Решения матрицы примеры: Матрицы примеры решения задач, формулы и онлайн калькуляторы

Содержание

Матрицы примеры решения задач, формулы и онлайн калькуляторы

Задание. Вычислить $A B$ и $B A$, если $A=\left( \begin{array}{rr}{1} & {-1} \\ {2} & {0} \\ {3} & {0}\end{array}\right), B=\left( \begin{array}{ll}{1} & {1} \\ {2} & {0}\end{array}\right)$

Решение. Так как $A=A_{3 \times 2}$ , а $B=B_{2 \times 2}$ , то произведение возможно и результатом операции умножения будет матрица $C=C_{3 \times 2}$ , а это матрица вида $C=\left( \begin{array}{cc}{c_{11}} & {c_{12}} \\ {c_{21}} & {c_{22}} \\ {c_{31}} & {c_{32}}\end{array}\right)$ .

Вычисли элементы матрицы $C$ :

$ c_{11}=a_{11} \cdot b_{11}+a_{12} \cdot b_{21}=1 \cdot 1+(-1) \cdot 2=-1 $

$ c_{12}=a_{11} \cdot b_{12}+a_{12} \cdot b_{22}=1 \cdot 1+(-1) \cdot 0=1 $

$ c_{21}=a_{21} \cdot b_{11}+a_{22} \cdot b_{21}=2 \cdot 1+0 \cdot 2=2 $

$ c_{22}=a_{21} \cdot b_{12}+a_{22} \cdot b_{22}=2 \cdot 1+0 \cdot 0=2 $

$ c_{31}=a_{31} \cdot b_{11}+a_{32} \cdot b_{21}=3 \cdot 1+0 \cdot 2=3 $

$ c_{31}=a_{31} \cdot b_{12}+a_{32} \cdot b_{22}=3 \cdot 1+0 \cdot 0=3 $

Итак, $C=A B=\left( \begin{array}{rl}{-1} & {1} \\ {2} & {2} \\ {3} & {3}\end{array}\right)$ .

Выполним произведения в более компактном виде:

$=\left( \begin{array}{rrr}{1 \cdot 1+(-1) \cdot 2} & {1 \cdot 1+(-1) \cdot 0} \\ {2 \cdot 1+0 \cdot 2} & {2 \cdot 1+0 \cdot 0} \\ {3 \cdot 1+0 \cdot 2} & {3 \cdot 1+0 \cdot 0}\end{array}\right)=\left( \begin{array}{rr}{-1} & {1} \\ {2} & {2} \\ {3} & {3}\end{array}\right)$

Найдем теперь произведение $D=B A=B_{2 \times 2} \cdot A_{3 \times 2}$. Так как количество столбцов матрицы $B$ (первый сомножитель) не совпадает с количеством строк матрицы $A$ (второй сомножитель), то данное произведение неопределенно. Умножить матрицы в данном порядке невозможно.

Ответ. $A B=\left( \begin{array}{rr}{-1} & {1} \\ {2} & {2} \\ {3} & {3}\end{array}\right)$ . В обратном порядке умножить данные матрицы невозможно, так как количество столбцов матрицы $B$ не совпадает с количеством строк матрицы $A$ .

Матрицы примеры решения задач, формулы и онлайн калькуляторы

Задание.

Вычислить $A B$ и $B A$, если $A=\left( \begin{array}{rr}{1} & {-1} \\ {2} & {0} \\ {3} & {0}\end{array}\right), B=\left( \begin{array}{ll}{1} & {1} \\ {2} & {0}\end{array}\right)$

Решение. Так как $A=A_{3 \times 2}$ , а $B=B_{2 \times 2}$ , то произведение возможно и результатом операции умножения будет матрица $C=C_{3 \times 2}$ , а это матрица вида $C=\left( \begin{array}{cc}{c_{11}} & {c_{12}} \\ {c_{21}} & {c_{22}} \\ {c_{31}} & {c_{32}}\end{array}\right)$ .

Вычисли элементы матрицы $C$ :

$ c_{11}=a_{11} \cdot b_{11}+a_{12} \cdot b_{21}=1 \cdot 1+(-1) \cdot 2=-1 $

$ c_{12}=a_{11} \cdot b_{12}+a_{12} \cdot b_{22}=1 \cdot 1+(-1) \cdot 0=1 $

$ c_{21}=a_{21} \cdot b_{11}+a_{22} \cdot b_{21}=2 \cdot 1+0 \cdot 2=2 $

$ c_{22}=a_{21} \cdot b_{12}+a_{22} \cdot b_{22}=2 \cdot 1+0 \cdot 0=2 $

$ c_{31}=a_{31} \cdot b_{11}+a_{32} \cdot b_{21}=3 \cdot 1+0 \cdot 2=3 $

$ c_{31}=a_{31} \cdot b_{12}+a_{32} \cdot b_{22}=3 \cdot 1+0 \cdot 0=3 $

Итак, $C=A B=\left( \begin{array}{rl}{-1} & {1} \\ {2} & {2} \\ {3} & {3}\end{array}\right)$ .

Выполним произведения в более компактном виде:

$=\left( \begin{array}{rrr}{1 \cdot 1+(-1) \cdot 2} & {1 \cdot 1+(-1) \cdot 0} \\ {2 \cdot 1+0 \cdot 2} & {2 \cdot 1+0 \cdot 0} \\ {3 \cdot 1+0 \cdot 2} & {3 \cdot 1+0 \cdot 0}\end{array}\right)=\left( \begin{array}{rr}{-1} & {1} \\ {2} & {2} \\ {3} & {3}\end{array}\right)$

Найдем теперь произведение $D=B A=B_{2 \times 2} \cdot A_{3 \times 2}$. Так как количество столбцов матрицы $B$ (первый сомножитель) не совпадает с количеством строк матрицы $A$ (второй сомножитель), то данное произведение неопределенно. Умножить матрицы в данном порядке невозможно.

Ответ. $A B=\left( \begin{array}{rr}{-1} & {1} \\ {2} & {2} \\ {3} & {3}\end{array}\right)$ . В обратном порядке умножить данные матрицы невозможно, так как количество столбцов матрицы $B$ не совпадает с количеством строк матрицы $A$ .

Матрицы примеры решения задач, формулы и онлайн калькуляторы

Задание. Вычислить $A B$ и $B A$, если $A=\left( \begin{array}{rr}{1} & {-1} \\ {2} & {0} \\ {3} & {0}\end{array}\right), B=\left( \begin{array}{ll}{1} & {1} \\ {2} & {0}\end{array}\right)$

Решение. Так как $A=A_{3 \times 2}$ , а $B=B_{2 \times 2}$ , то произведение возможно и результатом операции умножения будет матрица $C=C_{3 \times 2}$ , а это матрица вида $C=\left( \begin{array}{cc}{c_{11}} & {c_{12}} \\ {c_{21}} & {c_{22}} \\ {c_{31}} & {c_{32}}\end{array}\right)$ .

Вычисли элементы матрицы $C$ :

$ c_{11}=a_{11} \cdot b_{11}+a_{12} \cdot b_{21}=1 \cdot 1+(-1) \cdot 2=-1 $

$ c_{12}=a_{11} \cdot b_{12}+a_{12} \cdot b_{22}=1 \cdot 1+(-1) \cdot 0=1 $

$ c_{21}=a_{21} \cdot b_{11}+a_{22} \cdot b_{21}=2 \cdot 1+0 \cdot 2=2 $

$ c_{22}=a_{21} \cdot b_{12}+a_{22} \cdot b_{22}=2 \cdot 1+0 \cdot 0=2 $

$ c_{31}=a_{31} \cdot b_{11}+a_{32} \cdot b_{21}=3 \cdot 1+0 \cdot 2=3 $

$ c_{31}=a_{31} \cdot b_{12}+a_{32} \cdot b_{22}=3 \cdot 1+0 \cdot 0=3 $

Итак, $C=A B=\left( \begin{array}{rl}{-1} & {1} \\ {2} & {2} \\ {3} & {3}\end{array}\right)$ .

Выполним произведения в более компактном виде:

$=\left( \begin{array}{rrr}{1 \cdot 1+(-1) \cdot 2} & {1 \cdot 1+(-1) \cdot 0} \\ {2 \cdot 1+0 \cdot 2} & {2 \cdot 1+0 \cdot 0} \\ {3 \cdot 1+0 \cdot 2} & {3 \cdot 1+0 \cdot 0}\end{array}\right)=\left( \begin{array}{rr}{-1} & {1} \\ {2} & {2} \\ {3} & {3}\end{array}\right)$

Найдем теперь произведение $D=B A=B_{2 \times 2} \cdot A_{3 \times 2}$. Так как количество столбцов матрицы $B$ (первый сомножитель) не совпадает с количеством строк матрицы $A$ (второй сомножитель), то данное произведение неопределенно. Умножить матрицы в данном порядке невозможно.

Ответ. $A B=\left( \begin{array}{rr}{-1} & {1} \\ {2} & {2} \\ {3} & {3}\end{array}\right)$ . В обратном порядке умножить данные матрицы невозможно, так как количество столбцов матрицы $B$ не совпадает с количеством строк матрицы $A$ .

примеры с решением и объяснением

Матрицы представляют собой таблицы чисел, взаимосвязанных между собой. Над ними возможно проводить ряд разнообразных операций, о которых мы расскажем вам ниже.

Размер матрицы определяется её порядками — количеством строчек $m$ и столбцов $n$, которые в ней присутствуют. Строчки образованы элементами, стоящими на горизонтальных линиях, а столбцы — элементами, стоящими на прямых вертикальных линиях. В случае если количество строчек эквивалентно количеству столбцов — порядок рассматриваемой таблички определяется лишь одним значением $m = n$.

Замечание 1

Для любого элемента матрицы номер строчки, в которой он находится, записывается первым в индексе, а номер столбца — вторым, то есть запись $a_{ij}$ обозначает, что элемент стоит в $i$-ой строчке и в $j$-ом столбце.

Сложение и вычитание

Итак, о сложении и вычитании. Эти действия возможно проводить только с матрицами

одинакового размера.

Для того чтобы осуществить эти действия, необходимо провести сложение или вычитание каждого элемента матрицы с элементом другой матрицы, стоящим на той же позиции, что элемент в первой.

В качестве примера найдём сумму $A+B$, где:

$A = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23}\\ a_{31} & a_{32} & a_{33} \\ \end{pmatrix}$

и $B = \begin{pmatrix} b_{11} & b_{12} & b_{13} \\ b_{21} & b_{22} & b_{23} \\ b_{31} & b_{32} & b_{33}\\ \end{pmatrix}$

Сумма любого элемента новой полученной матричной таблички $A + B$ равна $a_{ij} + b_{ij}$, например, элемент с индексом $11$ равен $a_{11} + b_{11}$,а весь результат целиком выглядит так:

$A + B = \begin{pmatrix} a_{11}+b_{11} & a_{12}+b_{12} & a_{13}+ b_{13} \\ a_{21}+ b_{21} & a_{22}+b_{22} & a_{23}+ b_{23} \\ a_{31}+ b_{31} & a_{32}+ b_{32} & a_{33} + b_{33} \\ \end{pmatrix}$

Вычитание для двух матриц $A-B$ осуществляется аналогично, но каждый элемент новой матрицы результата будет вычисляться по формуле $a_{ij} – b_{ij}$.

Обратите внимание, что сложение и вычитание для матриц возможно осуществлять только если их порядки одинаковые.

