Активный пассивный транспорт – Биология для студентов — 10. Механизмы пассивного и активного транспорта веществ в клетку. Их общебиологическое значение для клетки и организма

Содержание

Активный и пассивный транспорт.

Пассивный транспорт — транспорт веществ по градиенту концентрации, не требующий затрат энергии. Пассивно происходит транспорт гидрофобных веществ сквозь липидный бислой. Пассивно пропускают через себя вещества все белки-каналы и некоторые переносчики. Пассивный транспорт с участием мембранных белков называют облегченной диффузией.

Другие белки-переносчики (их иногда называют белки-насосы) переносят через мембрану вещества с затратами энергии, которая обычно поставляется при гидролизе АТФ. Этот вид транспорта осуществляется против градиента концентрации переносимого вещества и называется активным транспортом.

Симпорт, антипорт и унипорт

Мембранный транспорт веществ различается также по направлению их перемещения и количеству переносимых данным переносчиком веществ:

1) Унипорт — транспорт одного вещества в одном направлении в зависимости от градиента

2) Симпорт — транспорт двух веществ в одном направлении через один переносчик.

3) Антипорт — перемещение двух веществ в разных направлениях через один переносчик.

Унипорт осуществляет, например, потенциал-зависимый натриевый канал, через который в клетку во время генерации потенциала действия перемещаются ионы натрия.

Симпорт осуществляет переносчик глюкозы, расположенный на внешней (обращенной в просвет кишечника) стороне клеток кишечного эпителия. Этот белок захватывает одновременно молекулу глюкозы и ион натрия и, меняя конформацию, переносит оба вещества внутрь клетки. При этом используется энергия электрохимического градиента, который, в свою очередью создается за счет гидролиза АТФ натрий-калиевой АТФ-азой.

Антипорт осуществляет, например, натрий–калиевая АТФаза (или натрий–зависимая АТФаза). Она переносит в клетку ионы калия. а из клетки — ионы натрия.

Работа натрий-калиевой атФазы как пример антипорта и активного транспорта

Первоначально этот переносчик присоединяет с внутренней стороны мембраны три иона Na + . Эти ионы изменяют конформацию активного центра АТФазы. После такой активации АТФаза способна гидролизовать одну молекулу АТФ, причем фосфат-ион фиксируется на поверхности переносчика с внутренней стороны мембраны.

Выделившаяся энергия расходуется на изменение конформации АТФазы, после чего три иона Na + и ион (фосфат) оказываются на внешней стороне мембраны. Здесь ионы

Na + отщепляются, а замещается на два иона K + . Затем конформация переносчика изменяется на первоначальную, и ионы K + оказываются на внутренней стороне мембраны. Здесь ионы K + отщепляются, и переносчик вновь готов к работе.

Более кратко действия АТФазы можно описать так:

  • 1) Она изнутри клетки «забирает» три иона Na + ,затем расщепляет молекулу АТФ и присоединяет к себе фосфат

  • 2) «Выбрасывает» ионы Na + и присоединяет два иона K + из внешней среды.

  • 3) Отсоединяет фосфат, два иона K

    + выбрасывает внутрь клетки

В итоге во внеклеточной среде создается высокая концентрация ионов Na + , а внутри клетки — высокая концентрация K + . Работа Na + , K + — АТФаза создает не только разность концентраций, но и разность зарядов (она работает как электрогенный насос). На внешней стороне мембраны создается положительный заряд, на внутренней — отрицательный.

studfiles.net

Пассивный транспорт — Википедия

Материал из Википедии — свободной энциклопедии

Пассивный транспорт — перенос веществ из области высокой концентрации в область низкой без затрат энергии (например, диффузия, осмос). Диффузия — пассивное перемещение вещества из участка большей концентрации к участку меньшей концентрации. Осмос — пассивное перемещение некоторых веществ через полупроницаемую мембрану (обычно мелкие молекулы проходят, крупные не проходят).

Существует три типа проникновения веществ в клетку через мембраны: простая диффузия, облегчённая диффузия, активный транспорт.

По пути простой диффузии частицы вещества перемещаются сквозь липидный бислой. Направление простой диффузии определяется только разностью концентраций вещества по обеим сторонам мембраны. Путём простой диффузии в клетку проникают гидрофобные вещества (O

2, N2, бензол) и полярные маленькие молекулы (CO2, H2O, мочевина). Не проникают полярные относительно крупные молекулы (аминокислоты, моносахариды), заряженные частицы (ионы) и макромолекулы (ДНК, белки).

