (х-х) = х(х-х)
упростим
2х=х
Мы понимаем, что такого быть не может
Задание:Найти ошибку.
Ответ: ошибка в том, что мы делили на (х-х), а этого делать нельзя, т.к. х-х=0
III. Выполнение самостоятельной работы. Лист 3.
Каждый обучающийся выполняет работу. Взаимопроверка в группах.
Лист 3. Самостоятельная работа.
Преобразуйте в многочлен
а) (х-6)2
б)(а+2)(а-2)
в)(3в+1)2+2в
г) (а-3) (3+а)
Разложите на множители:
а) 4х2+12х+9
б) а2-25
в) в2-4/9
Решите уравнение
(х-7)2+8 = (х-2) (х+2)
Докажите, что при любом натуральном nзначение выражения (4n+5)2-9 делится на 4.
Разложите на множители х3+у3+2ху (х+у)
Решение:
а) (х-6)2 =х2-12х+36
б) (а+2) (а-2) = а2-4
в) (3в+1)2+2в = 9в2+6в+1+2в=9в2+8в+1
г) (а-3) (3+а) = а2-9
а) 4х2+12х+9 = (2х+3)2
б) а2-25= (а-5) (а+5)
в) в2-4/9 = (в-2/3) (в+2/3)
(х-7)2+8 = (х-2) (х+2)
х2-14х+49+8=х2-4
-14х=-61
х=61/14
Ответ 61/14.
(4n+5)2-9=16n2+40n+25-9=16n2+40n+16=8(2n2+5n+2)
8 делится на 4
8(2n2+5n+2) делится на 4
(4n+5)2-9 делится на 4
х3+у3+2ху (х+у)= (х+у) (х2-ху+у2) + 2ху (х+у)=(х+у) (х2-ху+у2+2ху)=(х+у) (х2+ху+у2)
Проверка заданий. Учащиеся оценивают друг друга в группах.
IV. На дом. №28.27, 28.36(а,в) , 28.50(а) , 28.64.
www.openclass.ru