Сигма в статистике это – Среднеквадратическое отклонение — Википедия

Содержание

Стандартное отклонение (сигма) | Кинезиолог

 Стандартное отклонение — это корень из суммы квадратов разностей между элементами выборки и средним, деленной на количество элементов в выборке (либо n, либо n-1).

Синонимы: стандартное отклонение, сигма, среднеквадратичное отклонение, среднеквадратическое отклонение.

STDEV=√[(∑(x-x)2)/n]

Если количество элементо в выборке не превышает 30, то знаменатель дроби под корнем принимает значение n-1,  и тогда функция для вычисления называется STDEV или СТАНДОТКЛОН. А если превышает 30, то знаменатель дроби под корнем принимает значение n, и эта функция называется STDEVP (или СТАНДОТКЛОН.Г, т.е. стандартное отклонение по генеральной совокупности, заданной аргументами).

Пошагово вычисление стандартного отклонения:

  • вычисляем среднее арифметическое выборки данных
  • отнимаем это среднее от каждого элемента выборки
  • все полученные разности возводим в квадрат
  • суммируем все полученные квадраты
  • делим полученную сумму на количество элементов в выборке (или на n-1, если n>30)
  • вычисляем квадратный корень из полученного частного (именуемого дисперсией).

 Стандартное отклонение выборки

s = [ ∑(xi-xbar)2/n-1]1/2

xbar (х с чёрточкой сверху: x ) — это выборочное среднее
n — число наблюдений в выборке.

Сигма σ

Широко известно также такое понятие как σ («сигма»). Это тоже стандартное отклонение. Но это стандартное отклонение всей генеральной совокупности, а не вашей выборки.

σ = [ ∑(xi-µ)2/N]1/2

где
µ — среднее генеральной совокупности (например, популяции)
N — размер генеральной совокупности (популяции).

Пошаговая инструкция для вычисления в таблицах Excel среднего значения и стандартного отклонения.

 

kineziolog.su

Что такое «сигма»? • Физика элементарных частиц • LHC на «Элементах»

Сигмой (σ) в статистическом анализе обозначают стандартное отклонение. Опуская тонкости, которые будут обсуждены ниже, можно сказать, что стандартное отклонение — это та погрешность, то «± сколько-то», которым обязательно сопровождают измерение величины. Если вы измерили массу предмета и получили результат 100 ± 5 грамм, то величина «110 грамм» отличается от измеренного результата на два стандартных отклонения (то есть на 2 сигмы), величина «50 грамм» отличается на 10 стандартных отклонений (на 10 сигм).

Зачем всё это нужно: сигмы и вероятности

При обсуждении погрешностей мы уже говорили, что фраза «измеренная масса равна 100 ± 5 грамм» вовсе не означает, что истинная масса гарантированно лежит в интервале от 95 до 105 грамм. Она может оказаться и за пределами этого интервала «± 1σ», но, как правило, недалеко. В небольшом проценте случаев может даже случиться, что она выходит за пределы интервала «± 2σ», и уж совсем редко она оказывается за пределами «± 3σ». В общем, тенденция ясна: количество сигм связано с вероятностью того, что истинное значение будет настолько отличаться от измеренного.

Пропустим все математические подробности и покажем результат для самого простого и распространенного случая, который называется «нормальное распределение» (см. рисунок). Вероятность попасть в интервал ± 1σ — примерно 68%, в интервал ± 2σ — примерно 95%, в интервал ± 3σ — примерно 99,8%, и т. д. Итак, можно сформулировать некую договоренность:

Договоренность: выражение какого-то отличия в количестве сигм — это сообщение о том, какова вероятность, что такое или еще более сильное отличие могло произойти за счет случайного стечения обстоятельств при измерении.

Использовать эту договоренность можно разными способами. Если вы просто сообщаете результат измерения (100 ± 5 грамм) и уверены в том, что нормальное распределение применимо, то вы можете сказать, что истинное значение массы с вероятностью 68% лежит в этом интервале, с вероятностью 95% лежит в интервале от 90 до 110 грамм, и т. д.

Вы можете также сравнивать результат вашего измерения с чужим измерением той же самой величины или с теоретическими расчетами. Вы видите, что числа отличаются, и хотите понять, имеете ли вы право утверждать, что между двумя результатами есть статистически значимое расхождение — то есть несогласие, которое нельзя списать на случайную статистическую флуктуацию в данных. Тогда утверждения звучат так:

  • Если отличие составляет меньше 1σ, то вероятность того, что два числа согласуются друг с другом, больше 32%. В таком случае просто говорят, что два результата совпадают в пределах погрешностей.
  • Если отличие составляет меньше 3σ, то вероятность того, что два числа согласуются друг с другом, больше 0,2%. В физике элементарных частиц такой вероятности недостаточно для каких-либо серьезных выводов, и принято говорить: различие между двумя результатами не является статистически значимым.
  • Если отличие от 3σ до 5σ, то это повод подозревать что-то серьезное. Впрочем, даже в этом случае физики говорят осторожно: данные указывают на существование различия между двумя результатами.
  • И только если два результата отличаются на 5σ или больше, физики четко заявляют: два результата отличаются друг от друга.

