Решить квадратное уравнение: Онлайн калькулятор. Решение квадратных уравнений.

Содержание

Квадратное уравнение

Предварительные навыки

Что такое квадратное уравнение и как его решать?

Мы помним, что уравнение это равенство, содержащее в себе переменную, значение которой нужно найти.

Если переменная, входящая в уравнение, возведенá во вторую степень (в квадрат), то такое уравнение называют уравнением второй степени или квадратным уравнением.

Например, следующие уравнения являются квадратными:

Решим первое из этих уравнений, а именно x− 4 = 0.

Все тождественные преобразования, которые мы применяли при решении обычных линейных уравнений, можно применять и при решении квадратных.

Итак,  в уравнении x− 4 = 0 перенесем член −4 из левой части в правую часть, изменив знак:

Получили уравнение x= 4. Ранее мы говорили, что уравнение считается решённым, если в одной части переменная записана в первой степени и её коэффициент равен единице, а другая часть равна какому-нибудь числу. То есть чтобы решить уравнение, его следует привести к виду

x = a, где a — корень уравнения.

У нас переменная x всё ещё во второй степени, поэтому решение необходимо продолжить.

Чтобы решить уравнение x= 4, нужно ответить на вопрос при каком значении x левая часть станет равна 4. Очевидно, что при значениях 2 и −2. Чтобы вывести эти значения воспользуемся определением квадратного корня.

Число b называется квадратным корнем из числа a, если b= a и обозначается как

У нас сейчас похожая ситуация. Ведь, что такое x= 4? Переменная x в данном случае это квадратный корень из числа 4, поскольку вторая степень

x прирáвнена к 4.

Тогда можно записать, что . Вычисление правой части позвóлит узнать чему равно x. Квадратный корень имеет два значения: положительное и отрицательное. Тогда получаем = 2 и = −2.

Обычно записывают так: перед квадратным корнем ставят знак «плюс-минус», затем находят арифметическое значение квадратного корня. В нашем случае на этапе когда записано выражение , перед следует поставить знак ±

Затем найти арифметическое значение квадратного корня

Выражение = ± 2 означает, что = 2 и = −2. То есть корнями уравнения x

− 4 = 0 являются числа 2 и −2. Запишем полностью решение данного уравнения:

Выполним проверку. Подставим корни 2 и −2 в исходное уравнение и выполним соответствующие вычисления. Если при значениях 2 и −2 левая часть равна нулю, то это будет означать, что уравнение решено верно:

В обоих случаях левая часть равна нулю. Значит уравнение решено верно.

Решим ещё одно уравнение. Пусть требуется решить квадратное уравнение (+ 2)= 25

Для начала проанализируем данное уравнение. Левая часть возведенá в квадрат и она равна 25. Какое число в квадрате равно 25? Очевидно, что числа 5 и −5

То есть наша задача найти

x, при которых выражение + 2 будет равно числам 5 и −5. Запишем эти два уравнения:

Решим оба уравнения. Это обычные линейные уравнения, которые решаются легко:

Значит корнями уравнения (+ 2)= 25 являются числа 3 и −7.

В данном примере как и в прошлом можно использовать определение квадратного корня. Так, в уравнения (+ 2)= 25 выражение (+ 2) представляет собой квадратный корень из числа 25. Поэтому можно cначала записать, что .

Тогда правая часть станет равна ±5. Полýчится два уравнения: + 2 = 5 и + 2 = −5. Решив по отдельности каждое из этих уравнений мы придём к корням 3 и −7.

Запишем полностью решение уравнения (+ 2)= 25

Из рассмотренных примеров видно, что квадратное уравнение имеет два корня. Чтобы не забыть о найденных корнях, переменную x можно подписывать нижними индексами. Так, корень 3 можно обозначить через x1, а корень −7 через x2

В предыдущем примере тоже можно было сделать так. Уравнение x− 4 = 0 имело корни 2 и −2. Эти корни можно было обозначить как x= 2 и x= −2. 

Бывает и так, что квадратное уравнение имеет только один корень или вовсе не имеет корней. Такие уравнения мы рассмотрим позже.

Сделаем проверку для уравнения (+ 2)= 25. Подставим в него корни 3 и −7. Если при значениях 3 и −7 левая часть равна 25, то это будет означать, что уравнение решено верно:

В обоих случаях левая часть равна 25. Значит уравнение решено верно.

Квадратное уравнение бывает дано в разном виде. Наиболее его распространенная форма выглядит так:

ax2 + bx + c = 0,
где a, b, c — некоторые числа, x — неизвестное.

Это так называемый общий вид квадратного уравнения. В таком уравнении все члены собраны в общем месте (в одной части), а другая часть равна нулю. По другому такой вид уравнения называют

нормальным видом квадратного уравнения.

Пусть дано уравнение 3x+ 2= 16. В нём переменная x возведенá во вторую степень, значит уравнение является квадратным. Приведём данное уравнение к общему виду.

Итак, нам нужно получить уравнение, которое будет похоже на уравнение axbx = 0. Для этого в уравнении 3x+ 2= 16 перенесем 16 из правой части в левую часть, изменив знак:

3x2 + 2x − 16 = 0

Получили уравнение 3x+ 2− 16 = 0. В этом уравнении = 3, = 2, = −16.

В квадратном уравнении вида

axbx = 0 числа a, b и c имеют собственные названия. Так, число a называют первым или старшим коэффициентом; число b называют вторым коэффициентом; число c называют свободным членом.

В нашем случае для уравнения 3x+ 2− 16 = 0 первым или старшим коэффициентом является 3; вторым коэффициентом является число 2;  свободным членом является число −16. Есть ещё другое общее название для чисел a, b и c — параметры.

Так, в уравнении 3x+ 2− 16 = 0 параметрами являются числа 3, 2 и −16.

В квадратном уравнении желательно упорядочивать члены так, чтобы они располагались в таком же порядке как у нормального вида квадратного уравнения.

Например, если дано уравнение −5 + 4x= 0, то его желательно записать в нормальном виде, то есть в виде ax2+ bx + c = 0.

В уравнении −5 + 4xx = 0 видно, что свободным членом является −5, он должен располагаться в конце левой части. Член 4x2 содержит старший коэффициент, он должен располагаться первым. Член x соответственно будет располагаться вторым:

Квадратное уравнение в зависимости от случая может принимать различный вид. Всё зависит от того, чему равны значения

a, b и с.

Если коэффициенты a, b и c не равны нулю, то квадратное уравнение называют полным. Например, полным является квадратное уравнение 2x+ 6x − 8 = 0.

Если какой-то из коэффициентов равен нулю (то есть отсутствует), то уравнение значительно уменьшается и принимает более простой вид. Такое квадратное уравнение называют неполным. Например, неполным является квадратное уравнение 2x+ 6= 0, в нём имеются коэффициенты a и b (числа 2 и 6), но отсутствует свободный член

c.

Рассмотрим каждый из этих видов уравнений, и для каждого из этих видов определим свой способ решения.

Пусть дано квадратное уравнение 2x+ 6x − 8 = 0. В этом уравнении = 2, = 6, = −8. Если b сделать равным нулю, то уравнение примет вид:

Получилось уравнение 2x− 8 = 0. Чтобы его решить перенесем −8 в правую часть, изменив знак:

2x= 8

Для дальнейшего упрощения уравнения воспользуемся ранее изученными тождественными преобразованиями. В данном случае можно разделить обе части на 2

У нас получилось уравнение, которое мы решали в начале данного урока. Чтобы решить уравнение

x= 4, следует воспользоваться определением квадратного корня. Если x= 4, то . Отсюда = 2 и = −2.

Значит корнями уравнения 2x− 8 = 0 являются числа 2 и −2. Запишем полностью решение данного уравнения:

Выполним проверку. Подставим корни 2 и −2 в исходное уравнение и выполним соответствующие вычисления. Если при значениях 2 и −2 левая часть равна нулю, то это будет означать, что уравнение решено верно:

В обоих случаях левая часть равна нулю, значит уравнение решено верно.

Уравнение, которое мы сейчас решили, является неполным квадратным уравнением

. Название говорит само за себя. Если полное квадратное уравнение выглядит как axbx = 0, то сделав коэффициент b нулём получится неполное квадратное уравнение ax= 0.

У нас тоже сначала было полное квадратное уравнение 2x+ 6− 4 = 0. Но мы сделали коэффициент b нулем, то есть вместо числа 6 поставили 0. В результате уравнение обратилось в неполное квадратное уравнение 2x− 4 = 0.

В начале данного урока мы решили квадратное уравнение x− 4 = 0. Оно тоже является уравнением вида ax= 0, то есть неполным. В нем = 1, = 0, с = −4.

Также, неполным будет квадратное уравнение, если коэффициент c равен нулю.

Рассмотрим полное квадратное уравнение 2x+ 6x − 4 = 0. Сделаем коэффициент c нулём. То есть вместо числа 4 поставим 0

Получили квадратное уравнение 2x+ 6x=0, которое является неполным. Чтобы решить такое уравнение, переменную x выносят за скобки:

Получилось уравнение x(2+ 6) = 0 в котором нужно найти x, при котором левая часть станет равна нулю. Заметим, что в этом уравнении выражения x и (2+ 6) являются сомножителями. Одно из свойств умножения говорит, что произведение равно нулю, если хотя бы один из сомножителей равен нулю (или первый сомножитель или второй).

В нашем случае равенство будет достигаться, если x будет равно нулю или (2+ 6) будет равно нулю. Так и запишем для начала:

Получилось два уравнения: = 0 и 2+ 6 = 0. Первое уравнение решать не нужно — оно уже решено. То есть первый корень равен нулю.

Чтобы найти второй корень, решим уравнение 2+ 6 = 0. Это обычное линейное уравнение, которое решается легко:

Видим, что второй корень равен −3.

Значит корнями уравнения 2x+ 6= 0 являются числа 0 и −3. Запишем полностью решение данного уравнения:

Выполним проверку. Подставим корни 0 и −3 в исходное уравнение и выполним соответствующие вычисления. Если при значениях 0 и −3 левая часть равна нулю, то это будет означать, что уравнение решено верно:

Следующий случай это когда числа b и с равны нулю. Рассмотрим полное квадратное уравнение 2x+ 6− 4 = 0. Сделаем коэффициенты b и c нулями. Тогда уравнение примет вид:

Получили уравнение 2x= 0. Левая часть является произведением, а правая часть равна нулю. Произведение равно нулю, если хотя бы один из сомножителей равен нулю. Очевидно, что = 0. Действительно, 2 × 0= 0. Отсюда, 0 = 0. При других значениях x равенства достигаться не будет.

Проще говоря, если в квадратном уравнении вида axbx = 0 числа b и с равны нулю, то корень такого уравнения равен нулю.

Отметим, что когда употребляются словосочетания «b равно нулю» или «с равно нулю«, то подразумевается, что параметры b или c вовсе отсутствуют в уравнении.

Например, если дано уравнение 2x− 32 = 0, то мы говорим, что = 0. Потому что если сравнить с полным уравнением axbx = 0, то можно заметить, что в уравнении 2x− 32 = 0 присутствует старший коэффициент a, равный 2; присутствует свободный член −32; но отсутствует коэффициент b.

Наконец, рассмотрим полное квадратное уравнение axbx = 0. В качестве примера решим квадратное уравнение x− 2+ 1 = 0.

Итак, требуется найти x, при котором левая часть станет равна нулю. Воспользуемся изученными ранее тождественными преобразованиями.

Прежде всего заметим, что левая часть уравнения представляет собой квадрат разности двух выражений. Если мы вспомним как раскладывать многочлен на множители, то получим в левой части (− 1)2.

Рассуждаем дальше. Левая часть возведенá в квадрат и она равна нулю. Какое число в квадрате равно нулю? Очевидно, что только 0. Поэтому наша задача найти x, при котором выражение − 1 равно нулю. Решив простейшее уравнение − 1 = 0, можно узнать чему равно x

Этот же результат можно получить, если воспользоваться квадратным корнем. В уравнении (− 1)= 0 выражение (− 1) представляет собой квадратный корень из нуля. Тогда можно записать, что . В этом примере записывать перед корнем знак ± не нужно, поскольку корень из нуля имеет только одно значение — ноль. Тогда получается − 1 = 0. Отсюда = 1.

Значит корнем уравнения x− 2+ 1 = 0 является единица. Других корней у данного уравнения нет. В данном случае мы решили квадратное уравнение, имеющее только один корень. Такое тоже бывает.

Не всегда бывают даны простые уравнения. Рассмотрим например уравнение x+ 2− 3 = 0.

В данном случае левая часть уже не является квадратом суммы или разности. Поэтому нужно искать другие пути решения.

Заметим, что левая часть уравнения представляет собой квадратный трехчлен. Тогда можно попробовать выделить полный квадрат из этого трёхчлена и посмотреть что это нам даст.

Выделим полный квадрат из квадратного трёхчлена, располагающего в левой части уравнения:

В получившемся уравнении перенесем −4 в правую часть, изменив знак:

Теперь воспользуемся квадратным корнем. В уравнении (+ 1)= 4 выражение (+ 1) представляет собой квадратный корень из числа 4. Тогда можно записать, что . Вычисление правой части даст выражение + 1 = ±2. Отсюда полýчится два уравнения: + 1 = 2 и + 1 = −2, корнями которых являются числа 1 и −3

Значит корнями уравнения x+ 2− 3 = 0 являются числа 1 и −3.

Выполним проверку:


Пример 3. Решить уравнение x− 6+ 9 = 0, выделив полный квадрат.

Выделим полный квадрат из левой части:

Далее воспользуемся квадратным корнем и узнáем чему равно x

Значит корнем уравнения x− 6+ 9 = 0 является 3. Выполним проверку:


Пример 4. Решить квадратное уравнение 4x+ 28− 72 = 0, выделив полный квадрат:

Выделим полный квадрат из левой части:

Перенесём −121 из левой части в правую часть, изменив знак:

Воспользуемся квадратным корнем:

Получили два простых уравнения: 2+ 7 = 11 и 2+ 7 = −11. Решим их:


Пример 5. Решить уравнение 2x+ 3− 27 = 0

Это уравнение немного посложнее. Когда мы выделяем полный квадрат, первый член квадратного трёхчлена мы представляем в виде квадрата какого-нибудь выражения.

Так, в прошлом примере первым членом уравнения был 4x2. Его можно было представить в виде квадрата выражения 2x, то есть (2x)= 22x= 4x2. Чтобы убедиться что это правильно, можно извлечь квадратный корень из выражения 4x2. Это квадратный корень из произведения — он равен произведению корней:

В уравнении 2x+ 3− 27 = 0 первый член это 2x2. Его нельзя представить в виде квадрата какого-нибудь выражения. Потому что нет числá, квадрат которого равен 2. Если бы такое число было, то этим числом был бы квадратный корень из числа 2. Но квадратный корень из числа 2 извлекается только приближённо. А приближённое значение не годится для представления числá 2 в виде квадрата.

Если обе части исходного уравнения умножить или разделить на одно и то же число, то полýчится уравнение равносильное исходному. Это правило сохраняется и для квадратного уравнения.

Тогда можно разделить обе части нашего уравнения на 2. Это позвóлит избавиться от двойки перед x2 что впоследствии даст нам возможность выделить полный квадрат:

Перепишем левую часть в виде трёх дробей со знаменателем 2

Сократим первую дробь на 2. Остальные члены левой части перепишем без изменений. Правая часть по-прежнему станет равна нулю:

Выделим полный квадрат.

При представлении члена в виде удвоенного произведения, появление множителя 2 привело бы к тому, что этот множитель и знаменатель дроби сократились бы. Чтобы этого не произошло, удвоенное произведение было домножено на . При выделении полного квадрата всегда нужно стараться сделать так, чтобы значение изначального выражения не изменилось.

Свернём полученный полный квадрат:

Приведём подобные члены:

Перенесём дробь в правую часть, изменив знак:

Воспользуемся квадратным корнем. Выражение представляет собой квадратный корень из числа

Для вычисления правой части воспользуемся правилом извлечения квадратного корня из дроби:

Тогда наше уравнение примет вид:

Полýчим два уравнения:

Решим их:

Значит корнями уравнения 2x+ 3− 27 = 0 являются числа 3 и .

Корень удобнее оставить в таком виде, не выполняя деления числителя на знаменатель. Так проще будет выполнять проверку.

Выполним проверку. Подставим найденные корни в исходное уравнение:

В обоих случаях левая часть равна нулю, значит уравнение 2x+ 3− 27 = 0 решено верно.

Решая уравнение 2x+ 3− 27 = 0, в самом начале мы разделили обе его части на 2. В результате получили квадратное уравнение, в котором коэффициент перед x2 равен единице:

Такой вид квадратного уравнения называют приведённым квадратным уравнением.

Любое квадратное уравнение вида axbx = 0 можно сделать приведённым. Для этого нужно разделить обе его части на коэффициент, который располагается перед x². В данном случае обе части уравнения axbx = 0 нужно разделить на a


Пример 6. Решить квадратное уравнение 2x+ 2 = 0

Сделаем данное уравнение приведённым:

Выделим полный квадрат:

Получили уравнение , в котором квадрат выражения равен отрицательному числу . Такого быть не может, поскольку квадрат любого числа или выражения всегда положителен.

Следовательно, нет такого значения x, при котором левая часть стала бы равна . Значит уравнение не имеет корней.

А поскольку уравнение равносильно исходному уравнению 2x+ 2 = 0, то и оно (исходное уравнение) не имеет корней.


