Системы и источники теплоснабжения: Характеристика систем и источников теплоснабжения
Характеристика систем и источников теплоснабжения
Характеристика систем и источников теплоснабжения
Вид системы теплоснабжения определяется видом теплоносителя. Системы тепловодоснабжения подразделяют на две группы: закрытые и открытые. В закрытых системах горячая вода, циркулирующая в тепловой сети, используется только в качестве греющей среды, в открытых — ее частично или полностью разбирают потребители. Подача горячей воды к потребителю может осуществляться по одному, двум или трем трубопроводам. Однотрубную подачу применяют при полном использовании горячей воды потребителем. Самой распространенной является двухтрубная подача, состоящая из трубопровода, по которому вода подается потребителю, и обратного трубопровода, по которому неиспользованная вода возвращается обратно. Трехтрубные, а иногда четырехтрубные системы применяют там, где рациональнее разделить подачу горячей воды на отопление, водоснабжение, технологические нужды и т. д. В таких системах обратная труба является общей.
Системы пароснабжения могут быть с возвратом конденсата и без него.
Потребители тепловой энергии могут подключаться непосредственно к тепловым сетям или через источники теплоснабжения, или через тепловые пункты. Основным назначением теплового пункта является прием и подготовка теплоносителя, подача его потребителю, а также возврат использованного теплоносителя в тепловую сеть. Преимуществом схемы подключения к тепловому пункту является возможность получать тепловую энергию сразу нескольким потребителям.
Если тепловой пункт предназначен для одного предприятия, он называется местным тепловым пунктом (МТП), а если для нескольких предприятий или группы зданий, — центральным тепловым пунктом (ДТП). Небольшие промышленные предприятия имеют, как правило, один ДТП, на крупных предприятиях их несколько. Схемы ДТП промышленных предприятий различны в зависимости от вида теплоносителя, режимов регулирования, способа нагрева воды и пр.
Если на промышленном предприятии кроме ДТП имеются и МТП, то МТП оборудуют по тем же схемам, что и центральные, но оборудование отличается меньшей производительностью.
При использовании для технологических нужд горячей воды на ДТП применяют различные схемы теплоснабжения (в зависимости от требуемой температуры). Горячая вода может передаваться потребителям по общим отопительным трубопроводам, объединенным с бытовым горячим водоснабжением, или по самостоятельному трубопроводу. Технологической горячей водой может служить конденсат.
На рис. 18 представлена схема ДТП промышленного предприятия с закрытой системой тепловодоснабжения.
На ДТП установлены подмешивающие насосы для поддержания требуемого теплового режима. Подогреватели работают по двухступенчатой схеме. На линии подачи холодной воды имеется водомер, на линии подачи горячей воды — грязевик. Теплосети оборудованы термометрами и манометрами, коллекторами подаваемой 7 и возвращаемой 8 воды.
При снабжении промышленного предприятия паром на ЦТП предусматривается устройство коллекторов, от которых по отдельным паропроводам пар подается в цехи и установки. На паропроводах и коллекторах необходимо устанавливать запорную арматуру, дренажные устройства с конденсатоотводчиками и предохранительные устройства.
В большинстве случаев промышленные предприятия устраивают на ЦТП место сбора конденсата, откуда он после очистки поступает к источнику теплоснабжения.
В зависимости от характера тепловых нагрузок источники теплоснабжения подразделяют на источники, обеспечивающие теплотой отдельное промышленное предприятие; источники, снабжающие теплотой промышленные предприятия, общественные и жилые здания; источники, вырабатывающие как тепловую, так и электрическую энергию для энергоснабжения поселка, города и т.д.
Централизованное теплоснабжение осуществляется на базе теплоэлектроцентрали (ТЭЦ) с крупными котельными установками производительностью 58 тыс. кВт и выше и индивидуальными с теплопроизводительностью до 58 тыс. кВт.
Централизация теплоснабжения приводит к улучшению большинства показателей систем теплоснабжения, экономии топлива, позволяет использовать недефицитные энергоресурсы, включая вторичные, сокращает число обслуживающего персонала, повышает долю квалифицированного труда и уменьшает загрязнение окружающей среды.
В настоящее время основными источниками получения тепловой энергии являются ТЭЦ и котельные, работающие на органическом топливе: газе, мазуте, угле. Предпочтение отдается использованию газового топлива. Его доля в производстве энергии по прогнозам составит в 2050 г. 30%. Использование газового топлива обусловлено успехами в создании высокоэкономичных парогазовых установок с использованием паровых и газовых турбин, имеющих КПД свыше 60 %. Корпорации Siemens, Westingause и другие разработали энергоустановки единичной мощностью до 480 МВт. На следующие 15 — 20 лет в России планируется ввод парогазовых блоков общей мощностью 80 млн кВт.
Запасы газа в России составляют 35 % разведанных мировых запасов и по расчетам специалистов их хватит на 70 — 80 лет для внутреннего потребления и на экспорт. Кроме того, обнаружены большие запасы метан-гидратов под дном океана и если удастся их освоить, то газовая энергетика будет обеспечена сырьем не только в XXI, но и в XXII в.
Доля нефтепродуктов в энергетике составляет более 30 %, и такая тенденция, очевидно, сохранится до 2050 г. Запасов нефти в мире хватит на 100—150 лет.
Использование угля в производстве энергии создает опасные выбросы в атмосферу оксидов серы и азота, образует золоотвалы. Поэтому разрабатываются современные технологии для снижения негативных последствий сжигания угля: утилизация оксидов серы и азота, переработка дымовых газов в кислоты для производства минеральных удобрений, термическая очистка угля и т.д. Разведанных запасов угля хватит на 150 — 200 лет.
Производство энергии на атомных электростанциях мира сокращается, что связано с опасностью атомных реакторов, сложной переработкой ядерного топлива, проблемой радиоактивных отходов, необходимостью защиты биосферы от радионуклидов и т. д.
Смотрите также
Вопрос35 Источники теплоснабжения. Тепловые сети. Способы прокладки
теплопроводов
Потребители теплоты по характеру их загрузки во времени могут быть разделены на сезонные и круглогодичные. К сезонным потребителям относятся системы отопления, вентиляции и кондиционирования воздуха, а к круглогодичным — системы горячего водоснабжения и технологические аппараты. Тепловые нагрузки потребителей не остаются постоянными.
Нагрузка горячего водоснабжения зависит от степени благоустройства жилых и общественных зданий, режима работы бань, прачечных и т.д. Технологическое потребление теплоты зависит в основном от характера производства, типа оборудования, вида выпускаемой продукции.
Горячее водоснабжение
и технологическая нагрузка имеют
переменный суточный график, а их годовые
графики в определённой мере зависят от
времени года. Летние нагрузки, как
правило, ниже зимних вследствие более
высокой температуры водопроводной воды
и перерабатываемого сырья, а также
благодаря меньшим тепловым потерям
теплопроводов и технологических
трубопроводов.
Классификация систем теплоснабжения
Назначение любой системы теплоснабжения заключается в обеспечении потребителей теплоты необходимым количеством тепловой энергии требуемых параметров.
Существующие системы теплоснабжения в зависимости от взаимного расположения источника и потребителей теплоты можно разделить на централизованные и децентрализованные системы. В централизованных системах теплоснабжения один источник теплоты обслуживает теплоиспользующие устройства ряда потребителей, расположенных раздельно, поэтому передача теплоты от источника до потребителей осуществляется по специальным теплопроводам — тепловым сетям.
Централизованное теплоснабжение состоит из трёх взаимосвязанных и последовательно протекающих стадий: подготовки, транспортировки и использования теплоносителя. В соответствии с этими стадиями каждая система централизованного теплоснабжения (рис. 9.1) состоит из трех основных звеньев:
В децентрализованных системах теплоснабжения каждый потребитель имеет собственный источник теплоты.
Основными видами теплоносителей для целей теплоснабжения являются вода и водяной пар. Причём вода используется преимущественно для удовлетворения нагрузок отопления, вентиляции, кондиционирования воздуха и горячего водоснабжения, а пар, кроме того,— для удовлетворения технологической нагрузки.
Общие сведения о котельных
Котельной установкой называется комплекс устройств, предназначенных для выработки тепловой энергии в виде горячей воды или пара. Главной частью этого комплекса является котёл.
В зависимости от
того, для какой цели используется
тепловая энергия, котельные подразделяются
на энергетические, отопительно-производственные и отопительные.
Энергетические котельные снабжают паром паросиловые установки, вырабатывающие электроэнергию, и обычно входят в комплекс электрической станции. Отопительно-производственные котельные сооружаются на промышленных предприятиях и обеспечивают тепловой энергией системы отопления, вентиляции, горячего водоснабжения зданий и технологические процессы производства. Отопительные котельные предназначаются для тех же целей, но обслуживают жилые и общественные здания.
По размещению на генеральном плане котельные подразделяются на отдельно стоящие, пристроенные и встроенные в здания другого назначения. Устройство котельных, пристроенных к жилым зданиям, к зданиям детских яслей-садов, школ, больниц и поликлиник, санаториев, учреждений отдыха, пионерских лагерей, а также котельных, встроенных в здания указанного назначения, не допускается.
Котельные малой мощности (индивидуальные и небольшие групповые) обычно состоят из котлов, циркуляционных и подпиточных насосов и тягодутьевых устройств. При установке паровых котлов дополнительно устанавливают конденсатные баки, насосы для перекачки конденсата и теплообменники.
Котельные средней и большой мощности отличаются сложностью оборудования и составом служебно-бытовых помещений. Кроме котлов, насосов и тягодутьевых устройств они имеют дополнительные поверхности нагрева (экономайзер и воздухоподогреватель), оборудование для водоподготовки, топливоподающие и шлакоудаляющие устройства, теплообменники, устройства автоматики и др. Объёмно-планировочные решения этих котельных должны удовлетворять требованиям Санитарных норм проектирования промышленных предприятий (СН 245-71), СНиП 2.09.02—85 и СНиП II-35-76.
Тепловые сети. Способы прокладки теплопроводов
Тепловая энергия
в виде горячей воды или пара транспортируется
от источника теплоты (ТЭЦ или крупной
котельной) к тепловым потребителям по
специальным трубопроводам, называемым тепловыми
сетями.
