Решить уравнение значит: что значит решить уравнение? — Школьные Знания.com

Содержание

Как графически решить уравнение?

Иногда уравнения решают графическим способом. Для этого надо преобразовать уравнение так (если оно уже не представлено в преобразованном виде), чтобы слева и справа от знака равенства стояли выражения, для которых легко можно нарисовать графики функций. Например, дано такое уравнение:
x² – 2x – 1 = 0

Если мы еще не изучали решение квадратных уравнений алгебраическим способом, то можем попробовать сделать это либо разложением на множители, либо графически. Чтобы решить подобное уравнение графически, представим его в таком виде:
x² = 2x + 1

Из такого представления уравнения следует, что требуется найти такие значения x, при которых левая часть будет равна правой.

Как известно, графиком функции y = x² является парабола, а y = 2x + 1 — прямая. Координата x точек координатной плоскости, лежащих как на первом графике, так и на втором (то есть точек пересечения графиков) как раз и являются теми значениями x, при которых левая часть уравнения будет равна правой. Другими словами, координаты x точек пересечения графиков являются корнями уравнения.

Графики могут пересекаться в нескольких точках, в одной точке, вообще не пересекаться. Отсюда следует, что уравнение может иметь несколько корней, или один корень, или вообще их не иметь.

Рассмотрим пример попроще:
x² – 2x = 0 или x² = 2x

Нарисуем графики функций y = x² и y = 2x:

Как видно из чертежа, парабола и прямая пересекаются в точках (0; 0) и (2; 4). Координаты x этих точек соответственно равны 0 и 2. Значит, уравнение x² – 2x = 0 имеет два корня — x1 = 0, x2 = 2.

Проверим это, решив уравнение вынесением общего множителя за скобки:

x² – 2x = 0
x(x – 2) = 0

Ноль в правой части может получиться либо при x равном 0, либо 2.

Причина, по которой мы не стали графически решать уравнение x² – 2x – 1 = 0 в том, что в большинстве уравнений корнями являются вещественные (дробные) числа, а точно определить на графике значение x сложно. Поэтому для большинства уравнений графический способ решения не является лучшим. Однако знание этого способа дает более глубокое понимание связи между уравнениями и функциями.

Как решать линейные уравнения — формулы и примеры решения простейших уравнений

Понятие уравнения

Понятие уравнения обычно проходят в самом начале школьного курса алгебры. Его определяют, как равенство с неизвестным числом, которое нужно найти.

В школьной программе за 7 класс впервые появляется понятие переменных. Их принято обозначать латинскими буквами, которые принимают разные значения. Исходя из этого можно дать более полное определение уравнению.

Уравнение — это математическое равенство, в котором неизвестна одна или несколько величин. Значение неизвестных нужно найти так, чтобы при их подстановке в пример получилось верное числовое равенство.

Например, возьмем выражение 2 + 4 = 6. При вычислении левой части получается верное числовое равенство, то есть 6 = 6.

Уравнением можно назвать выражение 2 + x = 6, с неизвестной переменной x, значение которой нужно найти. Результат должен быть таким, чтобы знак равенства был оправдан, и левая часть равнялась правой.

Корень уравнения — то самое число, которое при подстановке на место неизвестной уравнивает выражения справа и слева.

Равносильные уравнения — это те, в которых совпадают множества решений. Другими словами, у них одни и те же корни.

Решить уравнение значит найти все возможные корни или убедиться, что их нет.

Решить уравнение с двумя, тремя и более переменными — это два, три и более значения переменных, которые обращают данное выражение в верное числовое равенство.


Какие бывают виды уравнений

Уравнения могут быть разными, самые часто встречающиеся — линейные и квадратные.

Особенность преобразований алгебраических уравнений в том, что в левой части должен остаться многочлен от неизвестных, а в правой — нуль.

Линейное уравнение выглядит таках + b = 0, где a и b — действительные числа.

Что поможет в решении:

  • если а не равно нулю, то у уравнения единственный корень: х = -b : а;
  • если а равно нулю — у уравнения нет корней;
  • если а и b равны нулю, то корень уравнения — любое число.
Квадратное уравнение выглядит так:ax2 + bx + c = 0, где коэффициенты a, b и c — произвольные числа, a ≠ 0.

Система уравнений — это несколько уравнений, для которых нужно найти значения неизвестных. Она имеет вид ax + by + c = 0 и называется линейным уравнением с двумя переменными x и y, где a, b, c — числа.