Простая диффузия представляет собой процесс, при котором газ или растворенные вещества распространяются и заполняют весь объём вещества. Молекулы или ионы, растворённые в жидкости, находясь в хаотичном состоянии, сталкиваются со стенками клеточной мембраны, что может вызвать двоякий исход: молекула либо отскочит, либо пройдёт через мембрану. Если вероятность последнего велика, то говорят, что мембрана проницаема для данного вещества.

Если концентрация данного вещества по обе стороны мембраны различна, то возникает процесс, который способствует выравниванию концентрации. Через клеточную мембрану проходят как хорошо растворимые (гидрофильные), так и нерастворимые (гидрофобные) вещества.

В случае, когда мембрана плохо проницаема, либо непроницаема для данного вещества, она подвергается действию осмотических сил. При более низкой концентрации вещества в клетке она сжимается, при более высокой концентрации — впускает внутрь воду.

Облегчённая диффузия[править | пра

ru.wikipedia.org

Активный и пассивный транспорт.

Пассивный транспорт — транспорт веществ по градиенту концентрации, не требующий затрат энергии. Пассивно происходит транспорт гидрофобных веществ сквозь липидный бислой. Пассивно пропускают через себя вещества все белки-каналы и некоторые переносчики. Пассивный транспорт с участием мембранных белков называют облегченной диффузией.

Другие белки-переносчики (их иногда называют белки-насосы) переносят через мембрану вещества с затратами энергии, которая обычно поставляется при гидролизе АТФ. Этот вид транспорта осуществляется против градиента концентрации переносимого вещества и называется активным транспортом.

Симпорт, антипорт и унипорт

Мембранный транспорт веществ различается также по направлению их перемещения и количеству переносимых данным переносчиком веществ:

1) Унипорт — транспорт одного вещества в одном направлении в зависимости от градиента

2) Симпорт — транспорт двух веществ в одном направлении через один переносчик.

3) Антипорт — перемещение двух веществ в разных направлениях через один переносчик.

Унипорт осуществляет, например, потенциал-зависимый натриевый канал, через который в клетку во время генерации потенциала действия перемещаются ионы натрия.

Симпорт осуществляет переносчик глюкозы, расположенный на внешней (обращенной в просвет кишечника) стороне клеток кишечного эпителия. Этот белок захватывает одновременно молекулу глюкозы и ион натрия и, меняя конформацию, переносит оба вещества внутрь клетки. При этом используется энергия электрохимического градиента, который, в свою очередью создается за счет гидролиза АТФ натрий-калиевой АТФ-азой.

Антипорт осуществляет, например, натрий–калиевая АТФаза (или натрий–зависимая АТФаза). Она переносит в клетку ионы калия. а из клетки — ионы натрия.

Работа натрий-калиевой атФазы как пример антипорта и активного транспорта

Первоначально этот переносчик присоединяет с внутренней стороны мембраны три иона Na + . Эти ионы изменяют конформацию активного центра АТФазы. После такой активации АТФаза способна гидролизовать одну молекулу АТФ, причем фосфат-ион фиксируется на поверхности переносчика с внутренней стороны мембраны.

Выделившаяся энергия расходуется на изменение конформации АТФазы, после чего три иона Na + и ион (фосфат) оказываются на внешней стороне мембраны. Здесь ионыNa + отщепляются, а замещается на два ионаK + . Затем конформация переносчика изменяется на первоначальную, и ионы K + оказываются на внутренней стороне мембраны. Здесь ионы K + отщепляются, и переносчик вновь готов к работе.

Более кратко действия АТФазы можно описать так:

  • 1) Она изнутри клетки «забирает» три иона Na

    + ,затем расщепляет молекулу АТФ и присоединяет к себе фосфат

  • 2) «Выбрасывает» ионы Na + и присоединяет два иона K + из внешней среды.

  • 3) Отсоединяет фосфат, два иона K + выбрасывает внутрь клетки

В итоге во внеклеточной среде создается высокая концентрация ионов Na + , а внутри клетки — высокая концентрация K + . Работа Na + , K + — АТФаза создает не только разность концентраций, но и разность зарядов (она работает как электрогенный насос). На внешней стороне мембраны создается положительный заряд, на внутренней — отрицательный.

studfiles.net

Пассивный транспорт веществ через мембрану: описание, особенности

Что такое пассивный транспорт? Трансмембранное перемещение различных высокомолекулярных соединений, клеточных компонентов, надмолекулярных частиц, которые не способны проникать сквозь каналы в мембране, осуществляется посредством специальных механизмов, например, с помощью фагоцитоза, пиноцитоза, экзоцитоза, переноса через межклеточное пространство. То есть перемещение веществ сквозь мембрану может происходить при помощи различных механизмов, которые подразделяются по признакам участия в них специфических переносчиков, а также по энергозатратам. Ученые подразделяют транспорт веществ на активный и пассивный.