Эти выражения особенно стандартны, когда речь идет о поиске новой частицы. Вы сравниваете экспериментальные данные с теоретическим предсказанием, сделанным без новой частицы, и, если видите отличие от 3 до 5 сигм, вы говорите: получено указание на существование новой частицы (по-английски, evidence). Если же отличие превышает 5 сигм, вы говорите: мы открыли новую частицу (discovery).

«Уверенность» против «статистической значимости»

Заметьте, что в приведенных выше примерах нас интересовали вопросы, на которые можно ответить «да» или «нет». Проступает ли в полученных данных какая-то новая частица? Согласуется ли распределение по импульсу с теоретическими расчетами? Зависит ли сечение процесса от энергии столкновений? Совпадает ли масса у частицы и ее античастицы? Попытка ответить на эти вопросы с помощью данных называется на научном языке проверкой гипотез. Вопросы, которые требуют развернутого ответа (подсчитать что-то, объяснить что-то и т. п.), гипотезами не называются.

В простейшем приближении результат экспериментальной проверки гипотезы выглядит так: ответ «да» с вероятностью p и ответ «нет» с вероятностью 1 – p

. Эти вероятности очень важны для сообщения результата; физики обычно избегают абсолютных утверждений («мы открыли» или «мы опровергли») без указания вероятностей.

Но тут сразу же надо сделать важное уточнение. Если его четко осознать, то станет понятным, почему такие стандартные для научно-популярных новостей фразы, как «Ученые на 99% уверены, что открыли что-то новое», — обманчивы.

Точная формулировка, которую обычно используют ученые, такова:

При проверке гипотезы получен ответ «да» на уровне статистической значимости p.

При этом величина p часто выражается в виде количества сигм. В англоязычной литературе используется словосочетание confidence level, CL (доверительный уровень). В русскоязычной еще иногда говорят «статистическая достоверность», но такое выражение может привести к путанице в понимании.

Отличие «популярной» фразы от истинного утверждения вот в чём. Во всяком измерении есть не только статистические, но и систематические погрешности. Описанные выше правила связи вероятностей и количества сигм работают только для статистических погрешностей — и то если к ним применимо нормальное распределение. Если статистические погрешности всегда можно обсчитать аккуратно, то систематические погрешности — это немножко искусство. Более того, из многолетнего опыта известно, что сильные систематические отклонения уж точно не описываются нормальным распределением, и потому для них эти правила пересчета не справедливы. Так что даже если экспериментаторы всё перепроверили много раз и указали систематическую погрешность, всегда остается риск, что они что-то упустили из виду.

Корректно оценить этот риск невозможно, поэтому вы на самом деле не знаете, с какой истинной вероятностью ваш ответ верен.

Конечно, по умолчанию систематическим погрешностям стоит доверять, особенно если они исходят от опытных экспериментальных групп. Но вековой опыт изучения элементарных частиц показывает, что несмотря на все предосторожности регулярно случаются проколы. Бывает, что коллаборация получает результат, сильно противоречащий какой-то гипотезе, перепроверяет анализ много раз и никаких ошибок у себя не находит. Однако этот результат затем не подтверждается другими — порой намного более точными! — экспериментами. Почему первый эксперимент дал такой странный результат, что в нём было не то, где там ошибка или неучтенная погрешность — всё это зачастую так и остается непонятым (впрочем, иногда источник ошибки быстро вскрывается, как это случилось со «сверхсветовыми» нейтрино в эксперименте OPERA).

Физики к таким оборотам событий уже привыкли, поэтому каждый экспериментальный результат, сильно отличающийся от всей сложившейся к тому времени картины, вызывает оправданный скепсис. Физики так консервативны в своем отношении вовсе не потому, что они ретрограды и намертво уверовали в какую-то одну теорию, как это хотят представить опровергатели физики. Они просто научены всем предыдущим опытом в физике частиц и знают, чем это обычно кончается. Поэтому без независимого подтверждения другими экспериментами подобные сенсации они не поддерживают.

ФЭЧ в сравнении с другими науками

Надо сказать, что сформулированные выше жесткие критерии статистической достоверности характерны именно для физики элементарных частиц и некоторых смежных разделов. Во многих других разделах физики, а тем более в других дисциплинах (в особенности, в биомедицинских науках) критерии намного слабее.

Предположим, вы измерили некие данные и хотите узнать, какова вероятность того, что они «вписываются в норму». Вы проводите статистический тест, который дает вам вероятность того, что «нормальная ситуация» без какого-либо реального отклонения только за счет статистической флуктуации даст вот такое или еще более сильное отклонение. Эта вероятность называется

p-значение. В биологии пороговое p-значение, ниже которого уже уверенно говорят про реальное отличие, составляет один или даже несколько процентов. В физике элементарных частиц такое отличие вообще не считают значимым, тут нет даже «указания на существование» какого-то отличия! Ответственное заявление об отличии звучит в ФЭЧ только для p-значений меньше одной двухмиллионной (то есть отклонение больше 5σ). Такой жесткий подход к достоверности утверждений выработался в ФЭЧ примерно полвека назад, в эпоху, когда экспериментаторы видели много отклонений со значимостью в районе 3σ и смело заявляли об открытии новых частиц, хотя потом эти «открытия» не подтверждались. Подробный рассказ об истоках этого критерия см. в постах Tommaso Dorigo (часть 1, часть 2).

elementy.ru

Правило трёх сигм — это… Что такое Правило трёх сигм?