Решением этого уравнения называют любую пару чисел (x; y), которая соответствует этому выражению и является верным числовым равенством.

Числовой коэффициент — число, которое стоит при неизвестной переменной.

Кроме линейных и квадратных есть и другие виды уравнений, с которыми мы познакомимся в следующий раз:

  • кубические
  • уравнение четвёртой степени
  • иррациональные и рациональные
  • системы линейных алгебраических уравнений

Как решать простые уравнения

Чтобы научиться решать простые линейные уравнения, нужно запомнить формулу и два основных правила.

1. Правило переноса. При переносе из одной части в другую, член уравнения меняет свой знак на противоположный.

Для примера рассмотрим простейшее уравнение: x+3=5

Начнем с того, что в каждом уравнении есть левая и правая часть.

Перенесем 3 из левой части в правую и меняем знак на противоположный.

Можно проверить: 2 + 3 = 5. Все верно. Корень равен 2.

Решим еще один пример: 6x = 5x + 10.

Как решаем:

  1. Перенесем 6x из левой части в правую. Знак меняем на противоположный, то есть минус.

    6x −5x = 10

  2. Приведем подобные и завершим решение.

    x = 10

Ответ: x = 10.

2. Правило деления. В любом уравнении можно разделить левую и правую часть на одно и то же число. Это может ускорить процесс решения. Главное — быть внимательным, чтобы не допустить глупых ошибок.

Применим правило при решении примера: 4x=8.

При неизвестной х стоит числовой коэффициент — 4. Их объединяет действие — умножение.

Чтобы решить уравнение, нужно сделать так, чтобы при неизвестной x стояла единица.

Разделим каждую часть на 4. Как это выглядит:

Теперь сократим дроби, которые у нас получились и завершим решение линейного уравнения:

Рассмотрим пример, когда неизвестная переменная стоит со знаком минус: −4x = 12

Как решаем:

  1. Сократим обе части на −4, чтобы коэффициент при неизвестной стал равен единице.

    −4x = 12 | :(−4)
    x = −3

Ответ: x = −3.

Если знак минус стоит перед скобками, и по ходу вычислений его убрали — важно не забыть поменять знаки внутри скобок на противоположные. Этот простой факт позволит не допустить обидные ошибки, особенно в старших классах.

Напомним, что не у каждого линейного уравнения есть решение — иногда корней просто нет. Изредка среди корней может оказаться ноль — ничего страшного, это не значит, что ход решения оказался неправильным. Ноль — такое же число, как и остальные.

Способов решения линейных уравнений немного, нужно запомнить только один алгоритм, который будет эффективен для любой задачки.

Алгоритм решения простого линейного уравнения
  1. Раскрываем скобки, если они есть.
  2. Группируем члены, которые содержат неизвестную переменную в одну часть уравнения, остальные члены — в другую.
  3. Приводим подобные члены в каждой части уравнения.
  4. Решаем уравнение, которое получилось: aх = b. Делим обе части на коэффициент при неизвестном.

Чтобы быстрее запомнить ход решения и формулу линейного уравнения, скачайте или распечатайте схему-подсказку — храните ее в телефоне, учебники или на рабочем столе.

А вот и видео «Простейшие линейные уравнения» для тех, кто учиться в 5, 6 и 7 классе.

Примеры линейных уравнений

Теперь мы знаем, как решать линейные уравнения. Осталось попрактиковаться на задачках, чтобы чувствовать себя увереннее на контрольных. Давайте решать вместе!

Пример 1. Как правильно решить уравнение: 6х + 1 = 19.

Решаем так:

  1. Перенести 1 из левой части в правую со знаком минус.

    6х = 19 — 1

  2. Выполнить вычитание.

    6х = 18

  3. Разделить обе части на общий множитель, то есть 6.

    х = 2

Ответ: х = 2.

Пример 2. Как решить уравнение: 5(х — 3) + 2 = 3 (х — 4) + 2х — 1.

Решаем так:

  1. Раскрыть скобки

    5х — 15 + 2 = 3х — 2 + 2х — 1

  2. Сгруппировать в левой части члены с неизвестными, а в правой — свободные члены.

    5х — 3х — 2х = — 12 — 1 + 15 — 2

  3. Приведем подобные члены.

    0х = 0

Ответ: х — любое число.

