T статистика стьюдента – t-критерий Стьюдента

Содержание

Т-критерий Стьюдента за 12 минут

Кирилл Сергеевич Мильчаков

Сегодня мы говорим о t-критерии. Т-критерий наиболее популярный статистический тест в биомедицинских исследованиях. Также его называют парный Т-критерий Стьюдента, t-test, two-sample unpaired t-test. Однако, при использовании этого статистического инструмента допускается достаточно много ошибок. Сегодня в этой статье мы постараемся разобраться, как избежать ошибок применения t-критерия Стьюдента, как интерпретировать его результаты и как рассчитывать t-критерий самостоятельно. Об этом обо всем читайте далее.

При описании любого статистического критерия, будь то t-критерий Стьюдента, либо какой-либо еще, нужно вспомнить о том, как же вообще используются статистические критерии. Для того, чтобы понять, как используется любой критерий, нужно перейти к нескольким достаточно логичным для понимания этапам:

Этапы статистического вывода (statistic inference)

  1. Первый из них – это вопрос, который мы хотим изучить с помощью статистических методов. То есть первый этап: что изучаем? И какие у нас есть предположения относительно результата? Этот этап называется этап статистических гипотез.
  2. Второй этап – нужно определиться с тем, какие у нас есть в реальности данные для того, чтобы ответить на первый вопрос. Этот этап – тип данных.
  3. Третий этап состоит в том, чтобы выбрать корректный для применения в данной ситуации статистический критерий.
  4. Четвертый этап это логичный этап применения интерпретации любой формулы, какие результаты мы получили.
  5. Пятый этап это создание, синтез выводов относительно первого, второго, третьего, четвертого, пятого этапа, то есть что же получили и что же это в реальности значит.

Предлагаю долго не ходить вокруг да около и посмотреть применение t-критерия Стьюдента на реальном примере.

Видео-версия статьи

Пример использования т-критерия Стьюдента

А пример будет достаточно простой: мне интересно, стали ли люди выше за последние 100 лет. Для этого нужно подобрать некоторые данные. Я обнаружил интересную информацию в достаточно известной статье The Guardian (Tall storys men and women have grown taller over last century, Study Shows (The Guardian, July 2016), которая сравнивает средний возраст человека в разных странах в 1914 году и в аналогичных странах в 2014 году.

Там приведены данные практически по всем государствам. Однако, я взял лишь 5 стран для простоты вычислений: это Россия, Германия, Китай, США и ЮАР, соответственно 1914 год и 2014 год.

Общее количество наблюдений – 5 в 1914 году в группе 1914 года и общее значение также 5 в 2014 году. Будем думать опять же для простоты, что эти данные сопоставимы, и с ними можно работать.

Дальше нужно выбрать критерии – критерии, по которым мы будем давать ответ. Равны ли средние по росту в 1914 году x̅1914 и в 2014 году x̅2014. Я считаю, что нет. Поэтому моя гипотеза это то, что они не равны (x̅1914≠x̅2014). Соответственно альтернативная гипотеза моему предположению, так называемая нулевая гипотеза (нулевая гипотеза консервативна, обратная вашей, часто говорит об отсутствии статистически значимых связей/зависимостей) будет говорить о том, что они между собой на самом деле равны (x̅1914=x̅2014), то есть о том, что все эти находки случайны, и я, по сути, не прав.

Теперь нужно дать какой-то аргументированный ответ. Даем его с помощью статистического критерия. Соответственно теперь наступает самое важное: как выбрать статистический критерий? Я думаю, это будет темой отдельной статьи. Для корректности использования t-критерия Стьюдента лишь скажу, что нужно, чтобы:

Условия применения статистического критерия т-теста (критерия Стьюдента)

— данные распределялись по закону нормального распределения;

— данные были количественными;

— и это две независимые между собой выборки (независимые это значит, что в этих группах разные люди, а никак, например, до и после применения препарата у одной группы, люди должны быть разными, тогда группы являются несвязанными, либо независимыми), этот аспект стоит учитывать для выбора вида т-критерия Стьюдента, так как для парных выборок существует свой парный т-критерий (paired t-test).

В итоге Мы определились с тем, что это будет t-критерий Стьюдента.

Формула t-критерия Стьюдента достаточно простая. Она гласит о том, что в числителе у нас разница средних, в знаменателе у нас корень квадратный суммы ошибок репрезентативности по этим группам:

Ошибки репрезентативности были подробно объяснены мною в статье по доверительным интервалам. Поэтому я рекомендую вам ознакомиться с ней, чтобы лучше разобраться, что такое ошибки репрезентативности, что такое выборка, как она соотносится с генеральной совокупностью.

Для того, чтобы не тратить время, я в принципе все уже рассчитал по каждой из групп: средняя (x̅) ,стандартное отклонение (SD) и ошибка репрезентативности (mr).

Давайте остановимся на том, что же значат эти значения:

— средняя (x̅) это среднеарифметическое по 5 наблюдениям в каждой группе;

— если совсем упрощать значение стандартного отклонения (SD), то можно сказать, что оно представляет собой обобщенную среднюю отклонения каждого значения от среднего (

стандартное отклонение показывает, насколько широко значения рассеяны (разбросаны) относительно средней). И дальше мы находим нечто среднее отклонений каждого варианта в группе от среднего;

— и ошибка репрезентативности она тоже находится достаточно просто: это как раз наше отклонение от средней некоторое стандартизованное, поэтому стандартное отклонение на размер выборки (mr=).

Итак, продолжаем. В ходе подстановки каждого значения в нашу формулу, мы находим, что t-критерий Стьюдента равен 3,78. Однако, я думаю, пока тем, кто не знаком со статистическими критериями, это мало о чем говорит.