Правило трёх сигм

Стандартное отклонение (иногда среднеквадратичное отклонение) — в теории вероятности и статистике наиболее распространенный показатель рассеивания значений случайной величины относительно её математического ожидания. Измеряется в единицах измерения самой случайной величины. Равен корню квадратному из дисперсии случайной величины. Стандартное отклонение используют при расчёте стандартной ошибки среднего арифметического, при построении доверительных интервалов, при статистической проверке гипотез, при измерении линейной взаимосвязи между случайными величинами.

где  — стандарт, стандартное отклонение, несмещенная оценка среднеквадратического отклонения случайной величины X относительно её математического ожидания;  — дисперсия;  — i-й элемент выборки;  — среднее арифметическое выборки;  — объём выборки.

Следует отметить отличие стандарта (в знаменателе n − 1) от корня из дисперсии(среднеквадратического отклонения)(в знаменателе n), при малом объёме выборки оценка дисперсии через последнюю величину является несколько смещенной, при бесконечно большом объёме выборки разница между указанными величинами исчезает. Выборка — лишь часть генеральной совокупности. Генеральная совокупность — абсолютно все возможные результаты. Получить результат, не входящий в генеральную совокупность абсолютно невозможно в принципе. Для случая с бросанием монетки генеральной совокупностью является : решка, ребро, орел. а вот пара орел-решка уже лишь выборка. Для генеральной совокупности математическое ожидание совпадает с истинным значением оцениваемого параметра. А вот для выборки не факт. Математическое ожидание выборки имеет смещение относительно истинного значения параметра. В силу этого, среднеквадратичная ошибка больше чем дисперсия, так как дисперсия — математическое ожидание квадрата отклонения от среднего значения, а среднеквадратичное отклонение — математическое ожидание отклонения от истинного значения. Разница в том, от чего ищем отклонение, когда дисперсия, то от среднего и не важно истинное это среднее или ошибочно, а когда среднеквадратичное отклонение, то ищем отклонение от истинного значения.

Правило 3-х сигм () — практически все значения нормально распределённой случайной величины лежат в интервале . Более строго — не менее чем с 99,7 % достоверностью, значение нормально распределенной случайной величины лежит в указанном интервале. При условии что величина истинная, а не полученная в результате обработки выборки. Если же истинная величина неизвестна, то следует пользоваться не σ, а s. Таким образом, правило 3-х сигм преобразуется в правило трех s

Wikimedia Foundation. 2010.

  • Правило умножения
  • Правило фаз Гиббса

Смотреть что такое «Правило трёх сигм» в других словарях:

  • Правило трех сигм — Дисперсия случайной величины мера разброса данной случайной величины, т. е. её отклонения от математического ожидания. Обозначается D[X] в русской литературе и (англ. variance) в зарубежной. В статистике часто употребляется обозначение или .… …   Википедия

  • Шесть сигм — (англ. six sigma)  концепция управления производством, разработанная в корпорации Motorola в 1980 е годы и популяризированная в середине 1990 х после того, как Джек Уэлч применил её как ключевую стратегию в General Electric. Суть… …   Википедия

  • Среднеквадратическое отклонение — (синонимы: среднеквадратичное отклонение, квадратичное отклонение; близкие термины: стандартное отклонение, стандартный разброс)  в теории вероятностей и статистике наиболее распространённый показатель рассеивания значений случайной величины …   Википедия

  • Выборочное стандартное отклонение — Стандартное отклонение (иногда среднеквадратичное отклонение)  в теории вероятности и статистике наиболее распространенный показатель рассеивания значений случайной величины относительно её математического ожидания. Измеряется в единицах… …   Википедия

  • Нормальное распределение — Плотность вероятности Зеленая лин …   Википедия

  • НЕРВНАЯ СИСТЕМА — НЕРВНАЯ СИСТЕМА. Содержание: I. Эмбриогенез, гистогенез и филогенез Н.с. . 518 II. Анатомия Н. с…………….. 524 III. Физиология Н. с……………. 525 IV. Патология Н.с…………….. 54? I. Эмбриогенез, гистогенез и филогенез Н. е.… …   Большая медицинская энциклопедия

  • Отряд Кремнероговые губки (Cornacuspongida) —          Самая многочисленная группа губок. Это преимущественно мягкие эластичные формы. Скелет их образован одноосными иглами. Всегда имеется в том или ином количестве спонгин, с помощью которого иглы склеиваются между собой в пучки или волокна …   Биологическая энциклопедия

  • Математи́ческие ме́тоды — в медицине совокупность методов количественного изучения и анализа состояния и (или) поведения объектов и систем, относящихся к медицине и здравоохранению. В биологии, медицине и здравоохранении в круг явлений, изучаемых с помощью М.м., входят… …   Медицинская энциклопедия

  • Расчет себестоимости по видам деятельности — Содержание 1 Менеджмент на основе хозяйственной деятельности 2 Разработка деловой ситуации 3 …   Википедия

  • Расчёт себестоимости по видам деятельности — Эту статью следует викифицировать. Пожалуйста, оформите её согласно правилам оформления статей. Расчёт себестоимости по видам деятельности (Activity Based Costing, ABC) ­ это специальная модель описания затрат, которая идентифицирует работы фирмы …   Википедия

dic.academic.ru

16.6. Правило «трех сигм».

