Решить уравнение x в квадрате x: решите уравнение x в квадрате-х=0

Содержание

решите уравнение х в квадрате

Вы искали решите уравнение х в квадрате? На нашем сайте вы можете получить ответ на любой математический вопрос здесь. Подробное решение с описанием и пояснениями поможет вам разобраться даже с самой сложной задачей и решить уравнение х в квадрате равно х, не исключение. Мы поможем вам подготовиться к домашним работам, контрольным, олимпиадам, а так же к поступлению в вуз. И какой бы пример, какой бы запрос по математике вы не ввели — у нас уже есть решение. Например, «решите уравнение х в квадрате».

Применение различных математических задач, калькуляторов, уравнений и функций широко распространено в нашей жизни. Они используются во многих расчетах, строительстве сооружений и даже спорте. Математику человек использовал еще в древности и с тех пор их применение только возрастает. Однако сейчас наука не стоит на месте и мы можем наслаждаться плодами ее деятельности, такими, например, как онлайн-калькулятор, который может решить задачи, такие, как решите уравнение х в квадрате,решить уравнение х в квадрате равно х.

На этой странице вы найдёте калькулятор, который поможет решить любой вопрос, в том числе и решите уравнение х в квадрате. Просто введите задачу в окошко и нажмите «решить» здесь (например, решите уравнение х в квадрате).

Где можно решить любую задачу по математике, а так же решите уравнение х в квадрате Онлайн?

Решить задачу решите уравнение х в квадрате вы можете на нашем сайте https://pocketteacher.ru. Бесплатный онлайн решатель позволит решить онлайн задачу любой сложности за считанные секунды. Все, что вам необходимо сделать — это просто ввести свои данные в решателе. Так же вы можете посмотреть видео инструкцию и узнать, как правильно ввести вашу задачу на нашем сайте. А если у вас остались вопросы, то вы можете задать их в чате снизу слева на странице калькулятора.

11.3.4. Решение показательных уравнений, приводящихся к квадратным уравнениям.

Автор Татьяна Андрющенко На чтение 2 мин. Просмотров 193 Опубликовано

Многие показательные уравнения заменой переменной сводятся к квадратному уравнению вида: ax2+bx+c=0.

Примеры.

Решить уравнение:

1) 4x+2x+1-3=0. Представим 4x в виде степени с основанием 2.

(22)x+2x∙21-3=0; при возведении степени в степень основание оставляют, а показатели перемножают: 2·х=х·2, поэтому:

(2x)2+2∙2x-3=0;

вводим новую переменную: пусть 2x=y;

y2+2y-3=0.

Дискриминант для четного второго коэффициента: D1=12-1∙(-3)=1+3=4=22 – полный квадрат, поэтому применим теорему Виета: сумма корней приведенного квадратного уравнения равна второму коэффициенту, взятому с противоположным знаком, а произведение корней равно свободному члену.

y1+y2=-2, y1∙y2=-3. Подбираем корни: y1=-3, y2=1.

Возвращаемся к переменной х:

1) 2x=-3, нет решений, так как значения показательной функции: Е(у)=(0; +∞). (только положительные числа).

2) 2x=1. Число 1 можно представлять в виде нулевой степени по любому основанию.

2x=

20;

x=0.

Ответ: 0.

2) 0,252x-5∙0,52x+4=0.  Решаем аналогично. Представляем 0,252xв виде степени с основанием 0,5.

(0,52)2x-5∙0,52x+4=0;

(0,52x)2-5∙0,52x+4=0.

0,52x=y; ввели новую переменную у и получили приведенное квадратное уравнение:

y25y+4=0;

Дискриминант D=b2-4ac=52-4∙1∙4=25-16=9=32 — полный квадрат, применяем теорему Виета: сумма корней приведенного квадратного уравнения равна второму коэффициенту, взятому с противоположным знаком, а произведение корней равно свободному члену.

y1+y2=5, y1+y2=4. Корни приведенного квадратного уравнения находим подбором: y1=1, y2=4 и возвращаемся к переменной х:

1) 0,52x=1; число 1 можно представлять в виде нулевой степени по любому основанию.

0,52x=0,50;

2x=0;

x=0.

2) 0,52x=4; приведем степень  0,52 к основанию 2, применив формулу:   (1/a)

=а-х 

(1/2)2x=22;

2-2x=22; приравниваем показатели:

— 2x=2 |:(-2)

x=-1.

Ответ: -1; 0.

Представим левую и правую части в виде степеней с основанием 4, используя формулы: а=1/ax  и  ax∙ay=ax+y .

Если равны две степени с одинаковыми основаниями, то основания можно опустить и приравнять показатели степеней. Переносим дробь из правой части равенства в левую и упрощаем левую часть.

Находим дискриминант приведенного квадратного уравнения. Дискриминант является квадратом целого числа, поэтому, подбираем корни, пользуясь теоремой Виета:  сумма корней приведенного квадратного уравнения равна второму коэффициенту, взятому с противоположным знаком, а произведение корней равно свободному члену.

Уравнения в целых числах (диофантовы уравнения) / math5school.ru

 

 

Немного теории

Уравнения в целых числах – это алгебраические уравнения с двумя или более неизвестными переменными и целыми коэффициентами. Решениями такого уравнения являются все целочисленные (иногда натуральные или рациональные) наборы значений неизвестных переменных, удовлетворяющих этому уравнению. Такие уравнения ещё называют

диофантовыми, в честь древнегреческого математика Диофанта Александрийского, который исследовал некоторые типы таких уравнений ещё до нашей эры.

Современной постановкой диофантовых задач мы обязаны французскому математику Ферма. Именно он поставил перед европейскими математиками вопрос о решении неопределённых уравнений только в целых числах. Наиболее известное уравнение в целых числах – великая теорема Ферма: уравнение

xn + yn = zn

не имеет ненулевых рациональных решений для всех натуральных n > 2.

Теоретический интерес к уравнениям в целых числах достаточно велик, так как эти уравнения тесно связаны со многими проблемами теории чисел.

В 1970 году ленинградский математик Юрий Владимирович Матиясевич доказал, что общего способа, позволяющего за конечное число шагов решать в целых числах произвольные диофантовы уравнения, не существует и быть не может. Поэтому следует для разных типов уравнений выбирать собственные методы решения.

При решении уравнений в целых и натуральных числах можно условно выделить следующие методы:

  • способ перебора вариантов;

  • применение алгоритма Евклида;

  • представление чисел в виде непрерывных (цепных) дробей;

  • разложения на множители;

  • решение уравнений в целых числах как квадратных (или иных) относительно какой-либо переменной;

  • метод остатков;

  • метод бесконечного спуска.

 

Задачи с решениями

1. Решить в целых числах уравнение x2 – xy – 2y

2 = 7.

Решение

Запишем уравнение в виде (x – 2y)(x + y) = 7.

Так как х, у – целые числа, то находим решения исходного уравнения, как решения следующих четырёх систем:

1) x – 2y = 7, x + y = 1;

2) x – 2y = 1, x + y = 7;

3) x – 2y = –7, x + y = –1;

4) x – 2y = –1, x + y = –7.

Решив эти системы, получаем решения уравнения: (3; –2), (5; 2), (–3; 2) и (–5; –2).

Ответ: (3; –2), (5; 2), (–3; 2), (–5; –2).

 

2. Решить в целых числах уравнение:

а) 20х + 12у = 2013;

б) 5х + 7у = 19;

в) 201х – 1999у = 12.

Решение

а) Поскольку при любых целых значениях х и у левая часть уравнения делится на два, а правая является нечётным числом, то уравнение не имеет решений в целых числах.

Ответ: решений нет.

 

б) Подберём сначала некоторое конкретное решение. В данном случае, это просто, например,

x0 = 1, y0 = 2.

Тогда

5x0 + 7y0 = 19,

откуда

5(х – x0) + 7(у – y0) = 0,

5(х – x0) = –7(у – y0).

Поскольку числа 5 и 7 взаимно простые, то

х – x0 = 7k, у – y0 = –5k.

Значит, общее решение:

х = 1 + 7k, у = 2 – 5k,

где k – произвольное целое число.

Ответ: (1+7k; 2–5k), где k – целое число.

 

в) Найти некоторое конкретное решение подбором в данном случае достаточно сложно. Воспользуемся алгоритмом Евклида для чисел 1999 и 201:

НОД(1999, 201) = НОД(201, 190) = НОД(190, 11) = НОД(11, 3) = НОД(3 , 2) = НОД(2, 1) = 1.

Запишем этот процесс в обратном порядке:

1 = 2 – 1 = 2 – (3 – 2) = 2·2 – 3 = 2· (11 – 3·3) – 3 = 2·11 – 7·3 = 2·11 – 7(190 – 11·17) =

= 121·11 – 7·190 = 121(201 – 190) – 7·190 = 121·201 – 128·190 =

= 121·201 – 128(1999 – 9·201) = 1273·201 – 128·1999.

Значит, пара (1273, 128) является решением уравнения 201х – 1999у = 1. Тогда пара чисел

x0 = 1273·12 = 15276, y0 = 128·12 = 1536

является решением уравнения 201х – 1999у = 12.

Общее решение этого уравнения запишется в виде

х = 15276 + 1999k, у = 1536 + 201k, где k – целое число,

или, после переобозначения (используем, что 15276 = 1283 + 7·1999, 1536 = 129 + 7·201),

х = 1283 + 1999n, у = 129 + 201n, где n – целое число.

Ответ: (1283+1999n, 129+201n), где n – целое число.

 

3. Решить в целых числах уравнение:

а) x3 + y3 = 3333333;

б) x3 + y3 = 4(x2y + xy2 + 1).

Решение

а) Так как x3 и y3 при делении на 9 могут давать только остатки 0, 1 и 8 (смотрите таблицу в разделе «Делимость целых чисел и остатки»), то x3 + y3 может давать только остатки 0, 1, 2, 7 и 8. Но число 3333333 при делении на 9 даёт остаток 3. Поэтому исходное уравнение не имеет решений в целых числах.

Ответ: целочисленных решений нет.

 

б) Перепишем исходное уравнение в виде (x + y)3 = 7(x2y + xy2) + 4. Так как кубы целых чисел при делении на 7 дают остатки 0, 1 и 6, но не 4, то уравнение не имеет решений в целых числах.

Ответ: целочисленных решений нет.

 

4. Решить

а) в простых числах уравнение х2 – 7х – 144 = у2 – 25у;

б) в целых числах уравнение x + y = x2 – xy + y2.

Решение

а) Решим данное уравнение как квадратное относительно переменной у. Получим

у = х + 9 или у = 16 – х.

Поскольку при нечётном х число х + 9 является чётным, то единственной парой простых чисел, которая удовлетворяет первому равенству, является (2; 11).

Так как х, у – простые, то из равенства у = 16 – х имеем

2 х 16, 2 у 16.

С помощью перебора вариантов находим остальные решения: (3; 13), (5; 11), (11; 5), (13; 3).

Ответ: (2; 11), (3; 13), (5; 11), (11; 5), (13; 3).

