Экосистема вики – Экосистема [Экологическая] — это, что такое, какие, определение, значение, доклад, реферат, конспект, сообщение, вики — WikiWhat
Водная экосистема — Википедия
Материал из Википедии — свободной энциклопедии
Эта статья или раздел содержит незавершённый перевод с английского языка. Вы можете помочь проекту, закончив перевод. |
Водная экосистема — экосистема в водной среде. В водных экосистемах живут сообщества организмов, которые зависят друг от друга и от их воды как среды обитания. Двумя главными типами водных экосистем являются морские экосистемы и пресноводные экосистемы[1].
Морские экосистемы[править | править код]
Морские экосистемы занимают приблизительно 71 % поверхности Земли и содержат 97 % всех вод планеты. Они производят 32 % чистой первичной продукции в мире.[1] Они отличаются от пресноводных экосистем наличием растворённых соединений в воде, особенно солей. Примерно 85 % растворённых веществ в морской воде — это натрий и хлор. Морская вода имеет среднюю солёность 35 промилле в воде (частей за тысячу). Фактическая солёность варьируется среди различных морских экосистем

Морские экосистемы можно разделить на несколько зон в зависимости от глубины и особенностей береговой линии. Океаническая зона является обширной открытой частью океана, где живут такие животные, как киты, акулы и тунцы. Зона бентоса состоит из основания ниже воды, где жив
ru.wikipedia.org
Экосистема — wiki.web.ru
Экосистема — основное понятие экологии. Это совокупность сосуществующих видов растений, животных, грибов, микроорганизмов, взаимодействующих между собой и с окружающей их средой обитания таким образом, что такое сообщество может сохраняться и функционировать на протяжении длительного периода геологического времени. Сообщества взаимодействующих живых организмов представляют собой не случайный набор видов, а вполне определенную систему, достаточно устойчивую, связанную многочисленными внутренними связями, с относительно постоянной структурой и взаимообусловленным набором видов. Такие системы принято называть биотическими сообществами, или биоценозами (от лат. — «биологическое сообщество»), а системы, включающие совокупность живых организмов и среду их обитания, — экосистемами. Термин «биогеоценоз», также обозначает совокупность биологического сообщества и среды его обитания, но в несколько ином контексте. Биотическое сообщество (биоценоз) состоит из сообщества растений (фитоценоз), сообщества животных (зооценоз), сообщества микроорганизмов (микробоценоз). Все организмы Земли и среда их обитания также представляют собой экосистему высшего ранга — биосферу. Биосфера также обладает устойчивостью и другими свойствами экосистемы.
Экология рассматривает взаимодействие живых организмов и неживой природы. Это взаимодействие, во-первых, происходит в рамках определенной системы (экологической системы, экосистемы) и, во-вторых, оно не хаотично, а определенным образом организовано, подчинено законам. Экосистемой называют совокупность продуцентов, консументов и детритофагов, взаимодействующих друг с другом и с окружающей их средой посредством обмена веществом, энергией и информацией таким образом, что эта единая система сохраняет устойчивость в течение продолжительного времени. Таким образом, для естественной экосистемы характерны три признака:
- 1) экосистема обязательно представляет собой совокупность живых и неживых компонентов
- 2) в рамках экосистемы осуществляется полный цикл, начиная с создания органического вещества и заканчивая его разложением на неорганические составляющие;
- 3) экосистема сохраняет устойчивость в течение длительного времени, что обеспечивается определенной структурой биотических и абиотических компонентов.
Примерами природных экосистем являются озеро, пещера, лес, пустыня, тундра, океан, биосфера. Как видно из примеров, более простые экосистемы входят в состав более сложно организованных. При этом реализуется иерархия организации систем, в данном случае экологических. Таким образом, устройство природы следует рассматривать как системное целое, состоящее из вложенных одна в другую экосистем, высшей из которых является уникальная глобальная экосистема — биосфера. В ее рамках происходит обмен энергией и веществом между всеми живыми и неживыми составляющими в масштабах планеты. Грозящая всему человечеству катастрофа состоит в том, что нарушен один из признаков, которым должна обладать экосистема: биосфера как экосистема деятельностью человека выведена из состояния устойчивости.
Источник: за основу взят текст с сайта: Экологический центр «Экосистема»
wiki.web.ru
Экосистема [Экологическая] — это, что такое, какие, определение, значение, доклад, реферат, конспект, сообщение, вики — WikiWhat
Экосистема и биогеоценоз
см. Биогеоценоз
Несмотря на то, что экосистема и биогеоценоз используются как одно и то же понятие, экосистемы по своим размерам и сложности отличаются разнообразием. В то время как биогеоценозы имеют определённые чёткие границы, обозначить границы экосистем очень трудно. Примером малых экосистем могут служить капля воды с микробами, гниющий пень со своими микроорганизмами, грибами и мелкими позвоночными животными. В состав экосистемы могут входить несколько биогеоценозов.