Найдем вероятность того, что нормально распределенная случайная величина примет значение из интервала (а — 3σ, а + 3σ):

Следовательно, вероятность того, что значение случайной величины окажется вне этого интервала, равна 0,0027, то есть составляет 0,27% и может считаться пренебрежимо малой. Таким образом, на практике можно считать, что все возможные значения нормально распределенной случайной величины лежат в интервале (а — 3σ, а + 3σ).

Полученный результат позволяет сформулировать правило «трех сигм»: если случайная величина распределена нормально, то модуль ее отклонения от х = а не превосходит 3σ.

16.7. Показательное распределение.

Определение. Показательным (экспоненциальным) называют распределение вероятностей непрерывной случайной величины Х, которое описывается плотностью

В отличие от нормального распределения, показательный закон определяется только одним параметром λ. В этом его преимущество, так как обычно параметры распределения заранее не известны и их приходится оценивать приближенно. Понятно, что оценить один параметр проще, чем несколько.

Найдем функцию распределения показательного закона:

Следовательно,

Теперь можно найти вероятность попадания показательно распределенной случайной величины в интервал (а, b):

.

Значения функции е можно найти из таблиц.

16.8. Функция надежности.

Пусть элемент (то есть некоторое устройство) начинает работать в момент времени t0 = 0 и должен проработать в течение периода времени t. Обозначим за Т непрерывную случайную величину – время безотказной работы элемента, тогда функция F(t) = p(T > t) определяет вероятность отказа за время t. Следовательно, вероятность безотказной работы за это же время равна

R(t) = p(T > t) = 1 – F(t).

Эта функция называется функцией надежности.

16.9. Показательный закон надежности.

Часто длительность безотказной работы элемента имеет показательное распределение, то есть

F(t) = 1 – eλt .

Следовательно, функция надежности в этом случае имеет вид:

R(t) = 1 – F(t) = 1 – (1 – e-λt) = e-λt .

Определение. Показательным законом надежности называют функцию надежности, определяемую равенством

R(t) = eλt ,

где λ – интенсивность отказов.

Пример. Пусть время безотказной работы элемента распределено по показательному закону с плотностью распределения f(t) = 0,1 e0,1t при t ≥ 0. Найти вероятность того, что элемент проработает безотказно в течение 10 часов.

Решение. Так как λ = 0,1, R(10) = e-0,1·10 = e-1 = 0,368.

16.10. Математическое ожидание.

Определение. Математическим ожиданием дискретной случайной величины называется сумма произведений ее возможных значений на соответствующие им вероятности:

М(Х) = х1р1 + х2р2 + … + хпрп .

Если число возможных значений случайной величины бесконечно, то , если полученный ряд сходится абсолютно.

Замечание 1. Математическое ожидание называют иногда взвешенным средним, так как оно приближенно равно среднему арифметическому наблюдаемых значений случайной величины при большом числе опытов.

Замечание 2. Из определения математического ожидания следует, что его значение не меньше наименьшего возможного значения случайной величины и не больше наибольше-го.

Замечание 3. Математическое ожидание дискретной случайной величины есть неслучай-ная (постоянная) величина. В дальнейшем увидим, что это же справедливо и для непре-рывных случайных величин.

Пример. Найдем математическое ожидание случайной величины Х – числа стандартных деталей среди трех, отобранных из партии в 10 деталей, среди которых 2 бракованных. Составим ряд распределения для Х. Из условия задачи следует, что Х может принимать значения 1, 2, 3. Тогда

Пример 2. Определим математическое ожидание случайной величины Х – числа бросков монеты до первого появления герба. Эта величина может принимать бесконечное число значений (множество возможных значений есть множество натуральных чисел). Ряд ее распределения имеет вид:

Х

1

2

п

р

0,5

(0,5)2

(0,5)п

Тогда ..+

+(при вычислении дважды использовалась формула суммы бесконечно убывающей геометрической прогрессии:, откуда).

Свойства математического ожидания.

  1. Математическое ожидание постоянной равно самой постоянной:

М(С) = С.

Доказательство. Если рассматривать С как дискретную случайную величину, принимающую только одно значение С с вероятностью р = 1, то М(С) = С·1 = С.

  1. Постоянный множитель можно выносит за знак математического ожидания:

М(СХ) = С М(Х).

Доказательство. Если случайная величина Х задана рядом распределения

xi

x1

x2

xn

pi

p1

p2

pn

то ряд распределения для СХ имеет вид:

Сxi

Сx1

Сx2

Сxn

pi

p1

p2

pn

Тогда М(СХ) = Сх1р1 + Сх2р2 + … + Схпрп = С( х1р1 + х2р2 + … + хпрп) = СМ(Х).