Формулы корней квадратного уравнения

Выделять полный квадрат для каждого решаемого квадратного уравнения не очень удобно.

Можно ли создать универсальные формулы для решения квадратных уравнений? Оказывается можно. Сейчас мы этим и займёмся.

Взяв за основу буквенное уравнение axbx = 0, и выполнив некоторые тождественные преобразования, мы сможем получить формулы для вывода корней квадратного уравнения axbx = 0. В эти формулы можно будет подставлять коэффициенты a, b, с и получать готовые решения.

Итак, выделим полный квадрат из левой части уравнения axbx = 0. Сначала сделаем данное уравнение приведённым. Разделим обе его части на a

Теперь в получившемся уравнении выделим полный квадрат:

Перенесем члены и в правую часть, изменив знак:

Приведём правую часть к общему знаменателю. Дроби, состоящие из букв, привóдят к общему знаменателю методом «крест-нáкрест». То есть знаменатель первой дроби станóвится дополнительным множителем второй дроби, а знаменатель второй дроби станóвится дополнительным множителем первой дроби:

В числителе правой части вынесем за скобки a

Сократим правую часть на a

Поскольку все преобразования были тождественными, то получившееся уравнение имеет те же корни, что и исходное уравнение axbx = 0.

Уравнение будет иметь корни только тогда, если правая часть больше нуля или равна нулю. Это потому что в левой части выполнено возведéние в квадрат, а квадрат любого числа положителен или равен нулю (если в этот квадрат возвóдится ноль). А чему будет равна правая часть зависит от того, что будет подставлено вместо переменных a, b и c.

Поскольку при любом a не рáвным нулю, знаменатель правой части уравнения всегда будет положительным, то знак дроби будет зависеть от знака её числителя, то есть от выражения b− 4ac.

Выражение b− 4ac называют дискриминантом квадратного уравнения. Дискриминант это латинское слово, означающее различитель. Дискриминант квадратного уравнения обозначается через букву D

D = b2 4ac

Дискриминант позволяет заранее узнать имеет ли уравнение корни или нет. Так, в предыдущем задании мы долго решали уравнение 2x+ 2 = 0 и оказалось, что оно не имеет корней. Дискриминант же позволил бы нам заранее узнать, что корней нет. В уравнении 2x+ 2 = 0 коэффициенты a, b и c равны 2, 1 и 2 соответственно. Подставим их в формулу D = b2−4ac

D = b2 − 4ac = 12 − 4 × 2 × 2 = 1 − 16 = −15.

Видим, что D (оно же b− 4ac) является отрицательным числом. Тогда нет смысла решать уравнение 2x+ 2 = 0, выделяя в нём полный квадрат, потому что когда мы дойдем до уравнения вида , окажется что правая часть станет меньше нуля (из-за отрицательного дискриминанта). А квадрат числа не может быть отрицательным. Следовательно, корней у данного уравнения не будет.

Станóвится понятно почему древние люди считали выражение b− 4ac различителем. Это выражение подобно индикатору позволяет различить уравнение имеющего корни от уравнения, не имеющего корней.

Итак, D равно b− 4ac. Подставим в уравнении вместо выражения b− 4ac букву D

Если дискриминант исходного уравнения окажется меньше нуля (< 0), то уравнение примет вид:

В этом случае говорят, что у исходного уравнения корней нет, поскольку квадрат любого числа не должен быть отрицательным.

Если дискриминант исходного уравнения окажется больше нуля (> 0), то уравнение примет вид:

В этом случае уравнение будет иметь два корня. Для их вывода воспользуемся квадратным корнем:

Получили уравнение . Из него полýчится два уравнения: и . Выразим x в каждом из уравнений:

Получившиеся два равенства это и есть универсальные формулы для решения квадратного уравнения axbx = 0. Их называют формулами корней квадратного уравнения.

Чаще всего эти формулы обозначаются как x1 и x2. То есть для вычисления первого корня используется формула c индексом 1; для вывода второго корня — формула с индексом 2. Обозначим свои формулы так же:

Очерёдность применения формул не важнá.

Решим например квадратное уравнение x+ 2− 8 = 0 с помощью формул корней квадратного уравнения. Коэффициенты данного квадратного уравнения это числа 1, 2 и −8. То есть, = 1, = 2, = −8.

Прежде чем использовать формулы корней квадратного уравнения, нужно найти дискриминант этого уравнения.

Найдём дискриминант квадратного уравнения. Для этого воспользуемся формулой D = b2 4ac. Вместо переменных a, b и c у нас будут коэффициенты уравнения x+ 2− 8 = 0

D = b2 4ac = 22− 4 × 1 × (−8) = 4 + 32 = 36

Дискриминант больше нуля. Значит уравнение имеет два корня. Теперь можно воспользоваться формулами корней квадратного уравнения:

Значит корнями уравнения x+ 2− 8 = 0 являются числа 2 и −4. Проверкой убеждаемся, что корни найдены верно:

Наконец, рассмотрим случай когда дискриминант квадратного уравнения равен нулю. Вернёмся к уравнению . Если дискриминант равен нулю, то правая часть уравнения примет вид:

И в этом случае квадратное уравнение будет иметь только один корень. Воспользуемся квадратным корнем:

Далее выражаем x

Это ещё одна формула для вывода корня квадратного корня. Рассмотрим её применение. Ранее мы решили уравнение x− 6+ 9 = 0, имеющее один корень 3. Решили мы его методом выделения полного квадрата. Теперь попробуем решить с помощью формул.

Найдём дискриминант квадратного уравнения. В этом уравнении = 1, = −6, = 9. Тогда по формуле дискриминанта имеем:

D = b2 4ac = (−6)− 4 × 1 × 9 = 36 − 36 = 0

Дискриминант равен нулю (= 0). Это означает, что уравнение имеет только один корень, и вычисляется он по формуле

Значит корнем уравнения x− 6+ 9 = 0 является число 3.

Для квадратного уравнения, имеющего один корень также применимы формулы и . Но применение каждой из них будет давать один и тот же результат.

Применим эти две формулы для предыдущего уравнения. В обоих случаях получим один и тот же ответ 3

Если квадратное уравнение имеет только один корень, то желательно применять формулу , а не формулы и . Это позволяет сэкономить время и место.


Пример 3. Решить уравнение 5x− 6+ 1 = 0

Найдём дискриминант квадратного уравнения:

Дискриминант больше нуля. Значит уравнение имеет два корня. Воспользуемся формулами корней квадратного уравнения:

Значит корнями уравнения 5x− 6+ 1 = 0 являются числа 1 и .

Ответ: 1; .


Пример 4. Решить уравнение x+ 4+ 4 = 0

Найдём дискриминант квадратного уравнения:

Дискриминант равен нулю. Значит уравнение имеет только один корень. Он вычисляется по формуле

Значит корнем уравнения x+ 4+ 4 = 0 является число −2.

Ответ: −2.


Пример 5. Решить уравнение 3x+ 2+ 4 = 0

Найдём дискриминант квадратного уравнения:

Дискриминант меньше нуля. Значит корней у данного уравнения нет.

Ответ: корней нет.


Пример 6. Решить уравнение (+ 4)= 3+ 40

Приведём данное уравнение к нормальному виду. В левой части располагается квадрата суммы двух выражений. Раскрóем его:

Перенесём все члены из правой части в левую часть, изменив их знаки. В правой части останется ноль:

Приведём подобные члены в левой части:

В получившемся уравнении найдём дискриминант:

Дискриминант больше нуля. Значит уравнение имеет два корня. Воспользуемся формулами корней квадратного уравнения:

Значит корнями уравнения (+ 4)= 3+ 40 являются числа 3 и −8.

Ответ: 3; −8.


Пример 7. Решить уравнение

Умнóжим обе части данного уравнения на 2. Это позвóлит нам избавиться от дроби в левой части:

В получившемся уравнении перенесём 22 из правой части в левую часть, изменив знак. В правой части останется 0

Приведём подобные члены в левой части:

В получившемся уравнении найдём дискриминант:

Дискриминант больше нуля. Значит уравнение имеет два корня. Воспользуемся формулами корней квадратного уравнения:

Значит корнями уравнения являются числа 23 и −1.

Ответ: 23; −1.


Пример 8. Решить уравнение

Умнóжим обе части на наименьшее общее кратное знаменателей обеих дробей. Это позвóлит избавиться от дробей в обеих частях. Наименьшее общее кратное чисел 2 и 3 это число 6. Тогда получим:

В получившемся уравнении раскроем скобки в обеих частях:

Теперь перенесём все члены из правой части в левую часть, изменив у них знаки. В правой части останется 0

Приведём подобные члены в левой части:

В получившемся уравнении найдём дискриминант:

Дискриминант больше нуля. Значит уравнение имеет два корня. Воспользуемся формулами корней квадратного уравнения:

Значит корнями уравнения являются числа и 2.


Примеры решения квадратных уравнений

Пример 1. Решить уравнение x= 81

Это простейшее квадратное уравнение, в котором надо определить число, квадрат которого равен 81. Таковыми являются числа 9 и −9. Воспользуемся квадратным корнем для их вывода:

Ответ: 9, −9.


Пример 2. Решить уравнение x− 9 = 0

Это неполное квадратное уравнение. Для его решения нужно перенести член −9 в правую часть, изменив знак. Тогда получим:

Ответ: 3, −3.


Пример 3. Решить уравнение x− 9= 0

Это неполное квадратное уравнение. Для его решения сначала нужно вынести x за скобки:

Левая часть уравнения является произведением. Произведение равно нулю, если хотя один из сомножителей равен нулю.

Левая часть станет равна нулю, если отдельно x равно нулю, или если выражение − 9 равно нулю. Получится два уравнения, одно из которых уже решено:

Ответ: 0, 9.


Пример 4. Решить уравнение x+ 4− 5 = 0

Это полное квадратное уравнение. Его можно решить методом выделения полного квадрата или с помощью формул корней квадратного уравнения.

Решим данное уравнение с помощью формул. Сначала найдём дискриминант:

D = b− 4ac = 4− 4 × 1 × (−5) = 16 + 20 = 36

Дискриминант больше нуля. Значит уравнение имеет два корня. Вычислим их:

Ответ: 1, −5.


Пример 5. Решить уравнение

Умнóжим обе части на наименьшее общее кратное чисел 5, 3 и 6. Это позвóлит избавиться от дробей в обеих частях:

В получившемся уравнении перенесём все члены из правой части в левую часть, изменив знак. В правой части останется ноль:

Приведём подобные члены:

Решим получившееся уравнение с помощью формул:

Ответ: 5, .


Пример 6. Решить уравнение x= 6

В данном примере как и в первом нужно воспользоваться квадратным корнем:

Однако, квадратный корень из числа 6 не извлекается. Он извлекается только приближённо. Корень можно извлечь с определённой точностью. Извлечём его с точностью до сотых:

Но чаще всего корень оставляют в виде радикала:

Ответ:


Пример 7. Решить уравнение (2+ 3)+ (− 2)= 13

Раскроем скобки в левой части уравнения:

В получившемся уравнении перенесём 13 из правой части в левую часть, изменив знак. Затем приведём подобные члены:

Получили неполное квадратное уравнение. Решим его:

Ответ: 0, −1,6.


Пример 8. Решить уравнение (5 + 7x)(4 − 3x) = 0

Данное уравнение можно решить двумя способами. Рассмотрим каждый из них.

Первый способ. Раскрыть скобки и получить нормальный вид квадратного уравнения.

Раскроем скобки:

Приведём подобные члены:

Перепишем получившееся уравнение так, чтобы член со старшим коэффициентом располагался первым, член со вторым коэффициентом — вторым, а свободный член располагался третьим:

Чтобы старший член стал положительным, умнóжим обе части уравнения на −1. Тогда все члены уравнения поменяют свои знаки на противоположные:

Решим получившееся уравнение с помощью формул корней квадратного уравнения:

Второй способ. Найти значения x, при которых сомножители левой части уравнения равны нулю. Этот способ удобнее и намного короче.

Произведение равно нулю, если хотя бы один из сомножителей равен нулю. В данном случае равенство в уравнении (5 + 7x)(4 − 3x) = 0 будет достигаться, если выражение (5 + 7x) равно нулю, или же выражение (4 − 3x) равно нулю. Наша задача выяснить при каких x это происходит:


Примеры решения задач

Предстáвим, что возникла необходимость построить небольшую комнату, площадь которой 8 м2. При этом длина комнаты должна быть в два раза больше её ширины. Как определить длину и ширину такой комнаты?

Сделаем примерный рисунок этой комнаты, который иллюстрирует вид сверху:

Обозначим ширину комнаты через x. А длину комнаты через 2x, потому что по условию задачи длина должна быть в два раза больше ширины. Множитель 2 и выполнит это требование:

Поверхность комнаты (её пол) является прямоугольником. Для вычисления площади прямоугольника, нужно длину данного прямоугольника умножить на его ширину. Сделаем это:

2x × x

По условию задачи площадь должна быть 8 м2. Значит выражение 2× x следует приравнять к 8

2x × x = 8

Получилось уравнение. Если решить его, то можно найти длину и ширину комнаты.

Первое что можно сделать это выполнить умножение в левой части уравнения:

2x2 = 8

В результате этого преобразования переменная x перешла во вторую степень. А мы говорили, что если переменная, входящая в уравнение, возведенá во вторую степень (в квадрат), то такое уравнение является уравнением второй степени или квадратным уравнением.

Для решения нашего квадратного уравнения воспользуемся изученными ранее тождественными преобразованиями. В данном случае можно разделить обе части на 2

Теперь воспользуемся квадратным корнем. Если x= 4, то . Отсюда = 2 и = −2.

Через x была обозначена ширина комнаты. Ширина не должна быть отрицательной, поэтому в расчёт берём только значение 2. Такое часто бывает при решении задачи, в которых применяется квадратное уравнение. В ответе получаются два корня, но условию задачи удовлетворяет только один из них.

А длина была обозначена через 2x. Значение x теперь известно, подставим его в выражение 2x и вычислим длину:

2x = 2 × 2 = 4

Значит длина равна 4 м, а ширина 2 м. Это решение удовлетворяет условию задачи, поскольку площадь комнаты равна 8 м2

4 × 2 = 8 м2

Ответ: длина комнаты составляет 4 м, а ширина 2 м.


Пример 2. Огородный участок, имеющий форму прямоугольника, одна сторона которого на 10 м больше другой, требуется обнести изгородью. Определить длину изгороди, если известно, что площадь участка равна 1200 м2

Решение

Длина прямоугольника, как правило, больше его ширины. Пусть ширина участка x метров, а длина (+ 10) метров. Площадь участка составляет 1200 м2. Умножим длину участка на его ширину и приравняем к 1200, получим уравнение:

x(x + 10) = 1200

Решим данное уравнение. Для начала раскроем скобки в левой части:

Перенесём 1200 из правой части в левую часть, изменив знак. В правой части останется 0

Решим получившееся уравнение с помощью формул:

Несмотря на то, что квадратное уравнение имеет два корня, в расчёт берём только значение 30. Потому что ширина не может выражаться отрицательным числом.

Итак, через x была обозначена ширина участка. Она равна тридцати метрам. А длина была обозначена через выражение + 10. Подставим в него найденное значение x и вычислим длину:

x + 10 = 30 + 10 = 40 м

Значит длина участка составляет сорок метров, а ширина тридцать метров. Эти значения удовлетворяют условию задачи, поскольку если перемножить длину и ширину (числа 40 и 30) получится 1200 м2

40 × 30 = 1200 м2

Теперь ответим на вопрос задачи. Какова длина изгороди? Чтобы её вычислить нужно найти периметр участка.

Периметр прямоугольника это сумма всех его сторон. Тогда:

P = 2(a + b) = 2 × (40 + 30) = 2 × 70 = 140 м.

Ответ: длина изгороди огородного участка составляет 140 м.


Задания для самостоятельного решения

Задание 1. Решить уравнение:

Решение:

Ответ: 2; −2.

Задание 2. Решить уравнение:

Решение:

Ответ: корней нет.

Задание 3. Решить уравнение:

Решение:

Ответ: 3; −3.

Задание 4. Решить уравнение, используя выделение полного квадрата:

Решение:

Ответ: 3; −13.

Задание 5. Решить уравнение, используя выделение полного квадрата:

Решение:

Ответ: 12; 4.

Задание 6. Решить уравнение, используя выделение полного квадрата:

Решение:

Ответ: 7; 5.

Задание 7. Решить уравнение:

Решение:

Ответ: 0; 1.

Задание 8. Решить уравнение:

Решение:

Ответ: 0; −3.

Задание 9. Решить уравнение:

Решение:

Ответ: 7; −7.

Задание 10. Решить уравнение:

Решение:

Ответ:

Задание 11. Решить уравнение:

Решение:

Ответ: 5; −5.

Задание 12. Решить уравнение:

Решение:

Ответ: 7; 2

Задание 13. Решить уравнение:

Решение:

Ответ: корней нет.

Задание 14. Решить уравнение:

Решение:

Ответ:

Задание 15. Решить уравнение:

Решение:

Ответ: 1; −5.

Задание 16. Решить уравнение:

Решение:

Ответ: 5; −9.

Задание 17. Решить уравнение:

Решение:

Ответ: −3; −4.

Задание 18. Решить уравнение:

Решение:

Ответ: .