Итак, теперь настает четвертый этап вопрос интерпретации. Ранее мы получили значение t-критерия в 3,78. Однако, что же это значит? Стоит отметить, что результаты статистических критериев и вообще их интерпретация не говорит о точном «да», либо «нет» в выводе, то есть рост отличается, либо рост не отличается. Всегда это вопрос определенной доли вероятности – доли вероятности ошибиться при констатации положительного результата (

речь об ошибке первого рода (I type error, Alpha)). То есть, например, если мы скажем, что средний рост в начале ХХ и в начале XXI века отличаются с долей ошибкой меньше 5 %. Как раз эта величина в 5 % и фиксируется как достаточная для большинства биомедицинских исследований, помните, р больше, либо меньше 0,05.

Итак, как нам перейти от нашей t к р вероятности? Это сделать достаточно просто, стоит лишь воспользоваться табличными значениями t для определенных степеней свободы. Теперь вопрос: как найти эти степени свободы? Но это сделать достаточно просто. Для того, чтобы обнаружить степени свободы для наших групп, нужно лишь сложить количество наблюдений 5 и 5 в нашем случае и вычесть 2. В нашем случае степень свободы равна 8.

Итак, t=3,78, степень свободы равна 8. Переходим в табличное значение и получаем р вероятность – вероятность равна 0,005. То есть вероятность того, что мы ошибаемся при констатации факта различия роста ранее и сейчас, крайне мала – это 0,005 %, не 5 %, а 0,005 %. То есть мы можем говорить с высокой долей достоверности того, что наш рост сейчас в XXI веке и 100 лет назад отличаются.

Вот то, что касается расчета t-критерия Стьюдента и его интерпретации.

На этом наш разговор о t-критерии Стьюдента закончен. Спасибо, что ознакомились с этой статьей. Я очень надеюсь на вашу обратную связь. Пожалуйста, подписывайтесь на наш сайте, ставьте лайки, предлагайте свои темы для следующих выпусков. Спасибо большое за поддержку. С вами был Кирилл Мильчаков. Пока, до новых встреч!


Если Вам понравилась статья и оказалась полезной, Вы можете поделиться ею с коллегами и друзьями в социальных сетях:

lit-review.ru

Критерий Стьюдента, t-тест и нормальное распределение

автор: Samoedd Сентябрь 8, 2016

Наступила осень, а значит, настало время для запуска нового тематического проекта «Статистический анализ с R». В нем мы рассмотрим статистические методы с точки зрения их применения на практике: узнаем какие методы существуют, в каких случаях и каким образом их проводить в среде R. На мой взгляд, Критерий Стьюдента или t-тест (от англ. t-test) идеально подходит в качестве введения в мир статистического анализа. Тест Стьюдента достаточно прост и показателен, а также требует минимум базовых знаний в статистике, с которыми читатель может ознакомиться в ходе прочтения этой статьи.

Примечание_1: здесь и в других статьях Вы не увидите формул и математических объяснений, т.к. информация рассчитана на студентов естественных и гуманитарных специальностей, которые делают лишь первые шаги в стат. анализе.

Примечание_2: перед прочтением, я рекомендую ознакомиться с этой статьей, чтобы вспомнить базовые понятия описательной статистики, такие как медиана, стандартное отклонение, квантили и прочее.

Что такое t-тест и в каких случаях его стоит применять

В начале следует сказать, что в статистике зачастую действует принцип бритвы Оккамы, который гласит, что нет смысла проводить сложный статистический анализ, если можно применить более простой (не стоит резать хлеб бензопилой, если есть нож). Именно поэтому, несмотря на свою простоту, 

t-тест является серьезным инструментом, если знать что он из себя представляет и в каких случаях его стоит применять.

Любопытно, что создал этот метод Уильямом Госсет — химик, приглашенный работать на фабрику Guinness. Разработанный им тест служил изначально для оценки качества пива. Однако, химикам фабрики запрещалось независимо публиковать научные работы под своим именем. Поэтому в 1908 году Уильям опубликовал свою статью в журнале «Biometrika» под псевдонимом «Стьюдент». Позже, выдающийся математик и статистик Рональд Фишер доработал метод, который затем получил массовое распространение под названием Student’s t-test.

Критерий Стьюдента (t-тест) — это статистический метод, который позволяет сравнивать средние значения двух выборок и на основе результатов теста делать заключение о том, различаются ли они друг от друга статистически или нет. Если Вы хотите узнать, отличается ли средний уровень продолжительности жизни в Вашем регионе от среднего уровня по стране; сравнить урожайность картофеля в разных районах; или изменяется ли кровяное давление до и после употребления нового лекарства, то

t-тест может быть Вам полезен. Почему может быть? Потому что для его проведения, необходимо, чтобы данные выборок имели распределение близкое к нормальному. Для этого существуют методы оценки, которые позволяют сказать, допустимо ли в данном случае полагать, что данные распределены нормально или нет. Поговорим об этом подробнее.

Нормальное распределение данных и методы его оценки qqplot и shapiro.test

Нормальное распределение данных характерно для количественных данных, на распределение которых влияет множество факторов, либо оно случайно. Нормальное распределение характеризуется несколькими особенностями:

  • Оно всегда симметрично и имеет форму колокола.
  • Значения среднего и медианы совпадают.
  • В пределах одного стандартного отклонения в обе стороны лежат 68.2% всех данных, в пределах двух — 95,5%, в пределах трех — 99,7%

Давайте создадим случайную выборку с нормальным распределением на языке программирования R, где общее количество измерений = 100, среднее арифметическое = 5, а стандартное отклонение = 1. Затем отобразим его на графике в виде гистограммы:

mydata <- rnorm(100, mean = 5, sd = 1)
hist(mydata, col = "light green")

Ваш график может слегка отличаться от моего, так как числа сгенерированы случайным образом. Как Вы видите, данные не идеально симметричны, но кажется сохраняют форму нормального распределения. Однако, мы воспользуемся более объективными методами определения нормальности данных.

