Что показывает коэффициент вариации в статистике – Как рассчитать коэффициент вариации 🚩 формула коэффициента вариации 🚩 Математика

Содержание

Показатели вариации

Показатели вариации. При изучении варьирующего признака у единиц совокупности нельзя ограничиваться лишь расчетом средней величины из отдельных вариантов, так как одна и та же средняя может относиться далеко не к одинаковым по составу совокупностям.

Вариацией признака называется различие индивидуальных значений признака внутри изучаемой совокупности.

Термин «вариация» произошел от латинского variatio – изменение, колеблемость, различие. Однако не всякие различия принято называть вариацией.

Под вариацией в статистике понимают такие количественные изменения величины исследуемого признака в пределах однородной совокупности, которые обусловлены перекрещивающимся влиянием действия различных факторов. Колеблемость отдельных значений характеризуют показатели вариации. Чем больше вариация, тем дальше в среднем отдельные значения лежат друг от друга.

Различают вариацию признака в абсолютных и относительных величинах.

К абсолютным показателям относятся: размах вариации, среднее линейное отклонение, среднее квадратическое отклонение, дисперсия. Все абсолютные показатели имеют ту же размерность, что и изучаемые величины.

К относительным показателям относятся коэффициенты осцилляции, линейного отклонения и вариации.

Показатели абсолютные. Рассчитаем абсолютные показатели, характеризующие вариацию признака.

Размах вариации, представляет собой разность между максимальным и минимальным значением признака.

   

Показатель размаха вариации не всегда применим, так как он учитывает только крайние значения признака, которые могут сильно отличаться от всех других единиц.

Более точно можно определить вариацию в ряду при помощи показателей, учитывающих отклонения всех вариантов от средней арифметической.

Таких показателей в статистике два: среднее линейное и среднее квадратическое отклонение.

Среднее линейное отклонение (L) представляет собой среднее арифметическое из абсолютных значений отклонений отдельных вариантов от средней.

 – для несгруппированных данных;

(6.2)

 – для сгруппированных данных.

(6.3)

Практическое использование среднего линейного отклонения заключается в следующем, с помощью этого показателя анализируется состав работающих, ритмичность производства, равномерность поставок материалов.

Недостаток этого показателя заключается в том, что он усложняет расчеты вероятного типа, затрудняет применение методов математической статистики.

    Среднее квадратическое отклонение () является наиболее распространенным и общепринятым показателем вариации. Оно несколько больше среднего линейного  отклонения. Для умеренно асимметричных распределений установлено следующее соотношение между ними

=1,25L

(6.4)

Для его исчисления каждое отклонение от средней возводится в квадрат, все квадраты суммируются (с учетом весом), после чего сумма квадратов делится на число членов ряда и из частного извлекается корень квадратный.

Все эти действия выражает следующая формула

 – для несгруппированных данных,

(6.5)

 – для сгруппированных данных.

(6.6)

т.е. среднее квадратическое отклонение представляет собой корень квадратный из средней арифметической квадратов отклонений от средней.

Среднее квадратическое отклонение является мерилом надежности средней. Чем меньше σ, тем лучше среднее арифметическое отражает собой всю представляемую совокупность.

Средняя арифметическая из квадратов отклонений вариантов значений признака от средней величины носит название дисперсии (), которая рассчитывается по формулам

 – для несгруппированных,

(6.7)

 – для сгруппированных.

(6.8)

Отличительной особенностью данного показатели является то, что при возведении в квадрат () удельный вес малых отклонений уменьшается, а больших увеличивается в общей сумме отклонений.

Дисперсия обладает рядом свойств, некоторые из них позволяют упростить её вычисление:

1. Дисперсия постоянной величины равна 0.

Если , то и .

Тогда .

2. Если все варианты значений признака (x) уменьшить на одно и то же число, то дисперсия не уменьшится.

Пусть , но тогда в соответствии со свойствами средней арифметической и .

Дисперсия в новом ряду будет равна

, т.е. дисперсия в ряду  равна дисперсии первоначального ряда .

3. Если все варианты значений признака уменьшить в одно и то же число раз (k раз), то дисперсия  уменьшится в k2 раз.

Пусть , тогда и .

Дисперсия же нового ряда  будет равна

        4. Дисперсия, рассчитанная по отношению к средней арифметической, является минимальной. Средний квадрат отклонений, рассчитанный относительно произвольного числа , больше дисперсии, рассчитанной по отношению к средней арифметической, на квадрат разности между средней арифметической и числом , т.е. . Дисперсия от средней имеет свойство минимальности, т.е. она всегда меньше дисперсий, исчисленных от любых других величин. В этом случае, когда  приравниваем к 0 и , следовательно, не вычисляем отклонения, формула принимает такой вид:

(6.9)

Выше был рассмотрен расчет показателей вариации для количественных признаков, но в экономических расчетах может ставиться  задача оценки вариации качественных признаков. Например, при изучении качества изготовленной продукции, продукцию можно разделить на качественную и бракованную.

В таком случае речь идет об альтернативных признаках.

Альтернативными признаками называются такие, которыми одни единицы совокупности обладают, а другие нет. Например, наличие производственного стажа у абитуриентов, ученая степень у преподавателей ВУЗов и т.д. Наличие признака у единиц совокупности условно обозначаем через 1, а отсутствие – 0. Тогда, если долю единиц, обладающих признаком (в общей численности единиц совокупности), обозначить через р, а долю единиц, не обладающих признаком, через q, дисперсию альтернативного признака можно рассчитать по общему правилу. При этом p + q = 1 и, значит,  q = 1– p.

Сначала рассчитываем среднее значение альтернативного признака:

Рассчитаем среднее значение альтернативного признака

,

т.е. среднее значение альтернативного признака равно доле единиц, обладающих данным признаком.

Дисперсия же альтернативного признака будет равна:

Таким образом, дисперсия альтернативного признака равняется произведению доли единиц, обладающих данным признаком, на долю единиц, не обладающих данным признаком.

А среднее квадратическое отклонение будет равно =.

Показатели относительные. Для целей сравнения колеблемости различных признаков в одной и той же совокупности или же при сравнении колеблемости одного и того же признака в нескольких совокупностях представляют интерес показатели вариации, выраженные в относительных величинах. Базой для сравнения служит средняя арифметическая. Эти показатели вычисляются как отношение размаха вариации, среднего линейного отклонения или среднего квадратического отклонения к средней арифметической или медиане.