Понравился урок?
Вступай в нашу новую группу Вконтакте и начни получать уведомления о новых уроках

Возникло желание поддержать проект?
Используй кнопку ниже

Навигация по записям

Как решать квадратные уравнения? Формулы и Примеры

Понятие квадратного уравнения

Уравнения — это математическое равенство, в котором неизвестна одна или несколько величин. Значения неизвестных нужно найти так, чтобы при их подстановке в пример получилось верное числовое равенство.

Например, возьмем выражение 3 + 4 = 7. При вычислении левой части получается верное числовое равенство, то есть 7 = 7.

Уравнением можно назвать выражение 3 + x = 7, с неизвестной переменной x, значение которой нужно найти. Результат должен быть таким, чтобы знак равенства был оправдан, и левая часть равнялась правой.

Степень уравнения можно определить по наибольшей степени, в которой стоит неизвестное. Если неизвестное стоит во второй степени — это квадратное уравнение.

Квадратное уравнение — это ax2 + bx + c = 0, где a — первый или старший коэффициент, не равный нулю, b — второй коэффициент, c — свободный член.

Чтобы запомнить месторасположение коэффициентов, давайте потренируемся определять их.

Есть три вида квадратных уравнений:

  • не имеют корней;
  • имеют один корень;
  • имеют два различных корня.

Чтобы определить, сколько корней имеет уравнение, нужно обратить внимание на дискриминант. Чтобы его найти, берем формулу: D = b2 − 4ac. А вот свойства дискриминанта:

  • если D < 0, корней нет;
  • если D = 0, есть один корень;
  • если D > 0, есть два различных корня.

С этим разобрались. А сейчас посмотрим подробнее на различные виды квадратных уравнений.

Вникать во все тонкости математической вселенной комфортнее с внимательным наставником. Наши учителя объяснят сложную тему, ответят на неловкие вопросы и вдохновят ребенка учиться. А красочная платформа с увлекательными заданиями поможет заниматься современно и в удовольствие. Запишите ребенка на бесплатный вводный урок в онлайн-школе Skysmart и попробуйте сами!


Приведенные и неприведенные квадратные уравнения

Квадратное уравнение может быть приведенным или неприведенным — все зависит от от значения первого коэффициента.

Приведенное квадратное уравнение — это уравнение, где старший коэффициент, тот который стоит при одночлене высшей степени, равен единице.

Неприведенным называют квадратное уравнение, где старший коэффициент может быть любым.

Давайте-ка на примерах — вот у нас есть два уравнения:

  • x2 — 2x + 6 = 0
  • x2 — x — 1/4 = 0

В каждом из них старший коэффициент равен единице (которую мы мысленно представляем при x2 ), а значит уравнение называется приведенным.

  • 2x2 − 4x — 12 = 0 — первый коэффициент отличен от единицы (2), значит это неприведенное квадратное уравнение.

Каждое неприведенное квадратное уравнение можно преобразовать в приведенное, если произвести равносильное преобразование — разделить обе его части на первый коэффициент.

Запоминаем!

У преобразованного уравнения те же корни, что и у первоначального. Ну или вообще нет корней.

Пример 1. Превратим неприведенное уравнение: 8x2 + 20x — 9 = 0 — в приведенное.

Для этого разделим обе части исходного уравнения на старший коэффициент 8:

Ответ: равносильное данному приведенное уравнение x2 + 2,5x — 1,125 = 0.

Полные и неполные квадратные уравнения

В определении квадратного уравнения есть условие: a ≠ 0. Оно нужно, чтобы уравнение ax2 + bx + c = 0 было именно квадратным. Если a = 0, то уравнение обретет вид линейного: bx + c = 0.

Что касается коэффициентов b и c, то они могут быть равны нулю, как по отдельности, так и вместе. В таком случае квадратное уравнение принято назвать неполным.

Неполное квадратное уравнение —— это квадратное уравнение вида ax2 + bx + c = 0, где оба или хотя бы один из коэффициентов b и c равен нулю.

Полное квадратное уравнение — это уравнение, у которого все коэффициенты отличны от нуля.

Для самых любопытных объясняем откуда появились такие названия:
  • Если b = 0, то квадратное уравнение принимает вид ax2 + 0x+c=0 и оно равносильно ax2 + c = 0.
  • Если c = 0, то квадратное уравнение выглядит так ax2 + bx + 0 = 0, иначе его можно написать как ax2 + bx = 0.
  • Если b = 0 и c = 0, то квадратное уравнение выглядит так ax2 = 0.

Такие уравнения отличны от полного квадратного тем, что их левые части не содержат либо слагаемого с неизвестной переменной, либо свободного члена, либо и того и другого. Отсюда и их название — неполные квадратные уравнения.

Решение неполных квадратных уравнений

Как мы уже знаем, есть три вида неполных квадратных уравнений:

  • ax2 = 0, ему отвечают коэффициенты b = 0 и c = 0;
  • ax2 + c = 0, при b = 0;
  • ax2 + bx = 0, при c = 0.

Давайте рассмотрим по шагам, как решать неполные квадратные уравнения по видам.

Как решить уравнение ax

2 = 0

Начнем с решения неполных квадратных уравнений, в которых b и c равны нулю, то есть, с уравнений вида ax2 = 0.

Уравнение ax2 = 0 равносильно x2 = 0. Такое преобразование возможно, когда мы разделили обе части на некое число a, которое не равно нулю. Корнем уравнения x2 = 0 является нуль, так как 02 = 0. Других корней у этого уравнения нет, что подтверждают свойства степеней.

Таким образом, неполное квадратное уравнение ax2 = 0 имеет единственный корень x = 0.

Пример 1. Решить −6x2 = 0.

Как решаем:

  1. Замечаем, что данному уравнению равносильно x2 = 0, значит исходное уравнение имеет единственный корень — нуль.
  2. По шагам решение выглядит так:

    −6x2 = 0

    x2 = 0

    x = √0

    x = 0

Ответ: 0.

Как решить уравнение ax

2 + с = 0

Обратим внимание на неполные квадратные уравнения вида ax2 + c = 0, в которых b = 0, c ≠ 0. Мы давно знаем, что слагаемые в уравнениях носят двусторонние куртки: когда мы переносим их из одной части уравнения в другую, они надевает куртку на другую сторону — меняют знак на противоположный.

Еще мы знаем, что если обе части уравнения поделить на одно и то же число (кроме нуля) — у нас получится равносильное уравнение. Ну есть одно и то же, только с другими цифрами.

Держим все это в голове и колдуем над неполным квадратным уравнением (производим «равносильные преобразования»): ax2 + c = 0:

  • перенесем c в правую часть: ax2 = — c,
  • разделим обе части на a: x2 = — c/а.

Ну все, теперь мы готовы к выводам о корнях неполного квадратного уравнения. В зависимости от значений a и c, выражение — c/а может быть отрицательным или положительным. Разберем конкретные случаи.

Если — c/а < 0, то уравнение x2 = — c/а не имеет корней. Все потому, что квадрат любого числа всегда равен неотрицательному числу. Из этого следует, что при — c/а < 0 ни для какого числа p равенство р2 = — c/а не является верным.

Если — c/а > 0, то корни уравнения x2 = — c/а будут другими. Например, можно использовать правило квадратного корня и тогда корень уравнения равен числу √- c/а, так как (√- c/а)2 = — c/а. Кроме того, корнем уравнения может стать -√- c/а, так как (-√- c/а)2 = — c/а. Ура, больше у этого уравнения нет корней.

В двух словах

Неполное квадратное уравнение ax2 + c = 0 равносильно уравнению ax2 + c = 0, которое:

  • не имеет корней при — c/а < 0;
  • имеет два корня х = √- c/а и х = -√- c/а при — c/а > 0.

Пример 1. Найти решение уравнения 8x2 + 5 = 0.

Как решать:

  1. Перенесем свободный член в правую часть:

    8x2 = — 5

  2. Разделим обе части на 8:

    x2 = — 5/8

  3. В правой части осталось число со знаком минус, значит у данного уравнения нет корней.

Ответ: уравнение 8x2 + 5 = 0 не имеет корней.

Как решить уравнение ax

2 + bx = 0

Осталось разобрать третий вид неполных квадратных уравнений, когда c = 0.

Неполное квадратное уравнение ax2 + bx = 0 можно решить методом разложения на множители. Разложим на множители многочлен, который расположен в левой части уравнения — вынесем за скобки общий множитель x. Теперь можем перейти от исходного уравнения к равносильному x * (ax + b) = 0. А это уравнение равносильно совокупности двух уравнений x = 0 и ax + b = 0, последнее — линейное, его корень x = −b/a.

Таким образом, неполное квадратное уравнение ax2 + bx = 0 имеет два корня:

Пример 1. Решить уравнение 0,5x2 + 0,125x = 0

Как решать:

  1. Вынести х за скобки

    х(0,5x + 0,125) = 0

  2. Это уравнение равносильно х = 0 и 0,5x + 0,125 = 0.
  3. Решить линейное уравнение:

    0,5x = 0,125,
    х = 0,125/0,5

  4. Разделить:

    х = 0,25

  5. Значит корни исходного уравнения — 0 и 0,25.

Ответ: х = 0 и х = 0,25.

Формула Виета


Если в школьной геометрии чаще всего используется теорема Пифагора, то в школьной алгебре ведущую роль занимают формулы Виета. Теорема звучит так: 

Теорема Виета

Сумма корней x2 + bx + c = 0 равна второму коэффициенту с противоположным знаком, а произведение корней равняется свободному члену.

Если дано x2 + bx + c = 0, где x₁ и x₂ являются корнями, то справедливы два равенства:

 

Знак системы, который принято обозначать фигурной скобкой, означает, что значения x₁ и x₂ удовлетворяют обоим равенствам.

Рассмотрим теорему Виета на примере: x2 + 4x + 3 = 0.

Пока неизвестно, какие корни имеет данное уравнение. Но в соответствии с теоремой можно записать, что сумма этих корней равна второму коэффициенту с противоположным знаком. Он равен четырем, значит будем использовать минус четыре:

Произведение корней по теореме соответствует свободному члену. В данном случае свободным членом является число три. Значит:

Необходимо проверить равна ли сумма корней −4, а произведение 3. Для этого найдем корни уравнения x2 + 4x + 3 = 0. Воспользуемся формулами для чётного второго коэффициента:

Получилось, что корнями уравнения являются числа −1 и −3. Их сумма равняется второму коэффициенту с противоположным знаком, а значит решение верное.

Произведение корней −1 и −3 по теореме Виета должно равняться свободному члену, то есть числу 3. Это условие также выполняется:

Результат проделанных вычислений в том, что мы убедились в справедливости выражения:

Когда дана сумма и произведение корней квадратного уравнения, принято начинать подбор подходящих корней. Теорема, обратная теореме Виета, при таких условиях может быть главным помощником. Вот она:

Обратная теорема Виета

Если числа x1 и x2 таковы, что их сумма равна второму коэффициенту уравнения x2 + bx + c = 0, взятому с противоположным знаком, а их произведение равно свободному члену, то эти числа и есть корни x2 + bx + c = 0.

Обычно вся суть обратных теорем в том самом выводе, которое дает первая теорема. Так, при доказательстве теоремы Виета стало понятно, что сумма x1 и x2 равна −b, а их произведение равно c. В обратной теореме это и есть утверждение.

Пример 1. Решить при помощи теоремы Пифагора: x2 − 6x + 8 = 0.

Как решаем:

  1. Для начала запишем сумму и произведение корней уравнения. Сумма будет равна 6, так как второй коэффициент равен −6. А произведение корней равно 8.

  2. Когда у нас есть эти два равенства, можно подобрать подходящие корни, которые будут удовлетворять обоим равенствам системы.

    Чтобы проще подобрать корни, нужно их перемножить. Число 8 можно получить путем перемножения чисел 4 и 2 либо 1 и 8. Но значения x1 и x2 надо подбирать так, чтобы они удовлетворяли и второму равенству тоже.

    Можно сделать вывод, что значения 1 и 8 не подходят, так как они не удовлетворяют равенству x1 + x2 = 6. А значения 4 и 2 подходят обоим равенствам:

  3. Значит числа 4 и 2 — корни уравнения x2 − 6x + 8 = 0. p>

     

Дискриминант: формула корней квадратного уравнения

Чтобы найти результат квадратного уравнения, придумали формулу корней. Выглядит она так:

где D = b2 − 4ac — дискриминант квадратного уравнения.

Эта запись означает:

Чтобы легко применять эту формулу, нужно понять, как она получилась. Давайте разбираться.

Выводим формулу корней квадратного уравнения

Продолжим изучать формулу корней квадратного уравнения.

Пусть перед нами есть задача решить квадратное уравнение ax2 + bx + c = 0. Выполним ряд равносильных преобразований:

Так, мы пришли к уравнению , которое полностью равносильно исходному ax2 + bx + c = 0.

Отсюда выводы про корни уравнения :

И еще один вывод: есть у уравнения корень или нет, зависит от знака выражения в правой части. При этом важно помнить, что знак этого выражения задается знаком числителя. Потому выражение принято называть дискриминантом квадратного уравнения и обозначается буквой D.

По значению и знаку дискриминанта можно сделать вывод, есть ли действительные корни у квадратного уравнения, и сколько.

Повторим:

Алгоритм решения квадратных уравнений по формулам корней

Теперь мы знаем, что при решении квадратных уравнения можно использовать универсальную формулу корней — это помогает находить комплексные корни.

В 8 классе на алгебре можно встретить задачу по поиску действительных корней квадратного уравнения. Для этого важно перед использованием формул найти дискриминант и убедиться, что он неотрицательный, и только после этого вычислять значения корней. Если дискриминант отрицательный, значит уравнение не имеет действительных корней.

Алгоритм решения квадратного уравнения ax2 + bx + c = 0:

  • вычислить его значение дискриминанта по формуле D = b2−4ac;
  • если дискриминант отрицательный, зафиксировать, что действительных корней нет;
  • если дискриминант равен нулю, вычислить единственный корень уравнения по формуле х = — b2/2a;
  • если дискриминант положительный, найти два действительных корня квадратного уравнения по формуле корней

Чтобы запомнить алгоритм решения квадратных уравнений и с легкостью его использовать, давайте тренироваться!

Примеры решения квадратных уравнений

Как решать квадратные уравнения мы уже знаем, осталось закрепить знания на практике.

Пример 1. Решить уравнение −4x2 + 28x — 49 = 0.

Как решаем:

  1. Найдем дискриминант: D = 282 — 4(-4)(-49) = 784 — 784 = 0
  2. Так как дискриминант равен нулю, значит это квадратное уравнение имеет единственный корень
  3. Найдем корень

    х = — 28/2(-4)

    х = 3,5

Ответ: единственный корень 3,5.

Пример 2. Решить уравнение 54 — 6x2 = 0.

Как решаем:

  1. Произведем равносильные преобразования. Умножим обе части на −1

    54 — 6x2 = 0 | *(-1)

    6x2 — 54 = 0

  2. Оставим неизвестное в одной части, остальное перенесем с противоположным знаком в другую

    6x2 = 54

    х2 = 9

    х = ±√9

    х1 = 3, х2 = — 3

Ответ: два корня 3 и — 3.

Пример 3. Решить уравнение x2— х = 0.

Как решаем:

  1. Преобразуем уравнение так, чтобы появились множители

    х(х — 1) = 0

    х₁ = 0, х₂ = 1

Ответ: два корня 0 и 1.

Пример 4. Решить уравнение x2— 10 = 39.

Как решаем:

  1. Оставим неизвестное в одной части, остальное перенесем с противоположным знаком в другую

    x2— 10 = 39

    x2= 39 + 10

    x2= 49

    х = ±√49

    х₁ = 7, х₂ = −7

Ответ: два корня 7 и −7.

Пример 5. Решить уравнение 3x2— 4x+94 = 0.

Как решаем:

  1. Найдем дискриминант по формуле

    D = (-4)2 — 4 * 3 * 94 = 16 — 1128 = −1112

  2. Дискриминант отрицательный, поэтому корней нет.

Ответ: корней нет.

В школьной программе за 8 класс нет обязательного требования искать комплексные корни, но такой подход может ускорить ход решения. Если дискриминант отрицательный — сразу пишем ответ, что действительных корней нет и не мучаемся.

Приходите решать примеры на бытовых ситуациях, с красочными героями и в интерактивном формате.

Запишите вашего ребенка на бесплатный пробный урок в онлайн-школу Skysmart: познакомимся, покажем, как все устроено на платформе и наметим вдохновляющую программу обучения.

Формула корней для четных вторых коэффициентов

Рассмотрим частный случай. Формула решения корней квадратного уравнения , где D = b2 — 4ac, помогает получить еще одну формулу, более компактную, при помощи которой можно решать квадратные уравнения с четным коэффициентом при x. Рассмотрим, как появилась эта формула.

Например, нам нужно решить квадратное уравнение ax2 + 2nx + c = 0. Сначала найдем его корни по известной нам формуле. Вычислим дискриминант D = (2n)2— 4ac = 4n2 — 4ac = 4(n2— ac) и подставим в формулу корней:

Для удобства вычислений обозначим выражение n2 -ac как D1. Тогда формула корней квадратного уравнения со вторым коэффициентом 2·n примет вид:

где D1 = n2— ac.

Самые внимательные уже заметили, что D = 4D1, или D1= D/4. Проще говоря, D1 — это четверть дискриминанта. И получается, что знак D1 является индикатором наличия или отсутствия корней квадратного уравнения.