Одним из наиболее простых тестов нормальности является график квантилей (qqplot). Суть теста проста: если данные имеют нормальное распределение, то они не должны сильно отклоняться от линии теоретических квантилей и выходить за пределы доверительных интервалов. Давайте проделаем этот тест в R.

install.packages("car") #установка пакета "car"
library(car) #загрузка пакета "car" в среду R
qqPlot(mydata) #запустим тест

Как видно из графика, наши данные не имеют серьезных отклонений от теоретического нормального распределения. Но порой при помощи qqplot невозможно дать однозначный ответ. В этом случае следует использовать тест Шапиро-Уилка, который основан на нулевой гипотезе, что наши данные распределены нормально. Если же P-значение менее 0.05 (p-value < 0.05), то мы вынуждены отклонить нулевую гипотезу. P-значение в этом случае будет говорить о том, что вероятность ошибки при отклонении нулевой гипотезы будет равна менее 5%.

Провести тест Шапиро-Уилка в R не составит труда. Для этого нужно всего лишь вызвать функцию shapiro.test, и в скобках вставить имя ваших данных. В нашем случае p-value должен быть значительно больше 0.05, что не позволяет отвергнуть нулевую гипотезу о том, что наши данные распределены нормально.

Запускаем t-тест Стьюдента в среде R

Итак, если данные из выборок имеют нормальное распределение, можно смело приступать к сравнению средних этих выборок. Существует три основных типа t-теста, которые применяются в различных ситуациях. Рассмотрим каждый из них с использованием наглядных примеров.

Одновыборочный критерий Стьюдента (one-sample t-test)

Одновыборочный t-тест следует выбирать, если Вы сравниваете выборку с общеизвестным средним. Например, отличается ли средний возраст жителей Северо-Кавказского Федерального округа от общего по России. Существует мнение, что климат Кавказа и культурные особенности населяющих его народов способствуют продлению жизни. Для того, чтобы проверить эту гипотезу, мы возьмем данные РосСтата (таблицы среднего ожидаемого продолжительности жизни по регионам России) и применим одновыборочный критерий Стьюдента. Так как критерий Стьюдента основан на проверке статистических гипотез, то за нулевую гипотезу будем принимать то, что различий между средним ожидаемым уровнем продолжительности по России и республикам Северного Кавказа нет. Если различия существуют, то для того, чтобы считать их статистически значимыми p-value должно быть менее 0.05 (логика та же, что и в вышеописанном тесте Шапиро-Уилка).

samoedd.com

Распределение t-критерия Стьюдента для проверки гипотезы о средней и расчета доверительного интервала в MS Excel

Проверка статистической гипотезы позволяет сделать строгий вывод о характеристиках генеральной совокупности на основе выборочных данных. Гипотезы бывают разные. Одна из них – это гипотеза о средней (математическом ожидании). Суть ее в том, чтобы на основе только имеющейся выборки сделать корректное заключение о том, где может или не может находится генеральная средняя (точную правду мы никогда не узнаем, но можем сузить круг поиска).

Общий подход в проверке гипотез описан здесь, поэтому сразу к делу. Предположим для начала, что выборка извлечена из нормальной совокупности случайных величин X с генеральной средней μ и дисперсией σ2 (знаю-знаю, что так не бывает, но не нужно меня перебивать!). Средняя арифметическая из этой выборки, очевидно, сама является случайной величиной. Если извлечь много таких выборок и посчитать по ним средние, то они также будут иметь нормальное распределение с математическим ожиданием μ и дисперсией

Тогда случайная величина

будет иметь стандартное нормальное распределение со всеми вытекающими отсюда последствиями. Например, с вероятностью 95% ее значение не выйдет за пределы ±1,96.

Однако такой подход будет корректным, если известна генеральная дисперсия. В реальности, как правило, она не известна. Вместо нее берут оценку – несмещенную выборочную дисперсию:

где

Возникает вопрос: будет ли генеральная средняя c вероятностью 95% находиться в пределах ±1,96s. Другими словами, являются ли распределения случайных величин

и

эквивалентными.

Впервые этот вопрос был поставлен (и решен) одним химиком, который трудился на пивной фабрике Гиннеса в г. Дублин (Ирландия). Химика звали Уильям Сили Госсет и он брал пробы пива для проведения химического анализа. В какой-то момент, видимо, Уильяма стали терзать смутные сомнения на счет распределения средних. Оно получалось немного более размазанным, чем должно быть у нормального распределения.

Собрав математическое обоснование и рассчитав значения функции обнаруженного им распределения, химик из Дублина Уильям Госсет написал заметку, которая была опубликована в мартовском выпуске 1908 года журнала «Биометрика» (главред – Карл Пирсон). Т.к. Гиннесс строго-настрого запретил выдавать секреты пивоварения, Госсет подписался псевдонимом Стьюдент.

Несмотря на то что, К. Пирсон уже изобрел распределение Хи-квадрат, все-таки всеобщее представление о нормальности еще доминировало. Никто не собирался думать, что распределение выборочных оценок может быть не нормальным. Поэтому статья У. Госсета осталась практически не замеченной и забытой. И только Рональд Фишер по достоинству оценил открытие Госсета. Фишер использовал новое распределение в своих работах и дал ему название t-распределение Стьюдента. Критерий для проверки гипотез, соответственно, стал t-критерием Стьюдента. Так произошла «революция» в статистике, которая шагнула в эру анализа выборочных данных. Это был краткий экскурс в историю.