Чаще всего они выражаются в процентах и определяют не только сравнительную оценку вариации, но и дают характеристику однородности совокупности. Совокупность считается однородной, если коэффициент вариации не превышает 33%. Различают следующие относительные показатели вариации:

1. Коэффициент осцилляции отражает относительную колеблемость крайних значений признака вокруг средней.

.

(6.10)

      

2. Относительное линейное отклонение характеризует долю усредненного значения абсолютных отношений от средней величины.

.

(6.11)

3. Коэффициент вариации оценивает типичность средних величин.

.

(6.12)

Чем меньше , тем однороднее совокупность по изучаемому признаку и типичнее средняя. Если ≤33%, то распределение близко к нормальному, а совокупность считается однородной. Из приведенного примера вторая совокупность однородна.

Виды дисперсий и правило сложения дисперсий.

Наряду с изучением вариации признака по всей совокупности в целом часто бывает необходимо проследить количественные изменения признака по группам, на которые разделяется совокупность, а также и между группами. Такое изучение вариации достигается посредством вычисления и анализа различных видов дисперсии. 

При этом можно определить три показателя колеблемости признака в совокупности:

1. Общую вариацию совокупности, которая является результатом действия всех причин. Эта вариация может быть измерена общей дисперсией (), характеризующей отклонения индивидуальных значений признака совокупности от общей средней

.

(6.13)

2. Вариацию групповых средних, выражающих отклонения групповых средних от общей средней и отражающих влияние того фактора, по которому произведена группировка. Эта вариация может быть измерена так называемой межгрупповой дисперсией (δ2)

,

(6.14)

где — групповые средние, а -общая средняя для всей совокупности, и — численность отдельных групп.

3. Остаточную (или внутригрупповую) вариацию, которая выражается в отклонении отдельных значений признака в каждой группе от их групповой средней и, следовательно, отражает влияние всех прочих факторов кроме положенного в основу группировки. Поскольку вариацию в каждой группе отражает групповая дисперсия

,

(6.15)

то для всей совокупности остаточную вариацию будет отражать средняя из групповых дисперсий. Эту дисперсию называют средней из внутригрупповых дисперсий () и рассчитывается она по формуле

.

(6.16)

Общая вариация признака в совокупности должна определяться как сумма вариации групповых средних (за счет одного выделенного фактора) и остаточной вариации (за счет остальных факторов). Это равенство находит свое выражение в сложении дисперсий

.

      (6.17)

Это равенство, имеющее строго математическое доказательство, известно, как правило сложения дисперсий.

Правило сложения дисперсий позволяет находить общую дисперсию по её компонентам, когда индивидуальные значения признака неизвестны, а в распоряжении имеются только групповые показатели.

Коэффициент детерминации. Правило сложения дисперсии позволяет выявить зависимость результатов от определенных факторов при помощи коэффициента детерминации.

,

      (6.18)

 

Этот коэффициент показывает долю (удельный вес) общей вариации изучаемого признака, обусловленную вариацией группировочного признака.

Корень квадратный из коэффициента детерминации носит название корреляционного отношения ():

(6.19)

Оно характеризует влияние признака, положенного в основание группировки, на вариацию результативного признака. Корреляционное отношение изменяется в пределах от 0 до 1. Если , то группировочный признак не оказывает влияния на результативный. Если , то результативный признак изменяется только в зависимости от признака, положенного в основание группировки, а влияние прочих факторных признаков равно нулю.

Показатели асимметрии и эксцесса. В области экономических явлений строго симметричные ряды встречаются крайне редко, чаще приходится иметь дело с асимметричными рядами.

В статистике для характеристики асимметрии пользуются несколькими показателями. Если учесть, что в симметричном ряду средняя арифметическая совпадает по значению с модой и медианой, то наиболее простым показателем асимметрии () будет разность между средней арифметической и модой, т.е. =.

Если ()>0, то на графике такой ряд будет иметь вытянутость вправо (правосторонняя асимметрия).

Если ()<0, то на графике такой ряд будет иметь вытянутость влево (левосторонняя асимметрия).

Для сравнения асимметрии в нескольких рядах используют относительный показатель, полученный путем деления величины () на среднее квадратическое отклонение, т.е.

Аs = .

(6.20)

Еще один показатель рассчитывается в вариационных рядах для характеристики крутости распределения. Это показатель эксцесса (). При одной и той же средней арифметической эмпирический ряд может быть островершинным или низковершинным по сравнению с кривой нормального распределения.

Величину эксцесса рассчитывают по формуле

.

(6.21)

Центральный момент четвертого порядка рассчитывается по формуле

.

(6.22)

Если >0, то эксцесс считают положительным (распределение островершинно), если <0, то эксцесс считается отрицательным (распределение низковершинно).

www.ekonomstat.ru

Коэффициент детерминации, коэффициент корреляции, коэффициент асимметрии, Эксцесс

Понятие коэффициента вариации

Коэффициент вариации — это отношение среднего квадратического отклонения к средней арифметической, выраженное в процентах. Он применяется для сравнений колеблемости одного и того же признака в нескольких совокупностях с различным средним арифметическим.

Расчет коэффициента осуществляется по формуле:

Коэффициент вариации используют не только для сравнительной оценки единиц совокупности, но и также для характеристики однородности совокупности. Совокупность считается однородной, если коэффициент вариации не превышает 33%.

Пример решения задачи на нахождение коэффициента вариации Вы можете посмотреть здесь

Вариация признака определяется различными факторами, часть этих факторов можно выделить, если статистическую совокупность разделить на группы по определенному признаку. Тогда, наряду с изучением вариации признака по совокупности в целом, можно изучить вариацию для каждой из составляющих ее группы и между этими группами. В простом случае, когда совокупность разделена на группы по одному фактору, изучение вариации достигается посредством вычисления и анализа трех видов дисперсий: общей, межгрупповой и внутригрупповой.

Эмпирический коэффициент детерминации

Эмпирический коэффициент детерминации широко применяется в статистическом анализе и является показателем, представляющим долю межгруппопой дисперсии в дисперсии результативного признака и характеризует силу влияния группировочного признака на образование общей вариации. Он может быть рассчитан по формуле:

Коэффициент детерминации показывает долю вариации результативного признака у под влиянием факторного признака х, он связан с коэффициентом корреляции квадратичной зависимостью. При отсутствии связи эмпирический коэффициент детерминации равен нулю, а при функциональной связи — единице.

Например, когда изучается зависимость производительности труда рабочих от их квалификации коэффициент детерминации равен 0,7, то на 70% вариация производительности труда рабочих обусловлена различиями в их квалификации и на 30% — влиянием прочих факторов.