Определение. Две случайные величины называются независимыми, если закон распределения одной из них не зависит от того, какие значения приняла другая. В противном случае случайные величины зависимы.

Определение. Назовем произведением независимых случайных величин Х и Y случайную величину XY, возможные значения которой равны произведениям всех возможных значений Х на все возможные значения Y, а соответствующие им вероят-ности равны произведениям вероятностей сомножителей.

  1. Математическое ожидание произведения двух независимых случайных величин равно произведению их математических ожиданий:

M(XY) = M(X)M(Y).

Доказательство. Для упрощения вычислений ограничимся случаем, когда Х и Y принимают только по два возможных значения:

Тогда ряд распределения для XY выглядит так:

ХY

x1y1

x2y1

x1y2

x2y2

p

p1g1

p2 g1

p1g2

p2g2

Следовательно, M(XY) = x1y1·p1g1 + x2y1·p2g1 + x1y2·p1g2 + x2y2·p2g2 = y1g1(x1p1 + x2p2) + + y2g2(x1p1 + x2p2) = (y1g1 + y2g2) (x1p1 + x2p2) = M(XM(Y).

Замечание 1. Аналогично можно доказать это свойство для большего количества возможных значений сомножителей.

Замечание 2. Свойство 3 справедливо для произведения любого числа независимых случайных величин, что доказывается методом математической индукции.

Определение. Определим сумму случайных величин Х и Y как случайную величину Х + Y, возможные значения которой равны суммам каждого возможного значения Х с каждым возможным значением Y; вероятности таких сумм равны произведениям вероятностей слагаемых (для зависимых случайных величин – произведениям вероятности одного слагаемого на условную вероятность второго).

4) Математическое ожидание суммы двух случайных величин ( зависимых или незави-симых ) равно сумме математических ожиданий слагаемых:

M (X + Y) = M (X) + M (Y).

Доказательство.

Вновь рассмотрим случайные величины, заданные рядами распределения, приведен-ными при доказательстве свойства 3. Тогда возможными значениями X + Y являются х1 + у1, х1 + у2, х2 + у1, х2 + у2. Обозначим их вероятности соответственно как р11, р12, р21 и р22. Найдем М( Х +Y ) = (x1 + y1)p11 + (x1 + y2)p12 + (x2 + y1)p21 + (x2 + y2)p22 =

= x1(p11 + p12) + x2(p21 + p22) + y1(p11 + p21) + y2(p12 + p22).

Докажем, что р11 + р22 = р1. Действительно, событие, состоящее в том, что X + Y примет значения х1 + у1 или х1 + у2 и вероятность которого равна р11 + р22, совпадает с событием, заключающемся в том, что Х = х1 (его вероятность – р1). Аналогично дока-зывается, что p21 + p22 = р2, p11 + p21 = g1, p12 + p22 = g2. Значит,

M(X + Y) = x1p1 + x2p2 + y1g1 + y2g2 = M (X) + M (Y).

Замечание. Из свойства 4 следует, что сумма любого числа случайных величин равна сумме математических ожиданий слагаемых.

Пример. Найти математическое ожидание суммы числа очков, выпавших при броске пяти игральных костей.

Найдем математическое ожидание числа очков, выпавших при броске одной кости:

М(Х1) = (1 + 2 + 3 + 4 + 5 + 6)Тому же числу равно математическое ожидание числа очков, выпавших на любой кости. Следовательно, по свойству 4М(Х)=

studfiles.net

«Шесть сигм» как статистический показатель

Не беспокойтесь, если вы не слышали термин «сигма» раньше. До недавнего времени этот термин не часто использовался в обычном разговорном языке. В статистике строчная буква греческого алфавита «сигма» (σ) обозначает стандартное отклонение.

Стандартное отклонение — это статистический способ описания величины вариации в наборе данных, группе изделий или процессе. Например, если вы взвешиваете множество картофельных чипсов разной величины, вы получите более высокое стандартное отклонение, чем когда вы взвешиваете чипсы одного размера.

Другой пример. Предположим, что вы возглавляете бизнес по доставке пиццы в соседние офисы. Вы делаете очень хорошую пиццу, и у вас много потребителей.

Согласно контракту с вашими потребителями, свежая и горячая пицца будет доставляться между 11.45 и 12.15. Это позволяет клиентам вовремя получать свои заказы для ланча (таково их «требование»). Вы также договорились, что если пицца привозится до 11.45 или после 12.15 («дефект»), то вы делаете 50%-ную скидку на следующий заказ. Поскольку вы и остальной персонал фирмы получаете за своевременную доставку пиццы премию, вы все очень заинтересованы доставлять ее в течение данного получасового «окна» (как того хотят клиенты).

Вот какую роль в качестве показателя этого простого процесса может играть величина «сигма». Если вы доставляете вовремя только примерно 6896 вашей пиццы, ваш процесс находится лишь на уровне двух сигм. Если вы доставляете вовремя 9396, что уже неплохо, вы работаете только на уровне качества трех сигм. Если вы доставляете в срок 99,4% всей пиццы, вы работаете на уровне четырех сигм.

