Сумма геом прогрессия – Геометрическая прогрессия
Формула суммы членов конечной геометрической прогрессии
Тема: Геометрическая прогрессия
Урок: Формула суммы членов геометрической прогрессии
На уроке повторяется определение геометрической прогрессии, формула общего члена, выводится формула суммы членов конечной геометрической прогрессиии решаются типовые задачи.
Числовую последовательность, все члены которой отличны от нуля и каждый член которой, начиная со второго, получается из предыдущего члена умножением его на одно и то же число q, называют геометрической прогрессией. При этом число q называют знаменателем прогрессии.
Математическая запись.
геометрическая прогрессия, ее члены , при этом:
Иная запись:, т.е. . — формула n–го члена геометрической прогрессии, n=1,2,3,…
т.е. геометрическую прогрессию можно рассматривать как показательную функцию натурального аргумента.
Выведем далее формулу суммы конечного числа членов геометрической прогрессии.
Дано: геометрическая прогрессия.
Найти:
Решение:.
Умножим обе части этого равенства на q:
.
И вычтем из первого равенства второе:
,
,
.
В полученной формуле , рассмотрим частный случай
Геометрическая прогрессия имеет nравных членов, поэтому ее сумма
Итак, , при ; при .
Далее рассмотрим типовые задачи, для решения которых понадобится формула суммы членов геометрической прогрессии:
1. Дано:геометрическая прогрессия, . Найти: Решение: . Ответ:
2. Дано:геометрическая прогрессия, . Найти: . Решение: Ответ:
3. «Легенда об изобретателе шахмат». Дано:геометрическая прогрессия, . Найти: Решение: Ответ: А теперь легенда. Восточный правитель захотел наградить мудреца за то, что он научил правителя играть в шахматы. Мудрец попросил на первую клетку шахматной доски положить одно зернышко пшеницы, а на каждую следующую в 2 раза больше зерен, чем на предыдущую. Шахматная доска имеет 64 клетки, поэтому общее количество зерен на доске – это сумма 64 членов геометрической прогрессии, у которой . Мы только что нашли, что Оказалось, что это число настолько огромно, что у правителя не нашлось столько пшеницы. Возрастающая геометрическая прогрессия возрастает очень быстро и сумма даже не очень большого числа членов – огромное число.
1. Дано:геометрическая прогрессия, . Найти: Решение: Ответ:
2. Найдите сумму Решение:Данная сумма является суммой геометрической прогрессии, действительно, ,отношение не зависит от n, т.е. это геометрическая прогрессия. В этой прогрессии , тогда . Ответ:.
3. Докажите тождество Доказательство: Притождество справедливо. При имеем геометрическую прогрессию (). В предыдущей задаче мы вычислили , тогда Тождество доказано.
Список рекомендованной литературы
1. Мордкович А.Г. и др. Алгебра 9 кл.: Учеб. Для общеобразоват. Учреждений.- 4-е изд. – М.: Мнемозина, 2002.-192 с.: ил.
2. Мордкович А.Г. и др. Алгебра 9 кл.: Задачник для учащихся общеобразовательных учреждений / А. Г. Мордкович, Т. Н. Мишустина и др. — 4-е изд. — М.: Мнемозина, 2002.-143 с.: ил.
3. Макарычев Ю. Н. Алгебра. 9 класс : учеб. для учащихся общеобразоват. учреждений / Ю. Н. Макарычев, Н. Г. Миндюк, К. И. Нешков, И. Е. Феоктистов. — 7-е изд., испр. и доп. — М.: Мнемозина, 2008.
4. Алимов Ш.А., Колягин Ю.М., Сидоров Ю.В. Алгебра. 9 класс. 16-е изд. — М., 2011. — 287 с.
5. Мордкович А. Г. Алгебра. 9 класс. В 2 ч. Ч. 1. Учебник для учащихся общеобразовательных учреждений / А. Г. Мордкович, П. В. Семенов. — 12-е изд., стер. — М.: 2010. — 224 с.: ил.
6. Алгебра. 9 класс. В 2 ч. Ч. 2. Задачник для учащихся общеобразовательных учреждений / А. Г. Мордкович, Л. А. Александрова, Т. Н. Мишустина и др.; Под ред. А. Г. Мордковича. — 12-е изд., испр. — М.: 2010.-223 с.: ил.
Рекомендованные ссылки на ресурсы интернет
1. РЕШУ ЕГЭ (Источник).
Рекомендованное домашнее задание
Мордкович А.Г. и др. Алгебра 9 кл.: Задачник для учащихся общеобразовательных учреждений / А. Г. Мордкович, Т. Н. Мишустина и др. — 4-е изд. — М. : Мнемозина, 2002.-143 с.: ил.
№№ 502 — 505.
interneturok.ru
Геометрическая прогрессия | Онлайн калькулятор
Геометрическая прогрессия
В зависимости от знаменателя прогрессии, выписанные члены геометрической прогрессии могут давать различный вид ряда. Если знаменатель является числом положительным, больше 1 (k > 1), тогда он будет увеличивать значение каждого следующего числа. Такая прогрессия
Если для все возрастающей последовательности, можно только найти сумму первых членов геометрической прогрессии, то сумма членов бесконечно убывающей прогрессии будет равна вполне конкретному числовому значению, которое может рассчитать калькулятор. Третий случай представлен отрицательным знаменателем (k , тогда прогрессия становится знакочередующейся, то есть первые члены геометрической прогрессии
Существует всего несколько формул геометрической прогрессии, из которых можно вывести все необходимые для решения конкретных задач:
• Формула первого члена геометрической прогрессии;
• Формула n члена геометрической прогрессии;
• Формула суммы первых членов геометрической прогрессии;
• Формула суммы бесконечно убывающей геометрической прогрессии;
• Формула знаменателя геометрической прогрессии.
Таким образом, если условиями задана геометрическая прогрессия с хотя бы двумя параметрами из всех выше представленных, для нее можно будет найти любую из всех прочих переменных.
allcalc.ru
Сумма геометрической прогрессии | Онлайн калькулятор
Сумма геометрической прогрессии имеет несколько различных представлений, которые зависят от знаменателя прогрессии. Для возрастающей положительной, отрицательной или знакочередующейся прогрессии имеет место исключительно сумма нескольких первых членов геометрической прогрессии, количество которых должно быть ограничено, так как сама последовательность будет бесконечной.
Для прогрессии, знаменатель которой заключен между нулем и единицей, то есть является правильной дробью (0, сумма всей последовательности будет вполне однозначным конкретным числом, так как весь числовой ряд будет убывающим. Сумма бесконечно убывающей геометрической прогрессии имеет свою отдельную формулу, которую можно найти в соответствующем разделе, вместе с калькулятором.
Чтобы найти сумму первых членов геометрической прогрессии, необходимо знать первый член и знаменатель прогрессии. Если по условиям задачи дан какой-либо другой член прогрессии, кроме первого, тогда нужно будет сначала воспользоваться формулой первого члена геометрической прогрессии
Формула суммы первых трех, четырех или n членов геометрической прогрессии выводится с использованием среднего геометрического, как основного свойства данной прогрессии. Любое из чисел, стоящих в ряду, будет равно среднему геометрическому его соседей:
Если объединить это свойство с отношением двух последовательных членов прогрессии, которые неизменно равно одному и тому же числу — знаменателю, то путем нехитрых сокращений, сумма первых нескольких членов геометрической прогрессии приводится к такому виду:
В некоторых источниках встречается похожий вариант, но с другими знаками в скобках — по сути окончательного значения это не меняет, и для ручного расчета, когда
allcalc.ru