Пример 3. Решить: 4х = 1/8.

Решаем так:

  1. Найти неизвестную переменную.

    х = 1/8 : 4

    х = 1/12

Ответ: 1/12 или 0,83. О десятичных дробях можно почитать здесь.

Пример 4. Решить: 4(х + 2) = 6 — 7х.

Решаем так:

  1. 4х + 8 = 6 — 7х
  2. 4х + 7х = 6 — 8
  3. 11х = −2
  4. х = −2 : 11
  5. х = — 0, 18

Ответ: — 0,18.

Пример 5. Решить:

Решаем так:

  1. 3(3х — 4) = 4 · 7х + 24
  2. 9х — 12 = 28х + 24
  3. 9х — 28х = 24 + 12
  4. -19х = 36
  5. х = 36 : (-19)
  6. х = — 36/19

Ответ: 1 17/19.

Пример 6. Как решить линейное уравнение: х + 7 = х + 4.

Решаем так:

  1. Раскрыть скобки

    5х — 15 + 2 = 3х — 2 + 2х — 1

  2. Сгруппировать в левой части неизвестные члены, в правой — свободные члены:

    х — х = 4 — 7

  3. Приведем подобные члены.

    0 * х = — 3

Ответ: нет решений.

Пример 7. Решить: 2(х + 3) = 5 — 7х..

Решаем так:

  1. 2х + 6 = 5 — 7х
  2. 2х + 6х = 5 — 7
  3. 8х = −2
  4. х = −2 : 8
  5. х = — 0,25

Ответ: — 0,25.



Чтобы ребенок еще лучше учился в школе, запишите его на уроки математики в современную онлайн-школу Skysmart. Наши преподаватели понятно объяснят что угодно — от дробей до синусов — и ответят на вопросы, которые бывает неловко задать перед всем классом. А еще помогут догнать сверстников и справиться со сложной контрольной.

Вместо скучных параграфов ребенка ждут интерактивные упражнения с мгновенной автоматической проверкой и онлайн-доска, где можно рисовать и чертить вместе с преподавателем. А еще развивающие игры, квесты и головоломки на любой возраст и уровень.

Уравнения с одной переменной

  • Главная
  • Справочник
  • Алгебра
  • Уравнения с одной переменной

На предыдущих занятиях мы знакомились с выражениями, а также учились их упрощать и вычислять. Теперь переходим к более сложному и интересному, а именно к уравнениям.

Уравнение и его корни

Равенство, содержащие переменную (-ые) называются уравнениями. Решить уравнение, значит найти значение переменной, при котором равенство будет верным. Значение переменной называют корнем уравнения.

Уравнения могут иметь, как один корень, так и несколько или вообще ни одного.

При решении уравнений используются следующие свойства:

  • если в уравнении перенести слагаемое из одной части уравнения в другую, поменяв при этом знак на противоположный, то получится уравнение равносильное данному.2=10-3x \) являются числа -2 и 2.

    Линейное уравнение с одной переменной

    Линейное уравнение с одной переменной — это уравнения вида ax = b, где x — переменная, а a и b — некоторые числа.

    Существует большое количество видов уравнений, но решение многих из них сводится именно к решению линейных уравнений, поэтому знание этой темы обязательно для дальнейшего обучения!

    Пример №2 Решить уравнение: 4(x+7) = 3-x

    Для решения данного уравнения, в первую очередь, нужно избавиться от скобки, а для этого домножим на 4 каждое из слагаемых в скобке, получаем:

    4х + 28 = 3 — х

    Теперь нужно перенести все значения с «х» в одну сторону, а все остальное в другую сторону (не забывая менять знак на противоположный), получаем:

    4х + х = 3 — 28

    Теперь вычитаем значение слева и справа:

    5х = -25

    Чтобы найти неизвестный множитель (х) нужно произведение (25) разделить на известный множитель (5):

    х = -25:5

    х = -5

    Ответ х = -5

    Если сомневаетесь в ответе можно проверить, подставив полученное значение в наше уравнение вместо х:

    4(-5+7) = 3-(-5)

    4*2 = 8

    8 = 8 — уравнение решено верно!