Эмпирическое корреляционное отношение — это квадратный корень из коэффициента детерминации. Отношение показывает тесноту связи между группировочным и результативным признаками. Эмпирическое корреляционное отношение принимает значения от -1 до 1. Если связи нет, то корреляционное отношение равняется нулю, т.е. все групповые средние равняются между собой и межгрупповой вариации нет. Значит, группировочный признак не влияет на образование общей вариации.

Если связь функциональная, то корреляционное отношение равняется единице. В таком случае дисперсия групповых средних равна общей дисперсии, т.е. внутригрупповой вариации нет. Это значит, что группировочный признак полностью определяет вариацию результативного признака.

Чем ближе значение корреляционного отношения к единице, тем сильнее и ближе к функциональной зависимости связь между признаками. Для качественной оценки силы связи на основе показателя эмпирического коэффициента корреляции можно использовать соотношение Чэддока.

Соотношение Чэддока

  • Связь весьма тесная — коэффициент корреляции находится в интервале 0,9 — 0,99
  • Связь тесная — Rxy = 0,7 — 0,9
  • Связь заметная — Rxy = 0,5 — 0,7
  • Связь умеренная — Rxy = 0,3 — 0,5
  • Связь слабая — Rxy = 0,1 — 0,3

Источник: Балинова B.C. Статистика в вопросах и ответах: Учеб. пособие. — М.: ТК. Велби, Изд-во Проспект, 2004. — 344 с.

univer-nn.ru

Вариация, Коэффициент вариации, Размах вариации, Вариационный ряд

Понятие вариации

Вариация определяет различия в значениях какого-либо признака у разных единиц данной совокупности в один и тот же период (момент времени). Причиной вариации бывают разные условия существования разных единиц совокупности. Например, даже близнецы в процессе жизни приобретают различия в росте, весе, а также в таких признаках, как уровень образования, доход, количество детей и т.д.

Вариация возникает в результате того, что сами значения признака складываются под суммарным влиянием разнообразных условий, которые разным образом сочетаются в каждом отдельном случае. Таким образом, величина любого варианта объективна.

Вариация характерна всем без исключения явлениям природы и общества, кроме законодательно закрепленных нормативных значений отдельных социальных признаков. Исследования вариации в статистике имеют огромное значение, помогают познать сущность изучаемого явления. Нахождение вариации, выяснение ее причин, выявление влияния отдельных факторов дают важную информацию для внедрения научно обоснованных управленческих решений.

Средняя величина дает обобщенную характеристику признака совокупности, но она не раскрывает её строения. Среднее значение не показывает, как располагаются вокруг нее варианты осредненного признака, распределены ли они вблизи средней или отклоняются от нее. Средняя в двух совокупностях может быть одинаковой, но в одном варианте все индивидуальные значения отличаются от нее незначительно, а в другом — эти отличия велики, т.е. в первом случае вариация признака мала, а во втором — велика, это имеет очень важное значение для характеристики значимости средней величины.

Для того, чтобы руководитель организации, управляющий, научный работник могли изучать вариацию и управлять ей, статистикой разработаны специальные методы исследования вариации (система показателей). С их помощью вариация находится, характеризуются ее свойства. К показателям вариации относятся: размах вариации, среднее линейное отклонение, дисперсия, среднее квадратичное отклонение, коэффициент вариации.

Вариационный ряд и его формы

Вариационный ряд — это упорядоченное распределение единиц совокупности чаще по возрастающим (реже убывающим) значениям признака и подсчет числа единиц с тем или иным значением признака. Когда численность единиц совокупности большая, ранжированный ряд становится громоздким, его построение занимает длительное время. В такой ситуации вариационный ряд строится с помощью группировки единиц совокупности по значениям изучаемого признака.

Существуют следующие формы вариационного ряда:

  1. Ранжированный ряд представляет собой, перечень отдельных единиц совокупности в порядке возрастания (убывания) изучаемого признака.
  2. Дискретный вариационный ряд — это таблица, состоящая из двух строк или граф: конкретных значений варьирующего признака х и числа единиц совокупности с данным значение f — признака частот. Он строится тогда, когда признак принимает наибольшее число значений.
  3. Интервальный ряд.
Размах вариации

Размах вариации определяется как абсолютная величина разности между максимальными и минимальными значениями (вариантами) признака:

Размах вариации показывает только крайние отклонения признака и не отражает отдельных отклонений всех вариантов в ряду. Он характеризует пределы изменения варьирующего признака и зависим от колебаний двух крайних вариантов и абсолютно не связан с частотами в вариационном ряду, т. е. с характером распределения, что придает этой величине, случайный характер. Для анализа вариации нужен показатель, который отражает все колебания вариационного признака и даёт общую характеристику. Простейший показатель такого вида — среднее линейное отклонение.

Источник: Балинова B.C. Статистика в вопросах и ответах: Учеб. пособие. — М.: ТК. Велби, Изд-во Проспект, 2004. — 344 с.

univer-nn.ru

Показатели вариации. Общая теория статистики

Показатели вариации

Не стоит забывать, что вариация — ϶ᴛᴏ различия индивидуальных значений признака у единиц изучаемой совокупности. Исследование вариации имеет большое практическое значение и будет необходимым звеном в экономическом анализе. Необходимость изучения вариации связана с тем, что средняя, являясь равнодействующей, реализует ϲʙᴏю основную задачу с разной степенью точности: чем меньше различия индивидуальных значений признака, подлежащих осреднению, тем однороднее совокупность, а, следовательно, точнее и надежнее средняя, и наоборот. Следовательно по степени вариации можно судить о границах вариации признака, однородности совокупности по данному признаку, типичности средней, взаимосвязи факторов, определяющих вариацию.

Изменение вариации признака в совокупности осуществляется с помощью абсолютных и относительных показателей.

Абсолютные показатели вариации включают:
  • размах вариации
  • среднее линейное отклонение
  • дисперсию
  • среднее квадратическое отклонение

Размах вариации (R)

Размах вариации — ϶ᴛᴏ разность между максимальным и минимальным значениями признака

Он показывает пределы, в кᴏᴛᴏᴩых изменяется величина признака в изучаемой совокупности.

Пример

Опыт работы у пяти претендентов на предшествующей работе составляет: 2,3,4,7 и 9 лет.
Решение: размах вариации = 9 — 2 = 7 лет.