Таким образом, экосистема представляет собой более широкое понятие по сравнению с биогеоценозом. Любой биогеоценоз — это экосистема, но не каждую экосистему можно назвать биогеоценозом.
Биосфера
см. Биосфера
Самая большая экосистема — биосфера.
Круговорот веществ
см. Круговорот веществ и энергии
Жизнь на Земле не прерывается уже более 3,5 млрд лет благодаря круговороту веществ в природе. Растения создают органические вещества из минеральных веществ, воды, углекислого газа, используя потоки солнечной энергии. Животные используют в процессе питания готовые органические вещества, а грибы, бактерии постепенно разрушают их до минеральных. Минеральные вещества вновь используются растениями. Так возникает
В природном сообществе живые организмы связаны не только друг с другом, но и с неживой природой. Тесная связь между живыми и неживыми компонентами природы и образует экосистему.
Наша планета уникальна, потому что на ней есть жизнь. Жизнь на Земле не прекращается благодаря биологическому круговороту, основным источником энергии для которого служит Солнце.
Структура экосистемы
Круговорот веществ в экосистеме может происходить, если есть запасы необходимых для жизни биогенных веществ и три группы организмов, образующие природное сообщество, — производители (продуценты), потребители (консументы), разрушители (редуценты) органических веществ.
Цепи питания организмов
см. Цепь питания
На Земле нет ни одного вида, который не служил бы пищей другим или сам не питался бы организмами других видов. Ряд живых организмов в экосистеме, по которому происходит передача энергии, заключённой в органических веществах, называют цепью питания.
Растительноядные животные используют энергию, запасённую растениями в виде органических веществ. Однако большую часть энергии растения расходуют на процессы жизнедеятельности. Меньше энергии получают хищники, питающиеся растительноядными животными. Остатки животных и растений, содержащих ещё меньше энергии, постепенно расходуются грибами и бактериями. Таким образом, из-за постоянной траты энергии на процессы жизнедеятельности цепи питания обычно состоят из небольшого числа звеньев — обычно из 3-5.
Общее число видов в экосистеме может составлять сотни и тысячи. Почти всегда организмы разных видов питаются разными объектами. В результате образуется сложная пищевая сеть. Благодаря этому исчезновение особей какого-либо вида не сказывается на экосистеме. Она продолжает устойчиво существовать в течение длительного времени.
Потоки веществ и энергии, проходящие через живые организмы, очень велики. Так, человек за свою жизнь потребляет десятки тонн воды и пищи, а через лёгкие проходят многие миллионы литров воздуха.
Виды экосистем
По происхождению
Экосистемы могут быть естественными (лес, луг, озеро) и искусственными (парк, поле, сад). Материал с сайта http://wikiwhat.ru
- Естественные экосистемы существуют сами по себе, без участия человека, длительное время.
- Искусственные экосистемы — агроэкосистемы создаются человеком и не могут развиваться без его помощи. Они состоят из небольшого числа видов и потому неустойчивы. Если человек прекращает уход за искусственными экосистемами, то они зарастают сорняками и погибают.
По местоположению
Выделяют наземные экосистемы (луга, степи, леса) и водные (пруды, реки, моря).
По размеру
Экосистемы могут быть очень крупными (тундра, тайга), средних размеров (водоём, берёзовая роща) и совсем маленькими (ручей, болотная кочка).
Картинки (фото, рисунки)
1.13. Компоненты экосистемы
1.14. Цепи питания
1.15. Искусственные экосистемы: а) парк; б) огород
Экосистемой можно назвать
Виды экосистемы это
Тенсли экосистемы реферат
Биогеоценоз называют экосистемой потому что
Эскиз витрины на которой изображена природная экосистема картинки
Что называют экосистемой?
Какие различия между биогеоценозом и экосистемой?
Что связывает компоненты экосистемы в единое целое?
Почему экосистемы устойчивы?
Почему пищевые цепи состоят из небольшого числа звеньев?
Какие группы организмов осуществляют круговорот веществ?
Что называют цепью питания?
Как расходуется энергия в цепях питания?
Какие бывают экосистемы?
wikiwhat.ru
Экосистема — Википедия (с комментариями)
Ты — не раб!