 

б) Рассмотрим данное уравнение как квадратное уравнение относительно x:

x2 – (y + 1)x + y2 – y = 0. 

Дискриминант этого уравнения равен –3y2 + 6y + 1. Он положителен лишь для следующих значений у: 0, 1, 2. Для каждого из этих значений из исходного уравнения получаем квадратное уравнение относительно х, которое легко решается.

Ответ: (0; 0), (0; 1), (1; 0), (1; 2), (2; 1), (2; 2).

 

5. Существует ли бесконечное число троек целых чисел x, y, z таких, что x2 + y2 + z2 = x3 + y3 + z3 ?

Решение

Попробуем подбирать такие тройки, где у = –z. Тогда y3 и z3 будут всегда взаимно уничтожаться, и наше уравнение будет иметь вид

x2 + 2y2 = x3

или, иначе,

x2(x–1) = 2y2.

Чтобы пара целых чисел (x; y) удовлетворяла этому условию, достаточно, чтобы число x–1 было удвоенным квадратом целого числа. Таких чисел бесконечно много, а именно, это все числа вида 2n2+1. Подставляя в x2(x–1) = 2y2 такое число, после несложных преобразований получаем:

y = xn = n(2n2+1) = 2n3+n.

Все тройки, полученные таким образом, имеют вид (2n2+1; 2n3+n; –2n3– n).

Ответ: существует.

 

6. Найдите такие целые числа x, y, z, u, что x2 + y2 + z2 + u2 = 2xyzu.

Решение

Число x2 + y2 + z2 + u2 чётно, поэтому среди чисел x, y, z, u чётное число нечётных чисел.

Если все четыре числа x, y, z, u нечётны, то x2 + y2 + z2 + u2 делится на 4, но при этом 2xyzu не делится на 4 – несоответствие.

Если ровно два из чисел x, y, z, u нечётны, то x2 + y2 + z2 + u2 не делится на 4, а 2xyzu делится на 4 – опять несоответствие.

Поэтому все числа x, y, z, u чётны. Тогда можно записать, что

x = 2x1, y = 2y1, z = 2z1, u = 2u1,

и исходное уравнение примет вид

x12 + y12 + z12 + u12 = 8x1y1z1u1.

Теперь заметим, что (2k + 1)2 = 4k(k + 1) + 1 при делении на 8 даёт остаток 1. Поэтому если все числа x1, y1, z1, u1 нечётны, то x12 + y12 + z12 + u12 не делится на 8. А если ровно два из этих чисел нечётно, то x12 + y12 + z12 + u12 не делится даже на 4. Значит,

x1 = 2x2, y1 = 2y2, z1 = 2z2, u1 = 2u2,

и мы получаем уравнение

x22 + y22 + z22 + u22 = 32x2y2z2u2.

Снова повторив те же самые рассуждения, получим, что x, y, z, u делятся на 2n при всех натуральных n, что возможно лишь при x = y = z = u = 0.

Ответ: (0; 0; 0; 0).

 

7. Докажите, что уравнение

(х – у)3 + (y – z)3 + (z – x)3 = 30

не имеет решений в целых числах.

Решение

Воспользуемся следующим тождеством:

(х – у)3 + (y – z)3 + (z – x)3 = 3(х – у)(y – z)(z – x).

Тогда исходное уравнение можно записать в виде

(х – у)(y – z)(z – x) = 10.

Обозначим a = x – y, b = y – z, c = z – x и запишем полученное равенство в виде

abc = 10.

Кроме того очевидно, a + b + c = 0. Легко убедиться, что с точностью до перестановки из равенства abc = 10 следует, что числа |a|, |b|, |c| равны либо 1, 2, 5, либо 1, 1, 10. Но во всех этих случаях при любом выборе знаков a, b, c сумма a + b + c отлична от нуля. Таким образом, исходное уравнение не имеет решений в целых числах.

 

8. Решить в целых числах уравнение 1! + 2! + . . . + х! = у2.

Решение

Очевидно, что

если х = 1, то у2 = 1,

если х = 3, то у2 = 9.

Этим случаям соответствуют следующие пары чисел:

х1 = 1, у1 = 1;

х2 = 1, у2 = –1;

х3 = 3, у3 = 3;

х4 = 3, у4 = –3.

Заметим, что при х = 2 имеем 1! + 2! = 3, при х = 4 имеем 1! + 2! + 3! + 4! = 33 и ни 3, ни 33 не являются квадратами целых чисел. Если же х > 5, то, так как

5! + 6! + . . . + х! = 10n,

можем записать, что

1! + 2! + 3! + 4! + 5! + . . . + х! = 33 + 10n.

Так как 33 + 10n – число, оканчивающееся цифрой 3, то оно не является квадратом целого числа.

Ответ: (1; 1), (1; –1), (3; 3), (3; –3).

 

9. Решите следующую систему уравнений в натуральных числах:

a3 – b3 – c3 = 3abc,  a2 = 2(b + c).

Решение

Так как

3abc > 0, то a3 > b3 + c3;

таким образом имеем

b

Складывая эти неравенства, получим, что

b + c

С учётом последнего неравенства, из второго уравнения системы получаем, что

a2

Но второе уравнение системы также показывает, что а – чётное число. Таким образом, а = 2, b = c = 1.

Ответ: (2; 1; 1)

 

10. Найти все пары целых чисел х и у, удовлетворяющих уравнению х2 + х = у4 + у3 + у2 + у.

Решение

Разложив на множители обе части данного уравнения, получим:

х(х + 1) = у(у + 1)(у2 + 1),

или

х(х + 1) = (у2 + у)(у2 + 1)

Такое равенство возможно, если левая и правая части равны нулю, или представляют собой произведение двух последовательных целых чисел. Поэтому, приравнивая к нулю те или иные множители, получим 4 пары искомых значений переменных:

х1 = 0, у1 = 0;

х2 = 0, у2 = –1;

х3 = –1, у3 = 0;

х4 = –1, у4 = –1.

Произведение (у2 + у)(у2 + 1) можно рассматривать как произведение двух последовательных целых чисел, отличных от нуля, только при у = 2. Поэтому х(х + 1) = 30, откуда х5 = 5, х6 = –6. Значит, существуют ещё две пары целых чисел, удовлетворяющих исходному уравнению:

х5 = 5, у5 = 2;

х6 = –6, у6 = 2.

Ответ: (0; 0), (0; –1), (–1; 0), (–1; –1), (5; 2), (–6; 2.)

 

Задачи без решений

1. Решить в целых числах уравнение:

а) ху = х + у + 3;

б) х2 + у2 = х + у + 2.

 

2. Решить в целых числах уравнение:

а) х3 + 21у2 + 5 = 0;

б) 15х2 – 7у2 = 9.

 

3. Решить в натуральных числах уравнение:

а) 2х + 1 = у2;

б) 3·2х + 1 = у2.

 

4. Доказать, что уравнение х3 + 3у3 + 9z3 = 9xyz в рациональных числах имеет единственное решение

x = y = z = 0.

 

5. Доказать, что уравнение х2 + 5 = у3 в целых числах не имеет решений.

 

Способы решения квадратных уравнений | Статья в журнале «Юный ученый»



Наш проект посвящен способам решения квадратных уравнений. Цель проекта: научиться решать квадратные уравнения способами, не входящими в школьную программу. Задача: найти все возможные способы решения квадратных уравнений и научиться их использовать самим и познакомить одноклассников с этими способами.

Что же такое «квадратные уравнения»?

Квадратное уравнение — уравнение вида ax2+ bx + c = 0, где a, b, c — некоторые числа (a ≠ 0), x — неизвестное.

Числа a, b,c называются коэффициентами квадратного уравнения.

  • a называется первым коэффициентом;
  • b называется вторым коэффициентом;
  • c — свободным членом.

А кто же первый «изобрёл» квадратные уравнения?

Некоторые алгебраические приемы решения линейных и квадратных уравнений были известны еще 4000 лет назад в Древнем Вавилоне. Найденные древние вавилонские глиняные таблички, датированные где-то между 1800 и 1600 годами до н. э., являются самыми ранними свидетельствами об изучении квадратных уравнений. На этих же табличках изложены методы решения некоторых типов квадратных уравнений.

Необходимость решать уравнения не только первой, но и второй степени еще в древности была вызвана потребностью решать задачи, связанные с нахождением площадей земельных участков и с земляными работами военного характера, а также с развитием астрономии и самой математики.

Правило решения этих уравнений, изложенное в вавилонских текстах, совпадает по существу с современным, однако неизвестно, каким образом дошли вавилоняне до этого правила. Почти все найденные до сих пор клинописные тексты приводят только задачи с решениями, изложенными в виде рецептов, без указаний относительно того, каким образом они были найдены. Несмотря на высокий уровень развития алгебры в Вавилоне, в клинописных текстах отсутствуют понятие отрицательного числа и общие методы решения квадратных уравнений.

Вавилонские математики примерно с IV века до н. э. использовали метод дополнения квадрата для решения уравнений с положительными корнями. Около 300 года до н.э. Эвклид придумал более общий геометрический метод решения. Первым математиком, который нашел решения уравнения с отрицательными корнями в виде алгебраической формулы, был индийский ученый Брахмагупта (Индия, VII столетие нашей эры).

Брахмагупта изложил общее правило решения квадратных уравнений, приведенных к единой канонической форме:

ax2 + bх = с, а>0

В этом уравнении коэффициенты, могут быть и отрицательными. Правило Брахмагупты по существу совпадает с нашим.

В Индии были распространены публичные соревнования в решении трудных задач. В одной из старинных индийских книг говорится по поводу таких соревнований следующее: «Как солнце блеском своим затмевает звезды, так ученый человек затмит славу в народных собраниях, предлагая и решая алгебраические задачи». Задачи часто облекались в стихотворную форму.

В алгебраическом трактате Аль-Хорезми дается классификация линейных и квадратных уравнений. Автор насчитывает 6 видов уравнений, выражая их следующим образом:

1) «Квадраты равны корням», т. е. ах2 = bх.

2) «Квадраты равны числу», т. е. ах2 = с.

3) «Корни равны числу», т. е. ах2 = с.

4) «Квадраты и числа равны корням», т. е. ах2 + с = bх.

5) «Квадраты и корни равны числу», т. е. ах2 + bх =с.

6) «Корни и числа равны квадратам», т. е. bх + с == ах2.

Для Аль-Хорезми, избегавшего употребления отрицательных чисел, члены каждого из этих уравнений слагаемые, а не вычитаемые. При этом заведомо не берутся во внимание уравнения, у которых нет положительных решений. Автор излагает способы решения указанных уравнений, пользуясь приемами ал-джабр и ал-мукабала. Его решение, конечно, не совпадает полностью с нашим. Уже не говоря о том, что оно чисто риторическое, следует отметить, например, что при решении неполного квадратного уравнения первого вида Аль-Хорезми, как и все математики до XVII в., не учитывает нулевого решения, вероятно, потому, что в конкретных практических задачах оно не имеет значения. При решении полных квадратных уравнений Аль-Хорезми на частных числовых примерах излагает правила решения, а затем их геометрические доказательства.