Тепловая сеть — один из наиболее дорогостоящих и трудоемких элементов систем централизованного теплоснабжения. Она представляет собой теплопроводы — сложные сооружения, состоящие из соединённых между собой сваркой стальных труб, тепловой изоляции, компенсаторов тепловых удлинений, запорной и регулирующей арматуры, строительных конструкций, подвижных и неподвижных опор, камер, дренажных и воздухоспускных устройств. Проектирование тепловых сетей производят с учётом положений и требований СНиП 2.04.07—86 «Тепловые сети».
По количеству параллельно проложенных теплопроводов тепловые сети могут быть однотрубными, двухтрубными и многотрубными. Однотрубные сети наиболее экономичны и просты. В них сетевая вода после систем отопления и вентиляции должна полностью использоваться для горячего водоснабжения. Однотрубные тепловые сети являются прогрессивными, с точки зрения значительного ускорения темпов строительства тепловых сетей. В трехтрубных сетях две трубы используют в качестве подающих для подачи теплоносителя с разными тепловыми потенциалами, а третью трубу в качестве общей обратной. В четырехтрубных сетях одна пара теплопроводов обслуживает системы отопления и вентиляции, а другая — систему горячего водоснабжения и технологические нужды.
В настоящее время наибольшее распространение получили двухтрубные тепловые сети, состоящие из подающего и обратного теплопроводов для водяных сетей и паропровода с конденсатопроводом для паровых сетей. Благодаря высокой аккумулирующей способности воды, позволяющей осуществлять дальнее теплоснабжение, а также большей экономичности и возможности центрального регулирования отпуска теплоты потребителям, водяные сети имеют более широкое применение, чем паровые.
Водяные тепловые
сети по способу приготовления воды для
горячего водоснабжения разделяются на
закрытые и открытые. В закрытых сетях
для горячего водоснабжения используется
водопроводная вода, нагреваемая сетевой
водой в водоподогревателях. При этом
сетевая вода возвращается на ТЭЦ или в
котельную. В открытых сетях вода для
горячего водоснабжения разбирается
потребителями непосредственно из
тепловой сети и после использования её
в сеть уже не возвращается. Качество
воды в открытой тепловой сети должно
отвечать требованиям ГОСТ 2874—82*.
Тепловые сети разделяют на магистральные, прокладываемые на главных направлениях населенных пунктов, распределительные — внутри квартала, микрорайона и ответвления к отдельным зданиям
Системы теплоснабжения
Теплоснабжение представляет собой совокупность трех взаимосвязанных процессов: подготовки теплоносителей, транспортировки теплоносителей и использования потенциала теплоносителя. В соответствии с этим, системы теплоснабжения состоят из источника тепла, трубопроводов и системы теплопотребления с нагревательными приборами.
Системы теплоснабжения классифицируют по радиусу действия на местные, центральные и централизованные; по виду теплоносителя на водяное, паровое, воздушное, панельно-лучистое, электрическое и печное.
Местная система отопления это система, расположенная непосредственно в здании печи и газовые системыотопления, при этом печи в каждом помещении.
Центральной системой отопления называют систему снабжения любого здания, при котором отопление всего здания осуществляется от одного источника, например, от котла, установленного в здании. Централизованная система теплоснабжения система, в которой от одного источника (ТЭЦ или районные котельные) тепло подается на многие здания.
Теплофикацией называется централизованное теплоснабжение на базе комбинированной выработки тепла и электрической энергии (ТЭЦ). Вода от ТЭЦ поступает непосредственно к потребителю с возвратом остывшей воды на ТЭЦ или на промежуточные перегреватели, где горячей водой от ТЭЦ нагревается вода, образующая внутренний контур движения воды в здании.
Водяная система отопления
В этом случае тепло передается в помещения горячей водой, содержащейся в приборах отопления. Наиболее привычный способ — водяное отопление с естественной циркуляцией воды. Принцип прост: вода перемещается из-за разницы температур и плотности. Более легкая горячая вода поднимается от отопительного котла вверх. Постепенно остывая в трубопроводе и отопительных приборах, тяжелеет и стремится вниз, обратно к котлу. Основное преимущество такой системы – независимость от электроснабжения и достаточно простой монтаж.
Многие российские умельцы справляются с ее установкой самостоятельно. Кроме того, небольшое циркуляционное давление делает ее безопасной. Но для работы системы требуются трубы увеличенного диаметра. При этом, пониженная теплоотдача, ограниченный радиус действия и большое количество времени, требуемое на запуск, делает ее несовершенной и подходящей только для небольших домов.
Водяная система отопления с принудительной циркуляцией
Более современны и надежны схемы отопления с принудительной циркуляцией. Здесь вода приводится в движение за счет работы циркуляционного насоса. Он устанавливается на трубопроводе, подводящим воду к теплогенератору, и задает скорость потоку.
Быстрый запуск системы и, как следствие, быстрый прогрев помещений — достоинство насосной системы. К недостаткам относится то, что при отключении электропитания она не работает, а это может привести к замораживанию и разгерметизации системы. Сердце системы водяного отопления — источник теплоснабжения — теплогенератор. Именно он создает энергию, обеспечивающую тепло.
Электрические котлы выгодно отличаются отсутствием открытого пламени и продуктов горения. Твердотопливные котлы неудобны в эксплуатации из-за необходимости частой топки. Для этого надо иметь десятки кубометров топлива и площади для его хранения.
Газовая система отопления
Следующий вид отопления — газовый. Приспособленные для сжигания газа отопительные приборы в этом случае устанавливаются непосредственно в обогреваемых помещениях.
Газовые печи экономичны и имеют высокие теплотехнические показатели. Отличительная особенность таких печей — равномерность нагрева внешней поверхности. Как дополнительные источники тепла используют газовые камины, которые также придают особый комфорт интерьеру. В качестве теплогенератора наиболее популярны газовые котлы. Другой вариант — котел на дизельном топливе.
Достоинство газового отопления заключается, прежде всего, в относительно низкой стоимости природного газа. Его использование позволяет автоматизировать процесс горения топлива, значительно повышает эффективность отопительного оборудования, снижает затраты на эксплуатацию. Однако имеется и минус – они взрывоопасны и недопустимы для самостоятельного изготовления и монтажа.
Воздушная система отопления
Системы воздушного отопления различают в зависимости от способа создания циркуляции воздуха: гравитационные и вентиляторные. Гравитационная воздушная система отопления основана на разности плотности воздуха при различных температурах. В процессе прогрева возникает естественная циркуляция воздуха в системе. В вентиляторной системе используется электрический вентилятор, который повышает давление воздуха и распределяет его по воздуховодам и помещениям.
Воздух нагревается в калориферах, подогревающихся изнутри водой, паром, электричеством или горячими газами. Калорифер размещается либо в отдельной вентиляторной камере (центральная система отопления), либо непосредственно в помещении, которое отапливается (местная система).
Отсутствие замерзающего теплоносителя делает удачным этот вид отопления для домов с непостоянным использованием. Воздушное отопление быстро прогреет дом, а автоматические регуляторы будут поддерживать заданную вами температуру. К недостаткам такого отопления можно отнести разве что опасность распространения движущимся воздухом вредных веществ.
Электрическая система отопления
Системы прямого стационарного электроотопления весьма надежны, экологически чисты и безопасны. Оборудование для электроотопления можно разделить на 4 группы: настенные электроконвекторы, потолочные обогреватели, кабельные и пленочные системы для подогрева пола и потолка, регулирующие термостаты и программируемые устройства.
Благодаря такому разнообразию легко выбрать подходящий вариант для каждого конкретного помещения. Затраты на оборудование и эксплуатацию электросистем очень низкие. Системы могут автоматически включаться и выключаться для поддержания температуры на заданном уровне.
Энергетика. ТЭС и АЭС | Всё о тепловой и атомной энергетике
Энергетика США
Сейчас все более популярные стают солнечные батареи отзывы о которых довольно хорошие и позитивные.
Мало кто задумывается, что в современном обществе огромное значение имеет такой женский аксессуар, как
Энергетика США
Компаний, которые выступают в роли посредника, и открывают своим клиентам доступ к торговле на
Новости ТЭС
Как выбрать входную металлическую дверь? Советы профессионала Начинать ремонт в квартире, купленной на вторичном
Новости ТЭС
Почему не рекомендуется снимать жилье в Екатеренбурге https://etagiekb.ru/realty_rent/ в новостройках. Новостройки— это свежий ремонт,
Галогенные лампы — универсальный источник света с большой яркостью и качественной цветопередачей. Сферы применения
Зарубежные ТЭС
Многие предприятия продолжают усердно работать над усовершенствованием разработки осовремененных приборов для диагностики. Так, например,
Новости
Сегодня интернет открывает невероятно огромные возможности своим пользователям в плане заработка. К примеру, совершать
Как выбрать лучший онлайн-курс английского Решили начать изучать английский онлайн? Хотите, чтобы все ваши
Трансформаторы – это устройства, которые преобразуют электрическую энергию и обычно устанавливаются в общественных зданиях,
ООО “Сервомеханизмы” предлагает технику линейного перемещения, а кроме того все сопутствующие товары – двигатели
Что нужно знать о ленточной библиотеке Объемы информационных данных возрастают в геометрической прогрессии ежеминутно.