Закрытый образовательный курс для детей элиты: «Истинное обустройство мира».
http://noslave.org
Материал из Википедии — свободной энциклопедии
Экосисте́ма, или экологи́ческая систе́ма (от др.-греч. οἶκος — жилище, местопребывание и σύστημα — система) — биологическая система (биогеоценоз), состоящая из сообщества живых организмов (биоценоз), среды их обитания (биотоп), системы связей, осуществляющей обмен веществом и энергией между ними. Одно из основных понятий экологии.
Пример экосистемы — пруд с обитающими в нём растениями, рыбами, беспозвоночными животными, микроорганизмами, составляющими живой компонент системы, биоценоз. Для пруда как экосистемы характерны донные отложения определенного состава, химический состав (ионный состав, концентрация растворённых газов) и физические параметры (прозрачность воды, тренд годичных изменений температуры), а также определённые показатели биологической продуктивности, трофический статус водоёма и специфические условия данного водоёма. Другой пример экологической системы — лиственный лес в средней полосе России с определённым составом лесной подстилки, характерной для этого типа лесов почвой и устойчивым растительным сообществом, и, как следствие, со строго определёнными показателями микроклимата (температуры, влажности, освещённости) и соответствующим таким условиям среды комплексом животных организмов. Немаловажным аспектом, позволяющим определять типы и границы экосистем, является трофическая структура сообщества и соотношение производителей биомассы, её потребителей и разрушающих биомассу организмов, а также показатели продуктивности и обмена вещества и энергии.
История термина
Идеи единства всего живого в природе, его взаимодействия и обусловливания процессов в природе ведут своё начало с античных времён. Однако приобретать современную трактовку понятие стало на рубеже XIX—XX веков. Так, немецкий гидробиолог К. Мёбиус в 1877 году описывал устричную банку как сообщество организмов и дал ему название «биоценоз». В классическом труде американского биолога С. Форбса (англ.)русск. озеро со всей совокупностью организмов определяется как «микрокосм» («Озеро как микрокосм» — «The lake as a microcosme» (англ.), 1887[1]). Современный термин впервые был предложен английским экологом А. Тенсли в 1935 году. В. В. Докучаев также развивал представление о биоценозе как о целостной системе. Однако в русской науке общепринятым стало введённое В. Н. Сукачёвым понятие о биогеоценозе (1944). В смежных науках существуют также различные определения, в той или иной степени совпадающие с понятием «экосистема», например, «геосистема» в геоэкологии или введённые примерно в тот же период другими учёными «голоцен» (Ф. Клементс, 1930) и «биокосное тело» (В. И. Вернадский, 1944)[2][3].
Понятие экосистемы
Пресноводное озеро на одном из островов Канарского архипелага как пример экосистемы (соседствует и взаимодействует с экосистемами окружающего её леса и другими экосистемами)
Определения
- Любое единство, включающее все организмы на данном участке и взаимодействующее с физической средой таким образом, что поток энергии создаёт чётко определённую трофическую структуру, видовое разнообразие и круговорот веществ (обмен веществами и энергией между биотической и абиотической частями) внутри системы, представляет собой экологическую систему, или экосистему (Ю. Одум, 1971)[2][4].
- Экосистема — система физико-химико-биологических процессов (А. Тенсли, 1935 год).
- Сообщество живых организмов вместе с неживой частью среды, в которой оно находится, и всеми разнообразными взаимодействиями называют экосистемой (Д. Ф. Оуэн.)[5].
- Любую совокупность организмов и неорганических компонентов окружающей их среды, в которой может осуществляться круговорот веществ, называют экологической системой или экосистемой (В. В. Денисов.)[5].
- Биогеоценоз (В. Н. Сукачёв, 1944) — взаимообусловленный комплекс живых и косных компонентов, связанных между собой обменом веществ и энергии[6].
Иногда особо подчёркивается, что экосистема — это исторически сложившаяся система (см. Биоценоз).