Посмотрим, что же мог увидеть У. Госсет. Сгенерируем 20 тысяч нормальных выборок из 6-ти наблюдений со средней () 50 и среднеквадратичным отклонением (σ) 10. Затем нормируем выборочные средние, используя генеральную дисперсию:

Получившиеся 20 тысяч средних сгруппируем в интервалы длинной 0,1 и подсчитаем частоты. Изобразим на диаграмме фактическое (Norm) и теоретическое (ENorm) распределение частот выборочных средних.

Точки (наблюдаемые частоты) практически совпадают с линией (теоретическими частотами). Оно и понятно, ведь данные взяты из одной и то же генеральной совокупности, а отличия – это лишь ошибки выборки.

Проведем новый эксперимент. Нормируем средние, используя выборочную дисперсию.

Снова подсчитаем частоты и нанесем их на диаграмму в виде точек, оставив для сравнения линию стандартного нормального распределения. Обозначим эмпирическое частоты средних, скажем, через букву t.

Видно, что распределения на этот раз не очень-то и совпадают. Близки, да, но не одинаковы. Хвосты стали более «тяжелыми».

У Госсета-Стьюдента не было последней версии MS Excel, но именно этот эффект он и заметил. Почему так получается? Объяснение заключается в том, что случайная величина

зависит не только от ошибки выборки (числителя), но и от стандартной ошибки средней (знаменателя), которая также является случайной величиной.

Давайте немного разберемся, какое распределение должно быть у такой случайной величины. Вначале придется кое-что вспомнить (или узнать) из математической статистики. Есть такая теорема Фишера, которая гласит, что в выборке из нормального распределения:

1. средняя и выборочная дисперсия s2 являются независимыми величинами;

2. соотношение выборочной и генеральной дисперсии, умноженное на количество степеней свободы, имеет распределение χ2(хи-квадрат) с таким же количеством степеней свободы, т.е.

где k – количество степеней свободы (на английском degrees of freedom (d.f.))

На этом законе основывается множество других результатов в статистике нормальных моделей.

Вернемся к распределению средней. Разделим числитель и знаменатель выражения

на σ. Получим

Числитель – это стандартная нормальная случайная величина (обозначим ξ (кси)). Знаменатель выразим из теоремы Фишера.

Тогда исходное выражение примет вид

Это и есть t-критерий Стьюдента в общем виде (стьюдентово отношение). Вывести функцию его распределения можно уже непосредственно, т.к. распределения обеих случайных величин в данном выражении известны. Оставим это удовольствие математикам.

Функция t-распределения Стьюдента имеет довольно сложную для понимания формулу, поэтому не имеет смысла ее разбирать. Все равно ей никто не пользуется, т.к. вероятности приведены в специальных таблицах распределения Стьюдента (иногда называют таблицами коэффициентов Стьюдента), либо забиты в формулы ПЭВМ.

Итак, вооружившись новыми знаниями, вы сможете понять официальное определение распределения Стьюдента.
Случайной величиной, подчиняющейся распределению Стьюдента с k степенями свободы, называется отношение независимых случайных величин

где ξ распределена по стандартному нормальному закону, а χ2k подчиняется распределению χ2 c k степенями свободы.

Таким образом, формула критерия Стьюдента для средней арифметической


есть частный случай стьюдентова отношения


Из формулы и определения следует, что распределение т-критерия Стьюдента зависит лишь от количества степеней свободы.

При k > 30 t-критерий практически не отличается от стандартного нормального распределения.

В отличие от хи-квадрат, t-критерий может быть одно- и двухсторонним. Обычно пользуются двухсторонним, предполагая, что отклонение может происходить в обе стороны от средней. Но если условие задачи допускает отклонение только в одну сторону, то разумно применять односторонний критерий. От этого немного увеличивается мощность, т.к. при фиксированном уровне значимости критическое значение немного приближается к нулю.

Условия применения t-критерия Стьюдента

Несмотря на то, что открытие Стьюдента в свое время совершило переворот в статистике, t-критерий все же довольно сильно ограничен в возможностях применения, т.к. сам по себе происходит из предположения о нормальном распределении исходных данных. Если данные не являются нормальными (что обычно и бывает), то и t-критерий уже не будет иметь распределения Стьюдента. Однако в силу действия центральной предельной теоремы средняя даже у ненормальных данных быстро приобретает колоколообразную форму распределения.

Рассмотрим, для примера, данные, имеющие выраженный скос вправо, как у распределения хи-квадрат с 5-ю степенями свободы.

Теперь создадим 20 тысяч выборок и будет наблюдать, как меняется распределение средних в зависимости от их объема.

Отличие довольно заметно в малых выборках до 15-20-ти наблюдений. Но дальше оно стремительно исчезает. Таким образом, ненормальность распределения – это, конечно, нехорошо, но некритично.

Больше всего t-критерий «боится» выбросов, т.е. аномальных отклонений. Возьмем 20 тыс. нормальных выборок по 15 наблюдений и в часть из них добавим по одному случайном выбросу.

Картина получается нерадостная. Фактические частоты средних сильно отличаются от теоретических. Использование t-распределения в такой ситуации становится весьма рискованной затеей.

Итак, в не очень малых выборках (от 15-ти наблюдений) t-критерий относительно устойчив к ненормальному распределению исходных данных. А вот выбросы в данных сильно искажают распределение t-критерия, что, в свою очередь, может привести к ошибкам статистического вывода, поэтому от аномальных наблюдений следует избавиться. Часто из выборки удаляют все значения, выходящие за пределы ±2 стандартных отклонения от средней.