Уже давно человечество ведёт поиск альтернативных источников энергии. Одно из самых эффективных изобретений в
Большинство преимуществ Onecoin на фоне остальных криптовалют основаны на том, что их разработчики постарались
В последние годы наша страна активно развивается. Вместе с ней развиваются компании с мировым
Уже многие десятилетия электродуговая сварка остаётся оптимальным способом создания неразборных стальных конструкций. При этом
HangzhouHideaPowerMachineryCo., Ltd или сокращенно Hidea (Хайди) – это один из наибольших создателей моторов для
В сфере энергетики изменения не наступают мгновенно, однако замещение ископаемого топлива уже началось. В
Вроде на дворе уже давно как двадцать первый век, цивилизации развиваются, прогресс мчится паровозом
Благодаря появлению в жизни современного человека мобильного телефона теперь мы всегда можем оставаться на
Что такое бонг и для чего создан этот занимательнейший агрегат, объяснять, вероятно, необходимости
Исследования и опыты электроустановок напряжением до 1000 Вольт В современном мире преимущественное количество техники
Общеизвестным является факт высокой значимости бухгалтерии для успешной работы любой из коммерческих структур в
Свои первые кроссовки компания Найк создала в 1964 году. Но стоит помнить, что задолго
Трубы из керамики представляются под видом глиняного изделия, которое обожжено как снаружи, так и
Что же такое психология? Срочная публикация (журнал ИТпортал) Психология призвана изучать и исследовать определенные
Строительство дома связано сегодня с необходимостью планирования экономичного метода его отопления, все чаще инвесторы
Для того, чтобы начать рисовать нужно купить синтетические кисти. Масляные краски состоят из олифы, которая
Электричество дает большую пользу и удобства в жизни и деятельности человека. Свет – это
Статьи
Много лет назад ученые много думали над тем, каким способом добыть недорогую электроэнергию. И
Источники тепла — Теплоснабжение поселений
Источники тепла
Тепловая энергия требуется для работы промышленных пред! приятии, отопления, вентиляции, кондиционирования и централизованного горячего водоснабжения зданий. Жилищно-коммунальное хозяйство использует около 25% всей тепловой энергии, потребляемой городом.
Теплоснабжение поселений может осуществляться двумя способами. Централизованное теплоснабжение — получение тепловой энергии от теплоэлектроцентрали (ТЭЦ), местных котельных. Децентрализованное теплоснабжение — получение энергии от местных источников тепла (котельной установки, газоводогрейного агрегата или печи).
Централизованное теплоснабжение представляет собой систему, состоящую из источника теплоты, трубопроводов и потребителей теплоты. Тепловой источник снабжает теплом группу домов, квартал или район города, а также промышленные предприятия. Он может находиться на значительном отдалении от потребителей. В соответствии со СНиП 2.07.01-89* теплоснабжения городов и жилых районов с застройкой зданиями высотой болей двух этажей должно быть централизованным.
Теплоносителем может служить вода с температурой 95 °С и выше пар (низкого и высокого давления) и воздух. Водяные системы используют в жилых домах, паровые системы — на промышленный предприятиях, воздушные — в общественных зданиях.
По характеру тепловых нагрузок различают сезонных (система отопления, вентиляции, кондиционирования) и постоянных (промышленные производства, системы горячего водоснабжения жилых и общественных зданий) потребителей. Сезонные потребители изменяют нагрузку по времени года и сохраняют ее в течение суток. Постоянные потребители изменяют интенсивность потребления в течение суток.
Мощность источника тепла выбирают по укрупненным показателям — по количеству жителей или зданий. Расход тепла для производств определяют по нормам расхода тепла на единицу продукции.
Источником тепла может служить ТЭЦ, где вырабатывается и тепловая и электрическая энергия. Это наиболее совершенная форма теплового источника. Распространенным тепловым источником служат котельные установки, которые в зависимости от назначения подразделяют на производственные и отопительные. Отопительные котельные дают тепло на нужды отопления, вентиляции и горячего водоснабжения жилых и общественных зданий. Они в зависимости от производственной мощности бывают индивидуальные и групповые. Последние условно подразделяют в зависимости от размера обслуживаемой территории на квартальные и районные.
Читать далее:
Горячее водоснабжение
Виды топлива
Тепловые сети
Системы теплоснабжения. Теплоснабжение – снабжение теплом
Данный тип систем предназначен для обеспечения потребителей горячей водой, которая идет на нужды систем отопления, горячего водоснабжения, вентиляции и технологических нужд. Основная задача тепловых сетей заключается в транспортировке тепла от источника к потребителю. Правильно функционирующая система отопления здания — это залог комфортного пребывания людей и рациональное использование тепловой энергии.
В зависимости от размещения источника теплоты по отношению к потребителям системы теплоснабжения разделяются на два вида — централизованные и децентрализованные. Монтаж систем теплоснабжения и отопления технологически сложный процесс, который начинается от заказа материала и земляних работ к укладке труб, их засыпки, промывки и сдачи в эксплуатацию.
Система централизованного отопления включает источник тепла, тепловую сеть и теплопотребляющие установки, присоединяемые к сети через тепловые пункты. Источниками тепла при централизованном отоплении могут быть теплоэлектроцентрали (ТЭЦ), осуществляющие комбинированную выработку электрической и тепловой энергии, котельные установки большой мощности, вырабатывающие только тепловую энергию, устройства для утилизации тепловых отходов промышленности, установки для использования тепла геотермальных источников. В системах местного теплоснабжения источниками тепла служат печи, водогрейные котлы, водонагреватели и т. д.
В децентрализованных системах теплоснабжения источник теплоты и теплоприемники потребителей совмещены в одном агрегате или размещены столь близко, что передача теплоты от источника до теплоприемников может производиться без промежуточного звена – тепловой сети.
Системы децентрализованного теплоснабжения разделяются на индивидуальные и местные. В индивидуальных системах теплоснабжение каждого помещения — цеха, комната, квартира, обеспечивается от отдельного источника. К таким системам относятся печное и поквартирное отопление. В местных системах теплоснабжение каждого здания обеспечивается от отдельного источника теплоты, обычно от местной котельной.
В целом, монтаж тепловых сетей довольно сложное дело. Даже простой монтаж котельной требует привлечения большого количества ресурсов, не говоря о более сложных проектах. Наша компания Агростройподряд может выполнить монтаж и запуск теплоснабжения любой сложности.
Источники и системы теплоснабжения — Энциклопедия по машиностроению XXL
ГЛАВА X. ИСТОЧНИКИ И СИСТЕМЫ ТЕПЛОСНАБЖЕНИЯ [c.168]Источники и системы теплоснабжения пром-предприятий 761 ТЭ-10.07 [c.4]
Котельные по надежности отпуска теплоты потребителям разделяются на две категории. К котельным первой категории относятся котельные, являющиеся единственным источником теплоты системы теплоснабжения и обеспечивающие потребителей первой категории, не имеющих индивидуальных источников теплоты. Ко второй категории относятся все остальные котельные. [c.159]
Котельные установки (промышленные и отопительные) в зависимости от надежности отпуска тепла потребителям разделяются на две категории. К первой категории относят котельные, являющиеся единственным источником тепла системы теплоснабжения и обеспечивающие потребителей первой категории, не имеющих индивидуальных резервных источников тепла. Ко второй категории относятся все остальные котельные. К потребителям тепла первой категории относят потребителей, нарушение теплоснабжения которых связано с опасностью для жизни людей или со значительным ущербом народному хозяйству (повреждение технологического оборудования, массовый брак продукции).

Система теплоснабжения — совокупность устройств, являющихся источниками теплоты, тепловых сетей, систем распределения и использования (абонентских вводов и потребителей теплоты). [c.380]
Источниками теплоты для приготовления горячей воды в централизованных системах горячего водоснабжения являются водяные системы теплоснабжения от ТЭЦ и водогрейных котельных. [c.143]
В открытых системах теплоснабжения широко используют баки-аккумуляторы емкостью от 200 до 20 ООО м . Их устанавливают рядом с источником теплоты или транзитно на тепловых сетях для выравнивания расхода подпиточной воды в вечерние и утренние часы. Они подвержены внутренней коррозии и нуждаются в защите от нее. Руководящие указания [12] устанавливают требования по защите от коррозии металлических баков-аккумуляторов большой емкости (2—20 тыс. м ). [c.162]
Эти станции также будут иметь большое значение в социальном и экологическом отношении благодаря вытеснению ими в наиболее распространенных системах теплоснабжения локальных источников [c.48]
Рассмотрение принципов выбора систем теплоснабжения выходит за рамки книги, поэтому в дальнейшем будут описаны лишь схемы присоединения систем горячего водоснабжения к тепловым сетям — сначала к сетям с закрытой системой теплоснабжения, затем — с открытой. Выбор системы теплоснабжения производится при проектировании источника тепла и тепловой сети, и поэтому при проектировании присоединения потребителей система теплоснабжения является заданной. [c.74]
Первая структура наиболее простой системы базируется на источнике теплоты мощностью до 800 МДж/с. В такой системе теплота, выработанная в водогрейной или паровой котельной, транспортируется по тепловым сетям непосредственно к тепловым пунктам потребителей (ТП), которые принято называть индивидуальными. Структура характеризуется незначительной протяженностью тепловых сетей и гидравлической устойчивостью. Технологические управление режимами теплоснабжения сосредоточено в котельной. Функции управления системой состоят в стабилизации расхода и давления и изменении температуры на выходе источника теплоты по прогнозу метеоусловий. Такое регулирование называют регулированием по возмущению или центральным качественным регулированием без обратной связи. Рассматриваемая структура системы теплоснабжения соответствует одно- или двухступенчатой иерархии. Вторая ступень имеет место при внедрении локальной автоматики на ТП. Эта структура системы характерна для предприятий теплоснабжения в коммунальном хозяйстве, фактически использующем более половины общего расхода топлива на нужды отопления и горячего водоснабжения.
[c.13]
Традиционно эта задача решается так же, как и для чисто отопительной системы теплоснабжения, когда рассматривают потребителя со смешанной или последовательной схемой присоединения и преобладающей структурой нагрузки [185]. Такой подход приводит к перегреву отопительных систем и перерасходу топлива. Для обеспечения нормальной работы СЦТ в условиях автоматизации тепловых пунктов необходимо комплексное рассмотрение режимов работы тепловых пунктов, тепловых сетей, насосных станций и источников теплоты. [c.70]
Итак, непременным условием для осуществления однотрубной системы теплоснабжения городов является наличие пиковых источников тепла, расположенных в большей или меньшей близости от самих потребителей тепла. В зависимости от этого экономия от однотрубного транспорта тепла распространяется на большую или меньшую часть тепловых сетей города. Этой экономии противостоят дополнительные затраты, связанные с разукрупнением пиковых источников, и увеличенные расходы по их эксплуатации. Однако при всех рассмотренных вариантах остается экономия на магистралях, связывающих ТЭЦ с пиковыми источниками тепла. [c.93]
Для нормального функционирования человека как во время его трудовой деятельности, так и в домашних условиях должны обеспечиваться условия комфорта, которые регламентируются санитарно-гигиеническими нормами. К числу этих условий относятся отопление и вентиляция помещений и горячее водоснабжение, которые требуют подачи теплоты. Система подачи теплоты для указанных бытовых нужд называется системой теплоснабжения, которая включает источник теплоты, передающие теплоноситель трубопроводы и нагревательные приборы. Находят применение как централизованные, так и индивидуальные системы теплоснабжения.