Чтобы работать на уровне шести сигм, вы должны доставлять пиццу вовремя в 99,999796 случаях. Это практически идеально. Фактически из каждого миллиона изготовленных пицц (лотта моцарелла) только три или четыре доходят до потребителя с опозданием. Отличная работа! (См. рисунки 2.1 и 2.2.)

Имейте в виду, что величина сигмы показывает, как хорошо вы удовлетворяете требования потребителя. Если ваши клиенты потребуют доставлять пиццу в течение десятиминутного «окна», с 11.55 до 12.05, то ваш уровень сигм почти наверняка ухудшится.

Параметр «сигма» был разработан, чтобы помочь:

1.Сфокусировать показатели деятельности на потребителях, которые платят деньги. Многие обычно используемые компаниями показатели, например рабочее время, затраты, объем продаж, не имеют отношения к тому, чем действительно озабочен покупатель.

Рисунок 2.1. Вариабельность доставки пиццы 1. Вариабельность велика. Большое количество пиццы доставляется раньше срока и большое количество — позже (темные области графика). Среднее время доставки — все еще в пределах требований потребителя (доставка между 11.45 и 12.15). Низкий уровень сигм.

Рисунок 2.2. Вариабельность доставки пиццы 2. Вариабельность стабильна. Меньшее количество пиццы доставляется раньше или позже срока (темные области графика). Более высокий уровень сигм.

2.Создать единый метод для измерения и сравнения различных процессов. Используя шкалу сигм, мы можем оценивать и сравнивать производительность совершенно разных процессов — скажем, выпечки и доставки пиццы.Чтобы научиться подсчитывать уровень сигм или понимать его значение, нужно в первую очередь разобраться, чего ожидают ваши потребители. На языке шести сигм требования и ожидания потребителя называются (и считаются) критичными для качества (Critical To Quality, CTQ).

Впримере с пиццей одно из ключевых требований клиента — своевременная доставка. Другие требования, вероятно, будут связаны с температурой пиццы, точностью заказа, вкусом и т.д. Фактически для концепции «шесть сигм» характерно измерять качество процесса по всем CTQпараметрам, а не только по одному или двум.

Мы пользуемся показателем «сигма» для того, чтобы увидеть, насколько хорошо или плохо выполняется процесс, а также для выработки единого критерия качества процессов. В таблице 2.1 приведены уровни сигм и соответствующие им числа дефектов на миллион возможностей.

Даже если вашему процессу потребуется немало времени для того, чтобы произвести миллион изделий или выполнить миллион задач, не беспокойтесь! Данный показатель говорит только о том, что было бы, если бы вы сделали это!

studfiles.net

Среднеквадратическое отклонение Википедия

Среднеквадрати́ческое отклоне́ние (среднее квадрати́ческое отклоне́ние, среднеквадрати́чное отклоне́ние, квадрати́чное отклоне́ние, станда́ртное отклоне́ние, станда́ртный разбро́с) — в теории вероятностей и статистике наиболее распространённый показатель рассеивания значений случайной величины относительно её математического ожидания. Обычно указанные термины означают квадратный корень из дисперсии случайной величины, но иногда могут означать тот или иной вариант оценки этого значения.

В литературе обычно обозначают греческой буквой σ{\displaystyle \sigma } (сигма).

Основные сведения[ | ]

Среднеквадратическое отклонение определяется как квадратный корень из дисперсии случайной величины: σ=D[X]{\displaystyle \sigma ={\sqrt {D[X]}}}.

Среднеквадратическое отклонение измеряется в единицах измерения самой случайной величины и используется при расчёте стандартной ошибки среднего арифметического, при построении доверительных интервалов, при статистической проверке гипотез, при измерении линейной взаимосвязи между случайными величинами.

На практике, когда вместо точного распределения случайной величины в распоряжении имеется лишь выборка, стандартное отклонение, как и математическое ожидание, оценивают (выборочная дисперсия), и делать это можно разными способами. Термины «стандартное отклонение» и «среднеквадратическое отклонение» обычно применяют к квадратному корню из дисперсии случайной величины (определённому через её истинное распределение), но иногда и к различным вариантам оценки этой величины на основании выборки.

В частности, если xi{\displaystyle x_{i}} — i-й элемент выборки, n{\displaystyle n} — объём выборки, x¯{\displaystyle {\bar {x}}} — среднее арифметическое выборки (выборочное среднее — оценка математичекого ожидания величины):

x¯=1n∑i=1nxi=1n(x1+…+xn),{\displaystyle {\bar {x}}={\frac {1}{n}}\sum _{i=1}^{n}x_{i}={\frac {1}{n}}(x_{1}+\ldots +x_{n}),}

ru-wiki.ru

Среднеквадратическое отклонение — WiKi

Среднеквадрати́ческое отклоне́ние (среднее квадрати́ческое отклоне́ние, среднеквадрати́чное отклоне́ние, квадрати́чное отклоне́ние, станда́ртное отклоне́ние, станда́ртный разбро́с) — в теории вероятностей и статистике наиболее распространённый показатель рассеивания значений случайной величины относительно её математического ожидания. Обычно указанные термины означают квадратный корень из дисперсии случайной величины, но иногда могут означать тот или иной вариант оценки этого значения.