Концепция экосистемы
Экосистема — сложная (по определению сложных систем Л. Берталанфи) самоорганизующаяся, саморегулирующаяся и саморазвивающаяся система. Основной характеристикой экосистемы является наличие относительно замкнутых, стабильных в пространстве и времени потоков вещества и энергии между биотической и абиотической частями экосистемы[2]. Из этого следует, что не всякая биологическая система может назваться экосистемой, например, таковыми не являются аквариум или трухлявый пень[7]. Данные биологические системы (естественные или искусственные) не являются в достаточной степени самодостаточными и саморегулируемыми (аквариум), если перестать регулировать условия и поддерживать характеристики на одном уровне, достаточно быстро она разрушится. Такие сообщества не формируют самостоятельных замкнутых циклов вещества и энергии (пень), а являются лишь частью большей системы[8]. Такие системы следует называть сообществами более низкого ранга, или же микрокосмами. Иногда для них употребляют понятие — фация (например, в геоэкологии), но оно не способно в полной мере описать такие системы, особенно искусственного происхождения. В общем случае в разных науках понятию «фация» соответствуют различные определения: от систем субэкосистемного уровня (в ботанике, ландшафтоведении) до понятий, не связанных с экосистемой (в геологии), либо понятие, объединяющее однородные экосистемы (Сочава В. Б.), или почти тождественное (Берг Л. С., Раменский Л. Г.) определению экосистемы. Экосистема является открытой системой и характеризуется входными и выходными потоками вещества и энергии. Основа существования практически любой экосистемы — поток энергии солнечного света[8], который является следствием термоядерной реакции, — в прямом (фотосинтез) или косвенном (разложение органического вещества) виде, за исключением глубоководных экосистем: «чёрных» и «белых»[9] курильщиков, источником энергии в которых является внутреннее тепло Земли и энергия химических реакций[9][10].
Биогеоценоз и экосистема
В соответствии с определениями между понятиями «экосистема» и «биогеоценоз» нет никакой разницы, биогеоценоз можно считать полным синонимом термина экосистема[8]. Однако существует распространённое мнение, согласно которому биогеоценоз может служить аналогом экосистемы на самом начальном уровне[8][11], так как термин «биогеоценоз» делает бо́льший акцент на связь биоценоза с конкретным участком суши или водной среды, в то время как экосистема предполагает любой абстрактный участок. Поэтому биогеоценозы обычно считаются частным случаем экосистемы[12][13]. Разными авторами в определении термина биогеоценоз перечисляются конкретные биотические и абиотические компоненты биогеоценоза, в то время как определение экосистемы носит более общий характер[14].
Строение экосистемы
В экосистеме можно выделить два компонента — биотический и абиотический. Биотический делится на автотрофный (организмы, получающие первичную энергию для существования из фото- и хемосинтеза или продуценты) и гетеротрофный (организмы, получающие энергию из процессов окисления органического вещества — консументы и редуценты) компоненты[4], формирующие трофическую структуру экосистемы.
Единственным источником энергии для существования экосистемы и поддержания в ней различных процессов являются продуценты, усваивающие энергию солнца, (тепла, химических связей) с эффективностью 0,1—1 %, редко 3—4,5 % от первоначального количества. Автотрофы представляют первый трофический уровень экосистемы. Последующие трофические уровни экосистемы формируются за счёт консументов (2-й, 3-й, 4-й и последующие уровни) и замыкаются редуцентами, которые переводят неживое органическое вещество в минеральную форму (абиотический компонент), которая может быть усвоена автотрофным элементом[8][15].
Основные компоненты экосистемы
С точки зрения структуры в экосистеме выделяют[2]:
- климатический режим, определяющий температуру, влажность, режим освещения и прочие физические характеристики среды;
- неорганические вещества, включающиеся в круговорот;
- органические соединения, которые связывают биотическую и абиотическую части в круговороте вещества и энергии;
- продуценты — организмы, создающие первичную продукцию;
- макроконсументы, или фаготрофы, — гетеротрофы, поедающие другие организмы или крупные частицы органического вещества;
- микроконсументы (сапротрофы) — гетеротрофы, в основном грибы и бактерии, которые разрушают мёртвое органическое вещество, минерализуя его, тем самым возвращая в круговорот.
Последние три компонента формируют биомассу экосистемы.
С точки зрения функционирования экосистемы выделяют следующие функциональные блоки организмов (помимо автотрофов):
- биофаги — организмы, поедающие других живых организмов,
- сапрофаги — организмы, поедающие мёртвое органическое вещество.
Данное разделение показывает временно-функциональную связь в экосистеме, фокусируясь на разделении во времени образования органического вещества и перераспределении его внутри экосистемы (биофаги) и переработки сапрофагами[2]. Между отмиранием органического вещества и повторным включением его составляющих в круговорот вещества в экосистеме может пройти существенный промежуток времени, например, в случае соснового бревна, 100 и более лет.[16]
Все эти компоненты взаимосвязаны в пространстве и времени и образуют единую структурно-функциональную систему.
Экотоп
Обычно понятие экотоп определялось как местообитание организмов, характеризующееся определённым сочетанием экологических условий: почв, грунтов, микроклимата и др. В этом случае это понятие близко к понятию климатоп.