Пример проверки гипотезы о математическом ожидании с помощью t- критерия Стьюдента в MS Excel

В Excel есть несколько функций, связанных с t-распределением. Рассмотрим их.

СТЬЮДЕНТ.РАСП – «классическое» левостороннее t-распределение Стьюдента. На вход подается значение t-критерия, количество степеней свободы и опция (0 или 1), определяющая, что нужно рассчитать: плотность или значение функции. На выходе получаем, соответственно, плотность или вероятность того, что случайная величина окажется меньше указанного в аргументе t-критерия, т.е. левосторонний p-value.

СТЬЮДЕНТ.РАСП.2Х – двухсторонне распределение. В качестве аргумента подается абсолютное значение (по модулю) t-критерия и количество степеней свободы. На выходе получаем вероятность получить такое или еще больше значение t-критерия (по модулю), т.е. фактический уровень значимости (p-value).

СТЬЮДЕНТ.РАСП.ПХ – правостороннее t-распределение. Так, 1-СТЬЮДЕНТ.РАСП(2;5;1) = СТЬЮДЕНТ.РАСП.ПХ(2;5) = 0,05097. Если t-критерий положительный, то полученная вероятность – это p-value.

СТЬЮДЕНТ.ОБР – используется для расчета левостороннего обратного значения t-распределения. В качестве аргумента подается вероятность и количество степеней свободы. На выходе получаем соответствующее этой вероятности значение t-критерия. Отсчет вероятности идет слева. Поэтому для левого хвоста нужен сам уровень значимости α, а для правого 1 — α.

СТЬЮДЕНТ.ОБР.2Х – обратное значение для двухстороннего распределения Стьюдента, т.е. значение t-критерия (по модулю). Также на вход подается уровень значимости α. Только на этот раз отсчет ведется с двух сторон одновременно, поэтому вероятность распределяется на два хвоста. Так, СТЬЮДЕНТ.ОБР(1-0,025;5) = СТЬЮДЕНТ.ОБР.2Х(0,05;5) = 2,57058

СТЬЮДЕНТ.ТЕСТ – функция для проверки гипотезы о равенстве математических ожиданий в двух выборках. Заменяет кучу расчетов, т.к. достаточно указать лишь два диапазона с данными и еще пару параметров. На выходе получим p-value.

ДОВЕРИТ.СТЬЮДЕНТ – расчет доверительного интервала средней с учетом t-распределения.

Рассмотрим такой учебный пример. На предприятии фасуют цемент в мешки по 50кг. В силу случайности в отдельно взятом мешке допускается некоторое отклонение от ожидаемой массы, но генеральная средняя должна оставаться 50кг. В отделе контроля качества случайным образом взвесили 9 мешков и получили следующие результаты: средняя масса () составила 50,3кг, среднеквадратичное отклонение (s) – 0,5кг.

Согласуется ли полученный результат с нулевой гипотезой о том, что генеральная средняя равна 50кг? Другими словами, можно ли получить такой результат по чистой случайности, если оборудование работает исправно и выдает среднее наполнение 50 кг? Если гипотеза не будет отклонена, то полученное различие вписывается в диапазон случайных колебаний, если же гипотеза будет отклонена, то, скорее всего, в настройках аппарата, заполняющего мешки, произошел сбой. Требуется его проверка и настройка.

Краткое условие в обще принятых обозначениях выглядит так.

H0: μ = 50 кг

Ha: μ ≠ 50 кг

Есть основания предположить, что распределение заполняемости мешков подчиняются нормальному распределению (или не сильно от него отличается). Значит, для проверки гипотезы о математическом ожидании можно использовать t-критерий Стьюдента. Случайные отклонения могут происходить в любую сторону, значит нужен двухсторонний t-критерий.

Вначале применим допотопные средства: ручной расчет t-критерия и сравнение его с критическим табличным значением. Расчетный t-критерий:

Теперь определим, выходит ли полученное число за критический уровень при уровне значимости α = 0,05. Воспользуемся таблицей t-распределения Стьюдента (есть в любом учебнике по статистике).

По столбцам идет вероятность правой части распределения, по строкам – число степеней свободы. Нас интересует двухсторонний t-критерий с уровнем значимости 0,05, что равносильно t-значению для половины уровня значимости справа: 1 — 0,05/2 = 0,975. Количество степеней свободы – это объем выборки минус 1, т.е. 9 — 1 = 8. На пересечении находим табличное значение t-критерия – 2,306. Если бы мы использовали стандартное нормальное распределение, то критической точкой было бы значение 1,96, а тут она больше, т.к. t-распределение на небольших выборках имеет более приплюснутый вид.

Сравниваем фактическое (1,8) и табличное значение (2.306). Расчетный критерий оказался меньше табличного. Следовательно, имеющиеся данные не противоречат гипотезе H0 о том, что генеральная средняя равна 50 кг (но и не доказывают ее). Это все, что мы можем узнать, используя таблицы. Можно, конечно, еще p-value попробовать найти, но он будет приближенным. А, как правило, именно p-value используется для проверки гипотез. Поэтому далее переходим в Excel.

Готовой функции для расчета t-критерия в Excel нет. Но это и не страшно, ведь формула t-критерия Стьюдента довольно проста и ее можно легко соорудить прямо в ячейке Excel.

Получили те же 1,8. Найдем вначале критическое значение. Альфа берем 0,05, критерий двухсторонний. Нужна функция обратного значения t-распределения для двухсторонней гипотезы СТЬЮДЕНТ.ОБР.2Х.