Сформулируем правило. Чтобы найти решение квадратного уравнения со вторым коэффициентом 2n, нужно:

  • вычислить D1= n2— ac;
  • если D1< 0, значит действительных корней нет;
  • если D1= 0, значит можно вычислить единственный корень уравнения по формуле;
  • если же D1> 0, значит можно найти два действительных корня по формуле

Упрощаем вид квадратных уравнений

Если мы ходили в школу всегда одной тропинкой, а потом вдруг обнаружили путь короче — это значит теперь у нас есть выбор: упростить себе задачу и сократить время на дорогу или прогуляться по привычному маршруту.

Так же и при вычислении корней квадратного уравнения. Ведь проще посчитать уравнение 11x2 — 4 x — 6 = 0, чем 1100x2 — 400x — 600 = 0.

Часто упрощение вида квадратного уравнения можно получить через умножение или деление обеих частей на некоторое число. Например, в предыдущем абзаце мы упростили уравнение 1100x2 — 400x — 600 = 0, просто разделив обе части на 100.

Такое преобразование возможно, когда коэффициенты не являются взаимно простыми числами. Тогда принято делить обе части уравнения на наибольший общий делитель абсолютных величин его коэффициентов.

Покажем, как это работает на примере 12x2— 42x + 48 = 0. Найдем наибольший общий делитель абсолютных величин его коэффициентов: НОД (12, 42, 48) = 6. Разделим обе части исходного квадратного уравнения на 6, и придем к равносильному уравнению 2x2 — 7x + 8 = 0. Вот так просто.

А умножение обеих частей квадратного уравнения отлично помогает избавиться от дробных коэффициентов. Умножать в данном случае лучше на наименьшее общее кратное знаменателей его коэффициентов. Например, если обе части квадратного уравнения

умножить на НОК (6, 3, 1) = 6, то оно примет более простой вид x2 + 4x — 18 = 0.

Также для удобства вычислений можно избавиться от минуса при старшем коэффициенте квадратного уравнения — для этого умножим или разделим обе части на −1. Например, удобно от квадратного уравнения −2x2— 3x + 7 = 0 перейти к решению 2x2 + 3x — 7 = 0.

Связь между корнями и коэффициентами

Мы уже запомнили, что формула корней квадратного уравнения выражает корни уравнения через его коэффициенты:

Из этой формулы, можно получить другие зависимости между корнями и коэффициентами.

Например, можно применить формулы из теоремы Виета:

  • x₁ + x₂ = — b/a,
  • x₁* x₂ = c/a.

Для приведенного квадратного уравнения сумма корней равна второму коэффициенту с противоположным знаком, а произведение корней — свободному члену. Например, по виду уравнения 3x2— 7x + 22 = 0 можно сразу сказать, что сумма его корней равна 7/3, а произведение корней равно 22/3.

Можно активно использовать уже записанные формулы и с их помощью получить ряд других связей между корнями и коэффициентами квадратного уравнения. Таким образом можно выразить сумму квадратов корней квадратного уравнения через его коэффициенты:

А еще найти корни квадратного уравнения можно с помощью онлайн-калькулятора. Пользуйтесь им, если уже разобрались с темой и щелкаете задачки легко и без помощников:

Решить квадратное уравнение онлайн

Для решения квадратного уравнения онлайн введите коэффициенты квадратного уравнения.

Вводить можно числа: десятичные и обыкновенные дроби, и переменные. Например: 2 или 1/3 или 1.2 или -1/4 или 7a (содержит параметр) и т.д.

x2 + x + = 0

Решить уравнение

Данный калькулятор по решению квадратных уравнений онлайн взят с сайта Mathforyou.net. Все права на его использование принадлежат владельцу!

Воспользуйтесь также:
Инженерный калькулятор (он позволяет решать в том числе и квадратные уравнения)

Решение квадратного уравнения онлайн

Квадратные уравнения

Квадратное уравнение — это уравнение вида: ax^2 + bx + с = 0, где a не равно 0.2 — 4ac

Если D > 0, то уравнение имеет два различных вещественных корня.
Если D = 0, то уравнение имеет один корень (x1 = x2).
Если D решения квадратного уравнения) находятся по формуле:

D = \frac{-b\pm\sqrt{D}}{2a}

Если в вашем квадратном уравнении есть знаки вычитания, то перед соответствующими коэффициентами в онлайн калькуляторе нужно поставить знак минус («-«), если отсутствует один из членов уравнения, то рядом с отсутствующим слагаемым поставьте коэффициент ноль («0»). Также вы можете получить ответ, зависящий от параметра (неизвестной). То есть коэффициенты в уравнении могут содержать переменные, которые обозначаются латинскими буквами

Квадратное уравнение. Онлайн калькулятор с примерами

Решение квадратных уравнений

Как бы кто ни говорил, но тема квадратных уравнений – это база всей школьной программы. Читая дальше, вы поймете почему.

Решая линейные уравнения, требуется лишь навык применения арифметических операций. Даже решать систему линейных уравнений несложно, все сводится к сложению, вычитанию или раскрытию скобок, когда подставляем одно уравнение в другое. И так далее.

Иное дело, когда возрастает старшая степень неизвестной переменной, и первый вид таких уравнений как раз называется квадратным уравнением, когда неизвестная переменная представлена во второй степени.

Есть прямая связь квадратных уравнений с тем, что мы можем наблюдать вокруг нас. Тема квадратных уравнений легкая, но очень важная и требует полного изучения, однако, этим пренебрегают ученики, да и учителя тоже.

Например, полет снаряда, выпущенного из орудия, летит по траектории, описываемой квадратным уравнением, и называется параболой. Парабола имеет вершину и две ветви, расположенные зеркально, что напоминает подкову.

Где встречаются квадратные уравнения

На практике квадратные уравнения встречаются практически во всех сферах жизненной деятельности человека, от науки до искусства. В школьной программе обязательно в алгебре, геометрии со стереометрией, тригонометрии, при упрощении выражений и так далее. Разумеется, не только в математике. В химии, физике, экономике, биологии и других науках без квадратных уравнений никак не обойтись.

Более того, в некоторых задачах необходимо оперировать со значениями, являющимися корнями квадратного уравнения, и опять-таки требуется находить корни. Если нахождение корней квадратного уравнения является промежуточным действием, например, необходимо использовать только сумму корней или их произведение, то глядя на уравнение, это сразу видно. Но опять же это нужно знать!

График квадратного уравнения

Как вы уже знаете графиком квадратного уравнения является парабола. По виду уравнения можно легко определить расположение ее вершины и направление ветвей относительно системы координат.

Парабола может либо пересекать ось абсцисс (в одной или двух точках), либо не пересекать ее. Во втором случае говорят, что квадратное уравнение не имеет действительных решений (корней). Если же график параболы пересекает ось абсцисс, то корней два или один как минимум.

Запомните! У квадратного уравнения всегда имеются либо два разных, либо один кратности два корень, потому что уравнение второй степени. В том случае, когда корни не принадлежат полю действительных чисел, они находятся в поле комплексных чисел. Если вы еще не слышали про комплексные числа, просто примите это к сведению.

Что такое дискриминант

Общий вид квадратного уравнения следующий:

a*x2 + b*x + c = 0

Умножим обе части уравнения на 4*a, прибавим b2 к обеим частям и применим формулу сокращенного умножения «квадрат суммы». Перенесем 4*a*c в правую часть уравнения. В результате получим:

(2*a*x + b)2 = b2 – 4*a*c

Отсюда очевидно, что при b2 – 4*a*c действительных корней нет, потому что нет такого числа, которое в квадрате давало бы отрицательное.

При b2 – 4*a*c = 0 только один кратный корень.

И третий случай, при b2 – 4*a*c > 0 уравнение имеет два разных корня.

Рассмотрим последний случай, когда уравнение имеет два разных корня x1 и x2. Соответственно график параболы пересекает ось X в двух разных точках.

Координата вершины параболы определяется значением x = –b/2a.

Так как график параболы симметричен, то оба корня равноудалены от линии, проходящей через ее вершину.

Отсюда очевидно, что чем больше значение дискриминанта, тем дальше друг от друга располагаются корни уравнения. В этом заключается геометрический смысл дискриминанта.

Другими словами, значение дискриминанта напрямую указывает на удаленность корней уравнения друг от друга на числовой оси.

Так вот, удаленность корней друг от друга и называются дискриминантом, а формула, которую дают в школе под соусом «дискриминант», всего лишь выражает этот факт.

Как найти корни квадратного уравнения

Самое интересное это поиск корней уравнения. Есть несколько методов их нахождения, перечислим более известные.

1. Первый из них, самый известный всем школьникам, описанный выше, – это поиск по формуле квадратного уравнения, используя значение дискриминанта.

2. Принято отдельно считать метод выделения полного квадрата. Но как мы видели из поиска дискриминанта, это вытекает из первого способа.

3. Другой популярный способ – это разложение уравнения на множители, когда его приводят к виду (x+A)*(x+B)=0. Частный случай такого уравнения x*(x+A)=0 с нулевым корнем.

4. Еще один не менее важный способ – графический. В этом методе исследуют график параболы и находят ее пересечение с осями координат.

5. Очень удобный способ определения корней квадратного уравнения и часто применяемый в практических задачах – применение теоремы Виета.

Рассмотрим пример определения корней по теореме Виета

Пусть дано уравнение x2 — 5 x + 6 = 0

Согласно этой теореме, сумма корней есть коэффициент перед x, но с противоположным знаком, а произведение корней – это значение свободного члена квадратного уравнения.

Очевидно, что x1=2, а x2=3, так как x1+x2=2+3=5, а x1*x2=2*3=6

Калькулятор решения квадратных уравнений

С нашим калькуляторе вы без проблем решите любое квадратное уравнение онлайн. Он полезен как для самопроверки, таки и для изучения этой темы, поскольку пошагово покажет весь ход решения до определения корней.

В калькуляторе предусмотрены различные варианты решения квадратного уравнения. Это по формуле через дискриминант, с помощью выделения полного квадрата и методом разложения на множители.

Каждый способ решения хорош по-своему, а главное помогает школьникам лучше усвоить столь важную тему как решение квадратных уравнений.

Желаем успехов!

Решение квадратных уравнений онлайн

С помощю этого онлайн калькулятора можно найти решение (корни) квадратного уравнения. Дается подробное решение с пояснениями. Для нахождения решений квадратного уравнения введите коэффициенты уравнения и нажмите на кнопку «Решить». Теоретическую часть и численные примеры смотрите ниже.

Очистить все ячейки?

Инструкция ввода данных. Числа вводятся в виде целых чисел (примеры: 487, 5, -7623 и т.д.), десятичных чисел (напр. 67., 102.54 и т.д.) или дробей. Дробь нужно набирать в виде a/b, где a и b (b>0) целые или десятичные числа. Примеры 45/5, 6.6/76.4, -7/6.7 и т.д.

 

Корни квадратного уравнения − теория примеры и решения

Квадратным уравнением называется уравнение следующего вида:

где x−переменная, а a, b, c некоторые числа (a≠0). Числа a, b, c называются коэффициентами квадратного уравнения. Коэффицинт c называется свободным членом.

Если a=1, то квадратное уравнение называется приведенным. Заметим, что любое квадратное уравнение можно привести к приведенному виду, разделив обе части уравнения на a. Действительно:

Если в квадратном уравнении (1) один из коэффициентов b, c равен нулю или оба коэффициента b, c равны нулю, то квадратное уравнение называется неполным.

Рассмотрим разные виды неполных квадратных уравнений.

1. При b=0 имеем:

Для решения этого уравнения свободный член перенесем в правую часть уравнения:

Решая последнее уравнение относительно x получим корни квадратного уравнения (3):

Если , то квадратное уравнение не имеет действительных корней.

2. При c=0 имеем:

Разложим левую часть последнего уравнения на множители:

Из (4) следует x=0 или ax+b=0. Следовательно имеем следующие решения:

3. При b=0, c=0 имеем:

и, следовательно

Рассмотрим, далее, алгоритм решения квадратных уравнений общего вида (1). Разделим обе части уравнения на a:

Сделаем эквивалентные преобразования уравнения (5):

Легко догадаться, что первые три слагаемые уравнения (6) образуют квадрат следующей суммы:

Тогда

Обозначим

D− называется дискриминантом квадратного уравнения (1). Так как a≠0, то 4a2>0. Знак правой части уравнения (7) определяется знаком дискриминанта D.

Учитывая (8) запишем (7) в следующем виде:

При решении последнего уравнения возможны следующие варианты:

1. При D>0, имеем

Таким образом, при D>0, квадратное уравнение (1) имеет две корни:

2.При D=0, имеем

То есть, при D=0 квадратное уравнение (1) имеет единственный корень:

3. При D<0, правая часть уравнения (9) отрицательна, а так как квадрат числа не может быть отрицательным числом, то квадратное уравнение (1) не имеет корней.

Пример 1. Решить квадратное уравнение

.(10)

Решение. Запишем коэффициенты квадратного уравнения (10):

Вычислим дискриминант квадратного уравнения:

.

Дискриминант положительное число. Следовательно квадратное уравнение (10) имеет два решения.

Найдем решение квадратного уравнения используя следующую формулу:

.(11)

Подставляя значения коэффициентов a, b, c, D в (11), получим:

,
.

Ответ:

Пример 2. Решить следующее квадратное уравнение:

.(12)

Решение. Запишем коэффициенты квадратного уравнения (12):

Вычислим дискриминант квадратного уравнения:

.

Дискриминант равен нулю. Следовательно квадратное уравнение (12) имеет единственное решение. Найдем решение квадратного уравнения используя следующую формулу:

.(13)

Подставляя значения коэффициентов a, b, c, D в (13), получим:

,

Ответ:

.

Пример 3. Решить следующее квадратное уравнение:

.(14)

Решение. Запишем коэффициенты квадратного уравнения (14):

Вычислим дискриминант квадратного уравнения:

.

Дискриминант отрицательное число. Следовательно квадратное уравнение (14) не имеет действительных корней.

Ответ: Квадратное уравнение не имеет действительных корней.

Решить квадратное уравнение онлайн. Решение уравнений с параметром

Цели:

  1. Систематизировать и обобщить знания и умения по теме: Решения уравнений третьей и четвертой степени.
  2. Углубить знания, выполнив ряд заданий, часть из которых не знакома или по своему типу, или способу решения.
  3. Формирование интереса к математике через изучение новых глав математики, воспитание графической культуры через построение графиков уравнений.

Тип урока : комбинированный.

Оборудование: графопроектор.

Наглядность: таблица «Теорема Виета».

Ход урока

1. Устный счет

а) Чему равен остаток от деления многочлена р n (х) = а n х n + а n-1 х n-1 + … + а 1 х 1 + a 0 на двучлен х-а?

б) Сколько корней может иметь кубическое уравнение?

в) С помощью чего мы решаем уравнение третьей и четвертой степени?

г) Если b четное число в квадратном уравнение, то чему равен Д и х 1 ;х 2

2. Самостоятельная работа (в группах)

Составить уравнение, если известны корни (ответы к заданиям закодированы) Используется «Теорема Виета»

1 группа

Корни: х 1 = 1; х 2 = -2; х 3 = -3; х 4 = 6

Составить уравнение:

B=1 -2-3+6=2; b=-2

с=-2-3+6+6-12-18= -23; с= -23

d=6-12+36-18=12; d= -12

е=1(-2)(-3)6=36

х 4 — 2 х 3 — 23х 2 — 12 х + 36 = 0 (это уравнение решает потом 2 группа на доске)

Решение . Целые корни ищем среди делителей числа 36.

р = ±1;±2;±3;±4;±6…

р 4 (1)=1-2-23-12+36=0 Число 1 удовлетворяет уравнению, следовательно, =1 корень уравнения. По схеме Горнера

р 3 (x) = х 3 -х 2 -24x -36

р 3 (-2) = -8 -4 +48 -36=0, х 2 =-2

р 2 (x) = х 2 -3х -18=0

х 3 =-3, х 4 =6

Ответ: 1;-2;-3;6 сумма корней 2 (П)

2 группа

Корни: х 1 = -1; х 2 = х 3 =2; х 4 =5

Составить уравнение:

B=-1+2+2+5-8; b= -8

с=2(-1)+4+10-2-5+10=15; с=15

D=-4-10+20-10= -4; d=4

е=2(-1)2*5=-20;е=-20

8+15+4х-20=0 (это уравнение решает на доске 3 группа)

р = ±1;±2;±4;±5;±10;±20.

р 4 (1)=1-8+15+4-20=-8

р 4 (-1)=1+8+15-4-20=0

р 3 (x) = х 3 -9х 2 +24x -20

р 3 (2) = 8 -36+48 -20=0

р 2 (x) = х 2 -7х +10=0 х 1 =2; х 2 =5

Ответ: -1;2;2;5 сумма корней 8(Р)

3 группа

Корни: х 1 = -1; х 2 =1; х 3 =-2; х 4 =3

Составить уравнение:

В=-1+1-2+3=1;в=-1

с=-1+2-3-2+3-6=-7;с=-7

D=2+6-3-6=-1; d=1

е=-1*1*(-2)*3=6

х 4 — х 3 — 7х 2 + х + 6 = 0 (это уравнение решает потом на доске 4 группа)

Решение. Целые корни ищем среди делителей числа 6.