Основные виды транспорта

Пассивный транспорт представляет собой перенос вещества сквозь биологическую мембрану по градиенту (осмотический, концентрационный, гидродинамический и другие), не требующий расхода энергии.

Активный транспорт представляет собой перенос вещества сквозь биологическую мембрану против градиента. При этом расходуется энергия. Примерно 30 — 40% энергии, которая образуется в результате метаболических реакции в организме человека, тратится на осуществление активного транспорта веществ. Если рассматривать функционирование человеческих почек, то в них на активный транспорт тратится около 70 — 80% потребленного кислорода.

Пассивный транспорт веществ

он подразумевает перенос различных веществ сквозь биологические мембраны по разнообразным градиентам. Такими градиентами могут быть:

  • градиент электрохимического потенциала;
  • градиент концентрации вещества;
  • градиент электрического поля;
  • градиент осмотического давления и прочие.

Процесс осуществления пассивного транспорта не требует каких-либо энергозатрат. Он может происходить при помощи облегченной и простой диффузии. Как нам известно, диффузия представляет собой хаотическое перемещение молекул вещества в разнообразных средах, которое обусловлено энергией тепловых колебаний вещества.

Если частица вещества является электронейтральной, то направление, в котором будет происходить диффузия, определяется разностью концентрации веществ, содержащихся в средах, которые разделены мембраной. К примеру, между отсеками клетки, внутри клетки и вне ее. Если частицы вещества, его ионы имеют электрический заряд, то диффузия будет зависеть не только от разности концентраций, но и от величины заряда данного вещества, наличия и знаков заряда с обеих сторон мембраны. Величина электрохимического градиента определяется алгебраической суммой электрического и концентрационного градиентов на мембране.

Что обеспечивает транспорт через мембрану?

Пассивный транспорт мембраны возможен, благодаря наличию градиентов концентрации вещества, осмотического давления, возникающего между разными сторонами мембраны клетки или электрического заряда. К примеру, средний уровень содержащихся в плазме крови ионов Na+ составляет около 140 мМ/л, а содержание его в эритроцитах примерно в 12 раз больше. Подобный градиент, выражающийся в разности концентраций, способен создавать движущую силу, обеспечивающую перенос молекул натрия в эритроциты из плазмы крови.

Следует отметить, что скорость подобного перехода весьма низкая из-за того, что для клеточной мембраны характерна низкая проницаемость для ионов данного вещества. Гораздо большей проницаемостью данная мембрана обладает в отношении ионов калия. Энергия клеточного метаболизма не используется для совершения процесса простой диффузии.

Скорость диффузии

Активный и пассивный транспорт веществ через мембрану характеризуется скоростью диффузии. Описать ее можно при помощи уравнения Фика: dm/dt=-kSΔC/x.

В данном случае dm/dt представляет собой количество того вещества, которое диффундирует за одну единицу времени, а k представляет собой коэффициент процесса диффузии, который характеризует проницаемость биомембраны для диффундирующего вещества. S равняется площади, на которой происходит диффузия, а ΔC выражает разность концентрации веществ с разных сторон биологической мембраны, при этом x характеризует расстояние, которое имеется между точками диффузии.

Очевидно, что через мембрану наиболее легко будут перемещаться те вещества, которые диффундируют одновременно по градиентам концентраций и электрических полей. Немаловажным условием для осуществления диффузии вещества сквозь мембрану являются физические свойства самой мембраны, ее проницаемость для каждого конкретного вещества.

В силу того, что бислой мембраны сформирован углеводородными радикалами фосфолипидов, обладающих гидрофобными свойствами, вещества гидрофобной природы с легкостью диффундируют через нее. В частности, это относится к веществам, которые легко растворяются в липидах, например, тиреоидные и стероидные гормоны, а также некоторые вещества наркотического характера.

Минеральные ионы и низкомолекулярные вещества, имеющие гидрофильную природу, диффундируют посредством пассивных ионных каналов мембраны, которые сформированы из каналообразующих белковых молекул, а иногда сквозь дефекты упаковки мембраны фосфолипидных молекул, которые возникают в клеточной мембране в результате тепловой флуктуации.