Полученное значение отсекает критическую область. Наблюдаемый t-критерий в нее не попадает, поэтому гипотеза не отклоняется.

Однако это тот же способ проверки гипотезы с помощью табличного значения. Более информативно будет рассчитать p-value, т.е. вероятность получить наблюдаемое или еще большее отклонение от средней 50кг, если эта гипотеза верна. Потребуется функция распределения Стьюдента для двухсторонней гипотезы СТЬЮДЕНТ.РАСП.2Х.

P-value равен 0,1096, что больше допустимого уровня значимости 0,05 – гипотезу не отклоняем. Но теперь можно судить о степени доказательства. P-value оказался довольно близок к тому уровню, когда гипотеза отклоняется, а это наводит на разные мысли. Например, что выборка оказалась слишком мала для обнаружения значимого отклонения.

Пусть через некоторое время отдел контроля снова решил проверить, как выдерживается стандарт заполняемости мешков. На этот раз для большей надежности было отобрано не 9, а 25 мешков. Интуитивно понятно, что разброс средней уменьшится, а, значит, и шансов найти сбой в системе становится больше.

Допустим, были получены те же значения средней и стандартного отклонения по выборке, что и в первый раз (50,3 и 0,5 соответственно). Рассчитаем t-критерий.


Критическое значение для 24-х степеней свободы и α = 0,05 составляет 2,064. На картинке ниже видно, что t-критерий попадает в область отклонения гипотезы.

Можно сделать вывод о том, что с доверительной вероятностью более 95% генеральная средняя отличается от 50кг. Для большей убедительности посмотрим на p-value (последняя строка в таблице). Вероятность получить среднюю с таким или еще большим отклонением от 50, если гипотеза верна, составляет 0,0062, или 0,62%, что при однократном измерении практически невозможно. В общем, гипотезу отклоняем, как маловероятную.

Расчет доверительного интервала с помощью t-распределения Стьюдента

С проверкой гипотез тесно связан еще один статистический метод – расчет доверительных интервалов. Если в полученный интервал попадает значение, соответствующее нулевой гипотезе, то это равносильно тому, что нулевая гипотеза не отклоняется. В противном случае, гипотеза отклоняется с соответствующей доверительной вероятностью. В некоторых случаях аналитики вообще не проверяют гипотез в классическом виде, а рассчитывают только доверительные интервалы. Такой подход позволяет извлечь еще больше полезной информации.

Рассчитаем доверительные интервалы для средней при 9 и 25 наблюдениях. Для этого воспользуемся функцией Excel ДОВЕРИТ.СТЬЮДЕНТ. Здесь, как ни странно, все довольно просто. В аргументах функции нужно указать только уровень значимости α, стандартное отклонение по выборке и размер выборки. На выходе получим полуширину доверительного интервала, то есть значение которое нужно отложить по обе стороны от средней. Проведя расчеты и нарисовав наглядную диаграмму, получим следующее.

Как видно, при выборке в 9 наблюдений значение 50 попадает в доверительный интервал (гипотеза не отклоняется), а при 25-ти наблюдениях не попадает (гипотеза отклоняется). При этом в эксперименте с 25-ю мешками можно утверждать, что с вероятностью 97,5% генеральная средняя превышает 50,1 кг (нижняя граница доверительного интервала равна 50,094кг). А это довольно ценная информация.

Таким образом, мы решили одну и ту же задачу тремя способами:

1. Древним подходом, сравнивая расчетное и табличное значение t-критерия
2. Более современным, рассчитав p-value, добавив степень уверенности при отклонении гипотезы.
3. Еще более информативным, рассчитав доверительный интервал и получив минимальное значение генеральной средней.

Важно помнить, что t-критерий относится к параметрическим методам, т.к. основан на нормальном распределении (у него два параметра: среднее и дисперсия). Поэтому для его успешного применения важна хотя бы приблизительная нормальность исходных данных и отсутствие выбросов.

Напоследок предлагаю посмотреть видеоролик о том, как проводить расчеты, связанные с t-критерием Стьюдента в Excel.

Иногда просят объяснить, как делаются такие наглядные диаграммы с распределением. Ниже можно скачать файл, где проводились расчеты для этой статьи.

Скачать файл с примером.

Всего доброго, будьте здоровы.

Поделиться в социальных сетях:

statanaliz.info

Таблица критических значений t-критерия Стьюдента

В таблице критических значений t-критерия Стьюдента находятся теоретические значения критерия.