р = ±1;±2;±3;±6

р 4 (1)=1-1-7+1+6=0

р 3 (x) = х 3 — 7x -6

р 3 (-1) = -1+7-6=0

р 2 (x) = х 2 -х -6=0; х 1 =-2; х 2 =3

Ответ:-1;1;-2;3 Сумма корней 1(О)

4 группа

Корни: х 1 = -2; х 2 =-2; х 3 =-3; х 4 =-3

Составить уравнение:

B=-2-2-3+3=-4; b=4

с=4+6-6+6-6-9=-5; с=-5

D=-12+12+18+18=36; d=-36

е=-2*(-2)*(-3)*3=-36;е=-36

х 4 + 4х 3 – 5х 2 – 36х -36 = 0 (это уравнение решает потом 5 группа на доске)

Решение. Целые корни ищем среди делителей числа -36

р = ±1;±2;±3…

р(1)= 1 + 4-5-36-36 = -72

р 4 (-2) = 16 -32 -20 + 72 -36 = 0

р 3 (х) = х 3 +2х 2 -9х-18 = 0

р 3 (-2)= -8 + 8 + 18-18 = 0

р 2 (х) = х 2 -9 = 0; x=±3

Ответ: -2; -2; -3; 3 Сумма корней-4 (Ф)

5 группа

Корни: х 1 = -1; х 2 =-2; х 3 =-3; х 4 =-4

Составить уравнение

х 4 + 10х 3 + 35х 2 + 50х + 24 = 0 (это уравнение решает потом 6группа на доске)

Решение . Целые корни ищем среди делителей числа 24.

р = ±1;±2;±3

р 4 (-1) = 1 -10 + 35 -50 + 24 = 0

р 3 (х) = x- 3 + 9х 2 + 26x+ 24 = 0

p 3 (-2) = -8 + 36-52 + 24 = О

р 2 (х) = x 2 + 7x+ 12 = 0

Ответ:-1;-2;-3;-4 сумма-10 (И)

6 группа

Корни: х 1 = 1; х 2 = 1; х 3 = -3; х 4 = 8

Составить уравнение

B=1+1-3+8=7;b=-7

с=1 -3+8-3+8-24= -13

D=-3-24+8-24= -43; d=43

х 4 — 7х 3 — 13х 2 + 43 x — 24 = 0 (это уравнение решает потом 1 группа на доске)

Решение . Целые корни ищем среди делителей числа -24.

р 4 (1)=1-7-13+43-24=0

р 3 (1)=1-6-19+24=0

р 2 (x)= х 2 -5x — 24 = 0

х 3 =-3, х 4 =8

Ответ: 1;1;-3;8 сумма 7 (Л)

3. Решение уравнений с параметром

1. Решить уравнение х 3 + 3х 2 + mх — 15 = 0; если один из корней равен (-1)

Ответ записать в порядке возрастания

R=Р 3 (-1)=-1+3-m-15=0

х 3 + 3х 2 -13х — 15 = 0; -1+3+13-15=0

По условию х 1 = — 1; Д=1+15=16

Р 2 (х) = х 2 +2х-15 = 0

х 2 =-1-4 = -5;

х 3 =-1 + 4 = 3;

Ответ:- 1;-5; 3

В порядке возрастания: -5;-1;3. (Ь Н Ы)

2. Найти все корни многочлена х 3 — 3х 2 + ах — 2а + 6, если остатки от его деления на двучлены х-1 и х +2 равны.

Решение: R=Р 3 (1) = Р 3 (-2)

Р 3 (1) = 1-3 + а- 2а + 6 = 4-а

Р 3 (-2) = -8-12-2а-2а + 6 = -14-4а

x 3 -Зх 2 -6х + 12 + 6 = х 3 -Зх 2 -6х + 18

x 2 (x-3)-6(x-3) = 0

(х-3)(х 2 -6) = 0

3) а=0, х 2 -0*х 2 +0 = 0; х 2 =0; х 4 =0

а=0; х=0; х=1

а>0; х=1; х=а ± √а

2. Составить уравнение

1 группа . Корни: -4; -2; 1; 7;

2 группа . Корни: -3; -2; 1; 2;

3 группа . Корни: -1; 2; 6; 10;

4 группа . Корни: -3; 2; 2; 5;

5 группа . Корни: -5; -2; 2; 4;

6 группа . Корни: -8; -2; 6; 7.

Представление об уравнениях с двумя переменными впервые формируется в курсе математики за 7 класс. Рассматриваются конкретные задачи, процесс решения которых приводит к такому виду уравнений.

При этом они изучаются довольно поверхностно. В программе главный акцент делается на системах уравнений с двумя неизвестными.

Это стало причиной того, что задачи, в которых на коэффициенты уравнения накладываются определенные ограничения, практически не рассматриваются. Недостаточно внимания уделено методам решения заданий типа «Решить уравнение в натуральных или целых числах». Известно, что материалы ЕГЭ и билеты вступительных экзаменов часто содержат такие упражнения.

Какие именно уравнения определяются как уравнения с двумя переменными?

ху = 8, 7х + 3у = 13 или х 2 + у = 7 – примеры уравнений с двумя переменными.

Рассмотрим уравнение х – 4у = 16. Если х = 4, а у = -3, оно будет правильным равенством. Значит, эта пара значений – решение данного уравнения.

Решение любого уравнения с двумя переменными – множество пар чисел (х; у), которые удовлетворяют это уравнение (превращают его в верное равенство).

Часто уравнение преобразовывают так, чтобы из него можно было получить систему для нахождения неизвестных.

Примеры

Решить уравнение: ху – 4 = 4х – у.

В данном примере можно воспользоваться методом разложения на множители. Для этого нужно сгруппировать слагаемые и вынести общий множитель за скобки:

ху – 4 = 4х – у;

ху – 4 – 4х + у = 0;

(ху + у) – (4х + 4) = 0;

у(х + 1) – 4(х + 1) = 0;

(х + 1)(у — 4) = 0.

Ответ: Все пары (х; 4), где х – любое рациональное число и (-1; у), где у – любое рациональное число.

Решить уравнение: 4х 2 + у 2 + 2 = 2(2х — у).

Первый шаг – группирование.

4х 2 + у 2 + 2 = 4х – 2у;

4х 2 + у 2 + 1 — 4х + 2у + 1 = 0;

(4х 2 – 4х +1) + (у 2 + 2у + 1) = 0.

Применив формулу квадрата разности, получим:

(2х — 1) 2 + (у + 1) 2 = 0.

При суммировании двух неотрицательных выражений ноль получится только в том случае, если 2х – 1 = 0 и у + 1 = 0. Отсюда следует: х = ½ и у = -1.

Ответ: (1/2; -1).

Решить уравнение (х 2 – 6х + 10)(у 2 + 10у + 29) = 4.

Рационально применить оценочный метод, выделив полные квадраты в скобках.

((х — 3) 2 + 1)((у + 5) 2 + 4) = 4.

При этом (х — 3) 2 + 1 ≥ 1, а (у + 5) 2 + 4 ≥ 4. Тогда левая часть уравнения всегда не меньше 4. Равенство возможно в случае

(х — 3) 2 + 1 = 1 и (у + 5) 2 + 4 = 4. Следовательно, х = 3, у = -5.

Ответ: (3; -5).

Решить уравнение в целых числах: х 2 + 10у 2 = 15х + 3.

Можно записать это уравнение в таком виде:

х 2 = -10у 2 + 15х + 3. Если правую часть равенства делить на 5, то 3 – остаток. Из этого следует, что х 2 не делится на 5. Известно, что квадрат числа, которое не делится на 5, должен дать в остатке или 1, или 4. Значит, уравнение корней не имеет.

Ответ: Решений нет.

Не стоит расстраиваться из-за трудностей в поиске верного решения для уравнения с двумя переменными. Упорство и практика обязательно принесут свои плоды.

В этой статье мы будем учиться решать биквадратные уравнения.

Итак, уравнения какого вида называются биквадратными?
Все уравнения вида ах 4 + bx 2 + c = 0 , гдеа ≠ 0 , являющиеся квадратными относительно х 2 , и называются биквадратными уравнениями. Как видите, эта запись очень похожа на запись квадратного уравнения, поэтому и решать биквадратные уравнения будем используя формулы, которые мы применяли при решении квадратного уравнения.

Только нам необходимо будет ввести новую переменную, то есть обозначим х 2 другой переменной, например, у или t (или же любой другой буквой латинского алфавита).

Например, решим уравнение х 4 + 4х 2 ‒ 5 = 0.

Обозначим х 2 через у (х 2 = у ) и получим уравнение у 2 + 4у – 5 = 0.
Как видите, такие уравнения вы уже умеете решать.

Решаем полученное уравнение:

D = 4 2 – 4 (‒ 5) = 16 + 20 = 36, √D = √36 = 6.

у 1 = (‒ 4 – 6)/2= ‒ 10 /2 = ‒ 5,

у 2 = (‒ 4 + 6)/2= 2 /2 = 1.

Вернемся к нашей переменной х.

Получили, что х 2 = ‒ 5 и х 2 = 1.

Замечаем, что первое уравнение решений не имеет, а второе дает два решения: х 1 = 1 и х 2 = ‒1. Будьте внимательны, не потеряйте отрицательный корень (чаще всего получают ответ х = 1, а это не правильно).

Ответ: — 1 и 1.

Для лучшего усвоения темы разберем несколько примеров.

Пример 1. Решите уравнение 2х 4 ‒ 5 х 2 + 3 = 0.

Пусть х 2 = у, тогда 2у 2 ‒ 5у + 3 =0.

D = (‒ 5) 2 – 4· 2 · 3 = 25 ‒ 24 = 1, √D = √1 = 1.

у 1 = (5 – 1)/(2· 2) = 4 /4 =1, у 2 = (5 + 1)/(2· 2) = 6 /4 =1,5.

Тогда х 2 = 1 и х 2 = 1,5.

Получаем х 1 = ‒1, х 2 = 1, х 3 = ‒ √1,5 , х 4 = √1,5.

Ответ: ‒1; 1; ‒ √1,5; √1,5.

Пример 2. Решите уравнение 2х 4 + 5 х 2 + 2 = 0.

2у 2 + 5у + 2 =0.

D = 5 2 – 4 · 2 · 2 = 25 ‒ 16 = 9, √D = √9 = 3.

у 1 = (‒ 5 – 3)/(2 · 2) = ‒ 8 /4 = ‒2, у 2 = (‒5 + 3)/(2 · 2) = ‒ 2 /4 = ‒ 0,5.

Тогда х 2 = ‒ 2 и х 2 = ‒ 0,5. Обратите внимание, ни одно из этих уравнений не имеет решения.

Ответ: решений нет.

Неполные биквадратные уравнения — это когда b = 0 (ах 4 + c = 0) или же c = 0

(ах 4 + bx 2 = 0) решают как и неполные квадратные уравнения.


Пример 3. Решить уравнение х 4 ‒ 25х 2 = 0

Разложим на множители, вынесем х 2 за скобки и тогда х 2 (х 2 ‒ 25) = 0.

Получим х 2 = 0 или х 2 ‒ 25 = 0, х 2 = 25.

Тогда имеем корни 0; 5 и – 5.

Ответ: 0; 5; – 5.

Пример 4. Решить уравнение 5х 4 ‒ 45 = 0 .

х 2 = ‒ √9 (решений не имеет)

х 2 = √9, х 1 = ‒ 3, х 2 = 3.

Как видите, умея решать квадратные уравнения, вы сможете справиться и с биквадратными.

Если же у вас остались вопросы, записывайтесь на мои уроки. Репетиор Валентина Галиневская.

сайт, при полном или частичном копировании материала ссылка на первоисточник обязательна.

Предлагаем вам удобный бесплатный онлайн калькулятор для решения квадратных уравнений. Вы сможете быстро получить и разобраться, как они решаются, на понятных примерах.
Чтобы произвести решение квадратного уравнения онлайн , вначале приведите уравнение к общему виду:
ax 2 + bx + c = 0
Заполните соответственно поля формы:

Как решить квадратное уравнение

Как решить квадратное уравнение: Виды корней:
1. Привести квадратное уравнение к общему виду:
Общий вид Аx 2 +Bx+C=0
Пример: 3х — 2х 2 +1=-1 Приводим к -2х 2 +3х+2=0

2. Находим дискриминант D.
D=B 2 -4*A*C .
Для нашего примера D= 9-(4*(-2)*2)=9+16=25.

3. Находим корни уравнения.
x1=(-В+D 1/2)/2А.
Для нашего случая x1=(-3+5)/(-4)=-0,5
x2=(-В-D 1/2)/2А.
Для нашего примера x2=(-3-5)/(-4)=2
Если В — четное число, то дискриманант и корни удобнее считать по формулам:
D=К 2 -ac
x1=(-K+D 1/2)/А
x2=(-K-D 1/2)/А,
Где K=B/2

1. Действительные корни. Причем. x1 не равно x2
Ситуация возникает, когда D>0 и A не равно 0.

2. Действительные корни совпадают. x1 равно x2
Ситуация возникает, когда D=0. Однако при этом, ни А, ни В, ни С не должны быть равны 0.

3. Два комплексных корня. x1=d+ei, x2=d-ei, где i=-(1) 1/2
Ситуация возникает, когда D
4. Уравнение имеет одно решение.
A=0, B и C нулю не равны. Уравнение становиться линейным.

5. Уравнение имеет бесчисленное множество решений.
A=0, B=0, C=0.

6. Уравнение решений не имеет.
A=0, B=0, C не равно 0.


Для закрепления алгоритма, вот еще несколько показательных примеров решений квадратных уравнений .

Пример 1. Решение обычного квадратного уравнения с разными действительными корнями.
x 2 + 3x -10 = 0
В этом уравнении
А=1, B = 3, С=-10
D=B 2 -4*A*C = 9-4*1*(-10) = 9+40 = 49
квадратный корень будем обозначать, как число 1/2 !
x1=(-В+D 1/2)/2А = (-3+7)/2 = 2
x2=(-В-D 1/2)/2А = (-3-7)/2 = -5

Для проверки подставим:
(x-2)*(x+5) = x2 -2x +5x – 10 = x2 + 3x -10

Пример 2. Решение квадратного уравнения с совпадением действительных корней.
х 2 – 8x + 16 = 0
А=1, B = -8, С=16
D = k 2 – AC = 16 – 16 = 0
X = -k/A = 4

Подставим
(x-4)*(x-4) = (x-4)2 = X 2 – 8x + 16

Пример 3. Решение квадратного уравнения с комплексными корнями.
13х 2 – 4x + 1 = 0
А=1, B = -4, С=9
D = b 2 – 4AC = 16 – 4*13*1 = 16 — 52 = -36
Дискриминант отрицательный – корни комплексные.

X1=(-В+D 1/2)/2А = (4+6i)/(2*13) = 2/13+3i/13
x2=(-В-D 1/2)/2А = (4-6i)/(2*13) = 2/13-3i/13
, где I – это квадратный корень из -1

Вот собственно все возможные случаи решения квадратных уравнений.2+20=0.$

Ответ: $z_{1,2}=\pm 2i$ $z_{3,4}=\pm\sqrt 5i.$ 

 

Решение квадратных уравнений

Решение квадратных уравнений

Квадратное уравнение — это уравнение, которое можно записать как

ось 2 + bx + c = 0

, когда a 0.

Существует три основных метода решения квадратных уравнений: факторинг, использование формулы квадратиков и завершение квадрата.

Факторинг

Чтобы решить квадратное уравнение на множители,

  1. Поместите все члены с одной стороны от знака равенства, оставив ноль с другой стороны.

  2. Коэффициент

    .

  3. Установите каждый коэффициент равным нулю.

  4. Решите каждое из этих уравнений.

  5. Проверьте, подставив свой ответ в исходное уравнение.

Пример 1

Решить x 2 — 6 x = 16.

Следуя инструкциям,

x 2 — 6 x = 16 становится x 2 — 6 x — 16 = 0

Коэффициент

.

( x -8) ( x + 2) = 0

Установка каждого коэффициента на ноль,

Затем проверить,

Оба значения, 8 и –2, являются решениями исходного уравнения.

Пример 2

Решить y 2 = — 6 y — 5.

Устанавливая все члены равными нулю,

y 2 + 6 y + 5 = 0

Коэффициент

.

( y + 5) ( y + 1) = 0

Установка каждого коэффициента на 0,

Для проверки, y 2 = –6 y — 5

Квадратичный с отсутствующим членом называется неполным квадратичным элементом (при условии, что член ax 2 не пропущен).

Пример 3

Решить x 2 — 16 = 0.

Коэффициент

.

Для проверки, x 2 — 16 = 0

Пример 4

Решить x 2 + 6 x = 0.

Коэффициент

.

Для проверки, x 2 + 6 x = 0

Пример 5

Решить 2 x 2 + 2 x — 1 = x 2 + 6 x — 5.

Во-первых, упростите, поместив все термины в одну сторону и комбинируя одинаковые термины.

Теперь фактор.

Для проверки, 2 x 2 + 2 x — 1 = x 2 + 6 x — 5

Квадратичная формула

Многие квадратные уравнения не могут быть решены факторизацией. Обычно это верно, когда корни или ответы не являются рациональными числами. Второй метод решения квадратных уравнений включает использование следующей формулы:

a, b, и c взяты из квадратного уравнения, записанного в его общем виде

ось 2 + bx + c = 0

, где a — это число перед x 2 , b — это число перед x , а c — это число без переменной рядом с ним (a .k.a., «постоянная»).

При использовании формулы корней квадратного уравнения вы должны знать о трех возможностях. Эти три возможности различаются частью формулы, называемой дискриминантом. Дискриминант — это значение под знаком корня, b 2 — 4 ac . Квадратное уравнение с действительными числами в качестве коэффициентов может иметь следующее:

  1. Два разных действительных корня, если дискриминант b 2 -4 ac является положительным числом.