[c.101]
В зависимости от размещения источника теплоты по отношению к потребителям системы теплоснабжения разделяются на де-централизованные и централизованные. [c.215]
В открытых системах теплоснабжения, где нагрузка горячего водоснабжения потребителей удовлетворяется непосредственной подачей воды из тепловой сети, в летний период вода подается, как правило, по одной трубе, работающей аналогично холодному водопроводу. Для возможности производства ремонта как подающего, так и обратного трубопроводов сети подача воды на горячее водоснабжение в летний период производится поочередно по одному из этих трубопроводов. Поэтому в открытых сетях необходима подача воды для подпитки как в обратный, так и в подающий трубопроводы каждой отходящей от источника тепла магистрали. [c.311]
Тепловая сеть является связывающим звеном между источником тепла — электростанцией и системами теплопотребления. Все вместе эти три звена составляют единую систему теплоснабжения, связанную общим тепловым и гидравлическим режимом. Естественно, что управление эксплуатацией тепловых сетей и режимами всей системы теплоснабжения возложено на диспетчерскую службу Теплосети, куда стекается вся информация о фактическом состоянии оборудования сети и систем теплопотребления и о текущей потребности в тепловой энергии. Диспетчер сети, сообразуясь с текущими метеорологическими условиями и графиком отпуска тепла, разрабатывает и задает электростанции необходимые на ближайший отрезок времени тепловой и гидравлический режимы. При этом он должен исходить из фактической технической возможности наличного теплофикационного оборудования теплоснабжающих электростанций, а также из условия наиболее эффективного использования этого оборудования, обеспечения максимальной экономичности работы системы теплоснабжения в целом. Поэтому все теплофикационное оборудование электростанции передано в оперативное ведение диспетчера Теплосети.
[c.340]
Статическое давление в системах теплоснабжения при использовании в качестве теплоносителя воды не должно превышать допускаемого давления для оборудования источника тепла, водяных тепловых сетей и систем теплопотребления, непосредственно приг соединенных к тепловым сетям, и должно обеспечивать заполнение систем теплоснабжения водой. [c.345]
Системы теплоснабжения классифицируют по мощности, источникам тепла, виду потребителей, виду теплоносителя, способу подачи тепла ыа горячее водоснабжение и количеству трубопроводов. [c.22]
По источникам тепла системы централизованного теплоснабжения подразделяют на теплофикацию, когда источником тепла служит ТЭЦ, и теплоснабжение от котельных. Далее изложение сделано в предположении подачи тепла только от котельных. [c.22]
Основное оборудование энергетических источников в системах теплоснабжения предорн-ятнй н жилых районов. При покрытии отопительной нагрузки и работе котельной на газе предпочтительны водогрейные котлы типа КВ-ГМ, характеристики которых приведены в табл. 6.18. [c.430]
Выбор теплоносителя и системы теплоснабжения производится путем технико-экономических обоснований — сравиением приведенных затрат по источнику тепла, тепловой сети и местным установкам ( 1-2). Наиболее экономичные решения дает применение единого теплоиосителя. Единым теплоносителем в коммунальных системах теплоснабжения принимается вода. В промышленных системах при небольшой сезонной нагрузке отопления и вентиляции единым теплоносителем может служить пар. [c.22]
Наибольший диапазон изменения значений относится к водопроводным трубам. Это объясняется тем, что качество воды весьма влияет на состояние поверхности стенок. С течением времени вследствие коррозии стенок их шероховатость возрастает. К воде, предназначаемой для водоснабжения, предъявляются специальные требования. Технологический процесс очистки воды обычно связан с ее хлорированием и введением ряда химических реагентов, которые увеличивают агрессивность воды и ее коррозирующее действие. Опыт эксплуатации больших водопроводов показывает, что шероховатость труб за 10—15 лет возрастает в 2—3 и брдее раз. Если водозабор осуществляется из подземного источника, прибавляется еще фактор отложения солей, увеличивающий шероховатость стенок. В системах теплоснабжения, где вода специально обрабатывается с целью ее умягчения, коррозионные процессы и отложения солей происходят не так интенсивно и шероховатость труб с течением времени изменяется мало. В газопроводах газ
[c.175]
В системах теплоснабжения используются следующие источники теплоты ТЭЦ, КЭС, районные котельные (централизованные системы) групповые (для группы предприятий, жилых кварталов) и индивидуальные котельные АЭС, АТЭЦ, СЭУ, а также геотермальные источники пара и воды вторичные [c.380]
Анализ особенностей геплопотребле-ния различными предприятиями является необходимым условием правильного выбора и расчета источника теплоты, а также определения режима работы системы теплоснабжения. [c.385]
Наряду с созданием таких атомных источников теплоснабжения необходима разработка новых типов энергоисточников и систем теплоснабжения, основанных, в частности, на хемотермических системах дальней передачи теплоты. Энергоисточником для такой системы служит высокотемпературный ядерный реактор, тепловая энергия которого используется для осуществления каталитической паровой конверсии метана в конвертере. Полученный конвертированный газ, состоящий из водорода и оксида углерода, транспортируется по [c.404]
Системы теплоснабжения на базе АТЭЦ промышленно-отопитель-ного типа. Такие системы позволяют обеспечивать тепловой энергией как коммунально-бытовых, так и промышленных потребителей. При использовании АТЭЦ для покрытия тепловых нагрузок промышленных потребителей возникает ряд сложных задач, связанных с транспортом теплоты и выбором вида и параметров сетевого теплоносителя. Расчет показывает, что транспорт пара на большие расстояния малоэкономичен и практически ограничен 15—20 км. Для систем теплоснабжения с источниками теплоты на органическом топливе это обстоятельство не играло существенной роли, так как ТЭЦ, обеспечивающие промышленных потребителей технологическим паром, располагались, как правило, в непосредственной близости от них.
[c.120]
В настоящее время система теплоснабжения городов данной агломерации, показанная на рис. 6.11, состоит из локальных районных систем, включающих ТЭС и котельную, потребляющих каменный уголь. Анализ существующих энергоисточников (с учетом их реконструкции, вывода из эксплуатации отработавшего свой срок службы оборудования и др.) и роста тепловых нагрузок Остравско-Карвинского района показал, что начиная с 1995 г. будет наблюдаться ощутимый дефицит тепловых мощностей. Все это и ряд других факторов создают предпосылки для строительства в этом районе нового крупного источника теплоты — ТЭЦ, АТЭЦ или A T. Слоншые условия [c.127]
Разрабатывается проект атомной станции промышленного теплоснабжения (АСПТ). Область наиболее вероятного применения атомных станций теплоснабжения и атомных ТЭЦ — это крупные города, группы населенных пунктов с уже сложившимися локальными системами теплоснабжения, с тепловой нагрузкой 4200—6300 ГДж/ч. Атомные ТЭЦ являются экономичными источниками теплоэлектроснабжения и наряду со снижением себестоимости отпущенной тепловой энергии обеспечивают наибольшее вытеснение органического топлива (2,5 млн. т условного топлива в год на каждый 1 млн. кВт установленной мощности). [c.75]
Система комплексной автоматизации теплоснабжения Новосибирска предусматривает две ступени АСУ ТП теплоснабжение и теплопотребление с безусловным вьшерживанием температуры сетевой воды на источнике и ограничение в необходимых случаях расходов воды у потребителей при категорировании последних.
[c.178]
Осноь-яые факторы экономической эффективности повышение наде кности, качества и бесперебойности теплоснабжения экономш топлива на теплоисточниках в результате определения рационал1.ного температурного режима работы систем теплофикации и, экономия электроэнергии на перекачку сетевой воды на теплоисточниках и насосных перекачивающих станциях в результате расчета и ведения оптимального гидравлического режима работы замкнутой системы (источник — сети — потребитель) ди гностика состояния оборудования и сетей возможность [c.204]
При наличии у турбин ТУЭС теплофикационных отборов сокращается как потребление электроэнергии из ОЭС, так и рас.код топлива у источников пара и горячей воды системы теплоснабжения завода. Удельную экономию топлива, получаемую в этом случае, можно подсчитать следующим образом [c.182]
Система теплоснабжения, приведенная на рис. 25,а, состоит из трех контуров — солнечного, отопительного и горячего водоснабжения, объединенных баком-теплообменником, Резервным источником теплоты являются электроводонагреватели мош,ностью по 10 кВт для отопительного контура и контура горячего водоснабжения. Солнечный контур включает солнечные коллекторы общей плогцадью 57,6 м , трубчатый теплообменник плош адью 25 м , расположенный в баке-теплообменнике, и насос, с помопдью которого осуществляется циркуляция теплоносителя (антифриза) в контуре. [c.106]
В индивидуальных системах теплоснабжение каждого помещения (участок цеха, комната, квартира) обеспечивается от отдельного источника. К таким системам, в частности, относятся печное и поквартирное отопление. В местных системах теплоснабжение каждого здания обеспечивается от отдельного источника тегиоты, обычно от местной котельной. К этой системе, в частности, относится так называемое центральное отопление зданий. В зависимости от степени централизации системы централизованного теплоснабжения можно разделить на следующие четыре группы групповое — теплоснабжение группы зданий районное — теплоснабжение нескольких групп зданий (района) горойслое— теплоснабжение нескольких районов межгородское — теплоснабжение нескольких городов.