dfp=0,05p=0,01p=0,001
112,70 63,65 636,61
24,303 9,925 31,602
33,182 5,841 12,923
42,776 4,604 8,610
52,571 4,032 6,869
62,447 3,707 5,959
72,365 3,499 5,408
82,306 3,355 5,041
92,262 3,250 4,781
102,228 3,169 4,587
112,201 3,106 4,437
122,179 3,055 4,318
132,160 3,012 4,221
142,145 2,977 4,140
152,131 2,947 4,073
162,120 2,921 4,015
172,110 2,898 3,965
182,101 2,878 3,922
192,093 2,861 3,883
202,086 2,845 3,850
212,080 2,831 3,819
222,074 2,819 3,792
232,069 2,807 3,768
242,064 2,797 3,745
252,060 2,787 3,725
262,056 2,779 3,707
272,052 2,771 3,690
282,049 2,763 3,674
292,045 2,756 3,659
302,042 2,750 3,646
312,040 2,744 3,633
322,037 2,738 3,622
332,035 2,733 3,611
342,032 2,728 3,601
352,030 2,724 3,591
362,028 2,719 3,582
372,026 2,715 3,574
382,024 2,712 3,566
392,023 2,708 3,558
402,021 2,704 3,551
412,020 2,701 3,544
422,018 2,698 3,538
432,017 2,695 3,532
442,015 2,692 3,526
452,014 2,690 3,520
462,013 2,687 3,515
472,012 2,685 3,510
482,011 2,682 3,505
492,010 2,680 3,500
502,009 2,678 3,496
512,008 2,676 3,492
522,007 2,674 3,488
532,006 2,672 3,484
542,005 2,670 3,480
552,004 2,688 3,476
562,003 2,667 3,473
572,002 2,665 3,470
582,002 2,663 3,466
592,001 2,662 3,463
602,000 2,660 3,460
612,000 2,659 3,457
621,999 2,657 3,454
631,998 2,656 3,452
641,998 2,655 3,449
651,997 2,654 3,447
661,997 2,652 3,444
671,996 2,651 3,442
681,995 2,650 3,439
691,995 2,649 3,437
701,994 2,648 3,435
711,994 2,647 3,433
721,993 2,646 3,431
731,993 2,645 3,429
741,993 2,644 3,427
751,992 2,643 3,425
761,992 2,642 3,423
771,991 2,641 3,422
781,991 2,640 3,420
791,990 2,639 3,418
801,990 2,639 3,416
901,987 2,632 3,402
1001,984 2,626 3,390
1101,982 2,621 3,381
1201,980 2,617 3,373
1301,978 2,614 3,367
1401,977 2,611 3,361
1501,976 2,609 3,357
2001,972 2,601 3,340
2501,969 2,596 3,330
3001,968 2,592 3,323
3501,967 2,590 3,319

Вы просмотрели статью критерий стьюдента таблица.

 

statpsy.ru

t-критерий Стьюдента — это… Что такое t-критерий Стьюдента?

t-критерий Стьюдента — общее название для класса методов статистической проверки гипотез (статистических критериев), основанных на распределении Стьюдента. Наиболее частые случаи применения t-критерия связаны с проверкой равенства средних значений в двух выборках.

t-статистика строится обычно по следующему общему принципу: в числителе случайная величина с нулевым математическим ожиданием (при выполнении нулевой гипотезы), а в знаменателе — выборочное стандартное отклонение этой случайной величины, получаемое как квадратный корень из несмещенной оценки дисперсии.

История

Данный критерий был разработан Уильямом Госсетом для оценки качества пива в компании Гиннесс. В связи с обязательствами перед компанией по неразглашению коммерческой тайны (руководство Гиннесса считало таковой использование статистического аппарата в своей работе), статья Госсета вышла в 1908 году в журнале «Биометрика» под псевдонимом «Student» (Студент).

Требования к данным

Для применения данного критерия необходимо, чтобы исходные данные имели нормальное распределение. В случае применения двухвыборочного критерия для независимых выборок также необходимо соблюдение условия равенства дисперсий. Существуют, однако, альтернативы критерию Стьюдента для ситуации с неравными дисперсиями.

Требование нормальности распределения данных является необходимым для точного -теста. Однако, даже при других распределениях данных возможно использование -статистики. Во многих случаях эта статистика асимптотически имеет стандартное нормальное распределение — , поэтому можно использовать квантили этого распределения. Однако, часто даже в этом случае используют квантили не стандартного нормального распределения, а соответствующего распределения Стьюдента, как в точном -тесте. Асимптотически они эквивалентны, однако на малых выборках доверительные интервалы распределения Стьюдента шире и надежнее.

Одновыборочный t-критерий

Применяется для проверки нулевой гипотезы о равенстве математического ожидания некоторому известному значению .

Очевидно, при выполнении нулевой гипотезы . С учётом предполагаемой независимости наблюдений . Используя несмещенную оценку дисперсии получаем следующую t-статистику:

При нулевой гипотезе распределение этой статистики . Следовательно, при превышении критического значения нулевая гипотеза отвергается.

Двухвыборочный t-критерий для независимых выборок

Пусть имеются две независимые выборки объемами нормально распределенных случайных величин . Необходимо проверить по выборочным данным нулевую гипотезу равенстве математических ожиданий этих случайных величин .

Рассмотрим разность выборочных средних . Очевидно, если нулевая гипотеза выполнена . Дисперсия этой разности равна исходя из независимости выборок: . Тогда используя несмещенную оценку дисперсии получаем несмещенную оценку дисперсии разности выборочных средних: . Следовательно, t-статистика для проверки нулевой гипотезы равна

Эта статистика при справедливости нулевой гипотезы имеет распределение , где

Случай одинаковой дисперсии

В случае, если дисперсии выборок предполагаются одинаковыми, то . Тогда t-статистика равна:

Эта статистика имеет распределение

Двухвыборочный t-критерий для зависимых выборок

Для вычисления эмпирического значения t-критерия в ситуации проверки гипотезы о различиях между двумя зависимыми выборками (например, двумя пробами одного и того же теста с временным интервалом) применяется следующая формула:

где  — средняя разность значений,  — стандартное отклонение разностей, а n — количество наблюдений

Эта статистика имеет распределение .

Проверка линейного ограничения на параметры линейной регрессии

С помощью t-теста можно также проверить произвольное (одно) линейное ограничение на параметры линейной регрессии, оцененной обычным методом наименьших квадратов. Пусть необходимо проверить гипотезу . Очевидно, при выполнении нулевой гипотезы . Здесь использовано свойство несмещенности МНК-оценок параметров модели . Кроме того, . Используя вместо неизвестной дисперсии ее несмещенную оценку получаем следующую t-статистику:

Эта статистика при выполнении нулевой гипотезы имеет распределение , поэтому если значение статистики выше критического, то нулевая гипотеза о линейном ограничении отклоняется.