Формы решения квадратных уравнений по образцу Аль-Хорезми в Европе были впервые изложены в «Книге абака», написанной в 1202г. итальянским математиком Леонардом Фибоначчи. Автор разработал самостоятельно некоторые новые алгебраические примеры решения задач и первый в Европе подошел к введению отрицательных чисел.

Эта книга способствовала распространению алгебраических знаний не только в Италии, но и в Германии, Франции и других странах Европы. Многие задачи из этой книги переходили почти во все европейские учебники XIV-XVII вв. Общее правило решения квадратных уравнений, приведенных к единому каноническому виду x2 + bх = с при всевозможных комбинациях знаков и коэффициентов b, c, было сформулировано в Европе в 1544 г. М. Штифелем.

Вывод формулы решения квадратного уравнения в общем виде имеется у Виета, однако Виет признавал только положительные корни. Итальянские математики Тарталья,Кардано, Бомбелли среди первых в XVI в. учитывают, помимо положительных, и отрицательные корни. Лишь в XVII в. благодаря трудам Жирара, Декарта, Ньютона и других ученых способ решения квадратных уравнений принимает современный вид.

Рассмотрим несколько способов решения квадратных уравнений.

Стандартные способы решения квадратных уравнений из школьной программы:

  1. Разложение левой части уравнения на множители.
  2. Метод выделения полного квадрата.
  3. Решение квадратных уравнений по формуле.
  4. Графическое решение квадратного уравнения.
  5. Решение уравнений с использованием теоремы Виета.

Остановимся подробнее на решение приведенных и не приведенных квадратных уравнений по теореме Виета.

Напомним, что для решения приведенных квадратных уравнений достаточно найти два числа такие, произведение которых равно свободному члену, а сумма — второму коэффициенту с противоположным знаком.

Пример.x2-5x+6=0

Нужно найти числа, произведение которых равно 6, а сумма 5. Такими числами будут 3 и 2.

Ответ: x1=2, x2=3.

Но можно использовать этот способ и для уравнений с первым коэффициентом не равным единице.

Пример.3x2+2x-5=0

Берём первый коэффициент и умножаем его на свободный член: x2+2x-15=0

Корнями этого уравнения будут числа, произведение которых равно — 15, а сумма равна — 2. Эти числа — 5 и 3. Чтобы найти корни исходного уравнения, полученные корни делим на первый коэффициент.

Ответ: x1=-5/3, x2=1

6. Решение уравнений способом «переброски».

Рассмотрим квадратное уравнение ах2 + bх + с = 0, где а≠0.

Умножая обе его части на а, получаем уравнение а2х2 + аbх + ас = 0.

Пусть ах = у, откуда х = у/а; тогда приходим к уравнению у2 + by + ас = 0, равносильному данному. Его корни у1 и у2 найдем с помощью теоремы Виета.

Окончательно получаем х1 = у1/а и х2 = у2/а.

При этом способе коэффициент a умножается на свободный член, как бы «перебрасывается» к нему, поэтому его называют способом «переброски». Этот способ применяют, когда можно легко найти корни уравнения, используя теорему Виета и, что самое важное, когда дискриминант есть точный квадрат.

Пример.2 — 11х + 15 = 0.

«Перебросим» коэффициент 2 к свободному члену и сделав замену получим уравнение у2 — 11у + 30 = 0.

Согласно обратной теореме Виета

у1 = 5, х1 = 5/2, х1=2,5 ;у2 = 6, x2 = 6/2, x2 = 3.

Ответ: х1=2,5; х2= 3.

7. Свойства коэффициентов квадратного уравнения.

Пусть дано квадратное уравнение ах2 + bх + с = 0, а ≠ 0.

1. Если a+ b + с = 0 (т.е. сумма коэффициентов уравнения равна нулю), то х1 = 1.

2. Если а — b + с = 0, или b = а + с, то х1 = — 1.

Пример.345х2 — 137х — 208 = 0.

Так как а + b + с = 0 (345 — 137 — 208 = 0), то х1 = 1, х2 = -208/345.

Ответ: х1=1; х2 = -208/345 .

Пример.132х2 + 247х + 115 = 0

Т.к. a-b+с = 0 (132 — 247 +115=0), то х1= — 1, х2= — 115/132

Ответ: х1= — 1; х2=- 115/132

Существуют и другие свойства коэффициентов квадратного уравнения. но ихиспользование более сложное.

8. Решение квадратных уравнений с помощью номограммы.

Рис 1. Номограмма

Это старый и в настоящее время забытый способ решения квадратных уравнений, помещенный на с.83 сборника: Брадис В.М. Четырехзначные математические таблицы. — М., Просвещение, 1990.

Таблица XXII. Номограмма для решения уравнения z2 + pz + q = 0. Эта номограмма позволяет, не решая квадратного уравнения, по его коэффициентам определить корни уравнения.

Криволинейная шкала номограммы построена по формулам (рис. 1):

ОВ =AB =

Полагая ОС = р, ED = q, ОЕ = а (все в см), из рис.1 подобия треугольников САН и CDF получим пропорцию

откуда после подстановок и упрощений вытекает уравнение z2 + pz + q = 0, причем буква z означает метку любой точки криволинейной шкалы.

Рис. 2 Решение квадратных уравнения с помощью номограммы

Примеры.

1) Для уравнения z2 — 9z + 8 = 0 номограмма дает корни z1 = 8,0 и z2 = 1,0

Ответ:8,0; 1,0.

2) Решим с помощью номограммы уравнение

2z2 — 9z + 2 = 0.

Разделим коэффициенты этого уравнения на 2, получим уравнение z2 — 4,5z + 1 = 0.

Номограмма дает корни z1 = 4 и z2 = 0,5.

Ответ: 4; 0,5.

9. Геометрический способ решения квадратных уравнений.

Пример.х2 + 10х = 39.

В оригинале эта задача формулируется следующим образом: «Квадрат и десять корней равны 39».

Рассмотрим квадрат со стороной х, на его сторонах строятся прямоугольники так, что другая сторона каждого из них равна 2,5, следовательно, площадь каждого равна 2,5x. Полученную фигуру дополняют затем до нового квадрата АВСD, достраивая в углах четыре равных квадрата, сторона каждого из них 2,5, а площадь 6,25

Рис. 3 Графический способ решения уравнения х2 + 10х = 39

Площадь S квадрата ABCD можно представить как сумму площадей: первоначального квадрата х2, четырех прямоугольников (4∙2,5x = 10х) и четырех пристроенных квадратов (6,25∙ 4 = 25) , т.е. S = х2 + 10х = 25. Заменяя х2 + 10х числом 39, получим что S = 39+ 25 = 64, откуда следует, что сторона квадрата АВСD, т.е. отрезок АВ = 8. Для искомой стороны х первоначального квадрата получим

10. Решение уравнений с использованием теоремы Безу.

Теорема Безу. Остаток от деления многочлена P(x) на двучлен x — α равен P(α) (т.е. значению P(x) при x = α).

Если число α является корнем многочлена P(x), то этот многочлен делится на x -α без остатка.

Пример.х²-4х+3=0

Р(x)= х²-4х+3, α: ±1,±3, α =1, 1-4+3=0. Разделим Р(x) на (х-1):(х²-4х+3)/(х-1)=х-3

х²-4х+3=(х-1)(х-3), (х-1)(х-3)=0

х-1=0; х=1, или х-3=0, х=3; Ответ: х1=2, х2=3.

Вывод: Умение быстро и рационально решать квадратные уравнения просто необходимо для решения более сложных уравнений, например, дробно-рациональных уравнений, уравнений высших степеней, биквадратных уравнений, а в старшей школе тригонометрических, показательных и логарифмических уравнений. Изучив все найденные способы решения квадратных уравнений, мы можем посоветовать одноклассникам, кроме стандартных способов, решение способом переброски (6) и решение уравнений по свойству коэффициентов (7), так как они являются более доступными для понимания.

Литература:

  1. Брадис В.М. Четырехзначные математические таблицы. — М., Просвещение, 1990.
  2. Алгебра 8 класс: учебник для 8 кл. общеобразоват. учреждений Макарычев Ю. Н., Миндюк Н. Г., Нешков К. И., Суворова С. Б. под ред. С. А. Теляковского 15-е изд., дораб. — М.: Просвещение, 2015
  3. https://ru.wikipedia.org/wiki/%D0%9A%D0%B2%D0%B0%D0%B4%D1%80%D0%B0%D1%82%D0%BD%D0%BE%D0%B5_%D1%83%D1%80%D0%B0%D0%B2%D0%BD%D0%B5%D0%BD%D0%B8%D0%B5
  4. Глейзер Г.И. История математики в школе. Пособие для учителей. / Под ред. В.Н. Молодшего. — М.: Просвещение, 1964.

Основные термины (генерируются автоматически): уравнение, квадратное уравнение, свободный член, решение уравнений, корень, число, способ решения, квадрат, коэффициент, решение.

Неполные квадратные уравнения. Примеры и решение

Неполное квадратное уравнение – это уравнение вида

ax2 + bx + c = 0,

в котором хотя бы один из коэффициентов  b  или  c  равен нулю. Следовательно, неполное квадратное уравнение может иметь вид:

ax2 + bx = 0,   если   c = 0;
ax2 + c = 0,   если   b = 0;
ax2 = 0,   если   b = 0   и   c = 0.

Решение неполных квадратных уравнений

Чтобы решить уравнение вида  ax2 + bx = 0,  надо разложить левую часть уравнения на множители, вынеся  x  за скобки:

x(ax + b) = 0.

Произведение может быть равно нулю только в том случае, если один из множителей равен нулю, значит:

x = 0   или   ax + b = 0.

Чтобы  ax + b  было равно нулю, нужно, чтобы

Следовательно, уравнение  ax2 + bx = 0  имеет два корня:

x1 = 0   и   x2 = —b .
a

Неполные квадратные уравнения вида  ax2 + bx = 0,  где  b ≠ 0,  решаются разложением левой части на множители. Такие уравнения всегда имеют два корня, один из которых равен нулю.

Пример 1. Решите уравнение:

a2 — 12a = 0.

Решение:

a2 — 12a = 0
a(a — 12) = 0
a1 = 0      a — 12 = 0
a2 = 12

Пример 2. Решите уравнение:

7x2 = x.

Решение:

7x2 = x
7x2x = 0
x(7x — 1) = 0
x1 = 0      7x — 1 = 0 
7x = 1 

Чтобы решить уравнение вида  ax2 + c = 0,  надо перенести свободный член уравнения  c  в правую часть:

ax2 = —c,   следовательно,   x2 = —c .
a

В этом случае уравнение не будет иметь корней, так как квадратный корень нельзя извлечь из отрицательного числа.

Если данное неполное уравнение будет иметь вид  x2 — c = 0,  то сначала опять переносим свободный член в правую часть и получаем:

x2 = c.

В этом случае уравнение будет иметь два противоположных корня:

x1 = +√c ,     x2 = -√c .

Неполное квадратное уравнение вида  ax2 + c = 0,  где  c ≠ 0,  либо не имеет корней, либо имеет два корня, которые являются противоположными числами.