На данный момент под экотопом в отличие от биотопа понимается определённая территория или акватория со всем набором и особенностями почв, грунтов, микроклимата и других факторов в неизменённом организмами виде[17]. Примерами экотопа могут служить наносные грунты, новообразовавшиеся вулканические или коралловые острова, вырытые человеком карьеры и другие заново образовавшиеся территории. В этом случае климатоп является частью экотопа.
Климатоп
Изначально «климатоп» был определён В. Н. Сукачёвым (1964) как воздушная часть биогеоценоза, отличающаяся от окружающей атмосферы своим газовым составом, особенно концентрацией углекислого газа в приземном биогоризонте, кислорода там же и в биогоризонтах фотосинтеза, воздушным режимом, насыщенностью биолинами, уменьшенной и изменённой солнечной радиацией и освещённостью, наличием люминесценции растений и некоторых животных, особым тепловым режимом и режимом влажности воздуха[18][19].
На данный момент это понятие трактуется чуть более широко: как характеристика биогеоценоза, сочетание физических и химических характеристик воздушной или водной среды, существенных для населяющих эту среду организмов[20]. Климатоп задаёт в долговременном масштабе основные физические характеристики существования животных и растений, определяя круг организмов, которые могут существовать в данной экосистеме.
Эдафотоп
Под эдафотопом обычно понимается почва как составной элемент экотопа[21]. Однако более точно это понятие следует определять как часть косной среды преобразованной организмами, то есть не всю почву, а лишь её часть[17]. Почва (эдафотоп) является важнейшей составляющей экосистемы: в нём происходит замыкание циклов вещества и энергии, осуществляется перевод из мёртвого органического вещества в минеральные и их вовлечение в живую биомассу[17]. Основными носителями энергии в эдафотопе выступают органические соединения углерода, их лабильные и стабильные формы, они в наибольшей степени определяют плодородие почв.
Биотоп
«Биотоп» — преобразованный биотой экотоп или, более точно, участок территории, однородный по условиям жизни для определённых видов растений или животных, или же для формирования определённого биоценоза[22].
Биоценоз
Биоценоз — исторически сложившаяся совокупность растений, животных, микроорганизмов, населяющих участок суши или водоёма (биотоп). Не последнюю роль в формировании биоценоза играет конкуренция и естественный отбор[23]. Основная единица биоценоза — консорция, так как любые организмы в той или иной степени связаны с автотрофами и образуют сложную систему консортов различного порядка, причём это сеть является консортом всё большего порядка и может косвенно зависеть от всё большего числа детерминантов консорций.
Также возможно разделение биоценоза на фитоценоз и зооценоз. Фитоценоз — это совокупность растительных популяций одного сообщества, которые и формируют детерминантов консорций. Зооценоз[24] — это совокупность популяций животных, которые и являются консортами различного порядка и служат механизмом перераспределения вещества и энергии внутри экосистемы (см. функционирование экосистем).
Биотоп и биоценоз вместе формируют биогеоценоз/экосистему.
Механизмы функционирования экосистемы
Устойчивость экосистем
Экосистема может быть описана комплексной схемой проложительных и отрицательных обратных связей, поддерживающих гомеостаз системы в некоторых пределах параметров окружающей среды[4]. Таким образом, в некоторых пределах экосистема способна при внешних воздействиях поддерживать свою структуру и функции относительно неизменными. Обычно выделяют два типа гомеостаза: резистентный — способность экосистем сохранять структуру и функции при негативном внешнем воздействии (см. Принцип Ле Шателье — Брауна) и упругий — способность экосистемы восстанавливать структуру и функции при утрате части компонентов экосистемы[25]. В англоязычной литературе используются сходные понятия: локальная устойчивость — англ. local stability (резистентный гомеостаз) и общая устойчивость — англ. global stability (упругий гомеостаз)[15].
Иногда выделяют третий аспект устойчивости — устойчивость экосистемы по отношению к изменениям характеристик среды и изменению своих внутренних характеристик[15]. В случае, если экосистема устойчиво функционирует в широком диапазоне параметров окружающей среды и/или в экосистеме присутствует большое число взаимозаменяемых видов (то есть, когда различные виды, сходные по экологическим функциям в экосистеме, могут замещать друг друга), такое сообщество называют динамически прочным (устойчивым). В обратном случае, когда экосистема может существовать в весьма ограниченном наборе параметров окружающей среды, и/или большинство видов незаменимы в своих функциях, такое сообщество называется динамически хрупким (неустойчивым)[15]. Необходимо отметить, что данная характеристика в общем случае не зависит от числа видов и сложности сообществ. Классическим примером может служить Большой Барьерный риф у берегов Австралии (северо-восточное побережье), являющийся одной из «горячих точек» биоразнообразия в мире — симбиотические водоросли кораллов, динофлагелляты, весьма чувствительны к температуре. Отклонение от оптимума буквально на пару градусов ведёт к гибели водорослей, а до 50—60 % (по некоторым источникам до 90 %) питательных веществ полипы получают от фотосинтеза своих мутуалистов[26][27].