Пассивный транспорт через мембрану – процесс очень интересный. Если условия нормальные, то значительные количества вещества могут проникать сквозь бислой мембраны только в том случае, если они неполярные и имеют небольшой размер. В противном случае перенос происходит посредством белков-переносчиков. Подобные процессы с участием белка-переносчика называются не диффузией, а транспортом вещества сквозь мембрану.

Облегченная диффузия

Облегченная диффузия, подобно простой диффузии, происходит по градиенту концентрации вещества. Основное отличие состоит в том, что в процессе переноса вещества принимает участие специальная молекула белка, называемая переносчиком.

Облегченная диффузия является видом пассивного переноса молекул вещества сквозь биомембраны, осуществляемым по градиенту концентрации при помощи переносчика.

Состояния белка-переносчика

Белок-переносчик может находится в двух конформационных состояниях. К примеру, в состоянии А данный белок может обладать сродством с веществом, которое он переносит, его участки для связывания с веществом развернуты внутрь, за счет чего формируется пора, открытая к одной стороне мембраны.

После того, как белок связался с переносимым веществом, изменяется его конформация и происходит его переход в состояние Б. При таком превращении у переносчика теряется сродство с веществом. Из связи с переносчиком оно высвобождается и перемещается в пору уже по другую сторону мембраны. После того, как вещество перенесено, белок-переносчик снова изменяет свою конформацию, возвращаясь в состояние А. Подобный транспорт вещества сквозь мембрану называется унипортом.

Скорость при облегченной диффузии

Низкомолекулярные вещества вроде глюкозы могут транспортироваться сквозь мембрану посредством облегченной диффузии. Такой транспорт может происходить из крови в мозг, в клетки из интерстициальных пространств. Скорость переноса вещества при таком виде диффузии способна достигать до 108 частиц через канал за одну секунду.

Как мы уже знаем, скорость активного и пассивного транспорта веществ при простой диффузии пропорциональна разности концентраций вещества с двух сторон мембраны. В случае же облегченной диффузии эта скорость увеличивается пропорционально увеличивающей разности концентрации вещества до определенного максимального значения. Выше этого значения скорость не увеличивается, даже несмотря на то что разность концентраций с разных сторон мембраны продолжает увеличиваться. Достижение такой максимальной точки скорости в процессе осуществления облегченной диффузии можно объяснить тем, что максимальная скорость предполагает вовлечение в процесс переноса всех имеющихся белков-переносчиков.

Какое понятие еще включают в себя активный и пассивный транспорт через мембраны?

Обменная диффузия

Подобный вид транспорта молекул вещества сквозь клеточную мембрану характеризуется тем, что в обмене участвуют молекулы одного и того же вещества, которые находятся с разных сторон биологической мембраны. Стоит отметить, что при таком транспорте веществ концентрация молекул с обеих сторон мембраны абсолютно не изменяется.

Разновидность обменной диффузии

Одной из разновидностей обменной диффузии является обмен, при котором молекула одного вещества меняется на две и более молекул иного вещества. К примеру, один из путей, по которому происходит удаление положительных ионов кальция из гладкомышечных клеток бронхов и сосудов из сократительных миоцитов сердца – это обмен их на ионы натрия, расположенные вне клетки. Один ион натрия в этом случае обменивается на три иона кальция. Таким образом, происходит движение натрия и кальция сквозь мембрану, которое носит взаимообусловленный характер. Подобный вид пассивного транспорта сквозь клеточную мембрану называется антипортом. Именно таким образом клетка способна освободиться от ионов кальция, которые имеются в избытке. Этот процесс является необходимым для того, чтобы гладкие миоциты и кардиомиоциты расслаблялись.

В данной статье был рассмотрен активный и пассивный транспорт веществ через мембрану.

fb.ru

Биология для студентов — 10. Механизмы пассивного и активного транспорта веществ в клетку. Их общебиологическое значение для клетки и организма

Пассивный транспорт перенос веществ по градиенту концентрации из области высокой концентрации в область низкой, без затрат энергии (диффузия, осмос). Диффузия — пассивное перемещение вещества из участка большей концентрации к участку меньшей концентрации. Осмос — пассивное перемещение некоторых веществ через полупроницаемую мембрану (обычно мелкие молекулы проходят, крупные не проходят). Осмос заключается в переходе молекул воды через мембрану по направлениям ее концентрационных градиентов.