  2. Один действительный корень, если дискриминант b 2 -4 ac равен 0.

  3. Нет действительного корня, если дискриминант b 2 -4 ac является отрицательным числом.

Пример 6

Решите относительно x : x 2 — 5 x = –6.

Устанавливаем все члены равными 0,

x 2 -5 x + 6 = 0

Затем замените 1 (который, как предполагается, стоит перед x 2 ), –5 и 6 вместо a , b и c, соответственно в формуле корней квадратного уравнения и упростите.

Поскольку дискриминант b 2 — 4 ac положительный, вы получаете два разных действительных корня.

Пример производит рациональные корни. В примере , квадратная формула используется для решения уравнения, корни которого нерациональны.

Пример 7

Решить относительно y : y 2 = –2y + 2.

Устанавливаем все члены равными 0,

y 2 + 2 y — 2 = 0

Затем замените 1, 2 и –2 на a , b и c, соответственно в формуле корней квадратного уравнения и упростите.

Обратите внимание, что два корня иррациональны.

Пример 8

Решить относительно x : x 2 + 2 x + 1 = 0.

Подставляя в формулу корней квадратного уравнения,

Поскольку дискриминант b 2 -4 ac равен 0, уравнение имеет один корень.

Квадратичная формула также может использоваться для решения квадратных уравнений, корни которых являются мнимыми числами, то есть они не имеют решения в действительной системе счисления.

Пример 9

Найдите x : x ( x + 2) + 2 = 0 или x 2 + 2 x + 2 = 0.

Подставляя в формулу корней квадратного уравнения,

Поскольку дискриминант b 2 — 4 ac отрицателен, это уравнение не имеет решения в действительной системе счисления.

Но если бы вы выразили решение с помощью мнимых чисел, решения были бы такими.

Завершение квадрата

Третий метод решения квадратных уравнений, который работает как с действительными, так и с мнимыми корнями, называется завершением квадрата.

  1. Запишите уравнение в виде ax 2 + bx = — c .

  2. Убедитесь, что a = 1 (если a 1, умножьте уравнение на, прежде чем продолжить).

  3. Используя значение b из этого нового уравнения, добавьте к обеим сторонам уравнения, чтобы получить полный квадрат в левой части уравнения.

  4. Найдите квадратный корень из обеих частей уравнения.

  5. Решите полученное уравнение.

Пример 10

Решите для x : x 2 — 6 x + 5 = 0.

Оформить в виде

Поскольку a = 1, прибавьте или 9 к обеим сторонам, чтобы завершить квадрат.

Извлеките квадратный корень из обеих частей.

x — 3 = ± 2

Решить.

Пример 11

Решить относительно y : y 2 + 2 y — 4 = 0.

Оформить в виде

Поскольку a = 1, прибавьте или 1 к обеим сторонам, чтобы завершить квадрат.

Извлеките квадратный корень из обеих частей.

Решить.

Пример 12

Решите относительно x : 2 x 2 + 3 x + 2 = 0.

Оформить в виде

Поскольку a ≠ 1, умножаем уравнение на.

Добавьте или с обеих сторон.

Извлеките квадратный корень из обеих частей.

В действительной системе счисления нет решения. Вам может быть интересно узнать, что завершение квадратного процесса для решения квадратных уравнений использовалось в уравнении ax 2 + bx + c = 0 для вывода формулы квадратичного уравнения.

Решите квадратное уравнение с помощью программы «Пошаговое решение математических задач»

Решение уравнений — центральная тема алгебры. Все приобретенные навыки в конечном итоге приводят к способности решать уравнения и упрощать решения. В предыдущих главах мы решали уравнения первой степени. Теперь у вас есть необходимые навыки для решения уравнений второй степени, которые известны как квадратных уравнений .

КВАДРАТИКА, РЕШЕННАЯ ФАКТОРИНГОМ

ЗАДАЧИ

По завершении этого раздела вы сможете:

  1. Определите квадратное уравнение.
  2. Приведите квадратное уравнение в стандартную форму.
  3. Решите квадратное уравнение, вычисляя множители.

Квадратное уравнение — это полиномиальное уравнение, которое содержит вторую, но не более высокую степень переменной.

Стандартная форма квадратного уравнения — ax 2 + bx + c = 0, когда a ≠ 0 и a, b и c — действительные числа.

Все квадратные уравнения могут быть представлены в стандартной форме, и любое уравнение, которое может быть преобразовано в стандартную форму, является квадратным уравнением.Другими словами, стандартная форма представляет все квадратные уравнения.

Решение уравнения иногда называют корнем уравнения.

Эта теорема доказана в большинстве учебных пособий по алгебре.

Важная теорема, которую невозможно доказать на уровне этого текста, гласит: «Каждое полиномиальное уравнение степени n имеет ровно n корней». Использование этого факта говорит нам, что квадратные уравнения всегда будут иметь два решения.Возможно, что два решения равны.

Квадратное уравнение будет иметь два решения, поскольку оно имеет степень два.

Самый простой метод решения квадратичных вычислений — это факторизация. Этот метод не всегда можно использовать, потому что не все многочлены факторизуемы, но он используется всякий раз, когда факторизация возможна.

Метод решения с помощью факторизации основан на простой теореме.

Если AB = 0, то либо A = 0, либо B = 0.

Другими словами, если произведение двух множителей равно нулю, то по крайней мере один из множителей равен нулю.

Мы не будем пытаться доказывать эту теорему, но внимательно отметим, что в ней говорится. Мы никогда не сможем перемножить два числа и получить ответ ноль, если хотя бы одно из чисел не равно нулю. Конечно, оба числа могут быть нулевыми, поскольку (0) (0) = 0.

Решение Шаг 1 Приведите уравнение в стандартную форму.

Мы должны вычесть 6 с обеих сторон.

Шаг 2 Полностью разложите на множители.

Вспомните, как разложить на множители трехчлены.

Шаг 3 Установите каждый коэффициент равным нулю и решите относительно x. Поскольку у нас есть (x — 6) (x + 1) = 0, мы знаем, что x — 6 = 0 или x + 1 = 0, и в этом случае x = 6 или x = — 1.

Здесь применяется приведенная выше теорема, согласно которой хотя бы один из факторов должен иметь нулевое значение.

Шаг 4 Проверьте решение в исходном уравнении. Если x = 6, то x 2 — 5x = 6 становится

Проверка ваших решений — верный способ узнать, правильно ли вы решили уравнение.

Следовательно, x = 6 является решением. Если x = — 1, то x 2 — 5x = 6 становится

Следовательно, — 1 — решение.

Решения могут быть обозначены либо записью x = 6 и x = — 1, либо записью множества и записью {6, — 1}, что мы читаем: «набор решений для x равен 6 и — 1.«В этом тексте мы будем использовать обозначение набора.

В этом примере 6 и -1 называются элементами набора.

Обратите внимание, что в этом примере уравнение уже имеет стандартную форму.

Опять же, проверка решений убедит вас, что вы не допустили ошибки при решении уравнения.
также называют корнями уравнения.

(x + 1) — наименьший общий знаменатель всех дробей в уравнении.
Помните, что каждый член уравнения нужно умножить на (x + 1).

Проверьте решения в исходном уравнении.

Проверьте исходное уравнение, чтобы убедиться, что знаменатель не равен нулю.

Обратите внимание, что здесь два решения равны. Это происходит только тогда, когда трехчлен является полным квадратом.

НЕПОЛНАЯ КВАДРАТИКА

ЗАДАЧИ

По завершении этого раздела вы сможете:

  1. Определите неполное квадратное уравнение.
  2. Решите неполное квадратное уравнение.

Если, когда уравнение помещено в стандартную форму ax 2 + bx + c = 0, либо b = 0, либо c = 0, уравнение представляет собой неполное квадратичное .

Пример 1

5x 2 — 10 = 0 является неполным квадратичным, так как средний член отсутствует и, следовательно, b = 0.

Когда вы сталкиваетесь с неполной квадратичной с c — 0 (отсутствует третий член), ее все же можно решить с помощью факторизации.

x — общий множитель. Произведение двух факторов равно нулю. Поэтому мы используем теорему из предыдущего раздела.
Проверьте эти решения.

Обратите внимание, что если член c отсутствует, вы всегда можете множить x из других членов. Это означает, что во всех таких уравнениях нуль будет одним из решений.
Неполная квадратичная система с отсутствующим членом b должна быть решена другим методом, поскольку факторизация будет возможна только в особых случаях.

Пример 3 Решите относительно x, если x 2 — 12 = 0.

Решение Поскольку x 2 — 12 не имеет общего множителя и не является разностью квадратов, его нельзя разложить на рациональные множители. Но из предыдущих наблюдений мы имеем следующую теорему.

Обратите внимание, что есть два значения, которые в квадрате будут равны A.

Используя эту теорему, мы имеем


Проверьте эти решения.

Добавьте 10 с каждой стороны. Проверьте эти решения.

Здесь 7x — общий множитель. Проверьте эти решения.

Обратите внимание, что в этом примере у нас есть квадрат числа, равного отрицательному числу. Это никогда не может быть правдой в действительной системе счисления, и поэтому у нас нет реального решения.

ЗАВЕРШЕНИЕ ПЛОЩАДИ

ЗАДАЧИ

По завершении этого раздела вы сможете:

  1. Определите трехчлен полного квадрата.
  2. Завершите третий член, чтобы получить трехчлен в виде полного квадрата.
  3. Решите квадратное уравнение, заполнив квадрат.

Из вашего опыта факторинга вы уже понимаете, что не все многочлены факторизуемы. Следовательно, нам нужен метод решения квадратичных вычислений, которые не подлежат факторизации. Необходимый метод называется «завершение квадрата».

Сначала давайте рассмотрим значение «трехчлена полного квадрата». Когда мы возводим двучлен в квадрат, мы получаем полный квадрат трехчлена.Общая форма: (a + b) 2 = a 2 + 2ab + b 2 .

Помните, возведение бинома в квадрат означает его умножение на себя.

Из общей формы и этих примеров мы можем сделать следующие наблюдения относительно трехчлена полного квадрата.

  1. Два из трех членов — полные квадраты. 4x 2 и 9 в первом примере, 25x 2 и 16 во втором примере, а также 2 и b 2 в общем виде.
    Другими словами, первый и третий члены представляют собой полные квадраты.
  2. Другой член — это два плюс или минус произведение квадратных корней из двух других членов.

Член -7 сразу говорит, что это не может быть трехчлен полного квадрата. Задача при заполнении квадрата состоит в том, чтобы найти число, которое заменит -7 таким образом, чтобы получился идеальный квадрат.

Рассмотрим эту задачу: заполните пробел так, чтобы «x 2 + 6x + _______» было трехчленом в виде полного квадрата.Из двух условий для трехчлена полного квадрата мы знаем, что пробел должен содержать полный квадрат и что 6x должно быть удвоенным произведением квадратного корня x 2 и числа в пробеле. Поскольку x уже присутствует в 6x и представляет собой квадратный корень из x 2 , то 6 должно быть в два раза больше квадратного корня из числа, которое мы помещаем в пробел. Другими словами, если мы сначала возьмем половину 6, а затем возведем в квадрат этот результат, мы получим необходимое число для бланка.

Следовательно, x 2 + 6x + 9 — это трехчлен полного квадрата.

Теперь давайте рассмотрим, как мы можем использовать завершение квадрата для решения квадратных уравнений.

Пример 5 Решите x 2 + 6x — 7 = 0, завершив квадрат.

Напомним, что вместо -7, +9 сделает выражение идеальным квадратом.

Решение Сначала мы замечаем, что член -7 необходимо заменить, если мы хотим получить трехчлен в виде полного квадрата, поэтому мы перепишем уравнение, оставив пустое поле для нужного числа.

Здесь будьте осторожны, чтобы не нарушить никаких правил алгебры. Например, обратите внимание, что вторая форма появилась в результате добавления +7 к обеим сторонам уравнения. Никогда не добавляйте что-либо к одной стороне, не добавляя то же самое к другой стороне.

Теперь мы находим половину 6 = 3 и 3 2 = 9, чтобы получить число для пробела. Опять же, если мы поместим 9 в пустое поле, мы также должны добавить 9 к правой стороне.

Помните, что если 9 добавляется к левой части уравнения, это также должно быть добавлено к правой части.

Теперь разложите на множители трехчлена полного квадрата, что дает

Теперь x 2 + 6x + 9 можно записать как (x + 3) 2 .

Таким образом, 1 и -7 являются решениями или корнями уравнения.

Пример 6 Решите 2x 2 + 12x — 4 = 0, заполнив квадрат.

Решение Эта проблема порождает еще одну трудность.Первый член, 2x 2 , не является полным квадратом.
Мы исправим это, разделив все члены уравнения на 2 и получим

Другими словами, получите коэффициент 1 для члена x 2 .

Теперь прибавим 2 к обеим сторонам, получив


Опять же, это более лаконично.

Пример 7 Решите 3x 2 + 7x — 9 = 0, заполнив квадрат.

Решение Шаг 1 Разделите все члены на 3.

Опять же, получите коэффициент 1 для x 2 , разделив на 3.

Шаг 2 Перепишите уравнение, оставив пробел для члена, необходимого для завершения квадрата.

Шаг 3 Найдите квадрат половины коэффициента при x и прибавьте к обеим сторонам.

Это выглядит сложно, но мы следуем тем же правилам, что и раньше.

Шаг 4 Разложите квадрат на множители.

Факторинг никогда не должен быть проблемой, поскольку мы знаем, что у нас есть полный квадратный трехчлен, что означает, что мы находим квадратные корни из первого и третьего членов и используем знак среднего члена.

Если у вас возникнут какие-либо затруднения, вам следует еще раз повторить арифметику при сложении чисел справа.
Теперь у нас

Шаг 5 Извлеките квадратный корень из каждой части уравнения.

Шаг 6 Решите относительно x (два значения).

не может быть упрощено. Мы могли бы также записать решение этой проблемы в более сжатой форме как

Выполните шаги, описанные в предыдущем вычислении, а затем обратите особое внимание на последнее значение. Каков вывод, когда квадрат количества равен отрицательному числу? «Нет реального решения».

Какое действительное число мы можем возвести в квадрат и получить -7?

Таким образом, чтобы решить квадратное уравнение, заполнив квадрат, следуйте этому пошаговому методу.

Шаг 1 Если коэффициент при x2 не равен 1, разделите все члены на этот коэффициент.
Шаг 2 Перепишите уравнение в виде x2 + bx + _______ = c + _______.
Шаг 3 Найдите квадрат половины коэффициента члена x и прибавьте эту величину к обеим сторонам уравнения.
Шаг 4 Разложите заполненный квадрат на множители и сложите числа в правой части уравнения.
Шаг 5 Найдите квадратный корень из каждой части уравнения.
Шаг 6 Решите относительно x и упростите.
Если шаг 5 невозможен, уравнение не имеет реального решения.

Эти шаги помогут решить уравнения в следующем упражнении.

КВАДРАТИЧЕСКАЯ ФОРМУЛА

ЗАДАЧИ

По завершении этого раздела вы сможете:

  1. Решите общее квадратное уравнение, заполнив квадрат.
  2. Решите любое квадратное уравнение, используя формулу корней квадратного уравнения.
  3. Решите квадратное уравнение, заполнив квадрат.

Стандартная форма квадратного уравнения — ax 2 + bx + c = 0. Это означает, что каждое квадратное уравнение может быть представлено в этой форме. В некотором смысле ax 2 + bx + c = 0 представляет все квадратичные системы. Если вы сможете решить это уравнение, у вас будет решение всех квадратных уравнений.

Решим общее квадратное уравнение методом завершения квадрата.

Это необходимо для получения члена x 2 с коэффициентом 1.
Это мы делали в предыдущем разделе много раз.

Надо прибавить с каждой стороны.

Эта форма называется квадратной формулой и представляет собой решение всех квадратных уравнений.

Запомните это выражение.

Чтобы использовать формулу квадратного уравнения, вы должны указать a, b и c. Для этого данное уравнение всегда необходимо оформлять в стандартном виде.

Осторожно подставьте значения a, b и c в формулу.

Не каждое квадратное уравнение имеет реальное решение.

Это уравнение уже имеет стандартную форму.

Реального решения нет, так как -47 не имеет действительного квадратного корня.

Опять же, это уравнение в стандартной форме.

Теперь это решение следует упростить.

ПРОБЛЕМЫ СО СЛОВОМ

ЗАДАЧИ

По завершении этого раздела вы сможете:

  1. Определите текстовые задачи, для решения которых требуется квадратное уравнение.
  2. Решать текстовые задачи, связанные с квадратными уравнениями.

Некоторые типы словесных задач могут быть решены с помощью квадратных уравнений. Процесс обрисовки и постановки проблемы такой же, как описано в главе 5, но с проблемами, решаемыми квадратичными методами, вы должны быть очень осторожны, проверяя решения в самой проблеме. Физические ограничения внутри проблемы могут устранить одно или оба решения.

Пример 1 Если длина прямоугольника на 1 единицу больше, чем в два раза больше ширины, а его площадь составляет 55 квадратных единиц, найдите длину и ширину.

Решение Формула площади прямоугольника: Площадь = Длина X Ширина. Пусть x = ширина, 2x + 1 = длина.

Если x представляет ширину, то 2x представляет удвоенную ширину, а 2x + 1 представляет единицу более чем удвоенную ширину.