Пример 1. Решите уравнение:

24 = 2y2.

Решение:

24 = 2y2
24 — 2y2 = 0
-2y2 = -24
y2 = 12
y1 = +√12      y2 = -√12

Пример 2. Решите уравнение:

b2 — 16 = 0.

Решение:

b2 — 16 = 0
b2 = 16
b1 = 4      b2 = -4

Уравнение вида  ax2 = 0  всегда имеет только один корень:  x = 0.{k} a_{k}$ равно сумме всех возможных произведений из $k$ корней.

Формулы Виета — формулы, выражающие коэффициенты многочлена через его корни. Названы в честь французского математика Франсуа Виета (1540 — 1603).

Если старший коэффициент многочлена $a_{0} \neq 1$, то есть многочлен не является приведенным, то для применения формулы Виета необходимо предварительно разделить все коэффициенты на $a_{0}$ (это не влияет на значение корней многочлена). В этом случае формулы Виета дают выражение для отношений всех коэффициентов к старшему. Из последней формулы Виета следует, что если корни многочлена целочисленные, то они являются делителями его свободного члена, который также целочисленен.

Этими формулами удобно пользоваться для проверки правильности нахождения корней многочлена, а также для составления многочлена по заданным корням.

Задача №1256 (построение уравнения регрессии)

По семи территориям Уральского федерального округа за 2006 г. известны значения двух признаков:

Исходные данные:

Номер региона Регион Расходы на покупку продовольственных товаров в общих расходах, %, y Среднедневная заработная плата одного работающего, усл. ед., x
1 Удмуртская область 68,8 45,1
2 Свердловская область 61,2 59,0
3 Башкортостан 59,9 57,2
4 Челябинская область 56,7 61,8
5 Пермский край 55,0 58,8
6 Курганская область 54,3 47,2
7 Оренбургская область 49,3 55,2

Каким видом задается уравнение линейной регрессии, характеризующей зависимость расходов на покупку продовольственных товаров в общих расходах?

Рекомендуемые задачи по дисциплине

Решение задачи:

Заполняем вспомогательную таблицу:

x y y*x x2 y2
1 45,1 68,8 3102,88 2034,01 4733,44
2 59,0 61,2 3610,80 3481,00 3745,44
3 57,2 59,9 3426,28 3271,84 3588,01
4 61,8 56,7 3504,06 3819,24 3214,89
5 58,8 55,0 3234,00 3457,44 3025,00
6 47,2 54,3 2562,96 2227,84 2948,49
7 55,2 49,3 2721,36 3047,04 2430,49
Итого 384,3 405,2 22162,34 21338,41 23685,76

Решение квадратных уравнений: выбор метода

Purplemath

Когда вы решаете квадратные уравнения в своем домашнем задании, вы часто можете получить «подсказку» относительно лучшего метода, основанного на теме и заголовке раздела. Например, если вы работаете над домашним заданием в разделе «Решение с помощью факторинга», то вы знаете, что должны решать с помощью факторинга.Но в обзоре главы и на тесте вы не знаете, из какого раздела вашего учебника была взята та или иная квадратичная диаграмма. Какой метод лучше использовать?

Вы можете использовать квадратичную формулу для всего, но формула может занять много времени.

Например:

MathHelp.com

  • Решить (
    x + 1) ( x — 3) = 0.

Чтобы решить это квадратное уравнение, я мог бы перемножить выражение в левой части, упростить поиск коэффициентов, вставить эти значения коэффициентов в квадратную формулу и перейти к ответу.

Но зачем мне это? Я имею в виду, ради всего святого, это факторинг, и они уже учли его и установили для меня равным нулю. Хотя квадратичная формула определенно дала бы мне правильный ответ, зачем с ней возиться?

Вместо этого я сразу решу два фактора, которые они мне дали:

( x + 1) ( x — 3) = 0

x + 1 = 0, x — 3 = 0

x = –1, x = 3

Это было быстро! И мой ответ:


Кстати, строгого порядка решений нет.Да, я обычно размещаю свои решения в числовом порядке, поэтому в приведенном выше случае отрицательный ответ предшествовал положительному. Но, если ваш инструктор ничего не сказал (и я был бы удивлен, если бы это было так), приведенный выше ответ был бы столь же правильным, если бы он был написан как « x = 3, –1».


Квадратичное выражение в левой части знака «равно» не учитывается.

(Как я очень быстро это узнал? Для факторизации должны быть целые множители ac = (1) (- 4) = –4, что в сумме дает b = 1.Я вижу, что их нет.)

Эта квадратичная не была предоставлена ​​мне в «(переменная часть) 2 равно (некоторое число)», поэтому решение путем извлечения квадратных корней невозможно.

Я мог бы решить это уравнение, заполнив квадрат, но это утомительно и чревато ошибками. Я мог бы попробовать решить, построив график, но лучшее, что я смогу сделать, это получить десятичное приближение из моего «программного обеспечения» (то есть моего графического калькулятора).

Чтобы получить точный и быстрый ответ, я воспользуюсь квадратичной формулой:

Поскольку в инструкциях ничего не упоминается о десятичных приближениях, я оставлю свой ответ в форме квадратного корня:


  • Решить
    x 2 — 3 x — 4 = 0.

Это уравнение не настроено для меня как готовое к извлечению квадратного корня, и я никогда не воспользуюсь завершением квадрата, если мне не скажут об этом специально. Однако, прежде чем применять квадратичную формулу, я сначала быстро проверю, можно ли факторизовать выражение в левой части этого уравнения.

Существуют ли целые множители ac = (1) (- 4) = –4, которые в сумме дают –3? Да: –4 и +1.Таким образом, эта квадратичная величина факторизуема, и я уже нашел числа, которые можно использовать для ее разложения (поскольку ведущий коэффициент равен 1):

x 2 — 3 x — 4 = 0

( x + 1) ( x — 4) = 0

x + 1 = 0, x — 4 = 0

x = –1, x = 4

И я закончил, просто так быстро.Мой ответ:


Квадратичное выражение в левой части этого уравнения содержит только два члена, и ни один из них не вычитается, поэтому я не буду использовать простые методы разложения на множители. Но я замечаю, что это разница квадратов, и я знаю, что могу множить разницу квадратов.

x 2 — 4 = 0

( x + 2) ( x — 2) = 0

x + 2 = 0, x — 2 = 0

x = –2, x = 2

Тогда мой ответ:


Примечание: я мог бы переместить 4 в правую часть уравнения, а затем извлечь квадратный корень из любой стороны x 2 = 4.Этот метод дал бы мне тот же ответ, что и приведенный выше факторинг. Если не указано иное, вы должны использовать тот метод, который вам больше нравится.


  • Решить 6
    x 2 + 11 x — 35 = 0.

Ик.

Квадратичное выражение в левой части этого уравнения может разложить на множители , но похоже, что поиск факторизации, если таковая имеется, будет неприятным объемом работы.Сейчас я чувствую себя немного бездумным и ленивым, поэтому я воспользуюсь квадратичной формулой. Во время работы мне нужно не забывать ставить ± перед корнем и ставить черту дроби под всем числителем, так как это целая часть « b 2 ± (квадратный корень)»:

Значения решения представляют собой дроби без радикалов, что означает, что квадратичный мог быть разложен на множители. Но теперь у меня есть ответ, поэтому меня больше не волнует факторизация.


Это квадратное выражение состоит из двух членов и ничего не вычитает, так что либо это разница в квадратах (которую я могу разложить на множители), либо ее можно отформатировать как «(переменная часть) 2 равно (число)», чтобы я мог квадратный корень с обеих сторон. Поскольку 48 не является квадратом, я не могу применить формулу разности квадратов. Вместо этого мне придется извлекать квадратный корень из обеих сторон:

Итак, мой точный ответ:


Примечание: если вам специально не сказано предоставить десятичное приближение для решений, которые включают радикалы, вы должны предположить, что они хотят, чтобы вы дали «точную» форму ответа; то есть они хотят видеть эти квадратные корни.


В этом квадратичном выражении есть два члена, которые легко множить:

x 2 — 7 x = 0

x ( x -7) = 0

x = 0, x — 7 = 0

x = 0, x = 7

Мой ответ:


  • Найдите решения квадратичного уравнения, представленного в таблице ниже:

x -значение

–1

0

1

2

3

4

5

6

y -значение

16

9

4

1

0

1

4

9

Прежде чем я паникую, я думаю об одном методе «решения», который не включает в себя фактическое квадратное уравнение: решение с помощью графика.

Когда они хотят, чтобы я решил квадратное уравнение с помощью построения графиков, они на самом деле просят меня найти точки пересечения x соответствующей квадратичной функции . И под словом «найти» они подразумевают «с красивой картинки». Но дело в том, что они хотят, чтобы я отметил связь между ними и предоставил затем значения x , когда y = 0.

Я могу сделать это по картинке или по Т-образной диаграмме значений.В данном случае вместо графика мне дали таблицу. Есть две точки, у которых одна из координат равна нулю; а именно (0, 9) и (3, 0). Что из этого я хочу? Тот, у которого y = 0, это вторая из двух точек. И мое решение — соответствующее значение x .

Скорее всего, вы не увидите много, а может быть, и каких-либо других упражнений этого последнего типа.

Кстати, если вам интересно, почему было только одно решение этой квадратичной, это потому, что (предполагаемое и лежащее в основе) уравнение было ( x — 3) 2 = 0.Итак, одно решение было «повторено».


При решении квадратных уравнений в целом сначала перенесите все на одну сторону от знака «равно» (что-то, что уже было сделано в приведенных выше примерах). Затем сначала проверьте, есть ли очевидное факторинг или очевидное извлечение квадратного корня, которое вы можете сделать. Если нет, то обычно лучше прибегать к квадратичной формуле. Но не используйте квадратичную формулу для всего; хотя он всегда даст вам ответ — в конечном итоге — это не всегда самый быстрый метод.А скорость может иметь большое значение в ходе тестов по времени.


URL: https://www.purplemath.com/modules/solvquad6.htm

Решите квадратные уравнения x2-x = 12 Tiger Algebra Solver

Переформатирование ввода:

Изменения, внесенные в ваш ввод, не должны влиять на решение:

(1): «x2» было заменено на «x ^ 2».2-x- (12) = 0

Пошаговое решение:

Шаг 1:

Попытка разложить на множители путем разделения среднего члена

1.1 Факторинг x 2 -x-12

Первый член: x 2 его коэффициент равен 1.
Средний член, -x, его коэффициент -1.
Последний член, «константа», равен -12

Шаг-1: Умножьте коэффициент первого члена на константу 1 • -12 = -12

Шаг-2: Найдите два множителя -12, сумма которых равен коэффициенту среднего члена, который равен -1.

-12 + 1 =-11
-6 +-4 + 3 =-1 Вот и все


Шаг 3: Перепишите полиномиальное разбиение среднего члена, используя два фактора, найденные на шаге 2 выше, -4 и 3
x 2 — 4x + 3x — 12

Шаг 4: сложите первые 2 члена, вычитая одинаковые множители:
x • (x-4)
Складываем последние 2 члена, вычитая общее факторы:
3 • (x-4)
Шаг 5: сложите четыре члена шага 4:
(x + 3) • (x-4)
Какой желаемый факторизат ion

Уравнение в конце шага 1:
 (x + 3) • (x - 4) = 0
 

Шаг 2:

Теория — Корни продукта:

2.1 Произведение нескольких членов равно нулю.