Для обобщенной характеристики различий в значениях признака вычисляют средние показатели вариации, основанные на учете отклонений от средней арифметической. За отклонение от средней принимается разность .

При ϶ᴛᴏм во избежании превращения в нуль суммы отклонений вариантов признака от средней (нулевое ϲʙᴏйство средней) приходится либо не учитывать знаки отклонения, то есть брать эту сумму по модулю , либо возводить значения отклонений в квадрат

Среднее линейное и квадратическое отклонение

Среднее линейное отклонение — ϶ᴛᴏ средняя арифметическая из абсолютных отклонений отдельных значений признака от средней.

Среднее линейное отклонение простое:

Опыт работы у пяти претендентов на предшествующей работе составляет: 2,3,4,7 и 9 лет.

В нашем примере: лет;

Ответ: 2,4 года.

Среднее линейное отклонение взвешенное применяется для сгруппированных данных:

Среднее линейное отклонение в силу его условности применяется на практике сравнительно редко (в частности, для характеристики выполнения договорных обязательств по равномерности поставки; в анализе качества продукции с учетом технологических особенностей производства).

Среднее квадратическое отклонение

В наибольшей степени совершенной характеристикой вариации будет среднее квадратическое откложение, кᴏᴛᴏᴩое называют стандартом (или стандартным отклонение). Среднее квадратическое отклонение () равно квадратному корню из среднего квадрата отклонений отдельных значений признака от средней арифметической:

Среднее квадратическое отклонение простое:

Среднее квадратическое отклонение взвешенное применяется для сгруппированных данных:

Между средним квадратическим и средним линейным отклонениями в условиях нормального распределения имеет место следующее соотношение: ~ 1,25.

Среднее квадратическое отклонение, являясь основной абсолютной мерой вариации, используется при определении значений ординат кривой нормального распределения, в расчетах, связанных с организацией выборочного наблюдения и установлением точности выборочных характеристик, а также при оценке границ вариации признака в однородной совокупности.

Дисперсия

Дисперсия — представляет собой средний квадрат отклонений индивидуальных значений признака от их средней величины.

Дисперсия простая:

В нашем примере:

Дисперсия взвешенная:

Более удобно вычислять дисперсию по формуле:

кᴏᴛᴏᴩая получается из основной путем несложных преобразований. В ϶ᴛᴏм случае средний квадрат отклонений равен средней из квадратов значений признака минус квадрат средней.

Для несгрупиированных данных:

Для сгруппированных данных:

Не стоит забывать, что вариация альтернативного признака заключается в наличии или отсутствии изучаемого ϲʙᴏйства у единиц совокупности. Количественно вариация альтернативного признака выражается двумя значениями: наличие у единицы изучаемого ϲʙᴏйства обозначается единицей (1), а его отсутствие — нулем (0). Долю единиц, обладающих изучаемым признаком, обозначают буквой , а долю единиц, не обладающих данным признаком — через . Учитывая, что p + q = 1 (отсюда q = 1 — p), а среднее значение альтернативного признака равно

,

средний квадрат отклонений

Исходя из всего выше сказанного, мы приходим к выводу, что дисперсия альтернативного признака равна произведению доли единиц, обладающих данным ϲʙᴏйством (), на долю единиц, данным ϲʙᴏйством не обладающих ().

Максимальное значение средний квадрат отклонения (дисперсия) принимает в случае равенства долей, т.е. когда т.е. . Нижняя граница ϶ᴛᴏго показателя равна нулю, что ϲᴏᴏᴛʙᴇᴛϲᴛʙует ситуации, при кᴏᴛᴏᴩой в совокупности отсутствует вариация. Среднее квадратическое отклонение альтернативного признака:

Так, если в изготовленной партии 3% изделий оказались нестандартными, то дисперсия доли нестандартных изделий , а среднее квадратическое отклонение или 17,1%.

Среднее квадратическое отклонение равно квадратному корню из среднего квадрата отклонений отдельных значений признака от средней арифметической.

Относительные показатели вариации

Относительные показатели вариации включают:
  • Коэффициент осцилляции
  • Относительное линейное отклонение (линейный коэффициент варианции)
  • Коэффициент вариации (относительное отклонение)

Сравнение вариации нескольких совокупностей по одному и тому же признаку, а тем более по различным признакам с помощью абсолютных показателей не представляется возможным. В данных случаях для сравнительной оценки степени различия строят относительные показатели вариации. Стоит отметить — они вычисляются как отношения абсолютных показателей вариации к средней:

Коэффициент осцилляции
Относительное линейное отклонение
Коэффициент вариации

Рассчитываются и другие относительные характеристики. К примеру, для оценки вариации в случае асимметрического распределения вычисляют отношение среднего линейного отклонения к медиан

,

так как благодаря ϲʙᴏйству медианы сумма абсолютных отклонений признака от ее величины всегда меньше, чем от любой другой.

В качестве относительной меры рассеивания, оценивающей вариацию центральной части совокупности, вычисляют относительное квартильное отклонение , где — средний квартиль полусуммы разности третьего (или верхнего) квартиля () и первого (или нижнего) квартиля ().

.

На практике чаще всего вычисляют коэффициент вариации. Нижней границей ϶ᴛᴏго показателя будет нуль, верхнего предела он не имеет, однако известно, что с увеличением вариации признака увеличивается и его значение. Коэффициент вариации будет в известном смысле критерием однородности совокупности (в случае нормального распределения).

Рассчитаем коэффициент вариации на базе среднего квадратического отклонения для следующего примера. Расход сырья на единицу продукции составил (кг): по одной технологии при , а по другой — при. Непосредственное сравнение величины средних квадратических отклонений могло бы привести к неверному представлению о том, что вариация расхода сырья по первой технологии интенсивнее, чем по второй (. Относительная мера вариации ( позволяет сделать противоположный вывод

Пример расчета показателей вариации

На этапе отбора кандидатов для участия в осуществлении сложного проекта фирма объявлила конкурс профессионалов. Распределение претендентов по опыту работы показало средующие результаты:

Вычислим средний производственный опыт работы, лет

Рассчитаем дисперсию по продолжительности опыта работы

Такой же результат получается, если использовать для расчета другую формулу расчета дисперсии

Вычислим среднее квадратическое отклонение, лет:

Определим коэффициент вариации, %:

Правило сложения дисперсий

Для оценки влияния факторов, определяющих вариацию, используют прием группировки: совокупность разбивают на группы, выбрав в качестве группировочного признака один из определяющих факторов. Тогда наряду с общей дисперсией, рассчитанной по всей совокупности, вычисляют внутигрупповую дисперсию (или среднюю из групповых) и межгрупповую дисперсию (или дисперсию групповых средних).