В литературе обычно обозначают греческой буквой σ{\displaystyle \sigma } (сигма).

Основные сведения

Среднеквадратическое отклонение определяется как квадратный корень из дисперсии случайной величины: σ=D[X]{\displaystyle \sigma ={\sqrt {D[X]}}} .

Среднеквадратическое отклонение измеряется в единицах измерения самой случайной величины и используется при расчёте стандартной ошибки среднего арифметического, при построении доверительных интервалов, при статистической проверке гипотез, при измерении линейной взаимосвязи между случайными величинами.

На практике, когда вместо точного распределения случайной величины в распоряжении имеется лишь выборка, стандартное отклонение, как и математическое ожидание, оценивают (выборочная дисперсия), и делать это можно разными способами. Термины «стандартное отклонение» и «среднеквадратическое отклонение» обычно применяют к квадратному корню из дисперсии случайной величины (определённому через её истинное распределение), но иногда и к различным вариантам оценки этой величины на основании выборки.

В частности, если xi{\displaystyle x_{i}}  — i-й элемент выборки, n{\displaystyle n}  — объём выборки, x¯{\displaystyle {\bar {x}}}  — среднее арифметическое выборки (выборочное среднее — оценка математичекого ожидания величины):

x¯=1n∑i=1nxi=1n(x1+…+xn),{\displaystyle {\bar {x}}={\frac {1}{n}}\sum _{i=1}^{n}x_{i}={\frac {1}{n}}(x_{1}+\ldots +x_{n}),} 

то два основных способа оценки стандартного отклонения записываются нижеследующим образом.

Оценка стандартного отклонения на основании смещённой оценки дисперсии (иногда называемой просто выборочной дисперсией[1]):

S=1n∑i=1n(xi−x¯)2.{\displaystyle S={\sqrt {{\frac {1}{n}}\sum _{i=1}^{n}\left(x_{i}-{\bar {x}}\right)^{2}}}.} 

Это в буквальном смысле среднее квадратическое разностей измеренных значений и среднего.

Оценка стандартного отклонения на основании несмещённой оценки дисперсии (подправленной выборочной дисперсии[1], в ГОСТ Р 8.736-2011 — «среднее квадратическое отклонение»):

S0=nn−1S2=1n−1∑i=1n(xi−x¯)2.{\displaystyle S_{0}={\sqrt {{\frac {n}{n-1}}S^{2}}}={\sqrt {{\frac {1}{n-1}}\sum _{i=1}^{n}\left(x_{i}-{\bar {x}}\right)^{2}}}.} 

Само по себе, однако, S0{\displaystyle S_{0}}  не является несмещённой оценкой квадратного корня из дисперсии, то есть извлечение квадратного корня «портит» несмещённость.

Обе оценки являются состоятельными[1].

Кроме того, среднеквадратическим отклонением называют математическое ожидание квадрата разности истинного значения случайной величины и её оценки для некоторого метода оценки[2]. Если оценка несмещённая (выборочное среднее — как раз несмещённая оценка для случайной величины), то эта величина равна дисперсии этой оценки.

Правило трёх сигм

Правило трёх сигм (3σ{\displaystyle 3\sigma } ) — практически все значения нормально распределённой случайной величины лежат в интервале (x¯−3σ;x¯+3σ){\displaystyle \left({\bar {x}}-3\sigma ;{\bar {x}}+3\sigma \right)} . Более строго — приблизительно с вероятностью 0,9973 значение нормально распределённой случайной величины лежит в указанном интервале (при условии, что величина x¯{\displaystyle {\bar {x}}}  истинная, а не полученная в результате обработки выборки).

Интерпретация величины среднеквадратического отклонения

Большее значение среднеквадратического отклонения показывает больший разброс значений в представленном множестве со средней величиной множества; меньшее значение, соответственно, показывает, что значения в множестве сгруппированы вокруг среднего значения.

Например, у нас есть три числовых множества: {0, 0, 14, 14}, {0, 6, 8, 14} и {6, 6, 8, 8}. У всех трёх множеств средние значения равны 7, а среднеквадратические отклонения, соответственно, равны 7, 5 и 1. У последнего множества среднеквадратическое отклонение маленькое, так как значения в множестве сгруппированы вокруг среднего значения; у первого множества самое большое значение среднеквадратического отклонения — значения внутри множества сильно расходятся со средним значением.

В общем смысле среднеквадратическое отклонение можно считать мерой неопределённости. К примеру, в физике среднеквадратическое отклонение используется для определения погрешности серии последовательных измерений какой-либо величины. Это значение очень важно для определения правдоподобности изучаемого явления в сравнении с предсказанным теорией значением: если среднее значение измерений сильно отличается от предсказанных теорией значений (большое значение среднеквадратического отклонения), то полученные значения или метод их получения следует перепроверить.

Практическое применение

На практике среднеквадратическое отклонение позволяет оценить, насколько значения из множества могут отличаться от среднего значения.

Экономика и финансы

Среднее квадратическое отклонение доходности портфеля σ=D[X]{\displaystyle \sigma ={\sqrt {D[X]}}}  отождествляется с риском портфеля.