У экосистем существует множество состояний, в которых она находится в динамическом равновесии; в случае выведения из него внешними силами, экосистема совершенно необязательно вернётся в изначальное состояние, зачастую её привлечёт ближайшее равновесное состояние (аттрактор), хотя оно может быть очень близким к первоначальному[28].
Биоразнообразие и устойчивость в экосистемах
Обычно устойчивость связывали и связывают с биоразнообразием видов в экосистеме (альфаразнообразие), то есть, чем выше биоразнообразие, чем сложнее организация сообществ, чем сложнее пищевые сети, тем выше устойчивость экосистем. Но уже 40 и более лет назад на данный вопрос существовали различные точки зрения, и на данный момент наиболее распространено мнение, что как локальная, так и общая устойчивость экосистемы зависят от значительно большего набора факторов, чем просто сложность сообществ и биоразнообразие. Так, на данный момент с повышением биоразнообразия обычно связывают повышение сложности, силы связей между компонентами экосистемы, стабильность потоков вещества и энергии между компонентами[15].
Важность биоразнообразия состоит в том, что оно позволяет формировать множество сообществ, различных по структуре, форме, функциям, и обеспечивает устойчивую возможность их формирования. Чем выше биоразнообразие, тем большее число сообществ может существовать, тем большее число разнообразных реакций (с точки зрения биогеохимии) может осуществляться, обеспечивая существование биосферы в целом[29].
Сложность и устойчивость экосистем
На данный момент не существует удовлетворительного определения и модели, описывающей сложность систем и экосистем в частности. Существует два широко распространённых определения сложности: колмогоровская сложность — слишком специализированное для применения к экосистемам. И более абстрактное, но тоже неудовлетворительное определение сложности, данное И. Пригожиным в работе «Время, хаос, квант»[30]: Сложные системы — не допускающие грубого или операционального описания в терминах детерминистских причинностей. В других своих трудах И. Пригожин писал, что не готов дать строгого определения сложности[31], поскольку сложное — это нечто, что на данный момент не может быть корректно определено.
Параметры сложности и их влияние на устойчивость
В качестве параметров сложности экосистем традиционно подразумевались общее число видов (альфа-разнообразие), большое число взаимодействий между видами, сила взаимодействий между популяциями и различные сочетания этих характеристик. При дальнейшем развитии этих представлений появилось утверждение, что чем больше путей переноса и преобразования энергии в экосистеме, тем она устойчивей при различных видах нарушений[32].
Однако, позже было показано, что данные представления не могут охарактеризовать устойчивость экосистем[15]. Существует множество примеров как весьма устойчивых монокультурных сообществ (фитоценозы орляка), так и слабоустойчивых сообществ с высоким биоразнообразием (коралловые рифы, тропические леса). В 70-80-х годах XX столетия усилился интерес к моделированию зависимости устойчивости от сложности экосистем[15][33][34][35][36]. Разработанные в этот период модели показали, что в случайным образом генерируемой сети взаимодействия в сообществе при удалении бессмысленных цепей (типа А ест В, В ест С, С ест А и подобного типа) локальная устойчивость падает с увеличением сложности. Если продолжить усложнение модели и учесть, что консументы испытывают влияние пищевых ресурсов, а пищевые ресурсы от консументов не зависят, то можно прийти к выводу о том, что устойчивость не зависит от сложности, либо также падает с её увеличением. Разумеется, такие результаты справедливы главным образом для детритных цепей питания, в которых консументы не влияют на поток пищевых ресурсов[37], хотя и могут менять пищевую ценность последних.
При изучении общей устойчивости на модели из 6 видов (2 хищника-консумента второго порядка, 2 консумента первого порядка и 2 вида в основании пищевой цепи) исследовалось удаление одного из видов. В качестве параметра устойчивости была принята связность. Сообщество считалось устойчивым, если остальные виды оставались локально устойчивыми. Полученные результаты согласовывались с общепринятыми воззрениями о том, что с повышением сложности при выпадении хищников высшего порядка устойчивость сообщества падает, но при выпадении оснований пищевой цепи с повышением сложности устойчивость повышалась[38].