По пути простой диффузии частицы вещества перемещаются сквозь липидный бислой. Направление простой диффузии определяется только разностью концентраций вещества по обеим сторонам мембраны. Путём простой диффузии в клетку проникают гидрофобные вещества (O2, N2, бензол) и полярные маленькие молекулы (CO2, h3O, мочевина). Не проникают полярные относительно крупные молекулы (аминокислоты, моносахариды), заряженные частицы (ионы) и макромолекулы (ДНК, белки).

Ограниченная диффузия — диффузия через мембранные каналы. Основная масса каналов специфична (пропускает только один вид ионов), другие или не- или частично специфичны, причем каналы заполнены водой. Это доказано экспериментально в наблюдениях на искусственном липидном бислое. Если на его поверхность поместить электролит, то прохождения ионов нет, если добавить каналообразующие белки, то возникает электрический ток.

Облегчённая диффузия. Большинство веществ переносится через мембрану с помощью погружённых в неё транспортных белков (белков-переносчиков). Все транспортные белки образуют непрерывный белковый проход через мембрану. С помощью белков-переносчиков осуществляется как пассивный, так и активный транспорт веществ. Полярные вещества (аминокислоты, моносахариды), заряженные частицы (ионы) проходят через мембраны с помощью облегчённой диффузии, при участии белков-каналов или белков-переносчиков. Участие белков-переносчиков обеспечивает более высокую скорость облегчённой диффузии по сравнению с простой пассивной диффузией. Скорость облегчённой диффузии зависит от ряда причин:

  • от трансмембранного концентрационного градиента переносимого вещества,
  • от количества переносчика, который связывается с переносимым веществом,
  • от скорости связывания вещества переносчиком на одной поверхности мембраны(например, на наружной),
  • от скорости конформационных изменений в молекуле переносчика, в результате которых вещество переносится через мембрану и высвобождается на другой стороне мембраны.

Облегчённая диффузия не требует специальных энергетических затрат за счёт гидролиза АТФ. Эта особенность отличает облегчённую диффузию от активного трансмембранного транспорта.

Белки — переносчики — это трансмембранные белки, которые специфически связывают молекулу транспортируемого вещества и, изменяя конформацию, осуществляют перенос молекулы через липидный слой мембраны. В белках-переносчиках всех типов имеются определенные участки связывания для транспортируемой молекулы. Они могут обеспечивать как пассивный, так и активный мембранный транспорт.

Активный транспорт — перенос вещества через клеточную или внутриклеточную мембрану (трансмембранный активный транспорт) или через слой клеток (трансцеллюлярный активный транспорт), протекающий против градиента концентрации из области низкой концентрации в область высокой, т. е. с затратой свободной энергии организма. В большинстве случаев, но не всегда, источником энергии служит энергия макроэргических связей АТФ.

Различные транспортные АТФазы, локализованные в клеточных мембранах и участвующие в механизмах переноса веществ, являются основным элементом молекулярных устройств — насосов, обеспечивающих избирательное поглощение и откачивание определенных веществ (например, электролитов) клеткой. Активный специфический транспорт неэлектролитов (молекулярный транспорт) реализуется с помощью нескольких типов молекулярных машин — насосов и переносчиков. Транспорт неэлектролитов (моносахаридов, аминокислот и других мономеров) может сопрягаться с симпортом — транспортом другого вещества, движение которого по градиенту концентрации является источником энергии для первого процесса. Симпорт может обеспечиваться ионными градиентами (например, натрия) без непосредственного участия АТФ.

Поток воды, вызванный в пористой мембране действием осмотических сил, аналогичен тому, который бы возник при приложении гидростатического давления к столбу воды, заполняющему пору. Рассмотрим мембрану, которая отделяет чистый растворитель от раствора, содержащего молекулы растворенного вещества. Стенки поры будут предохранять движущиеся через нее молекулы воды от бомбардировки молекулами растворенного вещества, что создает осмотическое давление. Следовательно, молекулы воды в поре, расположенные ближе к той стороне мембраны, которая контактирует с раствором, будут находиться под меньшим гидростатическим давлением, чем молекулы, расположенные, ближе к той стороне, которая обращена к чистому растворителю. Движение молекул чистого растворителя полностью передается молекулам, находящимся внутри поры, что и приводит к установлению разности гидростатического давления (разность эта обусловлена различиями в концентрации воды, каждой из которых соответствует определенная величина гидростатического давления). Таким образом, данная модель позволяет объяснить тот факт, что поток воды, обусловленный, действием осмотических сил, приблизительно в 2,4 раза больше диффузионного потока; эти данные позволяют также вычислить эффективный диаметр поры, который оказался равным 0,35 нм.