Пример 1

Решите следующие матричные примеры: $A + B$; $A – B$.

$A=\begin{pmatrix} 0 & 5 & 2 \\ 1 & -1 & 3 \\ -2 & 0 & 7 \\ \end{pmatrix}$

$B=\begin{pmatrix} 0 & 3 & 2 \\ -4 & 0 & -1 \\ 0 & 7 & -3 \\ \end{pmatrix}$

Объяснение:

Действия выполняем для каждой пары элементов $a_{ij}$ и $b_{ij}$ соответственно:

$A+B=\begin{pmatrix} 0+0 & 5+3 & 2+2 \\ 1-4 & -1+0 & 3 — 1\\ -2+0 & 0+7 & 7 — 3 \\ \end{pmatrix}=\begin{pmatrix} 0 & 8 & 4 \\ -3 & -1 & 2 \\ -2 & 7 & 4\\ \end{pmatrix}$

$A-B=\begin{pmatrix} 0-0 & 5-3 & 2-2 \\ 1+4 & -1-0 & 3 + 1\\ -2-0 & 0-7 & 7 + 3 \\ \end{pmatrix}=\begin{pmatrix} 0 & 2 & 0 \\ 5 & -1 & 4 \\ -2 & -7 & 10 \\ \end{pmatrix}$

Умножение матрицы на число

Для того чтобы произвести умножение матричной таблички на какое-либо число, нужно каждый её элемент умножить на это число, то есть любой элемент новой матрицы $C$, являющейся результатом произведения $A$ на $λ$ будет равен $с_{ij}=λ \cdot a_{ij}$.

Пример 2

Умножьте $A$ на $λ$, где $A=\begin{pmatrix} 1 & 0 & 2 \\ -1 & 3 & 0 \\ 2 & 1 & 3 \\ \end{pmatrix}$, а $λ=5$:

$A \cdot λ = 5 \cdot \begin{pmatrix} 1 & 0 & 2 \\ -1 & 3 & 0 \\ 2 & 1 & 3 \\ \end{pmatrix} = \begin{pmatrix} 1 \cdot 5 & 0 \cdot 5 & 2 \cdot 5 \\ -1 \cdot 5 & 3 \cdot 5 & 0 \cdot 5 \\ 2 \cdot 5 & 1\cdot 5 & 3\cdot 5 \\ \end{pmatrix} = \begin{pmatrix} 5 & 0 & 10 \\ -5 & 15 & 0 \\ 10 & 5 & 15 \\ \end{pmatrix}$.

Произведение матричных таблиц

Эта задача несколько сложнее предыдущих, но при этом в ней также нет ничего сложного.

Для осуществления умножения двух матриц $A \cdot B$ количество столбцов в $A$ должно совпадать с количеством строчек в $B$.

Математически это можно записать так:

$A_{m \times n}\cdot B_{n \times p} = С_{m \times p}$

То есть видя перемножаемые исходные матрицы можно сразу определить порядки получаемой новой. Например, если необходимо перемножить $A_{3 \times 2}$ и $B_{2 \times 3}$ — полученный результат будет иметь размер $3 \times 3$:

$\begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \\ a_{31} & a_{32} \\ \end{pmatrix} \times \begin{pmatrix} b_{11} & b_{12} &b_{13} \\ b_{21} & b_{22} & b_{23} \\ b_{31} & b_{32} &b_{33} \\ \end{pmatrix} = \begin{pmatrix} • & • & • \\ • & • & • \\ • & • & • \\ \end{pmatrix}= \begin{pmatrix} (a_{11}b_{11} + a_{12}b_{21}) & (a_{11}b_{12} + a_{12}b_{22}) & (a_{11}b_{13} + a_{12}b_{23}) \\ (a_{21}b_{11} + a_{22}b_{21}) & (a_{21}b_{12} + a_{22}b_{22}) & (a_{11}b_{13} + a_{22}b_{23}) \\ (a_{31}b_{11} + a_{32}b_{21}) & (a_{31}b_{12} + a_{32}b_{22}) & (a_{31}b_{13} + a_{32}b_{23}) \\ \end{pmatrix}$

Если число столбцов первого матричного множителя не совпадает с количеством строчек второго матричного множителя, то умножение выполнить невозможно.

Пример 3

Решите пример:

$A \times B = ?$, если $A=\begin{pmatrix} 1 & 0 & 2 \\ -1 & 3 & 0 \\ 2 & 1 & 3 \\ \end{pmatrix}$ и $B = \begin{pmatrix} 3 & — 1 & 2 \\ -4 & 0 & 2 \\ 1 & 1 & 2 \\ \end{pmatrix}$.

$A \times B = \begin{pmatrix} (1 \cdot 3 + 0 \cdot (-4) + 2 \cdot 1) & (1 \cdot(-1) + 0 \cdot 0 + 2 \cdot 1) & (1 \cdot 2 + 0 \cdot 2 + 2 \cdot 2) \\ (-1) \cdot 3 + 3 \cdot (-4) + 0 \cdot 1) & (-1 \cdot(-1) + 3 \cdot 0 + 0 \cdot 1) & (-1 \cdot 2 + 3 \cdot 2 + 0 \cdot 2) \\ (2 \cdot 3 + 1 \cdot (-4) + 3 \cdot 1) & 2 \cdot (-1) + 1 \cdot 0 + 3 \cdot 1) & (2 \cdot 2 + 1 \cdot 2 + 3 \cdot 2) \\ \end{pmatrix} $

$A \times B= \begin{pmatrix} (3 + 0+ 2) & (-1 + 0 + 2) & (2 + 0 + 4) \\ (-3-12+0) & (1 + 0 + 0) & (-2+6+0) \\ (6-4+3) & (-2 + 0 + 3) & (4 + 2 + 6) \\ \end{pmatrix} = \begin{pmatrix} 5 & 1 & 6 \\ -15 & 1 & 4 \\ 5 & 1 & 12 \\ \end{pmatrix}$.

Нахождение определителя матрицы

Определитель матрицы обозначается как $Δ$ или $\det$.

Замечание 2

Детерминант возможно найти только для квадратных разновидностей матриц.

В простейшем случае, когда матрица состоит из всего одного элемента, её определитель равен этому элементу: $det A = |a_{11}|= a_{11}$

Вычислить определитель от матрицы порядка двух можно следуя такому правилу:

Определение 1

Определитель матрицы размера 2 равен разности произведений элементов, стоящих на главной диагонали с произведением элементов с побочной диагонали:

$\begin{array}{|cc|} a_{11}& a_{12} \\ a_{21} & a_{22} \\ \end{array} = a_{11} \cdot a_{22} – a_{12} \cdot a_{21}$

В случае если определитель матрицы задан размером $3 \times 3$, то найти его можно используя мнемонические правила: Саррюса или треугольников, также можно разложить матрицу по строчке или столбцу или воспользоваться преобразованиями Гаусса. {-1}$ на исходную матрицу даёт в результате единичную матрицу $E$.

Самый простой метод решения при поиске обратной матрицы — Жордана-Гаусса. Рядом с матрицей-подопытным кроликом записывается единичная того же размера, а затем исходная с помощью преобразований приводится к единичной, причём все выполняемые действия повторяются и с $E$.

Пример 4

Дана $A=\begin{pmatrix}{cc} 1& 2 \\ 3 & 4 \\ \end{pmatrix}$

Получить обратную матрицу.

Решение:

Пишем вместе $A$ и справа от неё соответствующего размера $E$:

$ \begin{array}{cc|cc} 1& 2 & 1& 0\\ 3 & 4& 0 & 1 \\ \end{array}$

Получаем нуль в последней строчке на первой позиции:прибавляем к ней верхнюю, умноженную на $-3$:

$ \begin{array}{cc|cc} 1& 2 & 1 & 0\\ 0 & -2 & -3 & 1 \\ \end{array}$

Теперь обнуляем последний элемент первой строчки. Для этого к верхней строчке плюсуем нижнюю:

$ \begin{array}{cc|cc} 1& 0 & -2 & 1\\ 0 & -2 & -3 & 1 \\ \end{array}$

Делим вторую на $-2$:

$ \begin{array}{cc|cc} 1& 0 & -2 & 1\\ 0 & 1& 3/2 & -1/2 \\ \end{array}$

Получили результат:

$A=\begin{pmatrix}{cc} -2& 1 \\ 3/2 & -1/2 \\ \end{pmatrix}$

Транспонирование матричных таблиц

Транспонирование — это смена строк и столбцов в матрице или определителе местами с сохранением их исходного порядка. T = 1 \cdot 5 \cdot (-3) + 4 \cdot (-2) \cdot 3 + (-1) \cdot 2 \cdot 6 – 4 \cdot 2 \cdot (-3) – 1 \cdot (-2) \cdot 6 – (- 1) \cdot 5 \cdot 3 = — 15 -24 — 12+24+12+15 = 0$.

Сайт преподавателей информатики КМТТМП — Примеры и задачи для самостоятельного решения.

    I. Сложение матриц

Рассмотрим пример сложения двух матриц размером 2х3.

Пример 1. 

Даны две матрицы одинакового размера.

Найти сумму А+В двух матриц.

Решение.


Пример 2.

Пусть даны матрицы:


Решение.


II. Умножение матрицы на число

Пусть


Найти результат умножения матрицы  А  на число  4.


III. Вычитание матриц

Пример 3. 

Даны две матрицы одинакового размера  4х4


Найти разность двух матриц

Решение.


Примеры для самостоятельного решения

Пример 4. 

Найти сумму двух матриц  А  и  В  в каждом из следующих случаев:


Пример 5. 

Найти матрицу: С=-5А+2В


IV. Транспонирование матриц

Транспонирование матриц – переход от матрицы  А  к матрице, в которой строки и столбцы поменялись местами с сохранением порядка.

 Пример 5. 

Составить транспонированную матрицу, полученную из А:


Решение: 

Поменяем местами строки и столбцы, сохраняя порядок:


Примеры для самостоятельного решения:

 Пример 6. 

Составить из исходной матрицы транспонированную матрицу:


II. Умножение матриц

Пример 7. 

Решение:


Пример 8.  

Найти произведение двух матриц:


Решение: 

В первом случае найдем произведение:


Во втором случае найдем произведение:


Пример 9.

Вычислить значение многочлена f(x)=2x2-5x+3  от матрицы:


Решение. 

В многочлен f(x) подставим вместо  х  матрицу  А, вместо числа 3 используем матрицу  3Е, где  Е – единичная матрица 2-го порядка.


Теперь получим окончательный результат


Примеры для самостоятельного решения

I. Найти произведение матриц:


II. Найти значение многочлена  от матрицы А:


1.3.4. Примеры решения задач по теме «Обратная матрица»

Задача 1.

Найти обратную матрицу для матрицы

И проверить выполнение условий ­А А-1 = А-1А = Е.

Указание

Убедитесь, что матрица А – невырожденная, и примените способ вычисления обратной матрицы.

Решение

Убедимся, что матрица А – невырожденная. ΔА = 1·4 — 2·(-1) ≠ 0, следовательно, А-1 существует.

Вычислим алгебраические дополнения к элементам А:

Применим способ вычисления обратной матрицы:

.

Не забудьте, что обратная матрица образована из алгебраических дополнений к элементам Транспонированной матрицы!

Найдем произведения ­А А-1 и А-1А:

Таким образом, найденная матрица А-1 отвечает определению обратной матрицы.

Ответ: .

Задача 2.

Найти обратную матрицу для матрицы

.