[c.216]
Закрытая теплосеть обеспечивает подогрев водопроводной воды сетевой водой в водоводяных подогревателях, размещенных в жилых домах или отдельных зданиях. Водопроводная вода после подогрева поступает на водо-разбор. Сетевая вода, используемая как теплоноситель, не поступает к потребителю. В открытых же системах теплоснабжения циркулирующая в сети вода разбирается абонентами — потребителями горячей воды. Эта вода деаэрируется и во многих случаях частично умягчается на ТЭЦ или районных и квартальных котельных. Как правило, она неопасна в коррозионном отношении, так как при деаэрации из воды удаляются агрессивные газы. Поэтому задача по противокоррозионной защите оборудования открытых теплосетей упрощается. Закрытая же система горячего водоснабжения таких преимуществ не имеет. Ввиду этого возникает потребность в специальной организации противокоррозионной защиты металла оборудования теплосети по трассе горячей воды от источника тепла до потребителя. [c.176]
Важными предпосылками надежной работы системы теплоснабжения являются мииимальные потери тепла и теплоносителя из сети. В самом деле, большая утечка теплоносителя приводит к снижению давления в отдельных точках сети, недостаточному напору на вводе потребителя, попаданию воздуха в системы теплопотребления и нарушению циркуляции в них, а большие тепловые потерн — к значительному охлаждению теплоносителя на пути от источника к потребителю и недогреву системы последнего. Кроме того, потери теплоносителя и тепла ухудшают технико-экономические показатели работы системы теплоснабжения, повышают себестоимость отпущенного тепла и в значительной мере являются причиной дальнейшего ухудшения состояния тепловых сетей и перерасхода топлива. Например, если водоподготовительная установка влектростанции не имеет резервов мощности, то при значительном [c.318]
В табл. 4 и 5 приведены данные то водопроводной воде различных городов СССР с закрытыми системами теплоснабжения (в основном от ТЭЦ). В табл. 4 перечислены города, источники водоснабжения которых имеют малые суммарные концентрации хлоридов и сульфатов (до 50 лгг/л), а в табл. 5 — города, системы водоснабжения которых работают на воде с высокой концентрацией хлоридов и сульфатов суммарная концентрация хлоридов и сульфатов колеблется от 80 мг л (г. Рига) до 307,5 мг л (г. Кировоград). Водопроводные воды (60—70 °С) этих городов относятся к сильио-агрессивиым и агрессивным водам.
[c.19]
Гелиотопливная система теплоснабжения включает в себя следующее основное оборудование коллектор солнечной энергии, аккумулятор теплоты, теплообменники, насосы или вентиляторы, дополнительный (резервный) источник теплоты (топливный или электрический) и устройства для управления работой системы. [c.142]
Системы распределения тепла | Министерство энергетики
Паровое отопление — одна из старейших технологий отопления, но процесс кипячения и конденсации воды по своей сути менее эффективен, чем в более современных системах, к тому же он обычно страдает значительным запаздыванием между включением котла и поступлением тепла в радиаторы. В результате паровые системы затрудняют реализацию стратегий управления, таких как система понижения температуры в ночное время.
В первых системах центрального отопления для зданий использовалось распределение пара, потому что пар перемещается по трубопроводу без использования насосов.Неизолированные паровые трубы часто отводят нежелательное тепло в незавершенные участки, что делает изоляцию труб из стекловолокна, которая может выдерживать высокие температуры, очень рентабельной.
Регулярное техническое обслуживание паровых радиаторов зависит от того, является ли радиатор однотрубной системой (труба, по которой подается пар, также возвращает конденсат) или двухтрубной системой (отдельная труба возвращает конденсат). В однотрубных системах на каждом радиаторе используются автоматические вентиляционные отверстия, которые стравливают воздух, когда пар заполняет систему, а затем автоматически закрываются, когда пар достигает вентиляционного отверстия. Забитый воздухозаборник не даст паровому радиатору нагреться. Открытое вентиляционное отверстие позволяет пару постоянно выходить в жилое пространство, повышая относительную влажность и расходуя топливо. Вентиляционные отверстия иногда можно очистить, прокипятив их в растворе воды и уксуса, но обычно их необходимо заменить.
Паровые радиаторы также могут деформировать пол, на котором они сидят, а их тепловое расширение и сжатие со временем может оставлять в полу колеи. Оба эти эффекта могут вызвать наклон радиатора, что препятствует правильному сливу воды из радиатора, когда он остывает.Это вызовет стук при нагревании радиатора. Под радиаторами следует вставлять прокладки так, чтобы они слегка наклонялись к трубе в однотрубной системе или к конденсатоотводчику в двухтрубной системе.
В двухтрубных системах старые конденсатоотводчики часто застревают в открытом или закрытом положении, нарушая баланс в системе. Если у вас возникли проблемы с некоторыми радиаторами, которые вырабатывают слишком много тепла, а другие — слишком мало, это может быть причиной. Лучше всего просто заменить все конденсатоотводчики в системе.
Паровые радиаторы, расположенные на наружных стенах, могут вызывать потерю тепла, излучая тепло через стену наружу. Чтобы предотвратить такие потери тепла, вы можете установить за радиаторами теплоотражатели. Вы можете сделать свой собственный отражатель из покрытого фольгой картона, доступного во многих строительных магазинах, или установив фольгу на пенопласт или другую аналогичную изолирующую поверхность. Фольга должна быть обращена в сторону от стены, а отражатель должен быть такого же размера или немного больше, чем радиатор.Периодически очищайте отражатели, чтобы обеспечить максимальное отражение тепла.
Системы домашнего отопления | Министерство энергетики
Отопление вашего дома потребляет больше энергии и стоит больше денег, чем любая другая система в вашем доме, обычно составляя около 42% ваших счетов за коммунальные услуги.
Независимо от того, какая у вас система отопления в вашем доме, вы можете сэкономить деньги и повысить свой комфорт, правильно обслуживая и модернизируя свое оборудование.Но помните, что сама по себе энергоэффективная печь не окажет такого большого влияния на ваши счета за электроэнергию, как использование всего дома. Сочетая надлежащее обслуживание и модернизацию оборудования с рекомендуемыми настройками изоляции, воздушного уплотнения и термостата, вы можете сэкономить около 30% на счетах за электроэнергию при одновременном снижении выбросов в окружающую среду.
Наконечники для обогрева
- Установите программируемый термостат на настолько низкое значение, которое комфортно зимой, и понизьте уставку, когда вы спите или вдали от дома.
- Очищайте или заменяйте фильтры на печах один раз в месяц или в соответствии с рекомендациями.
- Очистите регистры теплого воздуха, обогреватели плинтуса и радиаторы по мере необходимости; убедитесь, что они не заблокированы мебелью, ковровым покрытием или шторами.
- Удаляйте воздух из радиаторов горячей воды один или два раза за сезон; если не знаете, как выполнить эту задачу, обратитесь к профессионалу.
- Поместите термостойкие отражатели радиатора между наружными стенами и радиаторами.
- Выключите кухню, ванну и другие вытяжные вентиляторы в течение 20 минут после того, как вы закончите готовить или принимать ванну; при замене вытяжных вентиляторов подумайте об установке высокоэффективных малошумных моделей.
- Зимой держите шторы и шторы на окнах, выходящих на юг, открытыми в течение дня, чтобы солнечный свет проникал в ваш дом, и закрывайте их на ночь, чтобы уменьшить холод, который вы можете почувствовать из холодных окон.
Выбирайте энергоэффективные товары при покупке нового отопительного оборудования. Ваш подрядчик должен иметь возможность предоставить вам информационные бюллетени по энергопотреблению для различных типов, моделей и конструкций, чтобы помочь вам сравнить потребление энергии. См. Стандарты эффективности для получения информации о минимальных номинальных значениях и ищите ENERGY STAR при покупке новых продуктов.
типов систем отопления | Умный дом
Центральное отопление
Печи
Большинство домохозяйств в Северной Америке используют центральную печь для обеспечения тепла. Печь работает, продувая нагретый воздух через каналы, которые доставляют теплый воздух в комнаты по всему дому через воздушные регистры или решетки. Такой тип системы отопления называется канальной или принудительной системой распределения теплого воздуха. Он может работать на электричестве, природном газе или мазуте.
Внутри печи, работающей на газе или мазуте, топливо смешивается с воздухом и сжигается. Пламя нагревает металлический теплообменник, в котором тепло передается воздуху. Воздух проталкивается через теплообменник печным вентилятором «обработчика воздуха», а затем проходит через воздуховоды после теплообменника. В топке продукты сгорания выводятся из здания через дымоход. Старые «атмосферные» печи выпускали воздух прямо в атмосферу и тратили около 30% энергии топлива только на то, чтобы выхлоп оставался достаточно горячим, чтобы безопасно подниматься по дымоходу.Современные печи с минимальной эффективностью значительно сокращают эти отходы за счет использования «нагнетательного» вентилятора, который втягивает отработанные газы через теплообменник и создает тягу в дымоходе. «Конденсационные» печи предназначены для утилизации большей части этого уходящего тепла путем охлаждения выхлопных газов до температуры ниже 140 ° F, где водяной пар в выхлопных газах конденсируется в воду. Это основная особенность высокоэффективной печи (или котла). Обычно они вентилируются через боковую стенку с пластиковой трубкой.
Новые стандарты печей в настоящее время разрабатываются U.S. Министерство энергетики и должны быть завершены весной 2016 года. Действующие стандарты для печей не обновлялись с 1987 года.
Органы управления системой отопления регулируют включение и выключение различных компонентов системы отопления. Самым важным элементом управления с вашей точки зрения является термостат, который включает и выключает систему или, по крайней мере, систему распределения, чтобы вам было комфортно. Типичная система с принудительной подачей воздуха будет иметь единственный термостат. Но в системе отопления есть и другие внутренние средства контроля, такие как выключатели «верхнего предела», которые являются частью невидимого, но важного набора средств контроля безопасности.
Лучшие газовые печи и котлы на сегодняшний день имеют КПД более 90%
КПД печи или котла, работающего на ископаемом топливе, является мерой количества полезного тепла, производимого на единицу потребляемой энергии (топлива). Эффективность сгорания — простейшая мера; это просто эффективность системы во время ее работы. Эффективность сгорания сравнима с количеством миль на галлон, который ваша машина проезжает со скоростью 55 миль в час по шоссе.