Приведите квадратное уравнение в стандартную форму.
Эта квадратичная величина может быть решена путем факторизации.

На этом этапе вы можете видеть, что решение x = -11/2 недействительно, поскольку x представляет собой измерение ширины, а отрицательные числа не используются для таких измерений.Следовательно, решение

ширина = x = 5, длина = 2x + 1 = 11.

Измерение не может быть отрицательным значением.

Значение x равно.
Помните, что ЖК-дисплей означает наименьший общий знаменатель.
Каждый член нужно умножить в 10 раз.
Опять же, эту квадратичную величину можно разложить на множители.

Оба решения проверяют. Следовательно, набор решений есть.

Есть два решения этой проблемы.

Пример 3 Если определенное целое число вычитается из его квадрата, умноженного на 6, получается 15. Найдите целое число.

Решение Пусть x = целое число. Тогда

Поскольку ни одно из решений не является целым числом, проблема не имеет решения.

У вас может возникнуть соблазн указать эти значения в качестве решения, если вы не обратили пристальное внимание на тот факт, что проблема запрашивала целое число.

Пример 4 Управляющий фермой имеет под рукой 200 метров забора и хочет оградить прямоугольное поле так, чтобы его площадь составляла 2400 квадратных метров.Какими должны быть размеры поля?

Решение Здесь задействованы две формулы. P = 2l + 2w для периметра и A = lw для площади.
Сначала используя P = 2l + 2w, получаем

Теперь мы можем использовать формулу A = lw и подставить (100 — l) вместо w, получив

Поле должно быть шириной 40 метров и длиной 60 метров.

Мы могли бы точно так же решить для l, получив l = 100 — w. Тогда

Обратите внимание, что в этой задаче мы фактически используем систему уравнений

P = 2 l + 2 w
A = l w.

В общем случае система уравнений, в которой участвует квадратичная функция, будет решаться методом подстановки. (См. Главу 6.)

РЕЗЮМЕ

Ключевые слова

  • Квадратное уравнение — это полиномиальное уравнение от одной неизвестной, которое содержит вторую степень, но не более высокую степень переменной.
  • Стандартная форма квадратного уравнения : ax 2 + bx + c = 0, когда a 0.
  • Неполное квадратное уравнение имеет вид ax 2 + bx + c = 0, и либо b = 0, либо c = 0.
  • Квадратичная формула равна

Процедуры

  • Самый прямой и, как правило, самый простой метод поиска решений квадратного уравнения — это факторизация. Этот метод основан на теореме: если AB = 0, то A = 0 или B = 0. Чтобы использовать эту теорему, мы приводим уравнение в стандартную форму, коэффициент и устанавливаем каждый коэффициент равным нулю.
  • Чтобы решить квадратное уравнение, заполнив квадрат, выполните следующие действия:
    Шаг 1 Если коэффициент при x 2 не равен 1, разделите все члены на этот коэффициент.
    Шаг 2 Перепишите уравнение в виде x 2 + bx + _____ = c + _____
    Шаг 3 Найдите квадрат половины коэффициента члена x и прибавьте эту величину к обеим частям. уравнения.
    Шаг 4 Разложите заполненный квадрат на множители и сложите числа в правой части уравнения.
    Шаг 5 Найдите квадратный корень из каждой части уравнения.
    Шаг 6 Решите относительно x и упростите.
  • Метод завершения квадрата используется для вывода формулы корней квадратного уравнения.2} + bx + c = 0, потому что трехчлен в левой части нелегко вынести за скобки. Это не означает, что квадратное уравнение не имеет решения. На этом этапе нам нужно обратиться к прямому подходу квадратной формулы, чтобы найти решения квадратного уравнения или, проще говоря, определить значения x, которые могут удовлетворять уравнению.

    Чтобы использовать квадратную формулу, квадратное уравнение, которое мы решаем, необходимо преобразовать в «стандартную форму», в противном случае все последующие шаги не будут работать.Цель состоит в том, чтобы преобразовать квадратное уравнение таким образом, чтобы квадратное выражение было изолировано с одной стороны уравнения, в то время как противоположная сторона содержала только ноль, 0. 2} + bx + c = 0.

При необходимости снизьте скорость. Будьте осторожны с каждым шагом, упрощая выражения. Здесь обычно случаются типичные ошибки, потому что учащиеся склонны «расслабляться», что приводит к ошибкам, которые можно было предотвратить, например, при сложении, вычитании, умножении и / или делении действительных чисел.


Примеры решения квадратных уравнений по квадратичной формуле

Пример 1 : Решите квадратное уравнение ниже, используя квадратную формулу.

При осмотре очевидно, что квадратное уравнение имеет стандартную форму, поскольку правая часть равна нулю, а остальные члены остаются в левой части. Другими словами, у нас есть что-то вроде этого

Это здорово! Нам нужно просто определить значения a, b и c, а затем подставить их в формулу корней квадратного уравнения.

Вот и все! Возьмите за привычку всегда проверять решенные значения x обратно в исходное уравнение.


Пример 2 : Решите квадратное уравнение ниже, используя квадратную формулу.

Это квадратное уравнение абсолютно не в той форме, в которой мы хотим, потому что правая часть НЕ ноль. Мне нужно удалить это 7 с правой стороны, вычтя обе части на 7. Это решит нашу проблему. После этого решите относительно x как обычно.

Окончательные ответы: {x_1} = 1 и {x_2} = — {2 \ over 3}.


Пример 3 : Решите квадратное уравнение ниже, используя квадратную формулу.

Это квадратное уравнение выглядит как «беспорядок».У меня есть переменные x и константы по обе стороны уравнения. Если мы сталкиваемся с чем-то подобным, всегда придерживайтесь того, что мы знаем. Да, все дело в стандартной форме. Мы должны заставить правую часть равняться нулю. Мы можем сделать это за два шага.

Сначала я вычту обе части на 5x, а затем прибавлю 8.

Необходимые нам значения:

a = — 1, b = — \, 8 и c = 2


Пример 4 : Решите квадратное уравнение ниже, используя квадратную формулу.

Что ж, если вы думаете, что Пример 3 — это «беспорядок», тогда он должен быть еще более «беспорядочным». Однако вскоре вы поймете, что они действительно очень похожи.

Сначала нам нужно выполнить некоторую очистку, преобразовав это квадратное уравнение в стандартную форму. Звучит знакомо? Поверьте, эта проблема не так плоха, как кажется, если мы знаем, что делать.

Напоминаю, что нам нужно что-то вроде этого

Следовательно, мы должны сделать все возможное, чтобы правая часть уравнения стала равной нулю.2} термин справа.

  • Удалите член x с правой стороны.
  • Удалите константу с правой стороны.

После получения правильной стандартной формы на предыдущем шаге теперь пора подставить значения a, b и c в формулу корней квадратного уравнения, чтобы найти x.

  • Из преобразованной стандартной формы извлеките требуемые значения.

a = 1, b = — \, 4 и c = — \, 14

  • Затем вычислите эти значения в формуле корней квадратного уравнения.

Практика с рабочими листами


Возможно, вас заинтересует:

Решение квадратных уравнений методом квадратного корня
Решение квадратных уравнений методом факторинга
Решение квадратных уравнений путем заполнения квадрата

9.3 Решение квадратных уравнений по квадратичной формуле — промежуточная алгебра 2e

Задачи обучения

К концу этого раздела вы сможете:

  • Решите квадратные уравнения с помощью квадратичной формулы
  • Используйте дискриминант, чтобы предсказать количество и тип решений квадратного уравнения
  • Определите наиболее подходящий метод решения квадратного уравнения

Будьте готовы 9.7

Прежде чем начать, пройдите тест на готовность.

Вычислить b2−4abb2−4ab, когда a = 3a = 3 и b = −2.b = −2.
Если вы пропустили эту проблему, просмотрите Пример 1.21.

Будьте готовы 9,8

Упростить: 108.108.
Если вы пропустили эту проблему, просмотрите Пример 8.13.

Будьте готовы 9.9

Упростить: 50,50.
Если вы пропустили эту проблему, просмотрите Пример 8.76.

Решите квадратные уравнения с помощью квадратной формулы

Когда мы решали квадратные уравнения в последнем разделе, завершая квадрат, мы каждый раз предпринимали одни и те же шаги.К концу набора упражнений вы, возможно, задавались вопросом: «А нет ли более простого способа сделать это?» Ответ — «да». Математики ищут закономерности, когда делают что-то снова и снова, чтобы облегчить свою работу. В этом разделе мы выведем и воспользуемся формулой для нахождения решения квадратного уравнения.

Мы уже видели, как решить формулу для конкретной переменной «в целом», чтобы мы проделали алгебраические шаги только один раз, а затем использовали новую формулу, чтобы найти значение конкретной переменной.Теперь мы пройдем этапы завершения квадрата, используя общую форму квадратного уравнения, чтобы решить квадратное уравнение для x.

Начнем со стандартной формы квадратного уравнения и решим его для x , заполнив квадрат.

Квадратичная формула

Решения квадратного уравнения вида ax 2 + bx + c = 0, где a ≠ 0a ≠ 0 даются формулой:

x = −b ± b2−4ac2ax = −b ± b2−4ac2a

Чтобы использовать квадратичную формулу, мы подставляем значения a , b и c из стандартной формы в выражение в правой части формулы.Затем мы упрощаем выражение. В результате получается пара решений квадратного уравнения.

Обратите внимание, что формула представляет собой уравнение. Убедитесь, что вы используете обе стороны уравнения.

Пример 9.21

Как решить квадратное уравнение с помощью квадратной формулы

Решите через дискриминант: 2×2 + 9x − 5 = 0,2×2 + 9x − 5 = 0.

Попробуйте 9,41

Решите через дискриминант: 3y2−5y + 2 = 03y2−5y + 2 = 0.

Попробуй 9.42

Решите через дискриминант: 4z2 + 2z − 6 = 04z2 + 2z − 6 = 0.

How To

Решите квадратное уравнение, используя формулу корней квадратного уравнения.
  1. Шаг 1. Запишите квадратное уравнение в стандартной форме: ax 2 + bx + c = 0. Определите значения a , b и c .
  2. Шаг 2. Напишите квадратную формулу. Затем подставьте значения a , b и c .
  3. Шаг 3. Упростите.
  4. Шаг 4. Проверьте решения.

Если вы произносите формулу во время написания каждой задачи, вы сразу же ее запомните! И помните, что квадратная формула — это УРАВНЕНИЕ. Убедитесь, что вы начали с « x =».

Пример 9.22

Решите через дискриминант: x2−6x = −5.x2−6x = −5.

Попробуйте 9,43

Решите через дискриминант: a2−2a = 15a2−2a = 15.

Попробуй 9.44

Решите через дискриминант: b2 + 24 = −10bb2 + 24 = −10b.

Когда мы решали квадратные уравнения с помощью свойства квадратного корня, мы иногда получали ответы с радикалами. То же самое может случиться и при использовании квадратичной формулы. Если в качестве решения мы получаем радикал, окончательный ответ должен иметь радикал в его упрощенной форме.

Пример 9.23

Решите через дискриминант: 2×2 + 10x + 11 = 0,2×2 + 10x + 11 = 0.

Попробуйте 9,45

Решите через дискриминант: 3m2 + 12m + 7 = 03m2 + 12m + 7 = 0.

Попробуйте 9,46

Решите через дискриминант: 5n2 + 4n − 4 = 05n2 + 4n − 4 = 0.

Когда мы подставляем a , b и c в квадратную формулу, а подкоренное выражение отрицательное, квадратное уравнение будет иметь мнимые или комплексные решения. Мы увидим это в следующем примере.

Пример 9.24

Решите через дискриминант: 3p2 + 2p + 9 = 0,3p2 + 2p + 9 = 0.

Попробуйте 9,47

Решите через дискриминант: 4a2−2a + 8 = 04a2−2a + 8 = 0.

Попробуйте 9,48

Решите через дискриминант: 5b2 + 2b + 4 = 05b2 + 2b + 4 = 0.

Помните, чтобы использовать квадратичную формулу, уравнение должно быть записано в стандартной форме: ax 2 + bx + c = 0. Иногда нам нужно выполнить некоторую алгебру, чтобы преобразовать уравнение в стандартную форму. форму до того, как мы сможем использовать квадратичную формулу.

Пример 9.25

Решите через дискриминант: x (x + 6) + 4 = 0.х (х + 6) + 4 = 0.

Наш первый шаг — получить уравнение в стандартной форме.

Попробуйте 9,49

Решите через дискриминант: x (x + 2) −5 = 0.x (x + 2) −5 = 0.

Попробуйте 9,50

Решите через дискриминант: 3y (y − 2) −3 = 0,3y (y − 2) −3 = 0.

Когда мы решали линейные уравнения, если в уравнении было слишком много дробей, мы очищали дроби, умножая обе части уравнения на ЖК-дисплей. Это дало нам возможность решить эквивалентное уравнение — без дробей.Мы можем использовать ту же стратегию с квадратными уравнениями.

Пример 9.26

Решите через дискриминант: 12u2 + 23u = 13.12u2 + 23u = 13.

Наш первый шаг — очистить дроби.

Попробуйте 9,51

Решите через дискриминант: 14c2−13c = 11214c2−13c = 112.

Попробуйте 9,52

Решите через дискриминант: 19d2−12d = −1319d2−12d = −13.

Подумайте об уравнении ( x — 3) 2 = 0.Из свойства нулевого произведения мы знаем, что это уравнение имеет только одно решение:
x = 3.

В следующем примере мы увидим, как использование квадратичной формулы для решения уравнения, стандартная форма которого представляет собой трехчлен полного квадрата, равного 0, дает только одно решение. Обратите внимание, что после упрощения подкоренное выражение становится 0, что приводит только к одному решению.

Пример 9.27

Решите через дискриминант: 4×2−20x = −25,4×2−20x = −25.

Знаете ли вы, что 4 x 2 -20 x + 25 — это трехчлен полного квадрата.Это эквивалентно (2 x — 5) 2 ? Если вы решите
4 x 2 -20 x + 25 = 0 путем факторизации и последующего использования свойства квадратного корня, получите ли вы тот же результат?

Попробуйте 9,53

Решите, используя дискриминант: r2 + 10r + 25 = 0.r2 + 10r + 25 = 0.

Попробуйте 9,54

Решите, используя дискриминант: 25t2−40t = −16,25t2−40t = −16.

Использование дискриминанта для предсказания количества и типов решений квадратного уравнения

Когда мы решали квадратные уравнения в предыдущих примерах, иногда мы получали два реальных решения, одно реальное решение, а иногда два комплексных решения.Есть ли способ предсказать количество и тип решений квадратного уравнения, не решая его на самом деле?

Да, выражение под радикалом квадратной формулы позволяет нам легко определить количество и тип решений. Это выражение называется дискриминантом.

Дискриминант

Давайте посмотрим на дискриминант уравнений в некоторых примерах, а также на количество и тип решений этих квадратных уравнений.

Квадратное уравнение
(в стандартной форме)
Дискриминант
b2−4acb2−4ac
Значение дискриминанта Количество и тип решений
2×2 + 9x − 5 = 02×2 + 9x − 5 = 0 92−4 · 2 (−5) 12192−4 · 2 (−5) 121 + 2 настоящих
4×2−20x + 25 = 04×2−20x + 25 = 0 (−20) 2−4 · 4 · 250 (−20) 2−4 · 4 · 250 0 1 реал
3p2 + 2p + 9 = 03p2 + 2p + 9 = 0 22−4 · 3 · 9−10422−4 · 3 · 9−104 2 комплекс

Использование дискриминанта,

b 2 -4 ac , для определения количества и типа решений квадратного уравнения

Для квадратного уравнения вида ax 2 + bx + c = 0, a ≠ 0, a ≠ 0,

  • Если b 2 -4 ac > 0, уравнение имеет 2 действительных решения.
  • , если b 2 -4 ac = 0, уравнение имеет 1 действительное решение.
  • , если b 2 -4 ac <0, уравнение имеет 2 комплексных решения.

Пример 9.28

Определите количество решений каждого квадратного уравнения.

ⓐ 3×2 + 7x − 9 = 03×2 + 7x − 9 = 0 ⓑ 5n2 + n + 4 = 05n2 + n + 4 = 0 ⓒ 9y2−6y + 1 = 0.9y2−6y + 1 = 0.

Чтобы определить количество решений каждого квадратного уравнения, мы посмотрим на его дискриминант.

3×2 + 7x − 9 = 03×2 + 7x − 9 = 0
Уравнение в стандартной форме, обозначьте a , b и c . a = 3, b = 7, c = −9a = 3, b = 7, c = −9
Запишите дискриминант. b2−4acb2−4ac
Подставить значения a , b и c . (7) 2−4 · 3 · (−9) (7) 2−4 · 3 · (−9)
Упростить. 49 + 10849 + 108
157157

Поскольку дискриминант положительный, у уравнения есть 2 действительных решения.

5n2 + n + 4 = 05n2 + n + 4 = 0
Уравнение в стандартной форме, обозначьте a , b и c . a = 5, b = 1, c = 4a = 5, b = 1, c = 4
Запишите дискриминант. b2−4acb2−4ac
Подставить значения a , b и c . (1) 2−4 · 5 · 4 (1) 2−4 · 5 · 4
Упростить. 1−801−80
−79−79

Поскольку дискриминант отрицательный, есть 2 комплексных решения уравнения.