Указание

Убедитесь, что матрица А – невырожденная, и примените способ вычисления обратной матрицы.

Решение

Следовательно, матрица А невырожденная, и обратная матрица существует.

Вычислим алгебраические дополнения к элементам матрицы А:

Обратная матрица имеет вид:

Ответ: .

Задача 3.

Найти обратную матрицу для матрицы

.

Указание

Убедитесь, что матрица А – невырожденная, и примените способ вычисления обратной матрицы.

Решение

Вычислим определитель матрицы А разложением по первому столбцу:

.

Следовательно, обратная матрица для матрицы А существует.

Найдем алгебраические дополнения к элементам матрицы А:

Значит,

.

Ответ: .

Задача 4.

Найти обратную матрицу для матрицы

.

Указание

Убедитесь, что матрица А – невырожденная, и примените способ вычисления обратной матрицы.

Решение

.

Ответ:

Задача 5.

При каких X, Y, Z матрица

Является обратной к матрице

Указание

Необходимым условием того, что В = А-1, является требование АВ = Е.

Решение

Проверим невырожденность матрицы А:

Необходимым условием того, что В = А-1, является требование АВ = Е.

Найдем АВ:

Для того, чтобы выполнялось условие АВ = Е, X, Y, Z должны быть решением системы уравнений

Проверим, будет ли равно единичной матрице произведение ВА:

Значит, при найденных значениях X, Y, Z В = А-1.

Ответ: X = -3, Y = -3, Z = 4.

< Предыдущая   Следующая >

Обратная матрица. Примеры вычисления

Нахождение обратной матрицы является важной составляющей в разделе линейной алгебры. С помощью таких матриц, если они существуют, можно быстро найти решение системы линейных уравнений.

Матрицаназывается обратной к матрице,если выполняются следующие равенства.

.

Если определитель матрицыотличен от нуля, то матрицу называют не особо или невырожденной.

Для того, чтобы матрица имела обратную необходимо и достаточно, чтобы она была невырожденной

Алгоритм нахождения обратной матрицы

Пусть имеем квадратную матрицу

и нужно найти обратную к ней. Для этого нужно выполнить следующие действия:

1. Найти определитель матрицы. Если он не равен нулю то выполняем следующие действия. В противном случае данная матрица вырождена и для нее не существует обратной

2. Найти алгебраические дополнения элементов матрицы . Они равны минорам, умноженным на в степени суммы строки и столбца, для которого ищем.

3. Составить матрицу из алгебраических дополнений элементов матрицы матрицы и протранспонировать ее. Эта матрица называется присоединенной или союзной и обозначается .

4. Разделить присоединенную матрицу на детерминант . Полученная матрица будет обратной и иметь свойства, которые изложены в начале статьи.

———————————————

Пример 1.

Найти матрицу, обратную к матрице (Дубовик В.П., Юрик И.И. «Высшая математика. Сборник задач»)

1) (1.127)

2) (1.130)

3) (1.133)

Решение.

1)Находим определитель матрицы

Так как детерминант не равен нулю (), то обратная матрица существует. Находим матрицу, составленную из алгебраических дополнений

Матрица дополнений примет вид

Транспонируем ее и получаем присоединенную

Разделим ее на определитель и получим обратную

Видим, что в случае, когда определитель равен единице присоединена и обратная матрицы совпадают.

2) Вычисляем определитель матрицы

Находим матрицу алгебраических дополнений

Конечный вид матрицы дополнений

Транспонируем ее и находим союзную матрицу

Находим обратную матрицу

3) Вычислим детерминант матрицы. Для этого разложим его на первую строчку. В результате получим два отличны от нуля слагаемые

Находим матрицу алгебраических дополнений. Расписание определителя проводим по строкам и столбцам, в которых больше нулевых элементов (обозначены черным цветом).

Конечный вид матрицы дополнений следующий

Транспонируем ее и находим присоединенную матрицу

Поскольку определитель матрицы равен единице то обратная матрица совпадает с присоединенной. Данный пример назад.

При вычислениях обратной матрицы типичными являются ошибки связанные с неправильными знаками при вычислении определителя и матрицы дополнений.

———————————————

——————————

Решение систем линейных уравнений с использованием матриц

Привет! Эта страница будет иметь смысл только тогда, когда вы немного знаете о системах линейных уравнений и матриц, поэтому, пожалуйста, пойдите и узнайте о них, если вы их еще не знаете!

Пример

Одним из последних примеров систем линейных уравнений был этот:

Пример: Решить

  • х + у + г = 6
  • 2y + 5z = −4
  • 2x + 5y — z = 27

Затем мы решили его, используя метод «исключения»… но мы можем решить это с помощью Матриц!

Использование матриц упрощает жизнь, потому что мы можем использовать компьютерную программу (например, Матричный калькулятор), чтобы выполнять всю «обработку чисел».

Но сначала нам нужно написать вопрос в матричной форме.

в матричной форме?

ОК. Матрица — это массив чисел, верно?


Матрица

Ну, подумайте об уравнениях:

х + л + z = 6
2 года + 5z = −4
2x + 5лет z = 27

Их можно было бы превратить в таблицу чисел вот так:

1 1 1 = 6
0 2 5 = −4
2 5 -1 = 27

Мы могли бы даже разделить числа до и после «=» на:

1 1 1 6
0 2 5 и −4
2 5 -1 27

Теперь похоже, что у нас есть 2 матрицы.

На самом деле у нас есть третий, это [x y z]:

Почему [x y z] идет туда? Потому что, когда мы умножаем матрицы, левая сторона становится:

Это исходная левая часть приведенных выше уравнений (вы можете это проверить).

Матричное решение

Мы можем написать это:

как это:

AX = B

где

  • A — это матрица 3×3 коэффициентов x, y и z
  • X — это x, y и z, и
  • .
  • B — это 6, −4 и 27

Тогда (как показано на странице инверсии матрицы) решение следующее:

X = A -1 B

Что это значит?

Это означает, что мы можем найти значения x, y и z (матрица X), умножив , инверсную матрицу A , на матрицу B .

Итак, давайте продолжим и сделаем это.

Во-первых, нам нужно найти , обратную матрице A (при условии, что она существует!)

Используя Матричный калькулятор, получаем:

(определитель 1 / я оставил за пределами матрицы, чтобы числа упростить)

Затем умножьте A -1 на B (мы снова можем использовать Матричный калькулятор):

И готово! Решение:

x = 5,
y = 3,
z = −2

Как и на странице Системы линейных уравнений.

Довольно изящный и элегантный, человек думает, а компьютер производит вычисления.

Просто для развлечения … Сделай это снова!

Для удовольствия (и для того, чтобы помочь вам учиться), давайте сделаем все это снова, но сначала поставим матрицу «X».

Я хочу показать вам этот способ, потому что многие люди думают, что вышеприведенное решение настолько изящно, что это, должно быть, единственный способ.

Так что решим так:

XA = B

И из-за способа умножения матриц нам нужно настроить матрицы по-другому.Строки и столбцы необходимо поменять местами («транспонировать»):

И XA = B выглядит так:

Матричное решение

Тогда (также показано на странице инверсии матрицы) решение следующее:

X = BA -1

Это то, что мы получаем для A -1 :


Фактически, это то же самое, что и обратное, которое мы получили раньше, но транспонированное (строки и столбцы меняются местами).

Затем умножаем B на A -1 :

И решение то же:

x = 5, y = 3 и z = −2

Это выглядело не так красиво, как предыдущее решение, но оно показывает нам, что существует более одного способа составления и решения матричных уравнений.Только будьте осторожны со строками и столбцами!

Подробнее о расширенной матрице

Показать мобильное уведомление Показать все заметки Скрыть все заметки

Похоже, вы используете устройство с «узкой» шириной экрана (, т.е. , вероятно, вы используете мобильный телефон).Из-за особенностей математики на этом сайте лучше всего просматривать в ландшафтном режиме. Если ваше устройство не находится в альбомном режиме, многие уравнения будут отображаться сбоку от вашего устройства (должна быть возможность прокручивать, чтобы увидеть их), а некоторые элементы меню будут обрезаны из-за узкой ширины экрана.

Раздел 7-4: Подробнее о расширенной матрице

В первом разделе этой главы мы увидели, что есть некоторые частные случаи в решении систем двух уравнений.Мы увидели, что решения вообще не должно быть и что на самом деле у нас может быть бесконечно много решений. В этом разделе мы собираемся обобщить это на общие системы уравнений и посмотрим, как поступать в этих случаях при использовании расширенных матриц для решения системы.

Прежде всего приведем следующий факт.

Факт

Для любой системы уравнений существует ровно три возможности решения.

  1. Решения не будет.
  2. Будет ровно одно решение.
  3. Решений будет бесконечно много.

Это именно то, что мы обнаружили, когда рассматривали два уравнения. Просто оказывается, что не имеет значения, сколько у нас уравнений. Есть еще только эти три возможности.

Теперь давайте посмотрим, как мы можем идентифицировать первую и последнюю возможность, когда мы используем метод расширенной матрицы для решения.В предыдущем разделе мы заявили, что хотим использовать операции со строками для преобразования расширенной матрицы в следующую форму:

\ [\ left [{\ begin {array} {rr | r} 1 & 0 & h \\ 0 & 1 & k \ end {array}} \ right] \ hspace {0,25 дюйма} {\ mbox {или}} \ hspace {0,25 дюйма} \ left [{\ begin {array} {rrr | r} 1 & 0 & 0 & p \\ 0 & 1 & 0 & q \\ 0 & 0 & 1 & r \ end {array}} \ right] \]

в зависимости от количества уравнений, присутствующих в системе. Оказывается, нам следовало добавить к этой инструкции квалификатор «если возможно», потому что это не всегда возможно.Фактически, если невозможно поместить его в одну из этих форм, мы будем знать, что находимся либо в первом, либо в последнем варианте решения системы.

Прежде чем переходить к некоторым примерам, давайте сначала рассмотрим, как мы узнали, какое решение было основано на этих формах расширенной матрицы. Давайте поработаем со случаем двух уравнений.

С,

\ [\ left [{\ begin {array} {rr | r} 1 & 0 & h \\ 0 & 1 & k \ end {array}} \ right] \]

— это расширенная матрица, которую мы всегда можем преобразовать обратно в уравнения.Каждая строка представляет собой уравнение, а первый столбец — это коэффициент при \ (x \) в уравнении, а второй столбец — это коэффициент при \ (y \) в уравнении. Последний столбец — это константа, которая будет в правой части уравнения.

Итак, если мы сделаем это для этого случая, мы получим

\ [\ begin {align *} \ left (1 \ right) x + \ left (0 \ right) y & = h \ hspace {0,25 дюйма} \ Rightarrow \ hspace {0,25 дюйма} \, \, \, \, х = ч \\ \ влево (0 \ вправо) х + \ влево (1 \ вправо) у & = к \ чпространство {0.25 дюймов} \ Rightarrow \ hspace {0,25 дюйма} \, \, \, \, y = k \ end {align *} \]

, и это именно то, о чем мы говорили в предыдущем разделе.

Эта идея преобразования расширенной матрицы обратно в уравнения будет важна в следующих примерах.

Кстати, давайте продолжим и рассмотрим пару примеров. Мы начнем с двух систем уравнений, которые мы рассмотрели в первом разделе, где даны частные случаи решений.