Общая дисперсия характеризует вариацию признака во всей совокупности, сложившуюся под влиянием всех факторов и условий.

Межгрупповая дисперсия измеряет систематическую вариацию, обусловленную влиянием фактора, по кᴏᴛᴏᴩому произведена группировка:

  • — групповые средние,
  • — численность единиц i-й группы

Внутригрупповая дисперсия оценивает вариацию признака, сложившуюся по влиянием других, неучитываемых в данном исследовании факторов и независящую от фактора группировки. Стоит заметить, что она определяется как средняя из групповых дисперсий.

  • — дисперсия i-ой группы.

Все три дисперсии () связаны между собой следующим равенством, кᴏᴛᴏᴩое известно как правило сложения дисперсий:

на ϶ᴛᴏм соотношении строятся показатели, оценивающие влияние признака группировки на образование общей вариации. К ним ᴏᴛʜᴏϲᴙтся эмпирический коэффициент детерминации () и эмпирическое корреляционное отношение ()

Эмпирический коэффициент детерминации () характеризует долю межгрупоовой дисперсии в общей дисперсии:

и показывает насколько вариация признака в совокупности обусловлена фактором группировки.

Эмпирическое корреляционное отношение (!!\eta = \sqrt{ \frac{\delta^2}{\sigma^2} }

оценивает тесноту связи между изучаемым и группировочным признаками. Предельными значениями будут нуль и единица. Чем ближе к единице, тем теснее связь.

Пример. Стоимость 1 кв.м общей площади (усл.ед) на рынке жилья по десяти 17-м домам улучшенной планировки составляла:

При ϶ᴛᴏм известно, что первые пять домов были построены вблизи делового центра, а остальные — на значительном расстоянии от него.

Для рассчета общей дисперсии вычислим среднюю стоимость 1 кв.м. общей площади: Общую дисперсию определим по формуле:

.

Вычислим среднюю стоимость 1 кв.м. и дисперсию по ϶ᴛᴏму показателю для каждой группы домов, отличающихся месторасположением относительно центра города:

а) для домов, построенных вблизи центра:

б) для домов, построенных далеко от центра:

Не стоит забывать, что вариация стоимости 1 кв.м. общей площади, вызванная изменением местоположения домов, определяется величиной межгрупповой дисперсии:

Не стоит забывать, что вариация стоимости 1 кв.м. общей площади, обусловленная изменением остальных неучитываемых нами показателей, измеряется величиной внутригрупповой дисперсии

Найденные дисперссии в сумме дают величину общей дисперсии

Эмпирический коэффициент детерминации:

показывает, что дисперсия стоимости 1.кв.м. общей площади на рынке жилья на 81,8% объясняется различиями в расположении новостроек по отношению к деловому центру и на 18,2% — другими факторами.

Эмприческое корреляционное отношение свидетельствует о существенном влиянии на стоимость жилья месторасположения домов.

Правило сложения дисперсий для доли признака записывается так:

а три вида дисперсий доли для сгруппированных данных определяется по следующим формулам:

общая дисперсия:

Формулы межгрупповой и внутригрупповой дисперсий:

Характеристики формы распределения

Для получения представления о форме распределения могут быть использованы показатели среднего уровня (средняя арифметическая, мода, медиана), показатели вариации, ассиметрии и эксцесса.

В симметричных распределениях средняя арифметическая, мода и медиана совпадают (. В случае если ϶ᴛᴏ равенство нарушается — распределение ассиметрично.

Простейшим показателем ассиметрии будет разность , кᴏᴛᴏᴩая в случае правосторонней ассиметрии положительна, а при левосторонней — отрицательна.

Ассиметричное распределение

Для сравнения ассиметрии нескольких рядов рассчитывается относительный показатель

В качестве обобщающих характеристик вариации могут быть использованы центральные моменты распределения -го порядка , ϲᴏᴏᴛʙᴇᴛϲᴛʙующие степени, в кᴏᴛᴏᴩую возводятся отклонения отдельных значений признака от средней арифметической:

Для несгруппированных данных:

Для сгруппированных данных:

Момент первого порядка согласно ϲʙᴏйству средней арифметической равен нулю .

Момент второго порядка будет дисперсией .

Моменты третьего и четвертого порядков могут быть использованы для построения показателей, оценивающих особенности формы эмпирических распределений.

С помощью момента третьего порядка измеряют степень скошенности или ассиметричности распределения.

— коэффициент ассиметрии

В симметричных распределениях , как все центральные моменты нечетного порядка.Неравенство нулю центрального момента третьего порядка указывает на асимметричность распределения. При ϶ᴛᴏм, если , то асимметрия правосторонняя и относительно максимальной ординаты вытянута правая ветвь; если , то асимметрия левосторонняя (на графике ϶ᴛᴏ ϲᴏᴏᴛʙᴇᴛϲᴛʙует вытянутости левой ветви).

Для характеристики островершинности или плосковершинности распределения вычисляют отношение момента четвертого порядка () к среднеквадратическому отклонению в четвертой степени (). Стоит сказать, для нормального распределения , по϶ᴛᴏму эксцесс находят по формуле:

Для нормального распределения обращается в нуль. Стоит сказать, для островершинных распределений , для плосковершинных .

Эксцесс распределения

Кроме показателей, рассмотренных выше, обобщающей характеристикой вариации в однородной совокупности служит определенный порядок в изменении частот распределения в ϲᴏᴏᴛʙᴇᴛϲᴛʙии с изменениями величины изучаемого признака, называемый закономерностью распределения.

Характер (тип) закономерности распределения может быть выявлен путем построения вариационного ряда на основании большого объема наблюдений, а также такого выбора числа групп и величины интегралов, при кᴏᴛᴏᴩом наиболее отчетливо могла бы проявиться закономерность.

Анализ вариационных рядов предполагает выявление характера распределения (как результата действия механизма вариации), установление функции распределения, проверку ϲᴏᴏᴛʙᴇᴛϲᴛʙия эмпирического распределения теоретическому.

Эмпирическое распределение, полученное на базе данных наблюдения, графически изображается эмпирической кривой распределения с помощью полигона.

На практике встречаются различные типы распределений, среди кᴏᴛᴏᴩых можно выделить симметричные и асимметричные, одновершинные и многовершинные.