    Решить теперь что-нибудь по-сложнее:

    Пример №3 Найти корни уравнения: \( (y+4)-(y-4)=6y \)

    В первую очередь, также избавимся от скобок:

    \( y+4-y+4=6y \)

    Сразу видим в левой части y и -y, а значит их можно просто вычеркнуть, а полученные числа просто сложить, и записать выражение:

    \( 8 = 6y \)

    Теперь можно перенести значения с «y» в левую сторону, а значения с числами в правую. Но ведь это не обязательно, ведь не важно с какой стороны находятся переменные, главное, чтобы они были без чисел, а значит, ничего переносить не будем. Но для тех кто не понял, то сделаем, как гласит правило и разделим обе части на (-1), как гласит свойство:

    \( 6y=8 \)

    Чтобы найти неизвестный множитель нужно произведение разделить на известный множитель:

    \( y=\frac{8}{6} = \frac{4}{3} = 1\frac{1}{3} \)

    Ответ: y = \( 1\frac{1}{3} \)

    Также можно проверить ответ, но сделайте это самостоятельно.

    Пример №4 \( (0,5x+1,2)-(3,6-4,5x)=(4,8-0,3x)+(10,5x+0,6) \)

    Теперь я просто решу, без объяснений, а вы посмотрите на ход решения и правильную запись решения уравнений:

    \( (0,5x+1,2)-(3,6-4,5x)=(4,8-0,3x)+(10,5x+0,6) \)

    \( 0,5x+1,2-3,6+4,5x=4,8-0,3x+10,5x+0,6 \)

    \( 0,5x+4,5x+0,3x-10,5x=4,8+0,6-1,2+3,6 \)

    \( -5,2x=7,8 \)

    \( x=\frac{7,8}{-5,2}=\frac{3}{-2} =-1,5 \)

    Ответ: x = -1,5

    Если что-то не понятно по ходу решения пишите в комментариях

    Решение задач с помощью уравнений

    Зная что такое уравнения и научившись их вычислять — вы также открываете себе доступ к решению множества задач, где для решения используются именно уравнения.

    Не буду вдаваться в теорию, лучше показать все и сразу на примерах

    Пример №5 В корзине было в 2 раза меньше яблок, чем в ящике. После того, как из корзины переложили в ящик 10 яблок, в ящике их стало в 5 раз больше, чем в корзине. Сколько яблок было в корзине, а сколько в ящике?

    В первую очередь нужно определить, что мы примем за «х», в данной задаче можно принять и ящики, и корзины, но я возьму яблоки в корзине.

    Значит, пусть в корзине было x яблок, так как в ящике яблок было в два раза больше, то возьмем это за 2х. После того, как  из корзины яблоки переложили в ящик в корзине яблок стало: х — 10,  а значит, в ящике стало — (2х + 10) яблок.

    Теперь можно составить уравнение:

    5(х-10) — в ящике стало в 5 раз больше яблок, чем в корзине.

    Приравняем первое значение и второе:

    2x+10 = 5(x-10) и решаем:

    2х + 10 = 5х — 50

    2х — 5х = -50 — 10

    -3х = -60

    х = -60/-3 = 20 (яблок) — в корзине

    Теперь, зная сколько яблок было в корзине, найдем сколько яблок было в ящике — так как их было в два раза больше, то просто результат умножим на 2:

    2*20 = 40 (яблок) — в ящике

    Ответ:  в ящике — 40 яблок, а в корзине — 20 яблок.

    Я понимаю, что многие из вас, возможно, не до конца разобрались в решении задач, но уверяю к этой теме мы вернемся и еще не раз на наших уроках, а пока если у вас остались вопросы — задавайте их в комментариях.

    Под конец еще несколько примеров на решения уравнений

    Пример №6 \( 2x — 0,7x = 0 \)

    \( 1,3x = 0 \)

    \( x=0/1,3 \)

    \( x = 0 \)

    Пример №7 \( 3p — 1 -(p+3) = 1 \)

    \( 3p-1-p-3=1 \)

    \( 3p-p=1+1+3 \)

    \( 2p=5 \)

    \( p=5/2 \)

    \( p=2,5 \)

    Пример №8 \( 6y-(y-1) = 4+5y \)

    \( 6y-y+1=4+5y \)

    \( 6y-y-5y=4-1 \)

    \( 0y=3 \) — корней нет, т.к. на ноль делить нельзя!

     

    Всем спасибо за внимание. Если что-то непонятно спрашивайте в комментариях.

     

     

    В вашем браузере отключен Javascript.
    Чтобы произвести расчеты, необходимо разрешить элементы ActiveX!