Пример 1 Используйте расширенные матрицы для решения каждой из следующих систем.
  1. \ (\ begin {align *} x — y & = 6 \\ — 2x + 2y & = 1 \ end {align *} \)
  2. \ (\ begin {align *} 2x + 5y & = — 1 \\ — 10x — 25y & = 5 \ end {align *} \)
Показать все решения Скрыть все решения a \ (\ begin {align *} x — y & = 6 \\ — 2x + 2y & = 1 \ end {align *} \) Показать решение

Итак, мы уже разработали это, поэтому мы знаем, что для этой системы нет решения.Зная это, давайте посмотрим, что дает нам метод расширенной матрицы, когда мы пытаемся его использовать.

Начнем с расширенной матрицы.

\ [\ require {color} \ left [{\ begin {array} {rr | r} 1 & {- 1} & 6 \\ {\ color {Red} — 2} & 2 & 1 \ end {array}} \ right] \]

Обратите внимание, что у нас уже есть 1 в верхнем левом углу, поэтому нам не нужно с этим ничего делать. Итак, теперь нам нужно превратить -2 в 0.

\ [\ require {color} \ left [{\ begin {array} {rr | r} 1 & {- 1} & 6 \\ {\ color {Red} — 2} & 2 & 1 \ end {array}} \ right] \ begin {массив} {* {20} {c}} {{R_2} + 2 {R_1} \ to {R_2}} \\ \ to \ end {array} \ left [{\ begin {array} {rr | r} 1 & {- 1} & 6 \\ 0 & {\ color {Red} 0} & {13} \ end {array}} \ right] \]

Теперь следующим шагом должно быть получение 1 в правом нижнем углу, но нет никакого способа сделать это, не изменив ноль в нижнем левом углу.Это проблема, потому что у нас должен быть ноль в этом месте, а также единица в правом нижнем углу. Это говорит нам о том, что невозможно представить эту расширенную матричную форму.

Теперь вернемся к уравнениям и посмотрим, что мы получили в этом случае.

\ [\ begin {align *} x — y & = 6 \\ 0 & = 13 \, \, \, ??? \ end {align *} \]

Первая строка просто преобразуется обратно в первое уравнение. Однако вторая строка снова превращается в ерунду.Мы знаем, что это неправда, поэтому это означает, что решения нет. Помните, что если мы достигаем точки, когда у нас есть уравнение, которое просто не имеет смысла, у нас нет решения.

Обратите внимание, что если мы получили

\ [\ left [{\ begin {array} {rr | r} 1 & {- 1} & 6 \\ 0 & 1 & 0 \ end {array}} \ right] \]

, мы были бы в порядке, так как последняя строка вернет уравнение \ (y = 0 \), так что не путайте этот случай с тем, что мы на самом деле получили для этой системы.


b \ (\ begin {align *} 2x + 5y & = — 1 \\ — 10x — 25y & = 5 \ end {align *} \) Показать решение

В этом случае мы знаем из первого раздела, что существует бесконечно много решений этой системы. Давайте посмотрим, что мы получим, если воспользуемся методом расширенной матрицы для решения.

Вот расширенная матрица для этой системы.

\ [\ require {color} \ left [{\ begin {array} {rr | r} {\ color {Red} 2} & 5 & {- 1} \\ {- 10} & {- 25} & 5 \ end {array }} \верно]\]

В этом случае нам нужно сначала получить 1 в верхнем левом углу, и не будет никакого простого способа сделать это, чтобы избежать дробей, поэтому мы просто разделим первую строку на 2.

\ [\ require {color} \ left [{\ begin {array} {rr | r} {\ color {Red} 2} & 5 & {- 1} \\ {- 10} & {- 25} & 5 \ end {array }} \ right] \ begin {array} {* {20} {c}} {\ frac {1} {2} {R_1}} \\ \ to \ end {array} \ left [{\ begin {array} {rr | r} 1 & {\ frac {5} {2}} & {- \ frac {1} {2}} \\ {\ color {Red} — 10} & {- 25} & 5 \ end {array} } \верно]\]

Теперь мы можем получить ноль в нижнем левом углу.

\ [\ require {color} \ left [{\ begin {array} {rr | r} 1 & {\ frac {5} {2}} & {- \ frac {1} {2}} \\ {\ color { Красный} — 10} & {- 25} & 5 \ end {array}} \ right] \ begin {array} {* {20} {c}} {{R_2} + 10 {R_1} \ to {R_2}} \ \ \ to \ end {array} \ left [{\ begin {array} {rr | r} 1 & {\ frac {5} {2}} & {- \ frac {1} {2}} \\ 0 & {\ цвет {красный} 0} & 0 \ end {array}} \ right] \]

Теперь, как и в случае с первой частью, мы никогда не сможем получить 1 вместо красного нуля без изменения первого нуля в этой строке.Однако это не та ерунда, которую получила первая часть. Вернемся к уравнениям.

\ [\ begin {align *} x + \ frac {5} {2} y & = — \ frac {1} {2} \\ 0 & = 0 \ end {align *} \]

Последнее уравнение — истинное уравнение, и в этом нет ничего плохого. В этом случае решений бесконечно много.

Напомним, что нам еще нужно немного поработать, чтобы получить решение. Решаем одно из уравнений относительно одной из переменных.Однако обратите внимание, что если мы используем уравнение из расширенной матрицы, это очень легко сделать.

\ [x = — \ frac {5} {2} y — \ frac {1} {2} \]

Затем запишем решение как,

\ [\ begin {array} {* {20} {c}} \ begin {align} x & = — \ frac {5} {2} t — \ frac {1} {2} \\ y & = t \ конец {выровнено} & {\, \, \, \, \, \, \, \, \, \, \, \, {\ mbox {где}} t {\ mbox {- любое действительное число}}} \ конец {массив} \]

Мы получаем решения, выбирая \ (t \) и подставляя это в уравнение для \ (x \).Обратите внимание, что это НЕ тот набор уравнений, который мы получили в первом разделе. Это нормально. Когда существует бесконечно много решений, существует более одного способа написать уравнения, которые будут описывать все решения.

Давайте подведем итог тому, что мы узнали из предыдущего набора примеров. Во-первых, если у нас есть строка, в которой все записи, кроме самой последней, равны нулю, а последняя запись НЕ равна нулю, то мы можем остановиться, и у системы не будет решения.

Далее, если мы получим строку из всех нулей, то у нас будет бесконечно много решений. Затем нам нужно будет проделать еще немного работы, чтобы получить решение, и количество уравнений определит, сколько работы нам нужно сделать.

Теперь давайте посмотрим, как работают некоторые системы с тремя уравнениями. Случай отсутствия решения будет идентичным, но случай бесконечного решения потребует небольшой работы.

Пример 2 Решите следующую систему уравнений, используя расширенные матрицы.\ [\ begin {align *} 3x — 3y — 6z & = — 3 \\ 2x — 2y — 4z & = 10 \\ — 2x + 3y + z & = 7 \ end {align *} \] Показать решение

Вот расширенная матрица для этой системы.

\ [\ require {color} \ left [{\ begin {array} {rrr | r} {\ color {Red} 3} & {- 3} & {- 6} & {- 3} \\ 2 & {- 2 } & {- 4} & {10} \\ {- 2} & 3 & 1 & 7 \ end {array}} \ right] \]

Мы можем получить 1 в верхнем левом углу, разделив первую строку на 3.

\ [\ require {color} \ left [{\ begin {array} {rrr | r} {\ color {Red} 3} & {- 3} & {- 6} & {- 3} \\ 2 & {- 2 } & {- 4} & {10} \\ {- 2} & 3 & 1 & 7 \ end {array}} \ right] \ begin {array} {* {20} {c}} {\ frac {1} {3} { R_1}} \\ \ to \ end {array} \ left [{\ begin {array} {rrr | r} 1 & {- 1} & {- 2} & {- 1} \\ {\ color {Red} 2 } & {- 2} & {- 4} & {10} \\ {\ color {Red} — 2} & 3 & 1 & 7 \ end {array}} \ right] \]

Затем мы получим два числа под этим, чтобы они были нулями.

\ [\ require {color} \ left [{\ begin {array} {rrr | r} 1 & {- 1} & {- 2} & {- 1} \\ {\ color {Red} 2} & {- 2 } & {- 4} & {10} \\ {\ color {Red} — 2} & 3 & 1 & 7 \ end {array}} \ right] \ begin {array} {* {20} {c}} {{R_2} — 2 {R_1} \ to {R_2}} \\ {{R_3} + 2 {R_1} \ to {R_3}} \\ \ to \ end {array} \ left [{\ begin {array} {rrr | r} 1 & {- 1} & {- 2} & {- 1} \\ 0 & 0 & 0 & {12} \\ 0 & 1 & {- 3} & 5 \ end {array}} \ right] \]

И мы можем остановиться.В средней строке все нули, за исключением последней записи, которая не равна нулю. Учтите, что число не имеет значения, если оно не равно нулю.

Как только мы достигаем такого типа строки, мы знаем, что у системы не будет никаких решений, и поэтому нет никаких причин идти дальше.

Хорошо, давайте посмотрим, как мы решаем систему трех уравнений с бесконечным числом решений с помощью метода расширенных матриц. Этот пример также проиллюстрирует интересную идею о системах.

Пример 3 Решите следующую систему уравнений, используя расширенные матрицы. \ [\ begin {align *} 3x — 3y — 6z & = — 3 \\ 2x — 2y — 4z & = — 2 \\ — 2x + 3y + z & = 7 \ end {align *} \] Показать решение

Обратите внимание, что эта система почти идентична системе в предыдущем примере. Единственная разница — это число справа от знака равенства во втором уравнении. В этой системе это -2, а в предыдущем примере — 10.Изменение этого одного числа полностью меняет тип решения, которое мы собираемся получить. Часто такое простое изменение не влияет на тип решения, которое мы получаем, но в некоторых редких случаях может.

Поскольку первые два шага процесса идентичны предыдущей части, мы не будем их обсуждать. Вот они.

\ [\ require {color} \ left [{\ begin {array} {rrr | r} {\ color {Red} 3} & {- 3} & {- 6} & {- 3} \\ 2 & {- 2 } & {- 4} & {- 2} \\ {- 2} & 3 & 1 & 7 \ end {array}} \ right] \ begin {array} {* {20} {c}} {\ frac {1} {3} {R_1}} \\ \ to \ end {array} \ left [{\ begin {array} {rrr | r} 1 & {- 1} & {- 2} & {- 1} \\ {\ color {Red} 2} & {- 2} & {- 4} & {- 2} \\ {\ color {Red} — 2} & 3 & 1 & 7 \ end {array}} \ right] \ begin {array} {* {20} {c }} {{R_2} — 2 {R_1} \ to {R_2}} \\ {{R_3} + 2 {R_1} \ to {R_3}} \\ \ to \ end {array} \ left [{\ begin { array} {rrr | r} 1 & {- 1} & {- 2} & {- 1} \\ 0 & 0 & 0 & 0 \\ 0 & 1 & {- 3} & 5 \ end {array}} \ right] \]

У нас есть ряд нулей, поэтому мы сразу понимаем, что у нас бесконечно много решений.Однако, в отличие от случая с двумя уравнениями, мы не собираемся останавливаться на достигнутом. Похоже, что с помощью пары операций со строками мы можем сделать второй столбец таким, каким он должен быть в окончательной форме, так что давайте сделаем это.