Мембранный транспорт активный: вещества переносятся через мембрану против концентрационного, электрического и других видов градиентов, на это тратится энергия клеточного метаболизма. Пассивный транспорт осуществляется главным образом тремя способами:

  • Вещества, находящиеся в водной фазе по одну сторону мембраны, растворяются в липидно-белковом слое мембраны, пересекают его и вновь переходят в водную фазу с противоположной стороны мембраны.
  • Вещества, которые перемещаются через поры или каналы мембраны, заполненные водой. В отношении воды было сделано предположение: она дополнительно диффундирует через поры мембраны. Это было доказано экспериментально: если брать синтетическую мембрану, но состоящую только из липидов, вода проходит через нее Þ еще одни механизм, связанный с динамическими свойствами липидов. Так как во время этих динамических движений образуются дефекты и очень подвижные молекулы воды успевают проникнуть через них через мембрану. Кинетика такого транспорта характеризует графическую зависимость скорости поступления через мембрану от концентрации вещества вне клетки. Эта прямая отражает кинетику без насыщения (то есть концентрация вещества может возрастать до бесконечности). Такая кинетика отличает простую диффузию от двух других механизмов пассивного транспорта.
  • Вещества в процессе диффузии проходят через поры мембраны – водорастворимые, полярные соединения и электролиты. Органические вещества проходят за счет растворения в липидах. Зависимость растворения веществ в липидах исследовалось Овертоном. Он показал если есть карбоксильные, гидроксильные и аминогруппы, то это ухудшает проникновение через мембрану. Присутствие же метиловых, этиловых и фенильных групп наоборот облегчает проникновение веществ в клетку. Они не полярные и это увеличивает растворения этих веществ в липидах.

Коэффициент распределения показывает отношение растворимости веществ в жирах к растворимости этих веществ в воде. Чем выше этот коэффициент, тем легче проникают вещества в клетку, вне зависимости от размеров молекулы. Если вещества имеют одинаковый коэффициент распределения, то более мелкие молекулы будут проникать легче чем крупные. Водорастворимые вещества проходят через поры мембран. Для того чтобы пройти через пору, вещество должно преодолеть определенные силы, которые препятствуют этому. Вещество должно освободится от водной или сольватной оболочки, раздвинуть поверхностный молекулярный слой на границе клетки и омывающего раствора, преодолеть взаимодействие своих полярных групп и полярных групп поры мембран, преодолеть энергетический барьер, создаваемый на поверхности цитоплазмы ионами и коллоидами.

vseobiology.ru

Разное / Всякое / Физика темы 1-52 расширенный курс / 11.Пассивный транспорт веществ через мембрану. Роль концентрационного, осмотического

11.Пассивный транспорт веществ через мембрану. Роль концентрационного, осмотического и электрического градиентов. Уравнение Фика. Проницаемость мембран. Механизм транспорта гидрофобных веществ.

Общие закономерности транспорта веществ через мембраны

Пассивный и активный транспорт.

Принято различать пассивный и активный . транспорт веществ через мембрану.  Пассивным называют транспорт в направлении  от области с более высокой крнцентрацией переносимого вещества к области с более низкой его концентрацией . Обычн это формулируют короче:  пассивным называется транспорт вещества  по градиенту концентрации (Напомним, что градиентом концентрации называют  изменение какого-то показателя  на единицу расстояния .:C 41  — C 42grad C = ———— 4 )4LМожно сказать, что _ градиент концентрации является  основной движущей силой  пассивного транспорта.  .Однако, в ряде случаев необходимо учитывать и другие факторы. Например, при переносе воды важную роль играет  осмотический градиент , определяемый разностью осмотических давлений; на транспорт ионов сильно влияет электрический градиент .,создаваемый разностью потенциалов между цитоплазмой и межклеточной средой.В подобных случаях транспорт осуществляется несколькими сопряжёнными процессами .Пассивный транспорт всегда ведёт к  выравниванию концентраций Например, если повышается концентрация глюкозы в крови, то очень скоро за счёт пассивного транспорта глюкозы увеличивается и её концентрация в клетках. Однако, для нормальной жизнедеятельности организма необходимо, чтобы  концентрация многих веществ, в частности — ионов, существенно отличалась от их концентрации в межклеточной среде . Например, ионов калия  в цитоплазме  гораздо больше, чем снаружи , а ионов  натрия- наоборот. Чтобы постоянно поддерживать эту разность концентраций, надо обеспечить перенос вещества в направлении, обратном пассивному транспорту. Короче,  активный транспорт — это перенос веществ против градиента концентрации. .  Его механизм будет рассмотрен в последнем разделе.