Установить тип распределения, означает выразить механизм формирования закономерности в аналитической форме. Многим явлениям и их признакам ϲʙᴏйственны характерные формы распределения, кᴏᴛᴏᴩые аппроксимируются ϲᴏᴏᴛʙᴇᴛϲᴛʙующими кривыми. При всем многообразии форм распределения наибольшее распространение в качестве теоретических получили нормальное распределение, распределение Пауссона, биноминальное распределение и др.

Особое место в изучении вариации принадлежит нормальному закону, благодаря его математическим ϲʙᴏйствам. Стоит сказать, для нормального закона выполняется правило трех сигм, по кᴏᴛᴏᴩому вариация индивидуальных значений признака находится в пределах от величины средней. При ϶ᴛᴏм в границах находится около 70% всех единиц, а в пределах — 95%.

Оценка ϲᴏᴏᴛʙᴇᴛϲᴛʙия эмпирического и теоретического распределений производится с помощью критериев согласия, среди кᴏᴛᴏᴩых широко известны критерии Пирсона, Романовского, Ястремского, Колмогорова.



xn--80aatn3b3a4e.xn--p1ai

Показатели вариации

Вариация – различие в значениях какого-либо признака у разных единиц данной совокупности в один и тот же период или момент времени.

К показателям вариации относятся:

I группа — абсолютные показатели вариации

  • размах вариации
  • среднее линейное отклонение
  • дисперсия
  • среднее квадратическое отклонение

II группа — относительные показатели вариации

  • коэффициент вариации
  • коэффициент  осцилляции
  • относительное линейное отклонение

Самым элементарным показателем вариации признака является размах вариации R. Размах вариации показывает лишь крайние  (min, max) отклонения признака от общей средней.

Для анализа вариации необходим показатель, который отражает все колебания варьирующего признака и дает обобщенную характеристику.

Среднее линейное отклонение — средняя арифметическая абсолютных значений отклонений (модуль отклонений) отдельных вариантов от их средней арифметической:

  1. для несгруппированных данных (простое)
  2. для сгруппированных данных (взвешенное)

Дисперсия  признака — средний квадрат отклонений вариантов от их средней величины, она вычисляется по формулам простой и взвешенной дисперсий:

  1. Простая дисперсия для несгруппированных данных
  2. Взвешенная дисперсия для вариационного ряда

Cвойства дисперсии:

  1. если все значения признака уменьшить или увеличить на одну и ту же постоянную величину А- дисперсия не изменится; 
  2. если все значения признака уменьшить или увеличить в одно и то же число раз (k раз), то дисперсия уменьшится или увеличится в k раз.

Используя второе свойство дисперсии, можно получить формулу вычисления дисперсии в вариационных рядах с равными интервалами по способу моментов:

где  i – величина интервала, X1 — новые (преобразованные) значения вариантов (А – условное начало, в качестве которого удобно использовать середину интервала или величину признака, обладающего наибольшей частотой.                   

                                                                    

  1. Момент второго порядка
  2. Квадрат момента первого порядка

Среднее квадратическое отклонение равно корню квадратному из дисперсии:

  1. для несгруппированных данных (простое)
  2. для вариационного ряда по сгруппированным данным (взвешенное)

Среднее квадратическое отклонение показывает, на сколько в среднем отклоняются отдельные варианты от их среднего значения.

 Среднее значение альтернативного признака и его дисперсия:

  1. Среднее значение альтернативного признака
  2. Дисперсия альтернативного признака

Подставив в формулу дисперсии q = 1 – p, получим:

Таким образом,  дисперсия альтернативного признака равна произведению доли единиц, обладающих данным признаком и доли единиц, не обладающих данным признаком.

Среднее квадратическое отклонение альтернативного признака:

Показатели относительного рассеивания

Для характеристики меры колеблемости изучаемого признака исчисляются показатели колеблемости в относительных величинах.  Они позволяют сравнивать характер рассеивания в различных распределениях  (различные единицы наблюдения одного и того же признака в двух совокупностях, при различных значениях средних,  при сравнении  разноименных  совокупностей). Расчет  показателей меры относительного рассеивания осуществляют как отношение абсолютного показателя рассеивания к  средней  арифметической, умноженное на 100%.

1. Коэффициент  осцилляции  отражает  относительную  колеблемость крайних значений признака вокруг общей средней.

2. Относительное линейное отклонение характеризует долю усредненного значения абсолютных отклонений (модуль отклонений) от средней величины.

3. Коэффициент вариации — отношение среднего квадратического отклонения к средней арифметической, применяется для сравнения вариаций различных признаков, используется как характеристика однородности совокупности. Совокупность считается однородной, если коэффициент вариации не превышает 33%.

Пример расчета абсолютных и относительных показателей вариации:

Распределение КФХ области по урожайности зерновых культур 

Группы хозяйств по урожайности (ц/га)

Середина интервала

Число хозяйств

Расчетные значения

Xi

ƒi

Xi ƒi

iср|

i — Хср|*ƒi

iср)2

iср)2 i

     9,1-15

12,1

2

24,20

12,44

24,87

154,641

309,28

   15,1-21,1

18,1

31

561,1

6,44

199,50

41,415

1283,88

   21,1-27,1

24,1

54

1301,40

0,44

23,52

0,190

10,24

   27,1-33,1

30,1

30

903,00

5,56

166,94

30,964

928,92

     > 33,1

36,1

7

252,7

11,56

80,95

133,738

936,17

Всего

X

124

3042,40

36,44

495,77

360,948

3468,48

Средние

X

X

24,54

X

4,00

 

27,97

Смотри также:

helpstat.ru

Показатели вариации.

Средняя величина дает обобщающую характеристику всей совокупности изучаемого явления. Однако два ряда распределения, имеющих одинаковую среднюю арифметическую величину, могут значительно отличаться друг от друга по степени колеблемости (вариации) величины изучаемого признака. Если индивидуальные значения признака ряда мало отличаются друг от друга, то средняя арифметическая будет достаточно показательной характеристикой данной совокупности. Если же ряд распределения характеризуется значительным рассеиванием индивидуальных значений признака, то средняя арифметическая будет ненадежной характеристикой этой совокупности и ее практическое применение будет ограничено.

Значение показателей вариации заключается в следующем:

— показатели вариации дополняют средние величины, за которыми скрываются индивидуальные значения признаков вариационного ряда;

—         показатели вариации характеризуют степень однородности статистической совокупности по изучаемому признаку;

—         показатели вариации характеризуют границы колеблемости признака;

—         соотношение показателей вариации характеризует взаимосвязь между признаками.