\ [\ require {color} \ left [{\ begin {array} {rrr | r} 1 & {- 1} & {- 2} & {- 1} \\ 0 & {\ color {Red} 0} & 0 & 0 \\ 0 & 1 & {- 3} & 5 \ end {array}} \ right] \ begin {array} {* {20} {c}} {{R_2} \ to {R_3}} \\ \ to \ end {array} \ left [{\ begin {array} {rrr | r} 1 & {\ color {Red} — 1} & {- 2} & {- 1} \\ 0 & 1 & {- 3} & 5 \\ 0 & 0 & 0 & 0 & 0 \ end {array}} \ right] \ begin {array} {* {20} {c}} {{R_1} + {R_2} \ to {R_1}} \\ \ to \ end {array} \ left [{\ begin {array} {rrr | r} 1 & 0 & {- 5} & 4 \\ 0 & 1 & {- 3} & 5 \\ 0 & 0 & 0 & 0 \ end {array}} \ right] \]

В этом случае мы смогли сделать так, чтобы второй столбец выглядел так, как должен, а третий столбец никогда не будет выглядеть правильно.Однако не исключено, что ситуацию можно изменить, и это будет третий столбец, который мы сможем сделать правильным, а второй — некорректным. Все системы разные.

Дойдя до этой точки, мы вернемся к уравнениям.

\ [\ begin {align *} x — 5z & = 4 \\ y — 3z & = 5 \ end {align *} \]

Теперь оба этих уравнения содержат \ (z \), поэтому мы переместим его в другую сторону в каждом уравнении.

\ [\ begin {align *} x & = 5z + 4 \\ y & = 3z + 5 \ end {align *} \]

Это означает, что мы можем выбрать значение \ (z \) бесплатно и запишем решение как,

\ [\ begin {array} {* {20} {c}} \ begin {align} x & = 5t + 4 \\ y & = 3t + 5 \\ z & = t \ end {align} & {\, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, {\ mbox {где}} \, \, \ , t {\ mbox {- любое действительное число}}} \ end {array} \]

Поскольку существует бесконечное количество способов выбрать \ (t \), существует бесконечное количество решений этой системы.

Общее решение системы уравнений

В ваших классах алгебры, если система уравнений имеет бесконечно много решений, вы просто напишете «бесконечно много решений» и перейдете к следующей задаче. Однако когда мы говорим «бесконечно много решений», происходит гораздо больше. В этой статье мы рассмотрим эту идею с общими решениями.

реклама

Содержание:

  1. Написание общего решения
  2. Нахождение конкретных решений на основе общего решения
  3. Краткое описание шагов

Выписка общего решения

Во-первых, давайте рассмотрим, как записать общее решение данной системы уравнений.Для этого рассмотрим пример.

Пример

Найдите общее решение системы уравнений:

\ (
\ begin {array} {c}
x_1 + 2x_2 + 8x_3 + 18x_4 = 11 \\
x_1 + x_2 + 5x_3 + 11x_4 = 10 \\
\ end {array} \)

Как и в любой системе уравнений, мы будем использовать расширенную матрицу и сокращение строки.

\ (
\ left [
\ begin {array} {cccc | c}
1 & 2 & 8 & 18 & 11 \\
1 & 1 & 5 & 11 & 10 \\
\ end {array}
\ right ]
\ sim
\ left [
\ begin {array} {cccc | c}
1 & 0 & 2 & 4 & 9 \\
0 & 1 & 3 & 7 & 1 \\
\ end {array}
\ right]
\)

Теперь запишите уравнения из этой сокращенной матрицы.

\ (
\ begin {array} {c}
x_1 + 2x_3 + 4x_4 = 9 \\
x_2 + 3x_3 + 7x_4 = 1 \\
\ end {array} \)

Обратите внимание на матрицу, что ведущие единицы (первая ненулевая запись в каждой строке) находятся в столбцах для \ (x_1 \) и \ (x_2 \).

Найдите эти переменные.

\ (
\ begin {array} {c}
x_1 = 9 — 2x_3 — 4x_4 \\
x_2 = 1 — 3x_3 — 7x_4 \\
\ end {array} \)

Остальные переменные — это свободных переменных , что означает, что они могут принимать любое значение.Значения \ (x_1 \) и \ (x_2 \) основаны на значениях этих двух переменных. В общем решении вы хотите это отметить.

Общее решение:

\ (
\ boxed {
\ begin {array} {l}
x_1 = 9 — 2x_3 — 4x_4 \\
x_2 = 1 — 3x_3 — 7x_4 \\
x_3 \ text {свободен} \\
x_4 \ text { бесплатно} \\
\ end {array}
}
\)

Существует бесконечно много решений этой системы уравнений, все из которых используют разные значения двух свободных переменных.

Поиск конкретных решений

Предположим, вы хотите привести пример конкретного решения системы уравнений выше. Их бесконечно много, так что у вас есть большой выбор! Вам просто нужно рассмотреть возможные значения свободных переменных.

Пример решения

Лет:

\ (
\ begin {array} {l}
x_3 = 0 \\
x_4 = 1 \\
\ end {array}
\)

Не было особой причины выбирать 0 и 1. Опять же, это будет работать для ЛЮБОГО значения, которое вы выберете для этих двух переменных.

Используя эти значения, решение:

\ (
\ begin {array} {l}
x_1 = 9 — 2x_3 — 4x_4 = 9 — 2 (0) — 4 (1) \\
x_2 = 1 — 3x_3 — 7x_4 = 1 — 3 (0) — 7 (1) \\
x_3 = 0 \\
x_4 = 1 \\
\ end {array}
\ rightarrow
\ boxed {
\ begin {array} {l}
x_1 = 5 \\
x_2 = -6 \\
x_3 = 0 \\
x_4 = 1 \\
\ end {array}
}
\)

Чтобы убедиться, вы можете проверить эти значения в исходной системе уравнений:

\ (
\ begin {array} {l}
x_1 + 2x_2 + 8x_3 + 18x_4 = 11 \\
x_1 + x_2 + 5x_3 + 11x_4 = 10 \\
\ end {array}
\ rightarrow
\ begin {array} {l}
(5) + 2 (-6) + 8 (0) + 18 (1) = 11 \ text {(true)} \\
(5) + (-6) + 5 (0) +11 (1) = 10 \ text {(true)} \\
\ end {array}
\)

Поскольку оба уравнения верны для этих значений, мы знаем, что нашли одно из многих, многих решений.Если бы мы хотели найти больше решений, мы могли бы просто выбрать разные значения для двух свободных переменных \ (x_1 \) и \ (x_2 \).

объявление

Краткое описание шагов

Для данной системы уравнений шаги для написания общего решения следующие:

  1. Строка уменьшения расширенной матрицы для системы.
  2. Запишите уравнения матрицы с сокращенной строкой.
  3. Найдите переменные, у которых есть ведущая в столбце.
  4. Обозначьте остальные переменные как свободные.

Подпишитесь на нашу рассылку!

Мы всегда публикуем новые бесплатные уроки и добавляем новые учебные пособия, руководства по калькуляторам и пакеты задач.

Подпишитесь, чтобы получать электронные письма (раз в пару или три недели) с информацией о новинках!

Связанные

Матрицы и системы уравнений

6.1 — Матрицы и системы уравнений

Определение матрицы

  • Прямоугольный массив действительных чисел
  • м рядов по n столбцов
  • Обозначается заглавными буквами
  • Первый индекс — строка, второй индекс — столбец

Терминология

  • Матрица с m строками и n столбцами называется матрицей порядка m x n .
  • Квадратная матрица — это матрица с равным количеством строк и столбцов. Поскольку количество строки и столбцы одинаковы, говорят, что он имеет порядок n .
  • Основная диагональ квадратной матрицы — это элементы от верхнего левого угла до нижнего правого угла. матрица.
  • Матрица-строка — это матрица, содержащая только одну строку.
  • Матрица столбцов — это матрица, имеющая только один столбец.
  • Матрица только с одной строкой или одним столбцом называется вектором.

Преобразование систем линейных уравнений в Матрицы

Каждое уравнение в системе превращается в строку. Каждая переменная в система становится колонной. Переменные отбрасываются, а коэффициенты помещаются в матрицу. Если правая часть включена, это называется расширенной матрицей. Если правая сторона не указана, это называется матрицей коэффициентов.

Система линейных уравнений …

 х + у - г = 1
3х - 2у + г = 3
4x + y - 2z = 9 

становится расширенной матрицей…

х y z справа
1 1 -1 1
3-2 1 3
4 1-2 9

Операции с элементарной строкой

Элементарные операции со строками — это операции, которые могут быть выполнены с матрицей, которая даст эквивалентная строка матрица.Если матрица является расширенной матрицей, построенной из системы линейных уравнений, то эквивалентная строка матрица будет иметь то же решение, что и исходная матрица.

При работе с системами линейных уравнений вы могли выполнять три операции. что не повлияет на набор решений.

  1. Поменяйте местами два уравнения.
  2. Умножьте уравнение на ненулевую константу.
  3. Умножьте уравнение на ненулевую константу и добавьте его к другому уравнению, заменив это уравнение.

Когда система линейных уравнений преобразуется в расширенную матрицу, каждое уравнение становится строка. Итак, теперь есть три элементарные операции со строками, которые производят эквивалент строки матрица.

  1. Перестановка двухрядная
  2. Умножить строку на ненулевую константу
  3. Умножьте строку на ненулевую константу и добавьте ее в другую строку, заменив эту строку.

Формы рядов-эшелонов и сокращенных рядов-эшелонов

Это эквивалентные строкам формы матрицы.Несложно решить систему линейных уравнений когда матрицы находятся в одной из этих форм.

Форма рядного эшелона

Матрица находится в виде эшелона строк, когда выполняются следующие условия.

  1. Если есть строка со всеми нулями, то она находится внизу матрицы.
  2. Первый ненулевой элемент любой строки — это единица. Этот элемент называется ведущим.
  3. Первая строка любой строки находится справа от первой строки предыдущей строки.
Банкноты
  • Первая строка в строке не обязательно должна быть непосредственно справа от первой строки предыдущий ряд.
  • Матрица в виде строки-эшелона будет иметь нули ниже ведущих.
  • Метод исключения Гаусса переводит матрицу в форму строки-эшелон, а затем выполняется обратная подстановка. требуется, чтобы завершить поиск решений системы.
  • Форма строки-эшелон матрицы не обязательно уникальна.

Форма сокращенного ряда

Матрица находится в сокращенной форме строки-эшелона, когда выполняются все условия формы строка-эшелон. и все элементы выше и ниже, ведущие равны нулю.

  1. Если есть строка со всеми нулями, то она находится внизу матрицы.
  2. Первый ненулевой элемент любой строки — это единица. Этот элемент называется ведущим.
  3. Первая строка любой строки находится справа от первой строки предыдущей строки.
  4. Все элементы выше и ниже ведущего равны нулю.
Банкноты
  • Первая строка в строке не обязательно должна быть непосредственно справа от первой строки предыдущий ряд.
  • Матрица в виде эшелона строк будет иметь нули как над, так и под ведущими.
  • Метод исключения Гаусса-Джордана переводит матрицу в сокращенную форму ряда строк.
  • Для завершения поиска решений в системе не требуется обратной замены.
  • Редуцированная строка-эшелонированная форма матрицы уникальна.