9y2−6y + 1 = 09y2−6y + 1 = 0
Уравнение в стандартной форме, обозначьте a , b и c . a = 9, b = −6, c = 1a = 9, b = −6, c = 1
Запишите дискриминант. b2−4acb2−4ac
Подставить значения a , b и c . (−6) 2−4 · 9 · 1 (−6) 2−4 · 9 · 1
Упростить. 36−3636−36
00

Поскольку дискриминант равен 0, существует 1 действительное решение уравнения.

Попробуйте 9,55

Определите количество и тип решений каждого квадратного уравнения.

ⓐ 8m2−3m + 6 = 08m2−3m + 6 = 0 ⓑ 5z2 + 6z − 2 = 05z2 + 6z − 2 = 0 ⓒ 9w2 + 24w + 16 = 0.9w2 + 24w + 16 = 0.

Попробуйте 9,56

Определите количество и тип решений каждого квадратного уравнения.

ⓐ b2 + 7b − 13 = 0b2 + 7b − 13 = 0 ⓑ 5a2−6a + 10 = 05a2−6a + 10 = 0 ⓒ 4r2−20r + 25 = 0.4r2−20r + 25 = 0.

Определите наиболее подходящий метод для решения квадратного уравнения

Мы резюмируем четыре метода, которые мы использовали для решения квадратных уравнений ниже.

Методы решения квадратных уравнений

  1. Факторинг
  2. Свойство квадратного корня
  3. Завершение площади
  4. Квадратичная формула

Учитывая, что у нас есть четыре метода решения квадратного уравнения, как вы решите, какой из них использовать? Факторинг — часто самый быстрый метод, поэтому мы сначала пробуем его.Если уравнение имеет вид ax2 = kax2 = k или a (x − h) 2 = ka (x − h) 2 = k, мы используем свойство квадратного корня. Для любого другого уравнения, вероятно, лучше всего использовать квадратную формулу. Помните, что вы можете решить любое квадратное уравнение, используя квадратную формулу, но это не всегда самый простой метод.

А как насчет метода заполнения квадрата? Большинство людей считают этот метод громоздким и предпочитают не использовать его. Нам нужно было включить его в список методов, потому что мы завершили квадрат в целом, чтобы получить квадратную формулу.Вы также будете использовать процесс завершения квадрата в других областях алгебры.

How To

Определите наиболее подходящий метод для решения квадратного уравнения.
  1. Шаг 1. Сначала попробуйте Факторинг . Если квадратичные множители легко, этот метод очень быстрый.
  2. Шаг 2. Далее попробуйте , свойство квадратного корня . Если уравнение соответствует форме ax2 = kax2 = k или a (x − h) 2 = k, a (x − h) 2 = k, его можно легко решить, используя свойство квадратного корня.
  3. Шаг 3. Используйте квадратную формулу . Любое другое квадратное уравнение лучше всего решать с помощью квадратной формулы.

В следующем примере эта стратегия используется для решения каждого квадратного уравнения.

Пример 9.29

Определите наиболее подходящий метод для решения каждого квадратного уравнения.

ⓐ 5z2 = 175z2 = 17 ⓑ 4×2−12x + 9 = 04×2−12x + 9 = 0 ⓒ 8u2 + 6u = 11,8u2 + 6u = 11.


5z2 = 175z2 = 17

Поскольку уравнение имеет вид ax2 = k, ax2 = k, наиболее подходящим методом является использование свойства квадратного корня.


4×2−12x + 9 = 04×2−12x + 9 = 0

Мы понимаем, что левая часть уравнения представляет собой трехчлен полного квадрата, поэтому факторинг будет наиболее подходящим методом.

8u2 + 6u = 118u2 + 6u = 11
Приведите уравнение в стандартную форму. 8u2 + 6u − 11 = 08u2 + 6u − 11 = 0

Хотя наша первая мысль может заключаться в том, чтобы попробовать факторинг, размышление обо всех возможностях метода проб и ошибок приводит нас к выбору квадратичной формулы как наиболее подходящего метода.

Попробуйте 9,57

Определите наиболее подходящий метод для решения каждого квадратного уравнения.

ⓐ x2 + 6x + 8 = 0x2 + 6x + 8 = 0 ⓑ (n − 3) 2 = 16 (n − 3) 2 = 16 ⓒ 5p2−6p = 9,5p2−6p = 9.

Попробуйте 9,58

Определите наиболее подходящий метод для решения каждого квадратного уравнения.

ⓐ 8a2 + 3a − 9 = 08a2 + 3a − 9 = 0 ⓑ 4b2 + 4b + 1 = 04b2 + 4b + 1 = 0 ⓒ 5c2 = 125,5c2 = 125.

Раздел 9.3. Упражнения

Практика ведет к совершенству

Решите квадратные уравнения через квадратичную формулу

В следующих упражнениях решите, используя квадратичную формулу.

128.

6×2 + 2x − 20 = 06×2 + 2x − 20 = 0

133.

(v + 1) (v − 5) −4 = 0 (v + 1) (v − 5) −4 = 0

134.

(x + 1) (x − 3) = 2 (x + 1) (x − 3) = 2

135.

(y + 4) (y − 7) = 18 (y + 4) (y − 7) = 18

136.

(x + 2) (x + 6) = 21 (x + 2) (x + 6) = 21

142.

25d2−60d + 36 = 025d2−60d + 36 = 0

Использование дискриминанта для прогнозирования числа реальных решений квадратного уравнения

В следующих упражнениях определите количество реальных решений для каждого квадратного уравнения.

145.

ⓐ 4×2−5x + 16 = 04×2−5x + 16 = 0 ⓑ 36y2 + 36y + 9 = 036y2 + 36y + 9 = 0 ⓒ 6m2 + 3m − 5 = 06m2 + 3m − 5 = 0

146.

ⓐ 9v2−15v + 25 = 09v2−15v + 25 = 0 ⓑ 100w2 + 60w + 9 = 0100w2 + 60w + 9 = 0 ⓒ 5c2 + 7c − 10 = 05c2 + 7c − 10 = 0

147.

ⓐ r2 + 12r + 36 = 0r2 + 12r + 36 = 0 ⓑ 8t2−11t + 5 = 08t2−11t + 5 = 0 ⓒ 3v2−5v − 1 = 03v2−5v − 1 = 0

148.

ⓐ 25p2 + 10p + 1 = 025p2 + 10p + 1 = 0 ⓑ 7q2−3q − 6 = 07q2−3q − 6 = 0 ⓒ 7y2 + 2y + 8 = 07y2 + 2y + 8 = 0

Определите наиболее подходящий метод для решения квадратного уравнения

В следующих упражнениях определите наиболее подходящий метод (разложение на множители, квадратный корень или квадратная формула) для решения каждого квадратного уравнения.Не решайте.

149.


ⓐ x2−5x − 24 = 0x2−5x − 24 = 0
ⓑ (y + 5) 2 = 12 (y + 5) 2 = 12
ⓒ 14m2 + 3m = 1114m2 + 3m = 11

150.


ⓐ (8v + 3) 2 = 81 (8v + 3) 2 = 81
ⓑ w2−9w − 22 = 0w2−9w − 22 = 0
ⓒ 4n2−10n = 64n2−10n = 6

151.


ⓐ 6a2 + 14a = 206a2 + 14a = 20
ⓑ (x − 14) 2 = 516 (x − 14) 2 = 516
ⓒ y2−2y = 8y2−2y = 8

152.


ⓐ 8b2 + 15b = 48b2 + 15b = 4
ⓑ 59v2−23v = 159v2−23v = 1
ⓒ (w + 43) 2 = 29 (w + 43) 2 = 29

Письменные упражнения
153.

Решите уравнение x2 + 10x = 120×2 + 10x = 120

ⓐ, заполнив квадрат

ⓑ по квадратичной формуле

ⓒ Какой метод вы предпочитаете? Почему?

154.

Решите уравнение 12y2 + 23y = 2412y2 + 23y = 24

ⓐ, заполнив квадрат

ⓑ по квадратичной формуле

ⓒ Какой метод вы предпочитаете? Почему?

Самопроверка

ⓐ После выполнения упражнений используйте этот контрольный список, чтобы оценить свое мастерство в достижении целей этого раздела.

ⓑ Что этот контрольный список говорит вам о вашем мастерстве в этом разделе? Какие шаги вы предпримете для улучшения?

11.4: Решение квадратных уравнений с использованием квадратичной формулы

Решение квадратных уравнений с использованием квадратной формулы

Когда мы решали квадратные уравнения в последнем разделе, завершая квадрат, мы каждый раз предпринимали одни и те же шаги.К концу набора упражнений вы, возможно, задавались вопросом: «А нет ли более простого способа сделать это?» Ответ — «да». Математики ищут закономерности, когда делают что-то снова и снова, чтобы облегчить свою работу. В этом разделе мы выведем и воспользуемся формулой для нахождения решения квадратного уравнения.

Мы уже видели, как решить формулу для конкретной переменной «в целом», чтобы мы проделали алгебраические шаги только один раз, а затем использовали новую формулу, чтобы найти значение конкретной переменной.{2} + b x + c = 0 \), где \ (a ≠ 0 \) задаются формулой:

Чтобы использовать Квадратичную формулу , мы подставляем значения \ (a, b \) и \ (c \) из стандартной формы в выражение в правой части формулы. Затем мы упрощаем выражение. В результате получается пара решений квадратного уравнения.

Обратите внимание, что квадратная формула (Equation \ ref {quad}) является уравнением. Убедитесь, что вы используете обе стороны уравнения. {2} -6 x = -5 \).2 — 6x + 5 = 0 \)

Определите значения \ (\ color {cyan} a \), \ (\ color {red} b \), \ (\ color {limegreen} c \). \ ({\ color {cyan} a = 1} \), \ ({\ color {red} b = -6} \), \ ({\ color {limegreen} c = 5} \) Напишите квадратную формулу. Затем подставьте значения \ (a, b, c \). Упростить.

\ (x = \ dfrac {6 \ pm \ sqrt {36-20}} {2} \)

\ (x = \ dfrac {6 \ pm \ sqrt {16}} {2} \)

\ (x = \ dfrac {6 \ pm 4} {2} \)

Перепишите, чтобы показать два решения.

\ (x = \ frac {6 + 4} {2}, \ quad x = \ frac {6-4} {2} \)

Упростить. {2} +10 x + 11 = 0 \).{2} -4 a c}} {2 a} \)

Затем подставьте значения \ (a, b \) и \ (c \). Упростить.

\ (x = \ dfrac {-10 \ pm \ sqrt {100-88}} {4} \)

\ (x = \ dfrac {-10 \ pm \ sqrt {12}} {4} \)

Упростим корень.

\ (x = \ dfrac {-10 \ pm 2 \ sqrt {3}} {4} \)

Выносим за скобки общий множитель в числителе.

\ (x = \ dfrac {\ color {red} {2} (- 5 \ pm \ sqrt {3})} {4} \)

Удалите общие множители.

\ (x = \ dfrac {-5 \ pm \ sqrt {3}} {2} \)

Перепишите, чтобы показать два решения.{2} + b x + c = 0 \). Иногда нам нужно сделать некоторую алгебру, чтобы привести уравнение в стандартную форму, прежде чем мы сможем использовать квадратичную формулу.

Пример \ (\ PageIndex {5} \)

Решите через дискриминант: \ (x (x + 6) + 4 = 0 \).

Решение :

Наш первый шаг — получить уравнение в стандартной форме.

Упражнение \ (\ PageIndex {9} \)

Решите через дискриминант: \ (x (x + 2) −5 = 0 \).

Ответ

\ (x = -1 + \ sqrt {6}, x = -1- \ sqrt {6} \)

Упражнение \ (\ PageIndex {10} \)

Решите через дискриминант: \ (3y (y − 2) −3 = 0 \).

Ответ

\ (y = 1 + \ sqrt {2}, y = 1- \ sqrt {2} \)

Когда мы решали линейные уравнения, если в уравнении было слишком много дробей, мы очищали дроби, умножая обе части уравнения на ЖК-дисплей. {2} -20 x = -25 \).{2} -40 т = -16 \).

Ответ

\ (t = \ dfrac {4} {5} \)

Решение квадратичной формулы по квадратичной формуле

Решение квадратичной формулы

Вот шаги, необходимые для решения квадратичной формулы с использованием формулы корней:

Пример 1 — Решить:
Шаг 1 : Найдите a, b и c и подставьте их в формулу корней квадратного уравнения. В этом случае a = 1, b = –8 и c = 14.
Шаг 2 : Используйте порядок операций, чтобы упростить формулу корней квадратного уравнения.
Шаг 3 : По возможности упростите радикал. В этом случае вы можете просто радикал в:
Шаг 4 : Уменьшите проблему, если можете. В этом случае вы можете уменьшить всю проблему на 2.

Пример 2 — Решить:

Нажмите здесь, чтобы увидеть практические задачи

Пример 3 — Решить:

Щелкните здесь, чтобы узнать о практических задачах

Пример 4 — Решить:

Шаг 1 : Чтобы использовать формулу корней квадратного уравнения, уравнение должно быть равно нулю, поэтому переместите –4x обратно в левую часть.
Шаг 2 : Найдите a, b и c и подставьте их в формулу корней квадратного уравнения. В этом случае a = 3, b = 4 и c = 8.
Шаг 3 : Используйте порядок операций, чтобы упростить формулу корней квадратного уравнения.
Шаг 4 : По возможности упростите радикал. В этом случае вы можете просто радикал и помнить, что квадратный корень отрицательного числа дает мнимое число, поэтому вы должны получить:
Шаг 5 : Поскольку это комплексное число, оно должно быть записано в форме a + bi.
Шаг 6 : Уменьшите проблему, если можете. В этом случае вы можете уменьшить всю проблему на 2.

Щелкните здесь для практических задач

Пример 5 — Решить:

Щелкните здесь, чтобы узнать о практических задачах

советов по решению квадратных уравнений

Обновлено 8 декабря 2020 г.

Ли Джонсон

Каждый студент, изучающий алгебру на более высоких уровнях, должен научиться решать квадратные уравнения.Это тип полиномиального уравнения, которое включает степень 2, но не выше, и имеет общий вид: ax 2 + bx + c = 0. Вы можете решить это с помощью формулы квадратного уравнения, факторизации или завершения квадрата.

TL; DR (слишком долго; не читал)

Сначала найдите факторизацию для решения уравнения. Если его нет, но коэффициент b делится на 2, заполните квадрат.2 + bx + c = 0

В этом примере a = 1, b = 6 и c = 9. Задача факторизации состоит в том, чтобы найти два числа, которые складываются, давая число в месте b и умножьте его вместе, чтобы получить число в месте c .

Итак, представляя числа как d и e , вы ищете числа, которые удовлетворяют:

d + e = b

Или, в данном случае, b = 6:

d + e = 6

d × e = c

Или, в данном случае, c = 9:

d × e = 9

Сосредоточьтесь на поиске чисел, которые являются множителями c , а затем сложите их вместе, чтобы узнать, равны ли они b .2 + 6x + 9 \\ \ end {align}

Факторизация эффективно проходит через этот процесс в обратном порядке, но может быть сложно выработать правильный способ разложить квадратное уравнение на множители, и этот метод не идеален для каждого квадратичного уравнения. уравнение по этой причине. Часто приходится угадывать факторизацию, а затем проверять ее.

Проблема в том, что теперь любое из выражений в скобках будет равно нулю, если вы выберете значение x . Если любая скобка равна нулю, все уравнение равно нулю, и вы нашли решение.Посмотрите на последний этап [( x + 3) ( x + 3) = 0], и вы увидите, что скобки обнуляются только тогда, когда x = −3. Однако в большинстве случаев квадратные уравнения имеют два решения.

Факторизация становится еще более сложной задачей, если не равно единице, но сначала лучше сосредоточиться на простых случаях.

Заполнение квадрата для решения уравнения

Заполнение квадрата помогает вам решать квадратные уравнения, которые нелегко разложить на множители.2 = 16

Теперь решите уравнение относительно x . Извлеките квадратный корень из обеих частей, чтобы получить:

x + 4 = \ sqrt {16}

Вычтите 4 с обеих сторон, чтобы получить:

x = \ sqrt {16} — 4

Корень может быть положительным или отрицательное, и взятие отрицательного корня дает:

x = -4 — 4 = -8

Найдите другое решение с положительным корнем:

x = 4 — 4 = 0

Следовательно, единственным ненулевым решением является −8. Для подтверждения сверьте это с исходным выражением.2–4 × 1 × 5}} {2 × 1} \\ & = \ frac {-6 ± \ sqrt {36 — 20}} {2} \\ & = \ frac {-6 ± \ sqrt {16} } {2} \\ & = \ frac {-6 ± 4} {2} \ end {выровнено}

Принятие положительного знака дает:

\ begin {align} x & = \ frac {-6 + 4} {2} \\ & = \ frac {-2} {2} \\ & = -1 \ end {выровнено}

И если принять отрицательный знак, получим:

\ begin {align} x & = \ frac {- 6 — 4} {2} \\ & = \ frac {-10} {2} \\ & = -5 \ end {align}

Какие два решения уравнения.2 + 5x + 6 = (x + 2) (x + 3) = 0

И x = −2 или x = −3.

Если вы не видите факторизацию, проверьте, делится ли коэффициент b на 2, не прибегая к дробям. Если это так, завершение квадрата, вероятно, является самым простым способом решить уравнение.

Если ни один из подходов не подходит, используйте формулу. Это кажется самым сложным подходом, но если вы сдаетесь на экзамен или иным образом вынуждены тратить время, это может сделать процесс намного менее напряженным и намного быстрее.