Если произведение двух или более членов равно нулю, то хотя бы одно из членов должно быть равно нулю.

Теперь мы решим каждый член = 0 отдельно

Другими словами, мы собираемся решить столько уравнений, сколько членов есть в продукте

Любое решение для члена = 0 также решает продукт = 0.

 
Решение уравнения с одной переменной:

2.2 Решите: x + 3 = 0

Вычтем 3 из обеих частей уравнения:
x = -3

 
Решение уравнения с одной переменной:

2.3 Решите: x-4 = 0

Добавьте 4 к обеим сторонам уравнения:
x = 4

 

Дополнение: Решение квадратного уравнения напрямую

 Решение x  2  -x-12 = 0 напрямую 

Ранее мы разложили этот многочлен на множители, разделив средний член. Давайте теперь решим уравнение, заполнив квадрат и используя квадратичную формулу

Парабола, найдя вершину:

3.1 Найдите вершину y = x 2 -x-12

Параболы имеют наибольшее значение или самая низкая точка называется Вершиной.Наша парабола открывается и, соответственно, имеет самую низкую точку (также известную как абсолютный минимум). Мы знаем это даже до того, как нанесли «y», потому что коэффициент первого члена, 1, положительный (больше нуля).

Каждая парабола имеет вертикальную линию симметрии, проходящую через ее вершину. Из-за этой симметрии линия симметрии, например, будет проходить через середину двух x-точек пересечения (корней или решений) параболы. То есть, если парабола действительно имеет два реальных решения.

Параболы могут моделировать множество реальных жизненных ситуаций, например высоту над землей объекта, брошенного вверх через некоторый промежуток времени. Вершина параболы может предоставить нам информацию, например, максимальную высоту, которую может достичь объект, брошенный вверх. По этой причине мы хотим иметь возможность найти координаты вершины.

Для любой параболы Ax 2 + Bx + C координата x вершины задается как -B / (2A). В нашем случае координата x равна 0.5000

Подставляя в формулу параболы 0,5000 для x, мы можем вычислить координату y:
y = 1,0 * 0,50 * 0,50 — 1,0 * 0,50 — 12,0
или y = -12,250

Парабола, графическое отображение вершин и пересечения по оси X:

Корневой график для: y = x 2 -x-12
Ось симметрии (пунктирная линия) {x} = {0,50}
Вершина в точке {x, y} = {0,50, -12,25}
x -Переходы ( Корни):
Корень 1 при {x, y} = {-3.00, 0.00}
Корень 2 при {x, y} = {4.00, 0.00}

Решите квадратное уравнение, заполнив квадрат

3.2 Решение x 2 -x-12 = 0, завершив Квадрат.

Добавьте 12 к обеим сторонам уравнения:
x 2 -x = 12

Теперь умный бит: возьмите коэффициент при x, равный 1, разделите его на два, получив 1/2, и возведите его в квадрат. давая 1/4

Добавьте 1/4 к обеим частям уравнения:
В правой части мы имеем:
12 + 1/4 или, (12/1) + (1/4)
Общий знаменатель две дроби равны 4. Сложение (48/4) + (1/4) дает 49/4
Таким образом, сложив обе стороны, мы, наконец, получаем:
x 2 -x + (1/4) = 49/4

Сложение 1/4 превратила левую часть в полный квадрат:
x 2 -x + (1/4) =
(x- (1/2)) • (x- (1/2)) =
( x- (1/2)) 2
Вещи, которые равны одному и тому же, также равны друг другу.Так как
x 2 -x + (1/4) = 49/4 и
x 2 -x + (1/4) = (x- (1/2)) 2
то по закону транзитивности,
(x- (1/2)) 2 = 49/4

Мы будем называть это уравнение уравнением. # 3.2.1

Принцип квадратного корня гласит, что когда две вещи равны, их квадратные корни равны.

Обратите внимание, что квадратный корень из
(x- (1/2)) 2 равен
(x- (1/2)) 2/2 =
(x- (1/2)) 1 =
x- (1/2)

Теперь, применяя принцип квадратного корня к уравнению.# 3.2.1 получаем:
x- (1/2) = √ 49/4

Добавьте 1/2 к обеим сторонам, чтобы получить:
x = 1/2 + √ 49/4

Поскольку квадратный корень имеет два значения, одно положительное, а другое отрицательное
x 2 — x — 12 = 0
имеет два решения:
x = 1/2 + √ 49/4
или
x = 1/2 — √ 49/4

Обратите внимание, что √ 49/4 можно записать как
√ 49 / √ 4, что равно 7/2

Решите квадратное уравнение с помощью квадратичной формулы

3.3 Решение x 2 -x-12 = 0 по квадратичной формуле.

Согласно квадратичной формуле, x, решение для Ax 2 + Bx + C = 0, где A, B и C — числа, часто называемые коэффициентами, определяется по формуле:

— B ± √ B 2 -4AC
x = ————————
2A

В нашем случае A = 1
B = -1
C = -12

Соответственно B 2 — 4AC =
1 — (-48) =
49

Применение квадратичной формулы:

1 ± √ 49
x = —————
2

Можно ли упростить √ 49?

Да! Факторизация на простые множители 49 равна
7 • 7
Чтобы можно было удалить что-то из-под корня, должно быть 2 экземпляра этого (потому что мы берем квадрат i.е. второй корень).

√ 49 = √ 7 • 7 =
± 7 • √ 1 =
± 7

Итак, теперь мы смотрим на:
x = (1 ± 7) / 2

Два реальных решения:

x = ( 1 + √49) / 2 = (1 + 7) / 2 = 4.000

или:

x = (1-√49) / 2 = (1-7) / 2 = -3.000

Были найдены два решения :

  1. x = 4
  2. x = -3

Решение квадратного уравнения (ключевой этап 4)

Урок

Квадратное уравнение — это уравнение в форме:

Решение квадратного уравнения означает нахождение значения x , которое делает это уравнение истинным (т.е. делает левую часть равной 0.) Значения x , которые решают уравнение, называются корнями уравнения.

Понимание решения квадратных уравнений

Решение квадратных уравнений легче понять на примере. Давайте посмотрим на квадратное уравнение.

x — переменная. Может принимать разные значения. Давайте попробуем x = 1 , x = 2 и x = 3 .

х = 1

Подставляем x = 1 в левую часть квадратного уравнения:

x 2 — 3x + 2 = ( 1 ) 2 — 3 ( 1 ) + 2

x 2 — 3x + 2 = 1 × 1 — 3 × 1 + 2

x 2 — 3x + 2 = 1-3 + 2

x 2 — 3x + 2 = 0

Когда x = 1 , левая часть уравнения равна 0 , что равно правой части уравнения. x = 1 решает уравнение. Это корень уравнения.

х = 2

Подставляем x = 2 в левую часть квадратного уравнения:

x 2 — 3x + 2 = ( 2 ) 2 — 3 ( 2 ) + 2

x 2 — 3x + 2 = 2 × 2 — 3 × 2 + 2

x 2 — 3x + 2 = 4-6 + 2

x 2 — 3x + 2 = 0

Когда x = 2 , обе части уравнения равны. x = 2 решает уравнение. Это корень уравнения.

х = 3

Подставляем x = 3 в левую часть квадратного уравнения:

x 2 — 3x + 2 = ( 3 ) 2 — 3 ( 3 ) + 2

x 2 — 3x + 2 = 3 × 3 — 3 × 3 + 2

x 2 — 3x + 2 = 9-9 + 2

x 2 — 3x + 2 = 2 ≠ 0

Когда x = 3 , левая часть уравнения равна 2 .Это , а не , равное правой части уравнения, 0 . x = 3 не решает уравнение. x = 1 и x = 2 решают квадратное уравнение x 2 — 3x + 2 = 0 . Квадратное уравнение всегда будет иметь 2 значений x , которые решают уравнение. Всегда есть 2 корень.

Как решать квадратные уравнения

Есть 3 способа решить квадратные уравнения.

(1) Факторинг

Квадратное уравнение иногда можно записать как произведение двух скобок. Например:

отсюда мы можем прочитать два корня квадратного уравнения: х = 1 , х = 2

Подробнее о решении квадратных уравнений с использованием факторинга

(2) Квадратичная формула

Квадратное уравнение можно решить с помощью формулы корней квадратного уравнения:

В этой формуле a , b и c — числа в квадратном уравнении в стандартной форме, ax 2 + bx + c .

Подробнее о решении квадратных уравнений по формуле корней квадратного уравнения.

(3) График

Квадратное уравнение можно решить, нанеся его на график и определив, где оно пересекает ось x:

На этом графике выше квадратичная кривая пересекает ось x в точках x = 1 и x = 2 . Это корни уравнения, которое решает уравнение.

Интерактивный виджет

Вы можете использовать этот интерактивный виджет для создания графика квадратного уравнения.Используйте кнопки для изменения значений квадратного уравнения.

Подробнее о решении квадратных уравнений с помощью графика

Что в имени?

Слово «квадратичный» происходит от слова «четырехугольник», что означает «квадрат» — потому что x квадрат.

Факторинг, Факторинг

Записать квадратное уравнение как произведение двух скобок называется «факторизовать» или «разложить на множители» квадратное уравнение.Этот метод называют факторингом или факторингом.

Есть 2 корня

Квадратные уравнения всегда имеют два решения. Есть 2 значения x , которые решают уравнение. Мы можем визуализировать это, посмотрев на график квадратного уравнения. Корни — это точки, в которых кривая пересекает горизонтальную ось абсцисс.
  • Может быть два разных корня. Мы видим это, потому что кривая пересекает ось x в двух разных местах:

  • Иногда кажется, что корень всего один.Но этот корень повторяется.

  • Даже когда кажется, что корней нет, есть два сложных корня.

Помогите нам улучшить математику Монстр
  • Вы не согласны с чем-то на этой странице?
  • Вы заметили опечатку?
Сообщите нам, используя эту форму

См. Также

Что такое квадратное уравнение? Что такое уравнение? Что такое ось абсцисс?

Квадратное уравнение

Стандартная форма квадратного уравнения:

ax 2 + bx + c = 0, где a ≠ 0

В уравнении a, b и c — константы, а x — переменная.Степень уравнения 2 (показатель степени при x) делает уравнение квадратичным. Квадратные уравнения этой формы могут быть решены относительно x, чтобы найти корни уравнения, которые являются точкой (точками), где уравнение равно 0. Корни также могут называться нулями.

Решение квадратных уравнений

Существует несколько различных методов решения квадратного уравнения. Ниже приведены несколько из них.

Квадратные уравнения вида ax

2 + c = 0

Квадратное уравнение без члена x 1 решить относительно просто.Нам не нужно множить или использовать квадратную формулу (обсуждается позже). Все, что нам нужно сделать, это выделить x, как если бы мы пытались найти x в любом уравнении, а затем извлечь квадратный корень из константы.