Исключение по Гауссу

  • Запишите систему линейных уравнений в виде расширенной матрицы
  • Выполните элементарные операции со строками, чтобы преобразовать матрицу в форму строки-эшелона
  • Преобразуйте матрицу обратно в систему линейных уравнений
  • Используйте обратную замену, чтобы получить все ответы

Гаусс-Джордан Ликвидация

  • Запишите систему линейных уравнений в виде расширенной матрицы
  • Выполните элементарные операции со строками, чтобы преобразовать матрицу в сокращенную форму строки-эшелона.
  • Преобразуйте матрицу обратно в систему линейных уравнений
  • Обратной замены не требуется

Поворотный

  • Поворот — это процесс, который автоматизирует операции со строками, необходимые для помещения матрицы в рядный эшелон или редуцированный рядный эшелон
  • В частности, при повороте элементы, расположенные выше или ниже ведущей единицы, превращаются в нули

Типы решений

Существует три типа решений, которые возможны при решении системы линейных уравнений.

Независимый
  • Согласованный
  • Уникальное решение
  • Матрица с сокращенной строкой имеет такое же количество ненулевых строк, что и переменные
  • Левая часть обычно представляет собой единичную матрицу, но не обязательно
  • Для получения независимого решения должно быть как минимум столько же уравнений, сколько переменных.
х y z справа
1 0 0 3
0 1 0 1
0 0 1 2

Когда вы конвертируете расширенную матрицу обратно в форму уравнения, вы получаете x = 3, y = 1 и z = 2.

Зависимые
  • Согласованный
  • Много решений
  • Запишите ответ в параметрической форме
  • Матрица с сокращенной строкой имеет больше переменных, чем ненулевые строки
  • Ряд нулей быть не обязательно, но обычно он есть.
  • Это также может произойти, когда уравнений меньше, чем переменных.
х y z справа
1 0 3 4
0 1-2 3
0 0 0 0

Первое уравнение будет x + 3z = 4.Решение относительно x дает x = 4 — 3z.

Второе уравнение будет y — 2z = 3. Решение для y дает y = 3 + 2z.

Столбец z не очищается (все нули, кроме одно число), поэтому другие переменные будут определены через z. Следовательно, z будет параметром t и решение …

x = 4 — 3t, y = 3 + 2t, z = t

Несоответствие
  • Нет решения
  • Матрица с сокращенной строкой имеет строку нулей с левой стороны, но правая часть не равна нулю.
х y z справа
1 0 3 4
0 1-2 3
0 0 0 2

Тут решения нет.Вы можете записать это как нулевой набор Ø, пустой набор {} или нет решения.

Решение системы линейных уравнений с использованием матриц

Мы видели, как написать систему уравнений с расширенной матрицей , а затем как использовать строковые операции и обратную подстановку, чтобы получить форму строка-эшелон . Теперь мы перейдем на шаг дальше от строковой формы, чтобы решить систему линейных уравнений 3 на 3. Общая идея состоит в том, чтобы исключить все переменные, кроме одной, с помощью операций со строками, а затем выполнить обратную замену для поиска других переменных.

Пример 6: Решение системы линейных уравнений с использованием матриц

Решите систему линейных уравнений с помощью матриц.

[латекс] \ begin {массив} {c} \ begin {array} {l} \ hfill \\ \ hfill \\ x-y + z = 8 \ hfill \ end {array} \\ 2x + 3y-z = -2 \\ 3x — 2y — 9z = 9 \ end {array} [/ latex]

Решение

Сначала мы пишем расширенную матрицу.

[латекс] \ left [\ begin {array} {rrr} \ hfill 1 & \ hfill -1 & \ hfill 1 \\ \ hfill 2 & \ hfill 3 & \ hfill -1 \\ \ hfill 3 & \ hfill -2 & \ hfill -9 \ end {array} \ text {} | \ text {} \ begin {array} {r} \ hfill 8 \\ \ hfill -2 \\ \ hfill 9 \ end {array} \ right] [/ latex]

Затем мы выполняем строковые операции для получения формы «строка-эшелон».

[латекс] \ begin {array} {rrrrr} \ hfill -2 {R} _ {1} + {R} _ {2} = {R} _ {2} \ to \ left [\ begin {array} { rrrrrr} \ hfill 1 & \ hfill & \ hfill -1 & \ hfill & \ hfill 1 & \ hfill \\ \ hfill 0 & \ hfill & \ hfill 5 & \ hfill & \ hfill -3 & \ hfill \\ \ hfill 3 & \ hfill & \ hfill -2 & \ hfill & \ hfill -9 & \ hfill \ end {array} | \ begin {array} {rr} \ hfill & \ hfill 8 \\ \ hfill & \ hfill -18 \\ \ hfill & \ hfill 9 \ end {массив} \ right] & \ hfill & \ hfill & \ hfill & \ hfill -3 {R} _ {1} + {R} _ {3} = {R} _ {3} \ to \ left [\ begin {array} {rrrrrr} \ hfill 1 & \ hfill & \ hfill -1 & \ hfill & \ hfill 1 & \ hfill \\ \ hfill 0 & \ hfill & \ hfill 5 & \ hfill & \ hfill -3 & \ hfill \\ \ hfill 0 & \ hfill & \ hfill 1 & \ hfill & \ hfill -12 & \ hfill \ end {array} | \ begin {array} {rr} \ hfill & \ hfill 8 \\ \ hfill & \ hfill -18 \\ \ hfill & \ hfill -15 \ end {array} \ right] \ end {array} [/ latex]

Самый простой способ получить 1 в строке 2 столбца 1 — это поменять местами [латекс] {R} _ {2} [/ latex] и [latex] {R} _ {3} [/ latex].

[латекс] \ text {Interchange} {R} _ {2} \ text {и} {R} _ {3} \ to \ left [\ begin {array} {rrrrrrr} \ hfill 1 & \ hfill & \ hfill — 1 & \ hfill & \ hfill 1 & \ hfill & \ hfill 8 \\ \ hfill 0 & \ hfill & \ hfill 1 & \ hfill & \ hfill -12 & \ hfill & \ hfill -15 \\ \ hfill 0 & \ hfill & \ hfill 5 & \ hfill & \ hfill -3 & \ hfill & \ hfill -18 \ end {array} \ right] [/ latex]

Затем

[латекс] \ begin {array} {l} \\ \ begin {array} {rrrrr} \ hfill -5 {R} _ {2} + {R} _ {3} = {R} _ {3} \ в \ left [\ begin {array} {rrrrrr} \ hfill 1 & \ hfill & \ hfill -1 & \ hfill & \ hfill 1 & \ hfill \\ \ hfill 0 & \ hfill & \ hfill 1 & \ hfill & \ hfill -12 & \ hfill \\ \ hfill 0 & \ hfill & \ hfill 0 & \ hfill & \ hfill 57 & \ hfill \ end {array} | \ begin {array} {rr} \ hfill & \ hfill 8 \\ \ hfill & \ hfill -15 \\ \ hfill & \ hfill 57 \ end {array} \ right] & \ hfill & \ hfill & \ hfill & \ hfill — \ frac {1} {57} {R} _ {3} = {R} _ {3} \ to \ left [\ begin {array} {rrrrrr} \ hfill 1 & \ hfill & \ hfill -1 & \ hfill & \ hfill 1 & \ hfill \\ \ hfill 0 & \ hfill & \ hfill 1 & \ hfill & \ hfill -12 & \ hfill \\ \ hfill 0 & \ hfill & \ hfill 0 & \ hfill & \ hfill 1 & \ hfill \ end {array} | \ begin {array} {rr} \ hfill & \ hfill 8 \\ \ hfill & \ hfill -15 \ \ \ hfill & \ hfill 1 \ end {array} \ right] \ end {array} \ end {array} [/ latex]

Последняя матрица представляет собой эквивалентную систему.

[латекс] \ begin {массив} {l} \ text {} x-y + z = 8 \ hfill \\ \ text {} y — 12z = -15 \ hfill \\ \ text {} z = 1 \ hfill \ end {array} [/ latex]

Используя обратную подстановку, мы получаем решение как [latex] \ left (4, -3,1 \ right) [/ latex].

Пример 7: Решение зависимой системы линейных уравнений с использованием матриц

Решите следующую систему линейных уравнений, используя матрицы.

[латекс] \ begin {array} {r} \ hfill -x — 2y + z = -1 \\ \ hfill 2x + 3y = 2 \\ \ hfill y — 2z = 0 \ end {array} [/ latex]

Решение

Запишите расширенную матрицу.

[латекс] \ left [\ begin {array} {rrr} \ hfill -1 & \ hfill -2 & \ hfill 1 \\ \ hfill 2 & \ hfill 3 & \ hfill 0 \\ \ hfill 0 & \ hfill 1 & \ hfill -2 \ end {array} \ text {} | \ text {} \ begin {array} {r} \ hfill -1 \\ \ hfill 2 \\ \ hfill 0 \ end {array} \ right] [/ latex]

Сначала умножьте строку 1 на [latex] -1 [/ latex], чтобы получить 1 в строке 1, столбце 1. Затем выполните операции со строками , чтобы получить форму строки-эшелон.

[латекс] — {R} _ {1} \ to \ left [\ begin {array} {rrrrrrr} \ hfill 1 & \ hfill & \ hfill 2 & \ hfill & \ hfill -1 & \ hfill & \ hfill 1 \\ \ hfill 2 & \ hfill & \ hfill 3 & \ hfill & \ hfill 0 & \ hfill & \ hfill 2 \\ \ hfill 0 & \ hfill & \ hfill 1 & \ hfill & \ hfill -2 & \ hfill & \ hfill 0 \ end {array} \ справа] [/ латекс]

[латекс] {R} _ {2} \ leftrightarrow {R} _ {3} \ to \ left [\ begin {array} {rrrrr} \ hfill 1 & \ hfill & \ hfill 2 & \ hfill & \ hfill -1 \ \ \ hfill 0 & \ hfill & \ hfill 1 & \ hfill & \ hfill -2 \\ \ hfill 2 & \ hfill & \ hfill 3 & \ hfill & \ hfill 0 \ end {array} \ text {} | \ begin {array} { rr} \ hfill & \ hfill 1 \\ \ hfill & \ hfill 0 \\ \ hfill & \ hfill 2 \ end {array} \ right] [/ latex]

[латекс] -2 {R} _ {1} + {R} _ {3} = {R} _ {3} \ to \ left [\ begin {array} {rrrrrr} \ hfill 1 & \ hfill & \ hfill 2 & \ hfill & \ hfill -1 & \ hfill \\ \ hfill 0 & \ hfill & \ hfill 1 & \ hfill & \ hfill -2 & \ hfill \\ \ hfill 0 & \ hfill & \ hfill -1 & \ hfill & \ hfill 2 & \ hfill \ end {array} | \ begin {array} {rr} \ hfill & \ hfill 1 \\ \ hfill & \ hfill 0 \\ \ hfill & \ hfill 0 \ end {array} \ right] [/ latex]

[латекс] {R} _ {2} + {R} _ {3} = {R} _ {3} \ to \ left [\ begin {array} {rrrrrr} \ hfill 1 & \ hfill & \ hfill 2 & \ hfill & \ hfill -1 & \ hfill \\ \ hfill 0 & \ hfill & \ hfill 1 & \ hfill & \ hfill -2 & \ hfill \\ \ hfill 0 & \ hfill & \ hfill 0 & \ hfill & \ hfill 0 & \ hfill \ end { array} | \ begin {array} {rr} \ hfill & \ hfill 2 \\ \ hfill & \ hfill 1 \\ \ hfill & \ hfill 0 \ end {array} \ right] [/ latex]

Последняя матрица представляет следующую систему.