В США эффективность печи регулируется минимальной годовой эффективностью использования топлива (AFUE).AFUE оценивает сезонную эффективность, усредняя пиковые и частичные нагрузки. AFUE учитывает потери при запуске, охлаждении и другие эксплуатационные потери, которые происходят в реальных условиях эксплуатации, и включает оценку электроэнергии, используемой устройством обработки воздуха, нагнетательным вентилятором и элементами управления. AFUE — это как пробег вашего автомобиля между заправками, включая как движение по шоссе, так и движение с остановками. Чем выше AFUE, тем эффективнее топка или котел.
Котлы
Котлы водонагреватели специального назначения.В то время как печи переносят тепло в теплом воздухе, системы котлов распределяют тепло в горячей воде, которая отдает тепло, проходя через радиаторы или другие устройства в комнатах по всему дому. Затем более холодная вода возвращается в бойлер для повторного нагрева. Системы горячего водоснабжения часто называют гидравлическими системами. В бытовых котлах в качестве топлива обычно используется природный газ или мазут.
В паровых котлах, которые сегодня гораздо реже встречаются в домах, вода кипятится, и пар переносит тепло по дому, конденсируясь в воду в радиаторах при охлаждении.Обычно используются нефть и природный газ.
Вместо системы вентиляции и воздуховодов в котле используется насос для циркуляции горячей воды по трубам к радиаторам. В некоторых системах горячего водоснабжения вода циркулирует по пластиковым трубам в полу. Эта система называется лучистым напольным отоплением (см. «Современное отопление»). Важные элементы управления котлом включают термостаты, аквастаты и клапаны, регулирующие циркуляцию и температуру воды. Хотя стоимость не является тривиальной, обычно гораздо проще установить «зонные» термостаты и регуляторы для отдельных комнат с гидравлической системой, чем с принудительной подачей воздуха.Некоторые элементы управления являются стандартными функциями в новых котлах, в то время как другие могут быть добавлены для экономии энергии (см. Раздел «Модификации, выполненные специалистами по отопительным системам» на странице технического обслуживания отопления).
Как и печи, конденсационные газовые котлы относительно распространены и значительно более эффективны, чем неконденсирующие котлы (если не используются очень сложные системы управления). Конденсационные котлы, работающие на жидком топливе, не распространены в США по нескольким причинам, связанным с более низким потенциалом скрытой теплоты и возможностью большего загрязнения обычным мазутом.
Тепловые насосы
Тепловые насосы — это просто кондиционеры двустороннего действия (подробное описание см. В разделе «Системы охлаждения»). Летом кондиционер работает, перемещая тепло из относительно прохладного помещения в относительно теплое снаружи. Зимой тепловой насос меняет этот трюк, собирая тепло от холода снаружи с помощью электрической системы и отводя это тепло внутри дома. Почти все тепловые насосы используют системы принудительной подачи теплого воздуха для перемещения нагретого воздуха по дому.
Земной тепловой насос нагревает и охлаждает в любом климате, обмениваясь теплом с землей, которая имеет более постоянную температуру.
Есть два относительно распространенных типа тепловых насосов. Тепловые насосы с воздушным источником тепла используют наружный воздух в качестве источника тепла зимой и радиатора летом. Наземные тепловые насосы (также называемые геотермальными, GeoExchange или GX) получают тепло из-под земли, где температура более постоянна круглый год. Воздушные тепловые насосы гораздо более распространены, чем наземные тепловые насосы, потому что они дешевле и проще в установке.Однако наземные тепловые насосы намного более эффективны, и их часто выбирают потребители, которые планируют оставаться в одном доме в течение длительного времени или имеют сильное желание жить более устойчиво. Как определить, подходит ли тепловой насос в вашем климате, обсуждается далее в разделе «Варианты топлива».
В то время как тепловой насос с воздушным источником воздуха устанавливается во многом как центральный кондиционер, для тепловых насосов с грунтовым источником требуется, чтобы «петля» была закопана в землю, обычно в длинных неглубоких (3–6 футов) траншеях или в одной или более вертикальных скважин.Конкретный используемый метод будет зависеть от опыта установщика, размера вашего участка, грунта и ландшафта. В качестве альтернативы некоторые системы забирают грунтовые воды и пропускают их через теплообменник вместо использования хладагента. Затем грунтовые воды возвращаются в водоносный горизонт.
Поскольку электричество в тепловом насосе используется для перемещения тепла, а не для его генерации, тепловой насос может выдавать больше энергии, чем потребляет. Отношение поставленной тепловой энергии к потребляемой энергии называется коэффициентом полезного действия, или COP, с типичными значениями в диапазоне от 1. От 5 до 3,5. Это «установившаяся» мера, и ее нельзя напрямую сравнивать с коэффициентом полезного действия в отопительный сезон (HSPF), сезонной мерой, обязательной для оценки эффективности нагрева тепловых насосов с воздушным источником тепла. Преобразование между измерениями непросто, но наземные агрегаты обычно более эффективны, чем воздушные тепловые насосы.
Прямой нагрев
Газовые обогреватели
В некоторых регионах популярно газовое отопительное оборудование прямого нагрева. Сюда входят настенные, напольные и напольные печи, для которых характерно отсутствие воздуховодов и относительно небольшая тепловая мощность.Поскольку в них отсутствуют воздуховоды, они наиболее полезны для обогрева отдельной комнаты. Если требуется обогрев нескольких комнат, либо двери между комнатами должны быть открыты, либо необходим другой метод обогрева. В лучших моделях используются системы «герметичного воздуха для горения» с трубами, проложенными через стену для подачи воздуха для горения и отвода продуктов горения. Эти агрегаты могут обеспечить приемлемую производительность, особенно для кают и других зданий, где допустима большая разница температур между спальнями и основными комнатами.Модели могут работать на природном газе или пропане, а некоторые сжигают керосин.
Газовые обогреватели без вентиляции: плохая идея
Газовые или керосиновые обогреватели, у которых нет вытяжной вентиляции, продаются десятилетиями, но мы настоятельно не рекомендуем их использовать из соображений здоровья и безопасности. Известные производителями как газовые отопительные приборы без вентиляции, они включают в себя настенные и отдельно стоящие обогреватели, а также газовые камины открытого пламени с керамическими поленьями, которые фактически не соединены с дымоходом.Производители заявляют, что, поскольку полнота сгорания этих продуктов очень высока, они безопасны для жителей здания. Однако это утверждение справедливо только в том случае, если вы держите близлежащее окно открытым для достаточного количества свежего воздуха, что лишает вас возможности дополнительного тепла. Опасности включают воздействие побочных продуктов сгорания, как описано в разделе «Вентиляция», и недостаток кислорода (эти обогреватели должны быть оборудованы датчиками истощения кислорода). Из-за этих опасностей по крайней мере пять штатов (Калифорния, Миннесота, Массачусетс, Монтана и Аляска) запрещают их использование в домашних условиях, и многие города США и Канады также запретили их использование.
Электрические обогреватели
Переносные (съемные) электронагреватели недорого купить, но дорого использовать. Эти резистивные нагреватели включают «маслонаполненные» и «кварцево-инфракрасные» нагреватели. Они преобразуют электрический ток из розетки прямо в тепло, как тостер или утюг. Как объясняется далее в разделе «Выбор новой системы», требуется много электроэнергии, чтобы доставить такое же количество полезного тепла, которое природный газ или нефть могут обеспечить на месте. Вставной нагреватель мощностью 1500 Вт будет использовать почти всю мощность 15-амперной ответвленной цепи; таким образом, добавление дополнительной нагрузки приведет к срабатыванию автоматического выключателя или срабатыванию предохранителя.Стоимость эксплуатации блока мощностью 1500 ватт в час легко подсчитать: это в 1,5 раза больше ваших затрат на электроэнергию в центах за киловатт-час. При средних тарифах по стране — 12 центов за электроэнергию — этот обогреватель будет стоить 18 центов в час, и быстро будет стоить дороже, чем его закупочная цена. С другой стороны, для периодического использования это «наименее плохое» решение, когда альтернативы потребуют значительных инвестиций, например, для улучшения воздуховодов для конкретной области. Просто помните, что тепло с помощью электрического сопротивления обычно является самым дорогим видом тепла, и поэтому его редко рекомендуют.
«Электрический обогрев плинтуса» — это еще один вид резистивного обогрева, похожий на подключаемый обогреватель помещения, за исключением того, что он является проводным. У него есть два основных достоинства: низкая стоимость установки и простота установки индивидуальных комнатных термостатов, позволяющих уменьшить нагрев в неиспользуемых помещениях. Эксплуатационные расходы, как и для всех резистивных систем, обычно очень высоки, если только дом не является «сверхизолированным».
Дровяные печи и пеллетные печи
Дровяное отопление может иметь большой смысл в сельской местности, если вам нравится складывать дрова и топить печь или топку.Цены на древесину обычно ниже, чем на газ, нефть или электричество. Если вы пилите древесину самостоятельно, вы можете значительно сэкономить. Загрязняющие вещества от сжигания древесины были проблемой в некоторых частях страны, что вынудило Агентство по охране окружающей среды США (EPA) ввести правила, регулирующие выбросы загрязняющих веществ от дровяных печей. В результате новые модели вполне горят. Пеллетные печи имеют ряд преимуществ перед дровяными печами. Они меньше загрязняют окружающую среду, чем дровяные печи, и предлагают пользователям большее удобство, контроль температуры и качество воздуха в помещении.
Камины
Газовые (и большинство дровяных) камины в основном являются частью декора комнаты, обеспечивая теплое свечение (и способ избавиться от секретных документов), но обычно не являются эффективным источником тепла. При обычных установках, в которых воздух, поступающий из комнаты в камин для сгорания и разбавления, обычно теряет больше тепла, чем обеспечивает, потому что через устройство проходит очень много теплого воздуха, и его необходимо заменять холодным наружным воздухом. С другой стороны, если камин снабжен плотно закрывающейся стеклянной дверцей, источником наружного воздуха и хорошей заслонкой дымохода, он может обеспечить полезное тепло.