Пример

Учитывая x 2 — 4 = 0, найти x:

х 2 = 4

x = & pm; = & pm; 2

Одна из ключевых вещей, которые нам нужно помнить при решении квадратных уравнений, — это то, что x может принимать как положительные, так и отрицательные значения, поскольку и -2 × -2, и 2 & times 2 = 4.это также означает, что если bot a и c положительны или отрицательны, реальных решений не существует, поскольку невозможно извлечь квадратный корень из отрицательного числа без использования мнимых чисел.

Использование факторинга

Решение уравнений с использованием факторизации основывается на использовании одного из свойств 0. Если произведение двух чисел или выражений равно 0, то хотя бы одно из выражений должно быть равно 0. Это позволяет нам разделить множители и установить их равными. до 0 индивидуально, чтобы найти решение (я) уравнения.

Примеры

1. Решите 2x 2 — 8x = 0:

2x (x — 4) = 0

Мы можем разделить это и решить для 2x = 0 и x — 4 = 0:

2x = 0

х = 0

и

х — 4 = 0

х = 4

Уравнение имеет два решения: x = 0 и x = 4.

2. Решить x 2 — 4x + 4 = 0:

x 2 — 4x + 4 = (x — 2) 2 = 0

x — 2 = & pm; 0

х = 2

В этом случае, даже если мы извлекаем квадратный корень, 0 не является ни положительным, ни отрицательным, поэтому есть только одно решение.Это всегда будет иметь место в уравнениях, которые можно разложить на множители в форме (x — c) 2 , поэтому, как только вы начнете распознавать эти уравнения в их развернутой форме, x 2 — 2cx + c 2 , вы ‘ Я смогу решить их относительно быстро.

3. Решить x 2 — x — 6 = 0:

x 2 — x — 6 = (x — 3) (x + 2) = 0

х — 3 = 0

х = 3

и

х + 2 = 0

х = -2

Два решения уравнения: x = 3 и x = -2.

Используя формулу корней квадратного уравнения

Термины «квадратная формула» и «квадратное уравнение» иногда используются как синонимы, но их не следует путать. Квадратичная формула относится к формуле, используемой для решения квадратных уравнений:

Квадратичную формулу можно рассматривать как метод «грубой силы» для решения квадратных уравнений, поскольку ее можно использовать для решения любого квадратного уравнения в стандартной форме, как и все приведенные выше примеры.Однако в зависимости от конкретного квадратного уравнения часто бывает проще использовать такой метод, как разложение на множители, завершение квадрата или какой-либо другой метод, где это возможно, перед использованием формулы квадратичного. При этом сама квадратная формула относительно проста в использовании, если уравнение имеет стандартную форму.

Все a, b и c в квадратной формуле являются константами и относятся к коэффициентам стандартной формы квадратного уравнения:

топор 2 + bx + c

Чтобы решить квадратное уравнение с помощью формулы квадратиков, нужно просто подставить коэффициенты уравнения в формулу.

Пример

Решить 7x 2 — 13x + 6 = 0:

В приведенном выше уравнении a = 7, b = -13 и c = 6. Подставляя их в формулу корней квадратного уравнения:

x = и x =

Хотя квадратная формула утомительна, она очень эффективна в том смысле, что позволяет нам решать любое квадратное уравнение, если мы приводим его в стандартную форму.

В квадратной формуле выражение под знаком квадратного корня, b 2 — 4ac, называется дискриминантом.Стоит отметить, что если:

b 2 — 4ac = 0, есть только одно решение

b 2 — 4ac> 0, есть два реальных решения

б 2 — 4ac

Еще один метод решения квадратных уравнений — завершение квадрата.


Алгебраическое решение уравнений

Алгебраическое решение уравнений

Содержание: Эта страница соответствует § 2.4 (п.200) текста.

Предлагаемые задачи из текста:

с. 212 # 7, 8, 11, 15, 17, 18, 23, 26, 35, 38, 41, 43, 46, 47, 51, 54, 57, 60, 63, 66, 71, 72, 75, 76, 81, 87, 88, 95, 97

Квадратичные уравнения

Уравнения с участием радикалов

Полиномиальные уравнения высшей степени

Уравнения, содержащие дробные выражения или абсолютные значения


Квадратные уравнения

Квадратное уравнение имеет вид ax 2 + bx + c = 0, где a, b и c — числа, а a — не равно 0.

Факторинг

Этот подход к решению уравнений основан на том факте, что если произведение двух величин равно нулю, то хотя бы одна из величин должна быть равна нулю. Другими словами, если a * b = 0, то либо a = 0, либо b = 0, либо и то, и другое. Подробнее о факторизации многочленов см. В разделе обзора P.3 (p.26) текста.

Пример 1.

2x 2 — 5x — 12 = 0.

(2x + 3) (x — 4) = 0.

2x + 3 = 0 или x — 4 = 0.

x = -3/2, или x = 4.

Принцип квадратного корня

Если x 2 = k, то x = ± sqrt (k).

Пример 2.

x 2 — 9 = 0.

x 2 = 9.

x = 3 или x = -3.


Пример 3.


Пример 4.

x 2 + 7 = 0.

х 2 = -7.

х = ±.

Обратите внимание, что = =, так что решения

x = ±, два комплексных числа.

Завершение квадрата

Идея завершения квадрата состоит в том, чтобы переписать уравнение в форме, которая позволяет нам применять квадрат корневой принцип.

Пример 5.

x 2 + 6x — 1 = 0.

x 2 + 6x = 1.

x 2 + 6x + 9 = 1 + 9.

9, прибавленная к обеим сторонам, получена из возведения в квадрат половины коэффициента при x, (6/2) 2 = 9. Причина выбор этого значения заключается в том, что теперь левая часть уравнения представляет собой квадрат бинома (полином с двумя членами). Поэтому эта процедура называется , завершение квадрата .[Заинтересованный читатель может видеть, что это истина, учитывая (x + a) 2 = x 2 + 2ax + a 2 . Чтобы получить «а» нужно всего лишь разделите коэффициент x на 2. Таким образом, чтобы построить квадрат для x 2 + 2ax, нужно добавить 2 .]

(x + 3) 2 = 10.

Теперь мы можем применить принцип квадратного корня и затем решить относительно x.

x = -3 ± sqrt (10).


Пример 6.

2x 2 + 6x — 5 = 0.

2x 2 + 6x = 5.

Метод завершения квадрата, продемонстрированный в предыдущем примере, работает, только если старший коэффициент (коэффициент x 2 ) равен 1. В этом примере старший коэффициент равен 2, но мы можем изменить это, разделив обе части уравнения на 2.

x 2 + 3x = 5/2.

Теперь, когда старший коэффициент равен 1, мы берем коэффициент при x, который теперь равен 3, делим его на 2 и возводим в квадрат, (3/2) 2 = 9/4. Это постоянная, которую мы добавляем к обеим сторонам, чтобы завершить квадрат.

x 2 + 3x + 9/4 = 5/2 + 9/4.

Левая часть — квадрат (x + 3/2). [Проверьте это!]

(x + 3/2) 2 = 19/4.

Теперь мы используем принцип квадратного корня и решаем относительно x.

x + 3/2 = ± sqrt (19/4) = ± sqrt (19) / 2.

x = -3/2 ± sqrt (19) / 2 = (-3 ± sqrt (19)) / 2

До сих пор мы обсуждали три метода решения квадратных уравнений. Что лучше? Это зависит от проблема и ваши личные предпочтения. Уравнение в правильной форме для применения принципа квадратного корня могут быть перегруппированы и решены путем факторинга, как мы видим в следующем примере.

Пример 7.

x 2 = 16.

x 2 — 16 = 0.

(x + 4) (x — 4) = 0.

x = -4 или x = 4.

В некоторых случаях уравнение может быть решено путем факторизации, но факторизация не очевидна.

Метод завершения квадрата всегда будет работать, даже если решения являются комплексными числами, и в этом случае мы извлечем квадратный корень из отрицательного числа.Кроме того, шаги, необходимые для завершения квадрата, следующие: всегда одинаковы, поэтому их можно применить к общему квадратному уравнению

топор 2 + bx + c = 0.

Результатом квадрата этого общего уравнения является формула для решений уравнения называется квадратной формулой.

Квадратичная формула

Решения уравнения ax 2 + bx + c = 0 равны

Мы говорим, что завершение квадрата всегда работает, и мы завершили квадрат в общем случае, где у нас есть a, b и c вместо чисел.Итак, чтобы найти решения для любого квадратного уравнения, запишем его в стандартной форме, чтобы найти значения a, b и c, затем подставьте эти значения в квадратную формулу.

Одним из следствий этого является то, что вам никогда не придется заполнять квадрат, чтобы найти решения квадратного уравнения. Однако процесс завершения квадрата важен по другим причинам, поэтому вам все равно нужно знать, как сделай это!

Примеры использования квадратичной формулы:

Пример 8.

2x 2 + 6x — 5 = 0.

В данном случае a = 2, b = 6, c = -5. Подставляя эти значения в квадратичную формулу, получаем

Обратите внимание, что мы решили это уравнение ранее, заполнив квадрат.

Примечание : Есть два реальных решения. Что касается графиков, есть два пересечения для графика функции f (x) = 2x 2 + 6x — 5.


Пример 9.

4x 2 + 4x + 1 = 0

В этом примере a = 4, b = 4 и c = 1.

В этом примере следует обратить внимание на две вещи.

  • Есть только одно решение. С точки зрения графиков это означает, что существует только один пересечение по оси x.

  • Решение упрощено, так что квадратный корень не используется. Это означает, что уравнение могло быть решается факторингом. (Все квадратные уравнения могут быть решены факторингом! Я имею в виду, что это могло быть решено легко факторингом.)

4x 2 + 4x + 1 = 0.

(2x + 1) 2 = 0.

х = -1/2.


Пример 10.

х 2 + х + 1 = 0

а = 1, б = 1, с = 1

Примечание: Реальных решений нет. Что касается графиков, то для графика нет перехватов. функции f (x) = x 2 + x + 1. Таким образом, решения сложны, поскольку график y = x 2 + x + 1 не имеет пересечений по x.

Выражение под радикалом в квадратичной формуле, b 2 — 4ac, называется дискриминантом уравнение.Последние три примера иллюстрируют три возможности для квадратных уравнений.

1. Дискриминант> 0. Два реальных решения.

2. Дискриминант = 0. Одно реальное решение.

3. Дискриминант <0. Два сложных решения.

Примечания к проверке решений

Ни один из методов, представленных до сих пор в этом разделе, не может вводить посторонние решения.(См. Пример 3 из раздела Линейные уравнения и моделирование.) Тем не менее, рекомендуется проверить свои решения, потому что при решении уравнений очень легко сделать невнимательные ошибки.

Алгебраический метод, который состоит из обратной подстановки числа в уравнение и проверки того, что полученное утверждение верно, хорошо работает, когда решение «простое», но не очень практично, когда решение предполагает радикальное.

Например, в нашем предпоследнем примере 4x 2 + 4x + 1 = 0 мы нашли одно решение x = -1/2.