[латекс] \ begin {array} {l} \ text {} x + 2y-z = 1 \ hfill \\ \ text {} y — 2z = 0 \ hfill \\ \ text {} 0 = 0 \ hfill \ конец {array} [/ latex]

По тождеству [latex] 0 = 0 [/ latex] мы видим, что это зависимая система с бесконечным числом решений. Затем мы находим общее решение. Решив второе уравнение для [латекс] y [/ латекс] и подставив его в первое уравнение, мы можем решить для [латекс] z [/ латекс] через [латекс] x [/ латекс].

[латекс] \ begin {array} {l} \ text {} x + 2y-z = 1 \ hfill \\ \ text {} y = 2z \ hfill \\ \ hfill \\ x + 2 \ left (2z \ справа) -z = 1 \ hfill \\ \ text {} x + 3z = 1 \ hfill \\ \ text {} z = \ frac {1-x} {3} \ hfill \ end {array} [/ latex]

Теперь мы подставляем выражение для [latex] z [/ latex] во второе уравнение, чтобы решить для [latex] y [/ latex] через [latex] x [/ latex].

[латекс] \ begin {массив} {l} \ text {} y — 2z = 0 \ hfill \\ \ text {} z = \ frac {1-x} {3} \ hfill \\ \ hfill \\ y — 2 \ left (\ frac {1-x} {3} \ right) = 0 \ hfill \\ \ text {} y = \ frac {2 — 2x} {3} \ hfill \ end {array} [/ latex ]

Общее решение — [latex] \ left (x, \ frac {2 — 2x} {3}, \ frac {1-x} {3} \ right) [/ latex].

Попробуй 5

Решите систему, используя матрицы.

[латекс] \ begin {array} {c} x + 4y-z = 4 \\ 2x + 5y + 8z = 15 \ x + 3y — 3z = 1 \ end {array} [/ latex]

Вопросы и ответы

Можно ли решить любую систему линейных уравнений методом исключения Гаусса?

Да, система линейных уравнений любого размера может быть решена методом исключения Гаусса.

Практическое руководство. Для данной системы уравнений решите с помощью матриц с помощью калькулятора.

  1. Сохраните расширенную матрицу как матричную переменную [latex] \ left [A \ right], \ left [B \ right], \ left [C \ right] \ text {,} \ dots [/ latex].
  2. Используйте функцию ref ( в калькуляторе, вызывая при необходимости каждую матричную переменную.

Пример 8: Решение систем уравнений с матрицами с помощью калькулятора

Решите систему уравнений.

[латекс] \ begin {array} {r} \ hfill 5x + 3y + 9z = -1 \\ \ hfill -2x + 3y-z = -2 \\ \ hfill -x — 4y + 5z = 1 \ end { array} [/ latex]

Решение

Напишите расширенную матрицу для системы уравнений.

[латекс] \ left [\ begin {array} {rrr} \ hfill 5 & \ hfill 3 & \ hfill 9 \\ \ hfill -2 & \ hfill 3 & \ hfill -1 \\ \ hfill -1 & \ hfill -4 & \ hfill 5 \ end {array} \ text {} | \ text {} \ begin {array} {r} \ hfill 5 \\ \ hfill -2 \\ \ hfill -1 \ end {array} \ right] [/ latex]

На странице матриц калькулятора введите расширенную матрицу выше как матричную переменную [latex] \ left [A \ right] [/ latex].

[латекс] \ left [A \ right] = \ left [\ begin {array} {rrrrrrr} \ hfill 5 & \ hfill & \ hfill 3 & \ hfill & \ hfill 9 & \ hfill & \ hfill -1 \\ \ hfill — 2 & \ hfill & \ hfill 3 & \ hfill & \ hfill -1 & \ hfill & \ hfill -2 \\ \ hfill -1 & \ hfill & \ hfill -4 & \ hfill & \ hfill 5 & \ hfill & \ hfill 1 \ end {массив } \ right] [/ latex]

Используйте функцию ref ( в калькуляторе, вызывая матричную переменную [latex] \ left [A \ right] [/ latex].

[латекс] \ text {ref} \ left (\ left [A \ right] \ right) [/ латекс]

Оценить.

[латекс] \ begin {array} {l} \ hfill \\ \ left [\ begin {array} {rrrr} \ hfill 1 & \ hfill \ frac {3} {5} & \ hfill \ frac {9} {5 } & \ hfill \ frac {1} {5} \\ \ hfill 0 & \ hfill 1 & \ hfill \ frac {13} {21} & \ hfill — \ frac {4} {7} \\ \ hfill 0 & \ hfill 0 & \ hfill 1 & \ hfill — \ frac {24} {187} \ end {array} \ right] \ to \ begin {array} {l} x + \ frac {3} {5} y + \ frac {9} {5} z = — \ frac {1} {5} \ hfill \\ \ text {} y + \ frac {13} {21} z = — \ frac {4} {7} \ hfill \\ \ text {} z = — \ frac {24} {187} \ hfill \ end {array} \ hfill \ end {array} [/ latex]

При использовании обратной подстановки решение: [latex] \ left (\ frac {61} {187}, — \ frac {92} {187}, — \ frac {24} {187} \ right) [/ latex] .

Пример 9: Применение матриц 2 × 2 к финансам

Кэролайн инвестирует в общей сложности 12 000 долларов в две муниципальные облигации, одна из которых выплачивает 10,5% годовых, а другая — 12%. Годовой процент, полученный по двум инвестициям в прошлом году, составил 1335 долларов. Сколько было вложено по каждой ставке?

Решение

У нас есть система двух уравнений с двумя переменными. Пусть [latex] x = [/ latex] сумма, инвестированная под 10,5% годовых, и [latex] y = [/ latex] сумма, инвестированная под 12% годовых.

[латекс] \ begin {array} {l} \ text {} x + y = 12 000 \ hfill \\ 0.105x + 0.12y = 1335 \ hfill \ end {array} [/ latex]

В качестве матрицы имеем

[латекс] \ left [\ begin {array} {rr} \ hfill 1 & \ hfill 1 \\ \ hfill 0.105 & \ hfill 0.12 \ end {array} \ text {} | \ text {} \ begin {array} { r} \ hfill 12,000 \\ \ hfill 1,335 \ end {array} \ right] [/ latex]

Умножьте строку 1 на [latex] -0.105 [/ latex] и прибавьте результат к строке 2.

[латекс] \ left [\ begin {array} {rr} \ hfill 1 & \ hfill 1 \\ \ hfill 0 & \ hfill 0.015 \ end {array} \ text {} | \ text {} \ begin {array} {r} \ hfill 12,000 \\ \ hfill 75 \ end {array} \ right] [/ latex]

Затем,

[латекс] \ begin {array} {l} 0,015y = 75 \ hfill \\ \ text {} y = 5,000 \ hfill \ end {array} [/ latex]

Итак [латекс] 12 000 — 5 000 = 7 000 [/ латекс].

Таким образом, 5000 долларов были инвестированы под 12% годовых и 7000 долларов под 10,5%.

Пример 10: Применение матриц 3 × 3 к финансам

Ava инвестирует в общей сложности 10 000 долларов в три счета, один из которых платит 5% годовых, другой — 8%, а третий — 9%.Годовой процент, полученный по трем инвестициям в прошлом году, составил 770 долларов. Сумма, вложенная под 9%, была вдвое больше, чем сумма, вложенная под 5%. Сколько было вложено по каждой ставке?

Решение

У нас есть система трех уравнений с тремя переменными. Пусть [latex] x [/ latex] будет сумма, инвестированная под 5% годовых, пусть [latex] y [/ latex] будет суммой, инвестированной под 8%, и пусть [latex] z [/ latex] будет инвестированной суммой. под 9% годовых. Таким образом,

[латекс] \ begin {array} {l} \ text {} x + y + z = 10 000 \ hfill \\ 0.05x + 0,08y + 0,09z = 770 \ hfill \\ \ text {} 2x-z = 0 \ hfill \ end {array} [/ latex]

В качестве матрицы имеем

[латекс] \ left [\ begin {array} {rrr} \ hfill 1 & \ hfill 1 & \ hfill 1 \\ \ hfill 0,05 & \ hfill 0,08 & \ hfill 0,09 \\ \ hfill 2 & \ hfill 0 & \ hfill -1 \ end {array} \ text {} | \ text {} \ begin {array} {r} \ hfill 10,000 \\ \ hfill 770 \\ \ hfill 0 \ end {array} \ right] [/ latex]

Теперь мы выполняем исключение Гаусса, чтобы получить форму строки-эшелон.

[латекс] \ begin {массив} {l} \ begin {array} {l} \ hfill \\ -0.05 {R} _ {1} + {R} _ {2} = {R} _ {2} \ to \ left [\ begin {array} {rrrrrr} \ hfill 1 & \ hfill & \ hfill 1 & \ hfill & \ hfill 1 & \ hfill \\ \ hfill 0 & \ hfill & \ hfill 0.03 & \ hfill & \ hfill 0.04 & \ hfill \\ \ hfill 2 & \ hfill & \ hfill 0 & \ hfill & \ hfill -1 & \ hfill \ end {array} | \ begin {array} {rr} \ hfill & \ hfill 10,000 \\ \ hfill & \ hfill 270 \\ \ hfill & \ hfill 0 \ end {array} \ right] \ hfill \ end {array} \ hfill \\ -2 {R} _ {1} + {R} _ {3} = {R} _ {3} \ to \ left [\ begin {array} {rrrrrr} \ hfill 1 & \ hfill & \ hfill 1 & \ hfill & \ hfill 1 & \ hfill \\ \ hfill 0 & \ hfill & \ hfill 0.03 & \ hfill & \ hfill 0.04 & \ hfill \\ \ hfill 0 & \ hfill & \ hfill -2 & \ hfill & \ hfill -3 & \ hfill \ end {array} | \ begin {array} {rr} \ hfill & \ hfill 10,000 \\ \ hfill & \ hfill 270 \\ \ hfill & \ hfill -20,000 \ end {array} \ right] \ hfill \\ \ frac {1} {0.03} {R} _ {2} = {R} _ {2} \ to \ left [\ begin {array} {rrrrrr} \ hfill 0 & \ hfill & \ hfill 1 & \ hfill & \ hfill 1 & \ hfill \\ \ hfill 0 & \ hfill & \ hfill 1 & \ hfill & \ hfill \ frac {4} {3} & \ hfill \\ \ hfill 0 & \ hfill & \ hfill -2 & \ hfill & \ hfill -3 & \ hfill \ end {array} | \ begin {array} {rr} \ hfill & \ hfill 10,000 \\ \ hfill & \ hfill 9,000 \\ \ hfill & \ hfill -20,000 \ end {array} \ right] \ hfill \\ 2 {R} _ {2} + {R} _ {3} = {R} _ {3} \ to \ left [\ begin {array} {rrrrrr} \ hfill 1 & \ hfill & \ hfill 1 & \ hfill & \ hfill 1 & \ hfill \\ \ hfill 0 & \ hfill & \ hfill 1 & \ hfill & \ hfill \ frac {4} {3} & \ hfill \\ \ hfill 0 & \ hfill & \ hfill 0 & \ hfill & \ hfill — \ frac {1} {3} & \ hfill \ end {array} | \ begin {array} {rr} \ hfill & \ hfill 10,000 \\ \ hfill & \ hfill 9,000 \\ \ hfill & \ hfill -2,000 \ end {array} \ right] \ hfill \ end {array} [/ latex]

Третья строка сообщает нам [латекс] — \ frac {1} {3} z = -2,000 [/ latex]; таким образом [латекс] z = 6,000 [/ латекс].