Для измерения вариации признака в рядах распределения применяются различные абсолютные и относительные показатели. В статистике чаще всего применяются следующие показатели (меры) вариации: размах вариации, среднее линейное отклонение, дисперсия, среднее квадратическое отклонение и коэффициент вариации.

Рассмотрим подробно каждый из перечисленных показателей вариации.

Размах вариации (размах колебаний) представляет собой разность между максимальным и минимальным значениями признака и определяется по формуле:

                                                              (6.1)

где       R – размах вариации;

xmax – максимальное значение признака;

хmin – минимальное значение признака.

Пример. Наблюдения показывают, что скорость движения легковых автомобилей находится в диапазоне 20-90 км/ч., грузовых автомобилей – в пределах 20-80 км/ч., маршрутных автобусов – 20-60 км/ч., автобусов междугородних сообщений – 20-90 км/ч. Определим размах вариации скоростей этих видов транспорта. Расчет представлен в таблице 13.

Таблица 6.1

Скорости движения транспортных средств

Вид транспорта

Скорость, км/ч.

Скорость км/ч.

Размах вариации

Легковые автомобили

90

20

R=90-20=70 км\ч.

Грузовые автомобили

80

20

R=80-20=60 км\ч.

Маршрутные автобусы

60

20

R=60-20=40 км\ч.

Междугородние автобусы

90

20

R=90-20=70 км\ч.

Безусловным достоинством этого показателя является простота его расчета, поэтому он не редко используется и в технике и в экономике. Однако размах вариации зависит от величины только крайних значений признака, что делает в известной мере случайной его величину. Поэтому его целесообразно применять при изучении достаточно однородных статистических совокупностей.

Более надежный показатель – средний размах вариации, вычисляемый как средняя арифметическая из ряда размахов, полученных в результате обработки равных серий наблюдений. Таким показателем, пользуются, например, при контроле качества продукции.

Среднее линейное отклонение определяется как средняя арифметическая индивидуальных абсолютных отклонений значений признака от его среднего значения.

Индивидуальные значения признака в статистической совокупности отклоняются от его средней величины в ту или иную сторону. Найдем среднюю меру отклонения каждого значения признака от его средней величины. Обозначим значения варьирующего признака у отдельных единиц совокупности через , где n – количество (число) единиц совокупности.

Вычитая из каждого значения признака его среднюю величину получим:

;             ;             …                                   (6.2)

Так как алгебраическая сумма (сумма с учетом знака (±) величин) отклонений индивидуальных значений признака от средней арифметической (согласно нулевому свойству) всегда равна нулю, то для расчета среднего линейного отклонения используется арифметическая сумма (сумма модулей величин) отклонений, т.е. суммируются абсолютные значения индивидуальных отклонений значений признака независимо от знака.

Среднее линейное отклонение вычисляется для первичных, несгруппированных данных:

                                                                     (6.3)

Для сгруппированных данных (интервальный ряд):

                                                                   (6.4)

где       хi – индивидуальное значение i-гo признака;

 – центральное значение признака в i-ом интервале;

 – среднее значение признака;

п — число единиц статистической совокупности;

fi – количество признаков в i-ом интервале;

m – количество интервалов в интервальном вариационном ряду.

Пример. Проведем расчет среднего линейного отклонения сменной выработки токарей механического цеха, данные о которой представлены в таблице 6.2.

Таблица 6.2

Сменная выработка токарей механического цеха завода

Количество деталей, обрабатываемых

 в смену одним рабочим, шт. (х)

Число

рабочих (f)

х·f

4

2

8

2

4

5

4

20

1

4

6

9

54

0

0

7

3

21

1

3

8

2

16

2

4

ИТОГО:

20

119

15

Вычисляем среднюю арифметическую:

Тогда среднее линейное отклонение составит:

Это означает, что в среднем сменная выработка каждого рабочего в изучаемой совокупности отклонялась от средней сменной выработки в целом по цеху на 0,75.

Среднее линейное отклонение – число всегда именованное. Его размерность соответствует размерности варьирующего признака.

Простота расчета и интерпретации результатов составляют положительные стороны данного показателя. Однако в результате абстрагирования от знака индивидуальных отклонений, возникают трудности в применении математических методов анализа вариации. Математические свойства модулей «плохие»: их нельзя поставить в соответствие с каким-либо вероятностным законом, в том числе и с нормальным распределением, наиболее часто ветречающимся в экономике, в технике, в жизни. По этой причине среднее линейное отклонение в настоящее время используют редко, но используют. Например, для оценки однородности толщины нитей и пряжи в текстильной промышленности.

Среднее квадратическое отклонение определяется как корень квадратный из среднего квадратов отклонений индивидуальных значений признака от средней арифметической и рассчитывается по следующим формулам:

для не сгруппированных данных:

                                                            (6.5)

для сгруппированных данных:

                                                          (6.6)

для интервального ряда:

                                                         (6.7)

Возведение индивидуальных отклонений в квадрат и последующее извлечение квадратного корня вызвано, как уже говорилось, тем, что суммирование отклонений в первой степени приводит к нулевому результату.

Среднее квадратическое отклонение является общепринятым показателем вариации: при его определении принимаются в расчет все отклонения значений варьирующего признака от среднего. Проиллюстрируем расчет среднего квадратического отклонения для ранжированного и интервального вариационных рядов.

Пример. Пусть испытываются шесть лампочек на продолжение горения. Результаты испытания представлены в табл. 6.3 (дискретный вариационный ряд).

Таблица 6.3

Результаты испытаний лампочек

Порядковый номер

испытания

Продолжительность горения

лампочки, час (х,)

1

420

+20

400

2

400

0

0

3

375

-25

625

4

405

+5

25

5

390

-10

100

6

410

+10

100

ИТОГО:

2400

0

1250

Рассчитаем среднюю арифметическую и среднее квадратическое отклонение:

Это означает, что в среднем продолжительность горения лампочки в изучаемой совокупности отклонялась от средней продолжительности в целом по совокупности на 14,3 часа.

Пример. Рассчитаем среднее квадратическое отклонение срока обращения облигаций. Исходные данные для расчета и промежуточные вычисления представлены в табл. 6.4 (интервальный вариационный ряд).