Алгебраическая проверка выглядит как

4 (-1/2) 2 +4 (-1/2) + 1 = 0.

4 (1/4) — 2 + 1 = 0.

1-2 + 1 = 0.

0 = 0. Решение проверяет.

В предыдущем примере, 2x 2 + 6x — 5 = 0, мы нашли два реальных решения, x = (-3 ± sqrt (19)) / 2. Конечно, можно проверить это алгебраически, но это не очень просто. В этом случае либо графический проверить или использовать калькулятор для алгебраической проверки быстрее.

Сначала найдите десятичные приближения для двух предложенных решений.

(-3 + sqrt (19)) / 2 = 0,679449.

(-3 — sqrt (19)) / 2 = -3,679449.

Теперь используйте графическую утилиту для построения графика y = 2x 2 + 6x — 5 и проследите график, чтобы приблизительно определить, где х-точки пересечения. Если они близки к указанным выше значениям, вы можете быть уверены, что у вас есть правильные решения. Вы также можете вставить приближенное решение в уравнение, чтобы увидеть, дают ли обе части уравнения примерно те же значения.Однако вам все равно нужно быть осторожным в заявлении о том, что ваше решение является правильным, поскольку оно не точное решение.

Обратите внимание, что если вы начали с уравнения 2x 2 + 6x — 5 = 0 и сразу перешли к графику утилиту для ее решения, то вы не получите точных решений, потому что они иррациональны. Однако, найдя (алгебраически) два числа, которые, по вашему мнению, являются решениями, если графическая утилита показывает, что перехваты очень близко к найденным вами числам, то вы, наверное, правы!

Упражнение 1:

Решите следующие квадратные уравнения.

(а) 3x 2 -5x — 2 = 0. Ответ

(б) (x + 1) 2 = 3. Ответ

(в) x 2 = 3x + 2. Ответ

Вернуться к содержанию

Уравнения с участием радикалов

Уравнения с радикалами часто можно упростить, возведя в соответствующую степень и возведя в квадрат, если радикал является квадратным корнем, кубическим корнем и т. д. Эта операция может вводить посторонние корни, поэтому все решения необходимо проверить.

Если в уравнении только один радикал, то перед возведением в степень вы должны договориться, чтобы радикальный член сам по себе на одной стороне уравнения.

Пример 11.

Теперь, когда мы изолировали радикальный член в правой части, возводим обе части в квадрат и решаем полученное уравнение для x.

Чек:

х = 0

Когда мы подставляем x = 0 в исходное уравнение, мы получаем утверждение 0 = 2, что неверно!

Итак, x = 0 не является решением .

х = 3

Когда мы подставляем x = 3 в исходное уравнение, мы получаем утверждение 3 = 3. Это верно, поэтому x = 3 равно раствор .

Решение : x = 3.

Примечание: Решением является координата x точки пересечения графиков y = x и у = sqrt (х + 1) +1.

Посмотрите, что бы произошло, если бы мы возводили обе части уравнения в квадрат до того, как выделил радикал срок.

Это хуже того, с чего мы начали!

Если в уравнении более одного радикального члена, то, как правило, мы не можем исключить все радикалы с помощью возведение в степень один раз. Однако мы можем уменьшить количество радикальных членов, возведя в степень.

Если уравнение включает более одного радикального члена, мы все равно хотим изолировать один радикал с одной стороны и возвести в степень. Затем мы повторяем этот процесс.

Пример 12.

Теперь возведите обе части уравнения в квадрат.

В этом уравнении есть только один радикальный член, поэтому мы добились прогресса! Теперь выделите радикальный член, а затем возведите в квадрат снова обе стороны.

Чек:

Подставляя x = 5/4 в исходное уравнение, получаем

sqrt (9/4) + sqrt (1/4) = 2.

3/2 + 1/2 = 2.

Это утверждение верно, поэтому x = 5/4 является решением.

Примечание по проверке решений:

В этом случае выполнить алгебраическую проверку было несложно. Однако графическая проверка имеет то преимущество, что показывает, что нет никаких решений, которые мы не нашли бы, по крайней мере, в рамках прямоугольника просмотра. Решение — координата x точки пересечения графиков y = 2 и y = sqrt (x + 1) + sqrt (x-1).

Упражнение 2:

Решите уравнение sqrt (x + 2) + 2 = 2x. Ответ

Вернуться к содержанию

Полиномиальные уравнения высшей степени

Мы видели, что любое полиномиальное уравнение второй степени (квадратное уравнение) от одной переменной может быть решено с помощью Квадратичная формула. Полиномиальные уравнения степени больше двух сложнее.Когда мы встречаемся такая проблема, то либо многочлен имеет особую форму, которая позволяет нам разложить его на множители, либо мы должны аппроксимировать решения с графической утилитой.

Нулевая постоянная

Один частый частный случай — отсутствие постоянного члена. В этом случае мы можем исключить одну или несколько полномочий x, чтобы начать задачу.

Пример 13.

2x 3 + 3x 2 -5x = 0.

x (2x 2 + 3x -5) = 0.

Теперь у нас есть произведение x и квадратного многочлена, равного 0, так что у нас есть два более простых уравнения.

x = 0 или 2x 2 + 3x -5 = 0.

Первое уравнение решить несложно. x = 0 — единственное решение. Второе уравнение может быть решено факторингом. Примечание: Если бы мы не смогли разложить квадратичный фактор во втором уравнении, мы могли бы прибегнуть к к использованию квадратичной формулы.[Убедитесь, что вы получили те же результаты, что и ниже.]

x = 0 или (2x + 5) (x — 1) = 0.

Итак, есть три решения: x = 0, x = -5/2, x = 1.

Примечание: Решение находится из пересечения графиков f (x) = 2x 3 + 3x 2 -5x.

Фактор по группировке

Пример 14.

x 3 -2x 2 -9x +18 = 0.

Коэффициент при x 2 в 2 раза больше, чем при x 3 , и такое же соотношение существует между коэффициенты при третьем и четвертом членах. Группа термины один и два, а также термины третий и четвертый.

x 2 (x — 2) — 9 (x — 2) = 0.

Эти группы имеют общий множитель (x — 2), поэтому мы можем разложить левую часть уравнения на множители.

(x — 2) (x 2 — 9) = 0.

Всякий раз, когда мы находим продукт, равный нулю, мы получаем два более простых уравнения.

x — 2 = 0 или x 2 — 9 = 0.

x = 2 или (x + 3) (x — 3) = 0.

Итак, есть три решения: x = 2, x = -3, x = 3.

Примечание: Эти решения находятся на пересечении графика f (x) = x 3 -2x 2 -9x +18.

Квадратичная форма

Пример 15.

x 4 — x 2 — 12 = 0.

Этот многочлен неквадратичный, у него четвертая степень. Однако его можно рассматривать как квадратичный по x 2 .

(x 2 ) 2 — (x 2 ) — 12 = 0.

Это может помочь вам фактически заменить z на x 2 .

z 2 — z — 12 = 0 Это квадратное уравнение относительно z.

(z — 4) (z + 3) = 0.

z = 4 или z = -3.

Мы еще не закончили, потому что нам нужно найти значения x, которые делают исходное уравнение истинным.Теперь заменим z на x 2 и решите полученные уравнения.

x 2 = 4.

х = 2, х = -2.

х 2 = -3.

x = i , или x = — i.

Итак, есть четыре решения, два реальных и два комплексных.

Примечание: Эти решения находятся на пересечении графика f (x) = x 4 — х 2 — 12.

График f (x) = x 4 — x 2 -12 и масштабирование, показывающее его локальное экстремумы.

Упражнение 3:

Решите уравнение x 4 — 5x 2 + 4 = 0. Ответ

Вернуться к содержанию

Уравнения, содержащие дробные выражения или абсолютные значения

Пример 16.

Наименьший общий знаменатель равен x (x + 2), поэтому мы умножаем обе части на это произведение.

Это уравнение квадратичное. Квадратичная формула дает решения

Проверка необходима, потому что мы умножили обе части на переменное выражение. Используя графическую утилиту, мы убедитесь, что оба этих решения проверяют. Решением является координата x точки пересечения графиков. из y = 1 и y = 2 / x-1 / (x + 2).

Пример 17.

5 | х — 1 | = х + 11.

Ключ к решению уравнения с абсолютными значениями — помнить, что количество внутри абсолютного значения столбцы могут быть положительными или отрицательными. У нас будет два отдельных уравнения, представляющих разные возможности, и все решения должны быть проверены.

Корпус 1 . Предположим, что x — 1> = 0.Тогда | х — 1 | = x — 1, поэтому мы имеем уравнение

5 (х — 1) = х + 11.

5x — 5 = x + 11.

4x = 16.

x = 4, и это решение проверяет, потому что 5 * 3 = 4 + 11.

Случай 2. Предположим, что x — 1 <0. Тогда x - 1 отрицательно, поэтому | х - 1 | = - (х - 1). Этот точка часто сбивает студентов с толку, потому что кажется, что мы говорим, что абсолютное значение выражения отрицательно, но это не так.Выражение (x - 1) уже отрицательное, поэтому - (x - 1) положительное.

Теперь наше уравнение принимает вид

.

-5 (x — 1) = x + 11.

-5x + 5 = x + 11.

-6x = 6.

x = -1, и это решение проверяет, потому что 5 * 2 = -1 + 11.

Если вы используете Java Grapher для графической проверки, обратите внимание, что abs () является абсолютным значением, поэтому вы должны построить график

5 * abs (x — 1) — x — 11 и посмотрите на пересечения по x, или вы можете найти решение как x-координаты точки пересечения графиков y = x + 11 и y = 5 * abs (x-1).

Упражнение 4:

(а) Решите уравнение Ответ

(b) Решите уравнение | х — 2 | = 2 — x / 3 Ответ

Вернуться к содержанию


Видео с вопросом: Решение квадратных уравнений путем заполнения квадрата

Стенограмма видео

Решите уравнение 𝑥 в квадрате минус 14 𝑥 плюс 38 равно нулю, заполнив квадрат.

В этом вопросе нам предлагалось решить уравнение, заполнив квадрат. Итак, что я собираюсь сделать, это сначала подвести итог. Итак, общее правило, если у нас есть выражение в форме в квадрате плюс 𝑎𝑥, состоит в том, что оно равно 𝑥 плюс 𝑎 по двум всем возведенным в квадрат — и это потому, что мы фактически вдвое уменьшили коэффициент при 𝑥 — а затем минус 𝑎 по двум — снова уменьшение вдвое коэффициента of — и все в квадрате.

Итак, если мы оглянемся назад на наше уравнение, мы фактически увидим, что первые два члена действительно применимы и к завершению правила квадратов.И эти два члена равны 𝑥 в квадрате минус 14𝑥. Итак, если мы действительно применим это и завершим квадрат наших первых двух членов, мы получим 𝑥 плюс, а затем у нас будет отрицательное 14 против двух, потому что коэффициент нашего отрицателен 14, и все это возведено в квадрат, а затем снова минус. отрицательное 14 по двум, все в квадрате. Тогда у нас еще плюс 38 равен нулю.