Современное отопление
Лучистое отопление для пола обычно относится к системам, в которых теплая вода циркулирует по трубам под полом. Это согревает пол, который, в свою очередь, согревает людей, использующих комнату. Он хорошо управляем, его сторонники считают его эффективным, и его установка требует больших затрат. Это также требует очень опытного проектировщика и установщика системы и ограничивает выбор ковров и других видов отделки пола: вы не хотите «закрывать» источник тепла.
Свяжитесь с ассоциацией Radiant Panel Association
Воздуховод, мини-разъем, мульти-разъем .Жилые воздуховоды относительно редки за пределами Северной Америки. Широко используются «бесканальные» тепловые насосы, которые распределяют энергию по линиям хладагента вместо воды или воздуха. Крупные полевые испытания на северо-западе Тихого океана показывают, что они могут иметь хорошие характеристики в холодную погоду и быть очень рентабельными при замене электрического резистивного нагрева. Как и в случае систем с наземным источником питания, относительная незрелость рынка помогает гарантировать, что мульти-сплит-системы для всего дома будут иметь высокие цены.
Комбинированное производство тепла и электроэнергии (ТЭЦ) или когенерация для домов серьезно изучается в некоторых странах.Основная предпосылка заключается в использовании небольшого генератора для удовлетворения некоторой потребности дома в электроэнергии и рекуперации отработанного тепла (обычно более 70% теплотворной способности топлива) для обогрева дома (водяного или водяного отопления). воздушные системы) и горячее водоснабжение. Эти системы еще не получили широкого распространения. Они, вероятно, будут иметь лучшую экономику в домах с высокими счетами за отопление, потому что дом не может быть практически изолирован, например, дома из цельного камня или кирпича.
Источники энергии для отопления — энергоэффективные, разумные инвестиции
Большинство систем лучистого отопления работают с использованием теплой воды.Нагреть воду не очень сложно. Вот лишь некоторые из ваших многочисленных вариантов использования источников тепловой энергии: природный газ, пропан (LP), нефть, уголь, дрова, электричество, тепловые насосы, тепловые насосы, работающие на земле, и солнечная энергия. Radiantec стремится предлагать продукты с высокой энергоэффективностью , но при этом разумные инвестиции.
Водонагреватель Polaris
Газовый водонагреватель
Здесь, в Radiantec , мы часто рекомендуем использовать бытовые водонагреватели вместо дорогих бойлеров. Щелкните здесь, чтобы получить дополнительную информацию о том, как использование водонагревателя вместо бойлера является энергоэффективным и экономит ваши деньги.
Газ легко доступен и производится в основном в Соединенных Штатах. Цена на газ выросла вместе с другими источниками, но он достаточно чистый, чтобы использовать его с технологией конденсации дымовых газов.
Мой друг-сантехник верит в водогрейный котел, но мы использовали водонагреватель Polaris, и наша система работает отлично.Ах да, мы сами установили.
Рик, Массачусетс
Качественный дровяной котел
Жидкостные котлы или водонагреватели
В некоторых местах нефть может быть дешевле газа в настоящее время. Нефть также имеет большую теплотворную способность, чем сжиженный газ (LP). Однако у масла есть ряд недостатков. Нефть загрязняет больше, чем газ, и отопительные агрегаты в настоящее время не так эффективны. Нам не известны установки, работающие на жидком топливе, которые могут конденсировать дымовой газ, но некоторые из них находятся на стадии разработки.
Кроме того, многие поставки нефти импортируются из нестабильных стран. Цена и доступность топочного мазута могут быть нестабильными по политическим причинам . Наконец, некоторые считают, что наши нефтяные ресурсы должны быть зарезервированы для транспортировки.
Дровяные или угольные обогреватели
Эти обогреватели работают лучше всего, когда им позволяют иметь продолжительное время горения при достаточно высоких температурах.
К сожалению, дровяные и особенно угольные обогреватели могут серьезно загрязнять окружающую среду, когда они останавливаются с оставшейся загрузкой топлива.Если вы решите использовать этот источник тепловой энергии, мы рекомендуем вам включить в систему какой-либо накопитель тепла, чтобы нагреватель мог работать в удобное время и с меньшими выбросами. Для этой цели очень хорошо подходит накопительная система, аналогичная системе солнечного отопления. .
На рисунке справа показана популярная система солнечного отопления, которая производит горячую воду, а также обогревает помещения. Если вы используете дровяной котел вместо солнечных батарей, у вас будет дровяная система отопления со многими преимуществами.Вы будете производить горячую воду и пользоваться преимуществами аккумулирования тепла. Мы также думаем, что в целом система будет безопаснее. Древесина или уголь могут обеспечить энергетическую независимость и могут быть экономически эффективными, если вы цените труд как полезное упражнение. Но очень важно сжечь эти продукты чисто.
Солнечные коллекторы
Солнечные коллекторы легко производят теплую воду. Относительно низкие температуры, необходимые для излучающих систем, обеспечивают высокую эффективность солнечной панели . Качество и эффективность солнечного отопления значительно улучшились. и инвестиционная стоимость или «окупаемость» могут быть очень хорошими, если система хорошо спроектирована.
Практически все солнечные системы отопления требуют хранения тепла на время, когда солнце не светит. Для этой цели идеально подходит конструкция из перекрытий. Бытовые водонагреватели также могут использоваться для хранения воды, нагретой солнечными батареями, для последующего использования.
Почти во всех случаях солнечной энергетической системе потребуется некоторая «резервная копия» для обеспечения тепла в течение длительных облачных периодов.В противном случае вы достигнете точки убывающей отдачи, если чрезмерно сконструируете свою систему в попытке перейти на 100% солнечную энергию.
Вы можете либо «сделать немного солнечной энергии» и использовать два или три солнечных коллектора, либо, если позволяет архитектура, вы можете использовать больше солнечных коллекторов, чтобы добиться более высокого процента солнечного нагрева вашего тепла и горячей воды. В любом случае, «переборщить» с солнечной системой — ошибка. Вы можете создать архитектурные проблемы, если попытаетесь разместить на крыше слишком много солнечных панелей.
Имейте в виду, что солнечные панели, предназначенные для нагрева воды, содержат сеть трубок, заполненных водой, поэтому они весят значительно больше, чем фотоэлектрические солнечные панели, предназначенные для преобразования электричества от солнца.
Солнечные коллекторы не обязательно ставить на дом. Их также можно установить на подставку на уровне земли .
Фотоэлектрические солнечные коллекторы, производящие электроэнергию, дешевеют.
В зависимости от климата, архитектуры и обязательств доля солнечного обогрева варьируется от 25% до 95% . Солнечная секция
Радиант модернизации
Вы можете добавить к уже имеющемуся котлу для отопления плинтуса .Вам понадобится смесительный клапан, чтобы иметь возможность понижать температуру высокотемпературной котловой воды до температуры, безопасной для вашей системы лучистого отопления, при этом обеспечивая высокотемпературную котловую воду для использования в тех целях, для которых котел был разработан.
Может быть желательно использовать трубку с барьером для диффузии кислорода для защиты компонентов системы. Альтернативой было бы разделение двух жидкостей с помощью теплообменника.
Электрический нагрев
Электрическое отопление нежелательно, если не доступен недорогой источник электроэнергии с низким воздействием на окружающую среду, такой как гидро- или солнечная энергия.В некоторых случаях, когда требуется совсем немного электроэнергии, может иметь смысл использование источника электрического тепла.
Производство электроэнергии связано с большими затратами и обычно оказывает сильное воздействие на окружающую среду.
Большая часть электроэнергии в Соединенных Штатах вырабатывается либо из угля, либо из ядерной энергии, либо из ископаемого топлива. Энергоэффективность для электричества невысока из-за потерь от преобразования энергии, а также из-за потерь в линиях передачи.
Следует избегать использования электричества для простых целей, таких как отопление и горячая вода .
Геотермальный
Так называемые геотермальные источники энергии извлекают тепловую энергию из земли с помощью электрического теплового насоса. Проблема заключается в том, что паразитные затраты на электроэнергию обычно очень высоки () и закупочная цена системы также довольно высока.
В каком-то смысле экологические издержки геотермальной системы почти такие же высокие, как и у прямой электрической системы, и нет реальной экономии затрат, когда все складывается.
Если «COP» или «коэффициент полезного действия» можно улучшить, а затраты снизить, этот подход может внести реальный вклад, но цифры еще не указаны.
ВНИМАНИЕ:
Некоторым отопительным агрегатам требуется чрезмерное количество энергии перекачки для перемещения воды через агрегат. Было бы обидно купить два высоконапорных насоса, а затем вечно слушать шум, который они производят, а также платить за электричество, которое они используют. Этой проблеме особенно подвержены регулирующие газовые установки.
7 различных типов домашних систем отопления: что лучше?
Котлы
Котлы — один из самых распространенных типов систем отопления в США.S. Они распределяют горячую воду или пар по трубам к радиаторам, напольным системам или змеевикам вашего дома. Энергоэффективность может составлять 50–90%, в зависимости от возраста котла. Вы можете рассчитывать, что котел прослужит 15–30 лет.
Печи
Печи — еще один популярный вид систем отопления. Печи работают, нагревая воздух и отправляя его по всему дому с помощью воздуховодов. Энергоэффективность печи может составлять 59–98,5%, и вам придется заменить ее в течение 15–30 лет.
Тепловые насосы
Тепловые насосы могут работать для отопления и охлаждения дома. Эти системы забирают тепло из окружающего воздуха для обогрева. КПД составляет 6,8–10 HSPF, или сезонный коэффициент полезного действия отопления. Вы можете рассчитывать, что тепловой насос прослужит 15 лет.
Активное солнечное отопление
Активные солнечные системы отопления используют солнце для нагрева жидкости или воздух для нагрева. Вы можете использовать тепло или оставить его на потом. Срок службы солнечной системы отопления составляет 20+ лет.
Электрическое отопление
Электрический или резистивный нагрев преобразует электричество в тепло.КПД составляет 95–100%, а срок службы системы составляет более 20 лет.