Рассчитаем среднюю арифметическую величину срока обращения акций и среднее квадратическое отклонение:

;       

Таблица 6.4

Срок обращения облигаций

Срок обращения

облигаций, мес (х)

Количество

облигаций, шт
( f )

до 2

15

1

15

– 4,6

21,16

317,4

2 – 4

13

3

39

– 2,6

6,76

87,88

4 – 6

29

5

145

– 0,6

0,36

10,44

6 – 8

22

7

154

1,4

1,96

43,12

8 – 10

12

9

108

3,4

11,56

138,72

10 и более

9

11

99

5,4

29,16

262,44

ИТОГО:

100

560

71,40

860,00

В научной статистике широко используется показатель вариации, называемый дисперсией. Дисперсия – это средний квадрат отклонений индивидуальных значений признака от средней арифметической.

Дисперсия вычисляется по следующим формулам.

Для не сгруппированных данных:

.                                                                        (6.8)

Для сгруппированных данных (дискретный ряд):

.                                                          (6.9)

Для интервального ряда:

.                                                         (6.10)

На дисперсии основаны практически все методы математической статистики.

Дисперсия и среднее квадратическое отклонение – наиболее широко применяемые показатели вариации. Объясняется это тем, что они входят в большинство теорем теории вероятности, служащих фундаментом математической статистики. Кроме того, дисперсия может быть разложена на составные элементы, позволяющие оценить влияние различных факторов, обуславливающих вариацию признака.

Рассмотренные ранее показатели вариации, за исключением дисперсии, выражались в единицах измерения варьирующего признака. Так, например, среднее квадратическое отклонение урожайности пшеницы измеряется в центнерах. Так как среднеквадратическое отклонение – число именованное, то оно неудобно для сопоставления вариации различных признаков. Например, вычислив среднее квадратическое отклонение производительности работы и заработной платы рабочих, невозможно определить, вариация какого признака больше, т.к в первом случае она измеряется в единицах продукции (деталях), во втором – в гривнях.

Для сравнения вариации разных признаков наиболее часто применяется показатель относительной колеблемости – коэффициент вариации. Его используют не только для сравнительной оценки вариации, но и для характеристики однородности статистической совокупности. Статистическая совокупность считается однородной, если коэффициент вариации не превышает 33% (для распределений, близких к нормальному закону).

Принцип построения коэффициентов вариации таков:

                                (6.11)

 

Линейный

коэффициент

вариации

Квадратический

коэффициент

вариации

 

Коэффициент

 осцилляции

Чаще всего на практике употребляется квадратический коэффициент вариации.

С помощью коэффициента вариации можно сравнивать размеры одного признака в нескольких совокупностях. Так, например, с помощью коэффициента вариации можно сравнивать вариацию срока службы станков на различных предприятиях, вариацию роста и веса населения в различных регионах страны.

Пример. Рассмотрим коэффициенты вариации срока службы электролампочек, выпускаемых на трех заводах. Исходные данные представлены в табл. 6.5.

Таблица 6.5

Срок службы электролампочек

 

Номер завода

Средняя продолжительность

горения лампочек, ч., (х)

, %

1

800

-100

10000

10,20

2

1000

+ 100

10000

8,17

3

900

0

0

9,07

ИТОГО-

2700

0

20000

 

Вычислим среднюю арифметическую срока горения лампочек:

.

Вычислим среднее квадратическое отклонение:

.

Вычислим коэффициент вариации для каждого завода и занесем данные в таблицу. Наиболее низкий коэффициент вариации у электролампочек, выпускаемых на заводе № 2, что свидетельствует о большой однородности его продукции (в данном случае, однородности качества электролампочек).

www.ekonomstat.ru

Что характеризует коэффициент вариации

Во время проведения научных исследований многие сталкиваются с изменчивостью изучаемого признака у отдельных единиц совокупности, его колебанием относительно некоторого значения, то есть с его вариацией. Вот ее-то и следует обязательно учитывать, чтобы получить наиболее достоверные сведения о ходе выполнения того или иного научного исследования.

Большинство исследователей, производя определение интервала изменения значения того или иного параметра, чаще всего прибегают к абсолютным и относительным показателям. Среди последних наибольшее распространение получил коэффициент вариации, который в случае, если исследуемая величина характеризуется нормальным распределением, является критерием однородности совокупности. Данный показатель позволяет определить, какую степень разбросанности будут иметь значения исследуемого параметра, не обращая внимания на масштаб и единицу измерения.

Коэффициент вариации можно вычислить, разделив стандартное отклонение на среднее арифметическое значение переменной, выраженное в процентах. Результат данного вычисления может попадать в интервал от нуля до бесконечности, возрастая по мере увеличения вариации признака. Если полученное значение менее 33,3% – вариация признака слабая. Если больше – сильная. В последнем случае исследуемая совокупность данных является неоднородной, ее средняя величина признается нетипичной, а потому не может быть обобщающим показателем. Поэтому для данной совокупности стоит применить другие показатели.

Стоит отметить, что коэффициент вариации не только характеризует однородность некоторой совокупности, но также применяется в качестве сравнительной ее оценки. Например, его применяют, если необходимо сравнить размеры колебания того или иного признака в совокупностях, для которых рассчитанная величина среднего значения различна. В этом случае разброс полученных данных не позволяет произвести объективную оценку обретенного значения. Коэффициент вариации характеризует относительную изменчивость переменной, а потому может являться относительной мерой колебания значения изучаемого параметра.

Однако здесь существуют некоторые ограничения. В частности, оценить степень колебания значений параметра можно лишь для конкретного признака и если совокупность имеет определенный состав. При этом равенство данных показателей может свидетельствовать как о сильной, так и о слабой вариации. Это в случае, если признаки различны или исследования проводятся на разных совокупностях. Такой результат формируется под действием весьма объективных причин, и это следует обязательно учитывать во время обработки полученных экспериментальных данных.

Коэффициент вариации находит широкое применение при проведении статистической обработки данных в различных отраслях науки и техники. В том числе, его активно задействуют при выполнении оценки колебания параметров в экономике и социологии. При этом применение коэффициента делается невозможным в случае, если необходимо дать оценку изменчивости переменных, которые способны менять свой знак на противоположный. Ведь тогда в результате расчетов будут получены некорректные значения данного показателя: либо оно будет очень маленьким, либо будет иметь отрицательный знак. В последнем случае стоит проверить правильности выполненных расчетов.

Таким образом, можно сказать, что коэффициент вариации — это параметр, который позволит вам оценить степень разброса и относительную изменчивость средней величины. Применение данного показателя позволяет выявить наиболее значимые факторы, акцентирование внимания на которых позволит достичь поставленных целей и решить необходимые задачи.

fb.ru