Хорошо, мы можем убрать это. Итак, мы получаем минус семь в квадрате, и это 𝑥 минус семь, потому что у нас было плюс, а затем минус 14 на два.Что ж, отрицательное 14 из двух — отрицательное семь. Итак, если вы добавите отрицательное значение, это будет все равно, что просто вычесть его. А затем минус 49. И мы снова получаем это, потому что у нас были отрицательные семь в квадрате. Если возвести отрицательный квадрат в квадрат, мы получим положительный результат. И тогда прибавление 38 равно нулю. Итак, если мы упростим, мы получим минус семь, весь квадрат минус 11 равен нулю.

И затем наш следующий этап — фактически прибавить 11 к каждой части уравнения, что дает нам минус семь, весь квадрат в квадрате равен 11.А затем, если мы возьмем квадратный корень из каждой стороны, мы получим минус семь равно плюс или минус квадратный корень из 11.

А теперь наш последний этап, который на самом деле будет состоять в том, чтобы добавить семь к каждой стороне. уравнения. Итак, у нас осталось равно семи плюс-минус корень 11. Таким образом, решение уравнения в квадрате минус 14𝑥 плюс 38 равно нулю: равно семи плюс корень 11 или 𝑥 равно семи минус корень 11. И мы нашли их, завершив квадрат.

Математическая сцена — Уравнения III — Урок 2

Математическая сцена — Уравнения III — Урок 2 — Квадратные уравнения
2008 Rasmus ehf и Jhann sak Ptursson

Уравнения III

Урок 2 Уравнения кубической и четвертой степени


Как мы можем решить уравнения, такие как кубическое уравнение показано здесь?

x 3 — x 2 4x + 4 = 0

Существует чрезвычайно сложная формула для решения кубические уравнения.Некоторые калькуляторы имеют встроенную формулу и поэтому могут использоваться для решения кубических уравнений.

Мы собираемся узнать, как эти уравнения могут быть решены с помощью факторизация. Если уравнение имеет решения, которые являются целыми числами a, b и c, то мы можем разложить уравнение на множители следующим образом:

x 3 — x 2 4x + 4 = (x — а) (х — б) (х — в) = 0

Умножая скобки, видим, что константа член 4 должен быть числом, которое мы получаем, когда мы умножаем a, b и c вместе.

abc = 4

Все решения a, b и c должны быть множителями 4, поэтому не так много целых чисел, которые нам нужно учитывать.

У нас есть только следующие возможности:

1, 2 и 4

Хорошо изучите каждое из этих чисел, чтобы найти, какие из них являются решениями уравнения.

f (1) = 1 3 — 1 2 4 × 1 + 4 = 0 1 — решение

f (-1) = (-1) 3 — (-1) 2 4 × (-1) + 4 = 6

f (2) = 2 3 — 2 2 4 × 2 + 4 = 0 2 — решение

f (−2) = (−2) 3 — (−2) 2 4 × (−2) + 4 = 0 −2 — решение

Мы нашли три решения, поэтому нам не нужно попробуйте 4 и −4 как кубический уравнение имеет максимум три решения.

Эти три числа дают нам значения a, b и c и мы можем факторизовать уравнение.

x 3 — x 2 4x + 4 = (x — 1) (х — 2) (х + 2) = 0

Этот метод включает поиск целых чисел, которые являются множителями (можно разделить на) постоянный член, а затем проверить, действительно ли эти целые числа являются решениями уравнения.
К сожалению, мы не можем предполагать, что решения уравнения третьей степени являются все целые числа.
Однако, если мы можем найти одно целочисленное решение, допустим, что это x = a, тогда Теорема остатка, мы знаем, что (x — a) является фактором уравнения. Мы можно найти другой множитель, квадратичный множитель, путем деления. Затем мы можем решить квадратное уравнение, используя формула решения квадратичных.

Пример 1

Решите уравнение x 3 — 3x 2 2x + 4 = 0

Ставим числа, кратные 4 в уравнение, чтобы проверить, верны ли какие-либо из них.

f (1) = 1 3 — 3 × 1 2 2 × 1 + 4 = 0 1 — решение

f (−1) = (−1) 3 — 3 × (−1) 2 2 × (-1) + 4 = 2

f (2) = 2 3 — 3 × 2 2 2 × 2 + 4 = −4

f (−2) = (−2) 3 — 3 × (−2) 2 2 × (−2) + 4 = −12

f (4) = 4 3 — 3 × 4 2 2 × 4 + 4 = 12

f (−4) = (−4) 3 — 3 × (−4) 2 2 × (−4) + 4 = −100

Единственное целочисленное решение — x = 1.Когда мы нашли одно решение, нам действительно не нужно проверять другие числа, потому что теперь мы можем решить уравнение, разделив на (x — 1) и попытавшись решить квадратичный получаем из деления.

Теперь мы можем разложить наши выражение следующим образом:

x 3 — 3x 2 2x + 4 = (х — 1) (х 2 — 2х — 4) = 0

Теперь нам остается решить квадратичную уравнение.

x 2 — 2x — 4 = 0

Воспользуемся формулой квадратичных с a = 1, b = −2 и c = −4.

Мы нашли все три решения уравнение x 3 — 3x 2 2x + 4 = 0. Это: эфтирфаранди:

.

х = 1

х = 1 + 5

x = 1- 5

Пример 2

Мы можем легко использовать тот же метод для решения уравнение четвертой степени или уравнения еще более высокой степени.Решите уравнение f (x) = x 4 — x 3 — 5x 2 + 3x + 2 = 0.

Сначала мы находим целые множители постоянный член, 2. Целочисленные множители 2 равны 1 и 2.

f (1) = 1 4 — 1 3 — 5 × 1 2 + 3 × 1 + 2 = 0 1 — решение

f (−1) = (−1) 4 — (−1) 3 — 5 × (−1) 2 + 3 × (−1) + 2 = −4

f (2) = 2 4 — 2 3 — 5 × 2 2 + 3 × 2 + 2 = −4

f (−2) = (−2) 4 — (−2) 3 — 5 × (−2) 2 + 3 × (−2) + 2 = 0 ср. нашли вторую решение.

Два найденных нами решения 1 и −2 означают, что мы можем разделить на x — 1 и x + 2 и остатка не будет. Сделайте это в два этапа.
Сначала разделим на x + 2

Теперь разделите полученное кубический коэффициент по x — 1.

Теперь мы разложили на множители
f (x) = x 4 — x 3 — 5x 2 + 3x + 2 в
f (x) = (x + 2) (x — 1) (x 2 — 2x — 1) и только Осталось решить квадратное уравнение

x 2 — 2x — 1 = 0.Мы используем формула с a = 1, b = −2 и c = −1.

Всего мы нашли четыре решения. Их:

х = 1

х = -2

х = 1 +

х = 1-

Иногда мы можем решить уравнение третьей степени, заключив в скобки члены два на два и найдя множитель что у них общего.Давайте посмотрим на это на примере.

Пример 3.

Решите уравнение x 3 — 2x 2 — 4x + 8 = 0

x 3 — 2x 2 — 4x + 8 = 0

(x 3 — 2x 2 ) — (4x — 8) = 0

[x 2 (x — 2) — 4 (x — 2)] = 0

(x — 2) [x 2 — 4] = 0

(х — 2) (х — 2) (х + 2) = 0

Здесь скобка (x — 2) является общим множителем и может быть вынесена за пределы общая скобка.

Обратите внимание, что скоба (x — 2) происходит дважды, когда мы закончили факторизацию. x = 2 — это поэтому двойное решение, и у нас есть только два разных. Это:

х = 2 и х = -2 .

Лауснир: x = 2 og x = −2 .

Примеры, которые мы рассмотрели до сих пор, являются уравнения, в которых член с наибольшей степенью имеет коэффициент 1.

Как мы иметь дело с уравнениями, где этот коэффициент — какое-то другое число?

Общая форма — f (x) = ax 3 + bx 2 + cx + d, где a, b, c и d — целые числа.

Мы можем искать целочисленные решения в том же как и раньше, проверяя множители постоянного члена d. Если мы найдем целочисленное решение, тогда мы можем разделить и найти другие решения, как и раньше.

Если ни один из факторов d не дает нам решения затем мы ищем решения, которые являются дробями.
Предположим, есть дробное решение, и назовем его решение x = t / n.

Это означает, что x — t / n является фактором f (x), или, если мы умножаем на n, то xn — t является множителем.

Теперь предположим, что мы разделили f (x) на xn. — t и нашли квадратичный множитель, мы можем назвать его
Ax 2 + Bx + C.

Теперь у нас есть результат

ax 3 + bx 2 + cx + d = (xn — t) (Ax 2 + Bx + C)

сравнивая коэффициенты х 3 на обе стороны уравнения мы видим, что a = nA и, следовательно, n должно быть множителем а.
Аналогично, сравнивая постоянные члены, мы видим, что d = −tC и, следовательно, t является множителем d.

Мы заключаем, что любая дробь является решением кубическое уравнение ax 3 + bx 2 + cx + d должен иметь вид t / n, где t — множитель числа d, а n — фактор числа a.

Обобщение для функции степени n:

ф (х) = a n x n + a n − 1 x n − 1 + × × × × + а 1 х + 0

с коэффициентами a 0 , a 1 , a 2 , × × × × × a n − 2 , n − 1 и n .

Если эта функция имеет рациональное решение, скажем, t / n, тогда t — коэффициент 0 , а n — коэффициент n .

Пример 4

Решите уравнение f (x) = 2x 3 — 7x 2 + 4x + 3 = 0.

Возможные целые корни f (x) — это делители 3, они равны 1 и 3. Дроби, которые могут быть корнями, — это четыре числа, разделенные на множители 2.Итак, полный список рациональных чисел, которые нам необходимо рассмотреть: , 1, 3 / 2 и 3.

Сразу видно, что нам не нужно рассмотрите любые отрицательные значения, поскольку все они будут давать отрицательные значения для f (x), а не 0.

Теперь попробуем другие возможности

f () = 2 () 3 — 7 () 2 + 4 × + 3 = 3

f (1) = 2 × 1 3 — 7 × 2 + 4 × 1 + 3 = 2

ф ( 3 / 2 ) = 2 ( 3 / 2 ) 3 — 7 ( 3 / 2 ) 2 + 4 × 3 / 2 + 3 = 0, поэтому мы нашли решение.

x = 3 / 2 — решение, поэтому (x — 3 / 2 ) — фактор. Разделение на (x — 3 / 2 ) может быть трудным. Поэтому мы умножаем на 2 и вместо этого делим на (2x — 3). Если (x — 3 / 2 ) является фактор

, то (2x — 3).

Теперь нам нужно решить уравнение x 2 — 2x — 1 = 0.Мы уже решили это уравнение в примере 2. Решения: 1 + 2 og 1 — 2.

Итак, мы нашли три решения. Их:

х = 3 / 2 = 1

х = 1 + 2

х = 1 — 2


Попробуйте пройти тест 2 по уравнениям III.

Не забудьте использовать контрольный список для следите за своей работой.

.