Проверка гипотез о коэффициенте линейной регрессии

Частным случаем линейного ограничения является проверка гипотезы о равенстве коэффициента регрессии некоторому значению . В этом случае соответстующая t-статистика равна:

где  — стандартная ошибка оценки коэффициента — квадратный корень из соответствующего диагонального элемента ковариационной матрицы оценок коэффициентов.

При справедливости нулевой гипотезы распределение этой статистики — . Если значение статистики выше критического значения, то отличие коэффициента от является статистически значимым (неслучайным), в противном случае — незначимым (случайным, то есть истинный коэффициент вероятно равен или очень близок к предполагаемому значению )

Замечание

Одновыборочный тест для математических ожиданий можно свести к проверке линейного ограничения на параметры линейной регрессии. В одновыборочном тесте это «регрессия» на константу. Поэтому регрессии это и есть выборочная оценка дисперсии изучаемой случайной величины, матрица равна , а оценка «коэффициента» модели равна выборочному среднему. Отсюда и получаем выражение для t-статистики, приведенное выше для общего случая.

Аналогично можно показать, что двухвыборочный тест при равенстве дисперсий выборок также сводится к проверке линейных ограничений. В двухвыборочном тесте это «регрессия» на константу и фиктивную переменную, идентифицирующую подвыборку в зависимости от значения (0 или 1): . Гипотеза о равенстве математических ожиданий выборок может быть сформулирована как гипотеза о равенстве коэффициента b этой модели нулю. Можно показать, что соответствующая t-статистика для проверки этой гипотезы равна t-статистике, приведенной для двухвыборочного теста.

Также к проверке линейного ограничения можно свести и в случае разных дисперсий. В этом случае дисперсия ошибок модели принимает два значения. Исходя из этого можно также получить t-статистику, аналогичную приведенной для двухвыборочного теста.

Непараметрические аналоги

Аналогом двухвыборочного критерия для независимых выборок является U-критерий Манна–Уитни. Для ситуации с зависимыми выборками аналогами являются критерий знаков и T-критерий Вилкоксона

Литература

Student. The probable error of a mean. // Biometrika. 1908. № 6 (1). P. 1-25.

Столбчатая диаграмма · Совмещённая диаграмма · Диаграмма управления · Лесная диаграмма · Гистограмма · Q-Q диаграмма · Диаграмма выполнения · Диаграмма разброса · Стебель-листья · Ящик с усами

dic.academic.ru

Таблица распределения Стьюдента t — Калькулятор Он-лайн

Можете воспользоваться формой, чтобы определить более точно коэффициент Стьюдента

Или воспользоваться таблицей распределения Стьюдента:

Число степеней свободы
f = n — 1
nДоверительная вероятность
0.900.950.990.999
126.313751514812.706204736463.6567411629636.619249432
232.919985580364.302652729919.9248432009231.599054577
342.35336343483.182446305285.8409092997612.9239786366
452.131846781342.77644510524.604094871428.61030158138
562.015048372672.570581836614.032142983566.86882663987
671.943180280392.446911848793.707428021325.95881617993
781.894578605062.364624251013.499483297355.40788252098
891.859548037522.306004135033.355387331335.04130543339
9101.833112932652.262157162743.249835544024.78091258593
10111.812461122812.228138851963.169272667184.5868938587
11121.79588481872.200985160083.105806513224.43697933823
12131.782287555652.178812829663.054539588344.31779128361
13141.770933395992.160368656463.012275838214.22083172771
14151.761310135772.144786687922.976842734114.14045411274
15161.753050355692.131449545562.946712883344.0727651959
16171.745883676282.119905299222.920781622354.0149963326
17181.739606726082.109815577832.898230519633.96512626361
18191.734063606622.100922040242.878440472713.92164582001
19201.729132811522.093024054412.860934606453.88340584948
20211.724718242922.085963447272.845339709783.84951627298
21221.720742902812.079613844732.831359558023.81927716303
22231.717144374382.07387306792.81875606063.79213067089
23241.713871527752.068657610422.807335683773.76762680377
24251.710882079912.063898561632.796939504773.74539861893
25261.708140761252.059538552752.787435813683.72514394948
26271.705617919762.055529438642.778714533333.70661174331
27281.703288445722.051830516482.770682957123.68959171334
28291.701130934272.04840714182.763262455463.67390640062
29301.699127026532.045229642132.756385903673.6594050194
30311.697260894362.04227245632.749995653573.645958635
40411.683851011392.0210753832.704459267433.55096576086
60611.670648864652.000297821062.660283031153.4602004692
1201211.657650899351.979930405052.617421144773.37345376507
999999.01000000.01.644855150721.959966356822.575834220113.29053646126

www.kontrolnaya-rabota.ru

Таблица значений критерия Стьюдента (t-критерия)

источник http://chemstat.com.ru/node/17

Критические значения коэффициента Стьюдента (t-критерия) для различных
р — доверительной вероятности
и
f — числа степеней свободы

fp
0.800.900.950.980.990.9950.9980.999
13.07706.313012.706031.82063.656127.656318.306636.619
21.88502.92004.30206.9649.92414.08922.32731.599
31.63772.353403.1824.5405.8407.45810.21412.924
41.53322.131802.7763.7464.6045.5977.1738.610
51.47592.015002.5703.6494.03214.7735.8936.863
61.43901.9432.44603.14203.70704.3165.20705.958
71.41491.89462.36462.9983.49954.22934.7855.4079
81.39681.85962.30602.89653.35543.8324.50085.0413
91.38301.83312.26222.82143.24983.68974.29684.780
10

www.sites.google.com