Переносные обогреватели
Переносные обогревателимогут быть доступным решением, если ваша основная система отопления не работает или слишком дорога в эксплуатации. Они могут быть особенно рентабельными, если вам нужно отапливать только одну комнату. Некоторые портативные обогреватели работают за счет конвекции, которая обеспечивает циркуляцию воздуха в комнате. Другие могут использовать лучистое отопление — вариант, при котором тепло направляется в зону прямой видимости.
Системы распределения тепла
Системы распределения тепла необходимы для перемещения воздуха, пара или воды по дому для отопления.Эти типы систем распределения тепла относятся к числу наиболее распространенных:
- Электрические плинтусы: Эти зональные обогреватели направляют теплый воздух вверх и вытягивают более холодный воздух вниз.
- Система принудительного воздуха: Эти системы перемещают воздух из печи через воздуховоды и вентиляционные отверстия.
- Плинтусы с горячей водой: В них используются настенные плинтусы и горячая вода для отопления.
- Лучистое отопление: Вы можете установить его с панелями пола, потолка или стен.Система передает тепло от горячей поверхности к людям или предметам.
- Паровой излучатель: В этих системах для отвода тепла используются радиаторы.
Варианты отопления дома: что лучше?
Перед выбором системы отопления следует подумать о нескольких факторах. В зависимости от того, где вы живете, некоторые источники топлива могут быть труднее достать — например, природный газ на северо-востоке.
Климат того места, где вы живете, также может повлиять на ваше решение. Если круглый год тепло, можно обойтись только обогревателем.Но в местах с холодными зимами наиболее эффективным может оказаться центральное отопление. Энергоэффективность может увеличить начальную стоимость системы отопления, но позже вы сможете сэкономить на счетах за коммунальные услуги.
Размер вашего дома также имеет значение. В идеале вам следует обратиться за профессиональной консультацией, прежде чем принимать большое и дорогостоящее решение по вашей системе отопления. Генеральный подрядчик может помочь вам определиться с лучшим выбором для вашего дома. Вот некоторые из основных моментов, которые помогут запустить процесс.
Система отопления здания — обзор
4 Техническое проектирование и строительство
Тепло передается из сети в системы отопления здания через подстанции потребителей, расположенные в подключенных зданиях.В здании есть как минимум две внутренние распределительные системы, которые необходимо отапливать: одна система подачи тепла к радиаторам и одна система распределения горячей воды для бытового потребления. Иногда отдельная система также обеспечивает нагрев приточного воздуха в системе механической вентиляции.
Каждая внутренняя система обогревается и регулируется отдельно. Тепло часто передается с помощью теплообменников, и в этом случае соединение является косвенным. Есть и прямые варианты только с клапанами и элеваторными насосами.Если горячая вода для бытового потребления готовится путем смешивания воды для систем централизованного теплоснабжения и холодной воды для бытового потребления, используется метод открытого подключения, тогда как при использовании теплообменника используется метод закрытого подключения. В России используется метод открытого подключения, что приводит к высоким потребностям в питательной воде в распределительных сетях.
Наиболее типичная часть системы централизованного теплоснабжения — это общегородская распределительная сеть, состоящая из труб, проложенных в земле под улицами, тротуарами и парковыми лужайками или установленных в подвалах зданий.Обычно в тепловых сетях в качестве теплоносителя используется вода. Пар полностью или частично используется в системах, которые были установлены примерно до 1940 года, и для высокотемпературного промышленного тепла.
Температура воды в передних трубах колеблется от 70 до 150 ° C, в среднем 80–90 ° C в год. Более высокая температура используется при крайне низкой температуре наружного воздуха, тогда как более низкая температура используется летом для подготовки горячей воды для бытового потребления.Температура возвратной воды колеблется от 35 до 70 ° C, в среднем 45–60 ° C в год. Однако в будущем может быть достигнута температура возврата 30–35 ° C. Текущие высокие температуры обратки зависят от неисправностей на подстанциях, короткого замыкания радиаторных систем в зданиях потребителей и коротких замыканий между прямыми и обратными трубами в распределительных сетях. Чем ниже температура возврата, тем больше тепла может быть передано в сети.
Трубы сконструированы с учетом теплового расширения и предотвращения внешней коррозии.Способы строительства прокладываемых в земле труб менялись на протяжении многих лет. На заре централизованного теплоснабжения двойные стальные трубы были изолированы минеральной ватой и проложены в общем бетонном коробе квадратного сечения. Распределительные трубы этого раннего поколения были дорогими в строительстве, но были надежными, если воздуховоды были хорошо вентилируемы и дренированы. Сегодня наиболее распространенным методом является использование сборных стальных труб с полиэтиленовой оболочкой и изоляцией из пенополиуретана. Этот метод имеет преимущества низкой стоимости распределения, низких тепловых потерь и высокой надежности.В течение последних 30 лет пластиковые трубы развивались как трубы для теплоносителя. Что касается ограничений по давлению и возможных длительных температур, новое поколение труб централизованного теплоснабжения в основном используется во вторичных распределительных сетях, отделенных от первичных распределительных сетей теплообменниками.
Потери тепла в распределительной сети зависят от теплового сопротивления изоляции трубы, размера трубы, температуры подачи и возврата и линейной плотности тепла.Последний представляет собой ежегодно продаваемое тепло, разделенное на длину маршрута двойных труб в сети. Типичные значения линейной плотности тепла составляют 15–25 ГДж / м для целых сетей, более 40 ГДж / м в сконцентрированных центральных и коммерческих районах и менее 5 ГДж / м в блоках с одноквартирными домами. Типичные потери тепла в целых сетях составляют 5–10% тепла, вырабатываемого в установках, но до 20–30% могут возникать в областях с низкой линейной плотностью тепла. Также стоимость распределения зависит от линейной плотности тепла.Стоимость ниже 20–30 ГДж / м3, но очень быстро растет ниже 6–8 ГДж / м3.
Система централизованного теплоснабжения управляется с помощью управляющего оборудования на четырех независимых уровнях. Два из них расположены в соединенных зданиях, а два находятся в ведении оператора централизованного теплоснабжения. Первый уровень — это регулирование потребности в тепле с помощью термостатических клапанов на радиаторах и смесительных клапанах для горячего водоснабжения. Второй уровень — на подстанциях заказчика. Передача тепла регулируется клапанами, которые регулируют поток воды для централизованного теплоснабжения.Для каждой подключенной клиентской системы используется один клапан. Третий уровень — это контроль разницы давлений между подающим и обратным трубопроводами в сети, что достигается регулировкой скорости распределительных насосов. Этот уровень управления позволяет всем подстанциям потребителей получать тепло, поскольку эта разница давлений является движущей силой для циркуляции потока через подстанции потребителей. Последний уровень — регулирование температуры подаваемого теплоносителя путем регулирования мощности теплогенераторов.
Эти уровни контроля приводят к созданию эффективной системы централизованного теплоснабжения, ориентированной на потребности. Оператор централизованного теплоснабжения никогда не сможет доставить больше тепла, чем требуется клиентам. Однако первые три уровня часто недоступны в российских и восточноевропейских системах. Эта ситуация создает ориентированную на производство систему, в которой трудно правильно распределить поток в сети, что приводит к как низким, так и высоким температурам в помещениях в соединенных зданиях. Когда эти системы будут восстановлены, первым шагом будет установка контроля хотя бы на втором и третьем уровнях.
Система центрального отопления — обзор
6.1 Общие положения
Для распределения солнечного тепла в зданиях можно использовать гидравлическую систему (излучающие панели и водяные радиаторы) или центральную систему принудительной подачи воздуха.
В системах центрального отопления температура подачи горячей воды может иметь разные значения. В недавнем прошлом наиболее используемым значением в Румынии, а также в других странах Европейского Союза было 90 ° C с перепадом температуры на 20 ° C, но в настоящее время температура подачи обычно ниже 90 ° C.
Обеспечение потребности в тепле для зданий, оборудованных установками центрального отопления, требует систем с высокой эффективностью не только в процессе производства тепла, но и в распределении тепловой энергии. Одним из способов повышения эффективности систем отопления является использование пониженной температуры [1]. Кроме того, можно использовать ВИЭ с более высокой эффективностью в качестве солнечной энергии. Обычно плоские жидкостные коллекторы нагревают передающую и распределяющую жидкость до температуры от 35 до 50 ° C.Систему необходимо контролировать и оптимизировать в соответствии с постоянно меняющейся потребностью в тепле.
Энергетическая и эксергетическая эффективность систем центрального отопления выше при пониженных температурах горячей воды [2], но, исходя из [3], необходимо указать, что это справедливо только для полностью сбалансированных систем. Стабильность системы центрального отопления с пониженной температурой может быть улучшена за счет уменьшения уровня перепада температуры. Таким образом, можно получить системы отопления с более высокой стабильностью и энергоэффективностью за счет одновременного снижения температуры подачи и падения температуры.
После внедрения пластиковых трубопроводов применение водного лучистого отопления с трубами, встроенными в поверхности помещений (например, полы, стены и потолки), значительно расширилось во всем мире. Ранее системы лучистого отопления применялись в основном для жилых домов из-за комфорта и свободного использования площади без каких-либо препятствий для установки. По тем же причинам, а также для возможного снижения пиковых нагрузок и экономии энергии, излучающие системы широко применяются в коммерческих и промышленных зданиях.Из-за больших поверхностей, необходимых для передачи тепла, системы работают с водой с низкой температурой для обогрева. Однако, чтобы расширить использование этих типов генераторов и извлечь выгоду из их энергоэффективности для достижения целевых показателей 20–20–20 (повышение энергоэффективности на 20%, сокращение выбросов CO 2 на 20% и возобновляемые источники энергии на 20%) к 2020 году), необходима работа с радиаторами, которые в прошлом были наиболее часто используемыми оконечными устройствами в системах отопления.
В Европе предстоит отремонтировать десятки тысяч зданий, большинство из которых — жилые.Энергетическая задача будущего будет заключаться в ремонте существующих зданий и предложении системно-инженерных технологий, которые могут быть установлены с минимальным вмешательством, что будет чрезвычайно успешным. Следовательно, если продвигается солнечная технология, она должна быть рассчитана также на работу с радиаторами.