Формула Фика. Проницаемость мембран

Скорость переноса . вещества при  пассивном  транспорте выражается формулой Фика:

dm C 41  — C 42

—- = D.S ———— = D.S.grad C (1)

dt L

где S — площадь мембраны, L — её толщина; коэффициент D называется  коэффициент диффузии. . Он зависит от природы вещества, в частности от его растворимости в жирах (это связано с тем, что транспорт идёт через билипидный слой), поэтому часто пишут:

D =D». 7b ,

где  7b  —  коэффициент распределения . вещества между _ липидной и водной фазами . (отношение растворимости в жирах к растворимости в воде).На практике измерить по отдельности величины D и L очень трудно,да и не нужно, потому что они входят в формулу (1) всегда вместе.Поэтому обычно формулу для скорости переноса записывают короче:

dm

—- = p.S.(C e  — C i ) 

(2)

dt

D». 7b

Величина р =D/L = —— называется  проницаемостью мембраны для данного вещества.

Понятие проницаемости, как и сама формула (2), применяется только по отношению к _ пассивному транспорту .. Из сказанного выше ясно, что  проницаемость для жирорастворимых веществ , как правило значительно выше, чем для водорастворимых  (велик коэффициент распределения  b).Мембраны клеток в ходе жизнедеятельности могут значительно менять свою структуру и функциональную активность, поэтому проницаемость мембраны даже в одной и той же клетке может за короткое время значительно изменяться. Далее мы увидим многочисленные примеры этого. В биофизике количество вещества часто выражают не в единицах массы, а в  числе молей . 7 n . В этом случае вместо (2) получим:

d 7n

—- = p.S.(C e  — C i ) 4

(2″)

5dt

при этом концентрация выражается в числе молей на единицу объёма. Если нас интересует не скорость переноса, а  общее количество вещества, перенесенного за время t, . формулу (2) или (2″) записываем в интегральной форме:

m 7  0(или 7 n 0) = p.S.(C e  — C i ) .t

(3)

  Механизмы пассивного транспорта

В полном смысле слова пассивно, то есть так, как в неживых системах, проникают в клетки только азот и инертные газы. Для транспорта остальных веществ в ходе эволюции выработались специальные механизмы. Транспорт жирорастворимых (гидрофобных) веществ Перенос этих веществ через мембрану происходит благодаря  латеральной диффузии .. Когда молекула вещества подходит вплотную к мембране клетки, то благодаря интенсивному перемещению фосфолипидных молекул скоро  около ней оказывается вакантное место.  Так как переносимое вещество  имеет сродство к липидам,  молекула легко  может занять это свободное место  внедрившись в фосфолипидный слой. Ещё через какое-то время (опять-таки небольшое) свободное место напротив неё окажется уже во втором  липидном слое; через этот свободный участок молекула легко может проникнуть в цитоплазму . Естественно, что точно так же молекулы жирорастворимых веществ могут проходить и из клеток наружу. Такой механизм транспорта иногда называют «способом скачков» (молекула как бы перескакивает с места на место). Если молекула вещества много больше молекул фосфолипидов, ей придётся ждать, пока  на одном участке не сойдутся две или даже три вакансии.  Скорость проникновения таких крупных молекул, естественно,меньше; однако, практически, даже вещества с крупными молекулами (с большой молекулярной массой) достаточно быстро проходят через мембрану, если они хорошо растворимы в жирах (у них большой коэффициент распределения 7 b, и проницаемость достаточно велика).Описанным способом проникают в клетки многие вещества: жирные кислоты, углеводороды, жирорастворимые витамины А и D, наркотизирующие вещества (эфир, хлороформ, пентотал и др.), а также многие яды и лекарственные препараты.

studfiles.net

Пассивный и активный транспорт веществ

Поиск Лекций

Карагандинский государственный медицинский университет

Кафедра медицинской биофизики и информатики

CРC

Тема: «Механизмы проницаемости биологических мембран. Строение и функции ионных каналов и переносчиков».

Выполнил: ст.177 гр.

ОМФ Сулейменов М.Б.

Проверил: Пашев В.И.