В техническом анализе среднеквадратическое отклонение используется для построения линий Боллинджера, расчёта волатильности.

Климат

Предположим, существуют два города с одинаковой средней максимальной дневной температурой, но один расположен на побережье, а другой на равнине. Известно, что в городах, расположенных на побережье, множество различных максимальных дневных температур меньше, чем у городов, расположенных внутри континента. Поэтому среднеквадратическое отклонение максимальных дневных температур у прибрежного города будет меньше, чем у второго города, несмотря на то, что среднее значение этой величины у них одинаковое, что на практике означает, что вероятность того, что максимальная температура воздуха каждого конкретного дня в году будет сильнее отличаться от среднего значения, выше у города, расположенного внутри континента.

Спорт

Предположим, что есть несколько футбольных команд, которые оцениваются по некоторому набору параметров, например, количеству забитых и пропущенных голов, голевых моментов и т. п. Наиболее вероятно, что лучшая в этой группе команда будет иметь лучшие значения по большему количеству параметров. Чем меньше у команды среднеквадратическое отклонение по каждому из представленных параметров, тем предсказуемее является результат команды, такие команды являются сбалансированными. С другой стороны, у команды с большим значением среднеквадратического отклонения сложно предсказать результат, что в свою очередь объясняется дисбалансом, например, сильной защитой, но слабым нападением.

Использование среднеквадратического отклонения параметров команды позволяет в той или иной мере предсказать результат матча двух команд, оценивая сильные и слабые стороны команд, а значит, и выбираемых способов борьбы.

Пример вычисления стандартного отклонения оценок учеников

Предположим, что интересующая нас группа (генеральная совокупность) это класс из восьми учеников, которым выставляются оценки по 10-бальной системе. Так как мы оцениваем всю группу, а не её выборку, можно использовать стандартное отклонение на основании смещённой оценки дисперсии. Для этого берём квадратный корень из среднего арифметического квадратов отклонений величин от их среднего значения.

Пусть оценки учеников класса следующие:

2, 4, 4, 4, 5, 5, 7, 9.{\displaystyle 2,\ 4,\ 4,\ 4,\ 5,\ 5,\ 7,\ 9.} 

Тогда средняя оценка равна:

μ=2+4+4+4+5+5+7+98=5{\displaystyle \mu ={\frac {2+4+4+4+5+5+7+9}{8}}=5} 

Вычислим квадраты отклонений оценок учеников от их средней оценки:

(2−5)2=(−3)2=9(5−5)2=02=0(4−5)2=(−1)2=1(5−5)2=02=0(4−5)2=(−1)2=1(7−5)2=22=4(4−5)2=(−1)2=1(9−5)2=42=16{\displaystyle {\begin{array}{lll}(2-5)^{2}=(-3)^{2}=9&&(5-5)^{2}=0^{2}=0\\(4-5)^{2}=(-1)^{2}=1&&(5-5)^{2}=0^{2}=0\\(4-5)^{2}=(-1)^{2}=1&&(7-5)^{2}=2^{2}=4\\(4-5)^{2}=(-1)^{2}=1&&(9-5)^{2}=4^{2}=16\\\end{array}}} 

Среднее арифметическое этих значений называется дисперсией:

σ2=9+1+1+1+0+0+4+168=4{\displaystyle \sigma ^{2}={\frac {9+1+1+1+0+0+4+16}{8}}=4} 

Стандартное отклонение равно квадратному корню дисперсии:

σ=4=2{\displaystyle \sigma ={\sqrt {4}}=2} 

Эта формула справедлива только если эти восемь значений и являются генеральной совокупностью. Если бы эти данные были случайной выборкой из какой-то большой совокупности (например, оценки восьми случайно выбранных учеников большого города), то в знаменателе формулы для вычисления дисперсии вместо n = 8 нужно было бы поставить n − 1 = 7:

σ2=9+1+1+1+0+0+4+167≈4,57{\displaystyle \sigma ^{2}={\frac {9+1+1+1+0+0+4+16}{7}}\approx 4,57} 

и стандартное отклонение равнялось бы:

σ=4,57≈2,14{\displaystyle \sigma ={\sqrt {4,57}}\approx 2,14} 

Этот результат называется стандартным отклонением на основании несмещённой оценки дисперсии. Деление на n − 1 вместо n даёт неискажённую оценку дисперсии для больших генеральных совокупностей.

См. также

Примечания

  1. 1 2 3 Ивченко Г. И., Медведев Ю. И. Введение в математическую статистику. — М. : Издательство ЛКИ, 2010. — §2.2. Выборочные моменты: точная и асимптотическая теория. — ISBN 978-5-382-01013-7.
  2. C. Patrignani et al. (Particle Data Group). 39. STATISTICS. — В: Review of Particle Physics // Chin. Phys. C. — 2016. — Vol. 40. — P. 100001. — DOI:10.1088/1674-1137/40/10/100001.

Литература

  • Боровиков В. STATISTICA. Искусство анализа данных на компьютере: Для профессионалов / В. Боровиков. — СПб.: Питер, 2003. — 688 с. — ISBN 5-272-00078-1..

ru-wiki.org