В случае упругой устойчивости[39], когда под сложностью также понимается связность, с повышением сложности упругая устойчивость также повышается. То есть, большее разнообразие видов и большая сила связи между ними позволяет сообществам быстрее восстанавливать свою структуру и функции. Данный факт подтверждает общепринятые взгляды на роль биоразнообразия как некоего пула (фонда) для восстановления полноценной структуры как экосистем, так и более высокоорганизованных структур биосферы, а также самой биосферы в целом. На данный момент общепринятым и фактически неоспариваемым является представление о том, что биосфера эволюционировала в сторону увеличения биоразнообразия (всех трёх его компонентов), ускорения обращения вещества между компонентами биосферы, и «убыстрения» времени жизни как видов, так и экосистем[40][41].
Потоки вещества и энергии в экосистемах
На данный момент научное понимание всех процессов внутри экосистемы далеко от совершенства, и в большей части исследований либо вся экосистема, либо некоторые её части выступают в качестве «чёрного ящика»[2]. В то же время, как любая относительно замкнутая система, экосистема характеризуется входящим и выходящим потоком энергии и распределением этих потоков между компонентами экосистем.
Продуктивность экосистем
При анализе продуктивности и потоков вещества и энергии в экосистемах выделяют понятия биомасса и урожай на корню. Под урожаем на корню понимается масса тел всех организмов на единице площади суши или воды[15], а под биомассой — масса этих же организмов в пересчёте на энергию (например, в джоулях) или в пересчёте на сухое органическое вещество (например, в тоннах на гектар)[15]. К биомассе относят тела организмов целиком, включая и витализированные омертвевшие части и не только у растений, к примеру, кора и ксилема, но и ногти и ороговевшие части у животных. Биомасса превращается в некромассу только тогда, когда отмирает часть организма (отделяется от него) или весь организм. Часто зафиксированные в биомассе вещества являются «мёртвым капиталом», особенно это выражено у растений: вещества ксилемы могут сотнями лет не поступать в круговорот, служа только опорой растения[15].
Под первичной продукцией сообщества[42] (или первичной биологической продукцией) понимается образование биомассы (более точно — синтез пластических веществ) продуцентами без исключения энергии, затраченной на дыхание за единицу времени на единицу площади (например, в сутки на гектар).
Первичную продукцию сообщества разделяют на валовую первичную продукцию, то есть всю продукцию фотосинтеза без затрат на дыхание, и чистую первичную продукцию, являющуюся разницей между валовой первичной продукцией и затратами на дыхание. Иногда её ещё называют чистой ассимиляцией или наблюдаемым фотосинтезом[2]).
Чистая продуктивность сообщества[43] — скорость накопления органического вещества, не потребляемого гетеротрофами (а затем и редуцентами). Обычно вычисляется за вегетационный период либо за год[2]. Таким образом, это часть продукции, которая не может быть переработана самой экосистемой. В более зрелых экосистемах значение чистой продуктивости сообщества стремится к нулю (см. концепцию климаксных сообществ).
Вторичная продуктивность сообщества — скорость накопления энергии на уровне консументов. Вторичную продукцию не подразделяют на валовую и чистую, так как консументы только потребляют энергию, усвоенную продуцентами, часть её не ассимилируется, часть идёт на дыхание, а остаток идёт в биомассу, поэтому более корректно называть её вторичной ассимиляцией[2].
Распределение энергии и вещества в экосистеме может быть представлено в виде системы уравнений. Если продукцию продуцентов представить как P1, то продукция консументов первого порядка будет выглядеть следующим образом:
где R2 — затраты на дыхание, теплоотдача и неассимилированная энергия. Следующие консументы (второго порядка) переработают биомассу консументов первого порядка в соответствии с:
и так далее, до консументов самого высшего порядка и редуцентов. Таким образом, чем больше в экосистеме потребителей (консументов), тем более полно перерабатывается энергия, первонач
wiki-org.ru
Экосистема Википедия
Наземные экосистемыЭкосисте́ма, или экологи́ческая систе́ма (от др.-греч. οἶκος — жилище, местопребывание и σύστημα — система) — биологическая система (биогеоценоз), состоящая из сообщества живых организмов (биоценоз), среды их обитания (биотоп), системы связей, осуществляющей обмен веществом и энергией между ними. Одно из основных понятий экологии.