Караганда 2012

 

ПЛАН

ВВЕДЕНИЕ.. 3

Транспорт веществ через биологические мембраны.. 4

Пассивный и активный транспорт веществ. 4

Виды пассивного транспорта. 5

Активный транспорт веществ через биологические мембраны. Опыт Усинга. 8

Вторичный активный транспорт ионов. 10

Строение и функции ионных каналов и переносчиков. 12

ЛИТЕРАТУРА.. 15

 

 

 

ВВЕДЕНИЕ

 

Живая клетка — это элементарная ячейка биологической организации, обеспечивающая все функции организма. Среди многообразных явлений, протекающих в клетке, важное место занимают активный и пассивный транспорт веществ, осмос, фильтрация и биоэлектрогенез. В настоящее время стало очевидно, что эти явления так или иначе определяются барьерными свойствами клеточных мембран. Клетка — открытая система, которая непрерывно обменивается с окружающей средой веществом и энергией. Во многих случаях биологического транспорта основой переноса веществ является их диффузия через клеточную или многоклеточную мембрану. Способы диффузионного переноса многообразны: диффузия жирорастворимых веществ через липидную часть мембраны, перенос гидрофильных веществ через поры, образуемые мембранными липидами и белками, облегченная диффузия с участием специальных молекул-переносчиков, избирательный транспорт ионов через ионные каналы. Однако в процессе эволюции живая клетка создала особый способ переноса, получивший название активного транспорта. В этом случае перенос вещества идет против перепада концентрации и поэтому сопряжен с использованием энергии, универсальным источником которой в клетке является молекула аденозинтрифосфорной кислоты.

 

Транспорт веществ через биологические мембраны

 

Живые системы на всех уровнях организации — открытые системы. Элементарная ячейка жизни — клетка и клеточные органеллы тоже открытые системы. Поэтому транспорт веществ через биологические мембраны — необходимое условие жизни. С переносом веществ через мембраны связаны процессы метаболизма клетки, биоэнергетические процессы, образование биопотенциалов, генерация нервного импульса и др. Нарушение транспорта веществ через биомембраны приводит к различным патологиям. Лечение часто связано с проникновением лекарств через клеточные мембраны.

 

Пассивный и активный транспорт веществ

 

Транспорт веществ через биологические мембраны можно разделить на два основных типа: пассивный и активный. Определения пассивного и активного транспорта связаны с понятием электрохимического потенциала. Известно, что движущей силой любого переноса является перепад энергии. Свободная энергия (энергия Гиббса) определяется при постоянном давлении, температуре и количестве переносимых частиц. Последнее обстоятельство удобно для описания переноса частиц вещества через мембрану с одной поверхности на другую.

Электрохимический потенциал — величина, численно равная энергии Гиббса на один моль данного вещества, помещенного в электрическое поле. Для разведенных растворов, где R = 8,31 Дж/(К » моль) — универсальная газовая постоянная, F = 96 500 Кл/моль (число Фарадея), Z — заряд иона электролита (в элементарных единицах заряда), j — потенциал электрического поля.

Пассивный транспорт идет в направлении перепада электрохимического потенциала вещества, происходит самопроизвольно и не требует свободной энергии АТФ.

 

Активный транспорт — это такой процесс, при котором перенос происходит из места с меньшим значением электрохимического потенциала к месту с большим его значением. Этот процесс, сопровождающийся ростом энергии, не может идти самопроизвольно, а только в сопряжении с процессом гидролиза АТФ, то есть за счет затраты энергии Гиббса, запасенной в макроэргических связях АТФ.

Плотность потока вещества jм — количество вещества в единицу времени через единицу площади — при пассивном транспорте подчиняется уравнению Теорелла где U — подвижность частиц, С — концентрация. Знак минус показывает, что перенос происходит в сторону убывания .

 

Подставив в выражение для электрохимического потенциала , получим для разбавленных растворов уравнение Нернста-Планка:

Итак, могут быть две причины переноса вещества при пассивном транспорте: градиент концентрации dC / dx и градиент электростатического потенциала dj / dx. В отдельных случаях вследствие сопряжения этих двух причин может происходить пассивный перенос вещества от мест с меньшей концентрацией к местам с большей концентрацией за счет энергии электрического поля.

В случае неэлектролитов (Z = 0) или постоянства электрического поля (dj / dx = 0) уравнение Теорелла переходит в уравнение

 

Согласно соотношению Эйнштейна, URT = D, где D — коэффициент диффузии, и, подставляя, получаем закон Фика

 


poisk-ru.ru