Пример экосистемы — пруд с обитающими в нём растениями, рыбами, беспозвоночными животными, микроорганизмами, составляющими живой компонент системы, биоценоз. Для пруда как экосистемы характерны донные отложения определённого состава, химический состав (ионный состав, концентрация растворённых газов) и физические параметры (прозрачность воды, сезонный ход температуры), а также определённые показатели биологической продуктивности, трофический статус водоёма и специфические условия данного водоёма. Другой пример экологической системы — лиственный лес в средней полосе России с определённым составом лесной подстилки, характерной для этого типа лесов почвой и устойчивым растительным сообществом, и, как следствие, со строго определёнными показателями микроклимата (температуры, влажности, освещённости) и соответствующим таким условиям среды комплексом животных организмов. Немаловажным аспектом, позволяющим определять типы и границы экосистем, является трофическая структура сообщества и соотношение производителей биомассы, её потребителей и разрушающих биомассу организмов, а также показатели продуктивности и обмена вещества и энергии.
ru-wiki.ru
Морские экосистемы — Википедия
Материал из Википедии — свободной энциклопедии
Коралловые рифы славятся своим серьёзным биоразнообразием
Морские экосистемы — одни из крупнейших водных экосистем Земли. Они включают в себя океаны, солончаки, зоны приливов, лиманы, лагуны, мангровые заросли, коралловые рифы, глубокое море и морское дно. Они могут быть противопоставлены пресноводным экосистемам, которые имеют более низкое содержание соли. Морские воды занимают две трети поверхности Земли. Подобные места считаются экосистемами, потому что жизнь растений поддерживает жизнь животных и наоборот.
Морские экосистемы очень важны для общего состояния здоровья как морской, так и наземной среды. По данным Центра мировых ресурсов, на прибрежные места обитания приходится около 1/3 всей морской биологической продуктивности, включая устьевые экосистемы (то есть солончаки, морскую растительность, мангровые леса), они являются одними из наиболее продуктивных районов на планете. Кроме того, морские экосистемы, такие как коралловые рифы, по сравнению с другими морскими экосистемами создают более высокий уровень биологического разнообразия, обеспечивая питанием и приютом.[1]
Морские экосистемы, как правило, имеют большое разнообразие биологических видов и, следовательно, как полагают, обладают хорошей устойчивостью против инвазивных видов. Тем не менее, исключения встречались, и механизмы, ответственные за обеспечение устойчивости к вторжению, пока не известны.[2]
ru.wikipedia.org
Экосистема [Экологическая] — это, что такое, определение, значение, конспект, доклад, реферат, вики — Wiki-Med
Основная статья: БиоценозСодержание (план)
Экосистема – это биоценоз вместе со средой обитания (рис. 6).
Основу любого биоценоза составляют производители, в первую очередь растения. Именно они создают органические вещества в ходе фотосинтеза. Давайте разберемся, какие условия необходимы для протекания процесса фотосинтеза. Это наличие солнечного света, воды, углекислого газа, определенной температуры воздуха. Свет, вода, воздух, температура являются факторами неживой природы. Следовательно, для нормальной жизнедеятельности растений им необходимы свет, вода, тепло, углекислый газ для фотосинтеза, кислород для дыхания, почва. Жизнь бактерий, протистов, грибов и животных также зависит от наличии воды, кислорода, определенной температуры, света. Таким образом, организмы любого биоценоза тесно связаны с элементами среды обитания.
Виды экосистем
Выделяют наземные и водные экосистемы. Примерами наземных экосистем являются еловый лес, сосновый лес, смешанный лес, дубрава, луг и т. д. Водные экосистемы — лужа, пруд, озеро, река, море, океан.
Круговорот веществ
см. Биоценоз#Цепи питания Материал с сайта http://wiki-med.com
Для существования любой экосистемы требуется приток энергии. В природных экосистемах используется солнечная энергия, которую улавливают производители, создающие органические вещества из неорганических. Производителями питаются потребители. Разрушители перерабатывают органические вещества отмерших производителей и потребителей в неорганические вещества — углекислый газ, воду и др. Из неорганических веществ производители образуют органические вещества. Процесс передачи веществ от одной группы организмов к другой идет в экосистеме постоянно и называется круговоротом веществ. Таким образом, в круговороте веществ в экосистеме участвуют производители, потребители и разрушители. Круговорот веществ обеспечивает длительное существование любой экосистемы.
На этой странице материал по темам:сообщества живых организмов
какие условия необходимы для существования экосистемы
экосистема это определение для детей
биологиякакие условия необходимы для существования любой экосистемы
водная экосистемой лужи
Чем экосистема отличается от биоценоза?
Какую роль выполняют разрушители в экосистеме?
Какие условия необходимы для существования любой экосистемы?
Расскажите о функциях организмов в экосистемах.
Какова роль живых организмов в экосистемах?
wiki-med.com