Вторая строка сообщает нам [латекс] y + \ frac {4} {3} z = 9000 [/ latex]. Подставляя [латекс] z = 6,000 [/ latex], получаем

[латекс] \ begin {array} {r} \ hfill y + \ frac {4} {3} \ left (6000 \ right) = 9000 \\ \ hfill y + 8000 = 9000 \\ \ hfill y = 1000 \ end {array} [/ latex]

Первая строка сообщает нам [латекс] x + y + z = 10,000 [/ latex]. Подставляя [латекс] y = 1000 [/ latex] и [latex] z = 6000 [/ latex], получаем

[латекс] \ begin {array} {l} x + 1 000 + 6 000 = 10 000 \ hfill \\ \ text {} x = 3 000 \ text {} \ hfill \ end {array} [/ latex]

Ответ: 3000 долларов вложены под 5%, 1000 долларов вложены под 8% и 6000 долларов вложены под 9%.

Попробуй 6

Небольшая обувная компания взяла ссуду в размере 1 500 000 долларов на расширение своего ассортимента. Часть денег была взята под 7%, часть — под 8%, часть — под 10%. Сумма займа под 10% в четыре раза превышала сумму займа под 7%, а годовая процентная ставка по всем трем займам составляла 130 500 долларов. Используйте матрицы, чтобы найти сумму займа по каждой ставке.

Решение

Система линейных уравнений — линейная алгебра с приложениями

Практические задачи во многих областях науки, таких как биология, бизнес, химия, информатика, экономика, электроника, инженерия, физика и социальные науки, часто можно свести к решению системы линейных уравнений.Линейная алгебра возникла в результате попыток найти систематические методы решения этих систем, поэтому естественно начать эту книгу с изучения линейных уравнений.

Если, и — действительные числа, график уравнения вида

— прямая линия (если и не равны нулю), поэтому такое уравнение называется линейным уравнением в переменных и. Однако часто удобно записывать переменные как, особенно когда задействовано более двух переменных.Уравнение вида

называется линейным уравнением в переменных. Здесь обозначают действительные числа (называемые коэффициентами соответственно), а также число (называемое постоянным членом уравнения ). Конечный набор линейных уравнений в переменных называется системой линейных уравнений в этих переменных. Следовательно,

— линейное уравнение; коэффициенты при, и равны, и, а постоянный член равен.Обратите внимание, что каждая переменная в линейном уравнении встречается только в первой степени.

Для линейного уравнения последовательность чисел называется решением уравнения, если

, то есть, если уравнение удовлетворяется при выполнении замен. Последовательность чисел называется решением системы уравнений, если она является решением каждого уравнения в системе.

Система может не иметь решения вообще, может иметь уникальное решение или может иметь бесконечное семейство решений.Например, система не имеет решения, потому что сумма двух чисел не может быть одновременно 2 и 3. Система, у которой нет решения, называется несогласованной ; система с хотя бы одним решением называется согласованная .

Покажите, что для произвольных значений и

— это решение системы

Просто подставьте эти значения,, и в каждое уравнение.

Поскольку оба уравнения удовлетворяются, это решение для любого выбора и.

Величины и в этом примере называются параметрами , а набор решений, описанный таким образом, считается заданным в параметрической форме и называется общим решением для системы. Оказывается, что решения каждой системы уравнений (если есть — это решения) могут быть даны в параметрической форме (то есть, переменные, задаются в терминах новых независимых переменных и т. Д. .).

Когда задействованы только две переменные, решения систем линейных уравнений могут быть описаны геометрически, потому что график линейного уравнения представляет собой прямую линию, если и не оба равны нулю. Более того, точка с координатами и лежит на прямой тогда и только тогда, когда — то есть когда, является решением уравнения. Следовательно, решения системы линейных уравнений соответствуют точкам, которые лежат на всех рассматриваемых линиях.

В частности, если система состоит только из одного уравнения, должно быть бесконечно много решений, потому что на прямой бесконечно много точек. Если система имеет два уравнения, есть три возможности для соответствующих прямых:

  • Линии пересекаются в одной точке. Тогда в системе будет уникальных решений, соответствующих этой точке.
  • Линии параллельны (и четкие) и не пересекаются. Тогда в системе нет решения .
  • Строки идентичны. Тогда в системе будет бесконечного числа решений — по одному для каждой точки на (общей) прямой.

С тремя переменными график уравнения может быть показан как плоскость и, таким образом, снова дает «картину» множества решений. Однако у этого графического метода есть свои ограничения: когда задействовано более трех переменных, физическое изображение графов (называемых гиперплоскостями) невозможно. Необходимо обратиться к более «алгебраическому» методу решения.

Перед описанием метода мы вводим понятие, упрощающее вычисления. Рассмотрим следующую систему

трех уравнений с четырьмя переменными. Массив чисел

, встречающееся в системе, называется расширенной матрицей системы. Каждая строка матрицы состоит из коэффициентов переменных (по порядку) из соответствующего уравнения вместе с постоянным членом. Для наглядности константы разделены вертикальной линией.Расширенная матрица — это просто другой способ описания системы уравнений. Массив коэффициентов при переменных

называется матрицей коэффициентов системы, а
называется постоянной матрицей системы.

Элементарные операции

Алгебраический метод решения систем линейных уравнений описывается следующим образом. Две такие системы называются эквивалентами , если они имеют одинаковый набор решений.Система решается путем написания серии систем, одна за другой, каждая из которых эквивалентна предыдущей системе. Каждая из этих систем имеет тот же набор решений, что и исходная; цель состоит в том, чтобы получить систему, которую легко решить. Каждая система в серии получается из предыдущей системы простой манипуляцией, выбранной так, чтобы она не меняла набор решений.

В качестве иллюстрации мы решаем систему таким образом. На каждом этапе отображается соответствующая расширенная матрица.Исходная система —

Сначала вычтите дважды первое уравнение из второго. В результате получается система

.

, что эквивалентно оригиналу. На этом этапе мы получаем, умножив второе уравнение на. В результате получается эквивалентная система

.

Наконец, мы дважды вычитаем второе уравнение из первого, чтобы получить другую эквивалентную систему.

Теперь эту систему легко решить! И поскольку он эквивалентен исходной системе, он обеспечивает решение этой системы.

Обратите внимание, что на каждом этапе в системе (и, следовательно, в расширенной матрице) выполняется определенная операция для создания эквивалентной системы.

Следующие операции, называемые элементарными операциями , могут в обычном порядке выполняться над системами линейных уравнений для получения эквивалентных систем.

  1. Поменяйте местами два уравнения.
  2. Умножьте одно уравнение на ненулевое число.
  3. Добавьте одно уравнение, кратное одному, к другому уравнению.

Предположим, что последовательность элементарных операций выполняется над системой линейных уравнений. Тогда полученная система имеет тот же набор решений, что и исходная, поэтому две системы эквивалентны.

Элементарные операции, выполняемые над системой уравнений, производят соответствующие манипуляции с строками расширенной матрицы. Таким образом, умножение строки матрицы на число означает умножение каждой записи строки на.Добавление одной строки к другой означает добавление каждой записи этой строки к соответствующей записи другой строки. Аналогично выполняется вычитание двух строк. Обратите внимание, что мы считаем две строки равными, если соответствующие записи совпадают.

В ручных вычислениях (и в компьютерных программах) мы манипулируем строками расширенной матрицы, а не уравнениями. По этой причине мы переформулируем эти элементарные операции для матриц.

Следующие операции называются элементарными операциями со строками матрицы.

  1. Поменять местами два ряда.
  2. Умножить одну строку на ненулевое число.
  3. Добавить кратное одной строки в другую строку.

На иллюстрации выше серия таких операций привела к матрице вида

, где звездочки обозначают произвольные числа. В случае трех уравнений с тремя переменными цель состоит в том, чтобы получить матрицу вида

Это не всегда происходит, как мы увидим в следующем разделе.Вот пример, в котором это действительно происходит.

Решение:
Расширенная матрица исходной системы —

Чтобы создать в верхнем левом углу, мы можем умножить строку с 1 на. Однако можно получить без введения дробей, вычтя строку 2 из строки 1. Результат:

Верхний левый угол теперь используется для «очистки» первого столбца, то есть для создания нулей в других позициях в этом столбце.Сначала отнимите строку 1 от строки 2, чтобы получить

.

Следующее умножение на строку 1 из строки 3. Результат:

.

Это завершает работу над столбцом 1. Теперь мы используем во второй позиции второй строки, чтобы очистить второй столбец, вычитая строку 2 из строки 1 и затем добавляя строку 2 к строке 3. Для удобства обе операции со строками сделано за один шаг. Результат

Обратите внимание, что две последние манипуляции не повлияли на первый столбец (во второй строке там стоит ноль), поэтому наши предыдущие усилия там не были подорваны.Наконец, мы очищаем третий столбец. Начните с умножения строки 3 на, чтобы получить

.

Теперь вычтите умножение строки 3 из строки 1, а затем прибавьте умножение строки 3 к строке 2, чтобы получить

.

Соответствующие уравнения:, и, которые дают (единственное) решение.

Алгебраический метод, представленный в предыдущем разделе, можно резюмировать следующим образом: Для данной системы линейных уравнений используйте последовательность элементарных операций со строками, чтобы преобразовать расширенную матрицу в «красивую» матрицу (это означает, что соответствующие уравнения легко решить. ).В примере 1.1.3 эта красивая матрица приняла вид

.

Следующие определения идентифицируют хорошие матрицы, возникающие в этом процессе.

Матрица называется в виде эшелона строки (и будет называться матрицей строка-эшелон , если она удовлетворяет следующим трем условиям:

  1. Все нулевые строки (полностью состоящие из нулей) находятся внизу.
  2. Первая ненулевая запись слева в каждой ненулевой строке — это a, называемая ведущей для этой строки.
  3. Каждый ведущий элемент находится справа от всех ведущих строк в строках над ним.

Матрица строка-эшелон называется сокращенной строкой-эшелонной формой (и будет называться сокращенной матрицей строка-эшелон , если, кроме того, она удовлетворяет следующему условию:

4. Каждый ведущий элемент — это единственная ненулевая запись в своем столбце.

Матрицы «строка-эшелон» имеют форму «ступеньки», как показано в следующем примере (звездочки указывают произвольные числа).

Ведущие идут «вниз и вправо» через матрицу. Записи выше и справа от ведущих s произвольны, но все записи ниже и слева от них равны нулю. Следовательно, матрица в виде эшелона строк находится в сокращенной форме, если, кроме того, все элементы непосредственно над каждым ведущим равны нулю. Обратите внимание, что матрица в форме эшелона строк может с помощью нескольких дополнительных операций со строками быть приведена к сокращенной форме (используйте операции со строками, чтобы последовательно создавать нули над каждой ведущей единицей, начиная справа).

Важность матриц строка-эшелон вытекает из следующей теоремы.

Каждая матрица может быть приведена к (сокращенной) форме строки-эшелона последовательностью элементарных операций со строками.

Фактически, мы можем дать пошаговую процедуру для фактического нахождения матрицы ряда строк. Обратите внимание: несмотря на то, что существует множество последовательностей операций со строками, которые приведут матрицу к форме ряда строк, та, которую мы используем, является систематической и ее легко программировать на компьютере. Обратите внимание, что алгоритм имеет дело с матрицами в целом, возможно, со столбцами нулей.

Шаг 1. Если матрица полностью состоит из нулей, остановитесь — она ​​уже в виде эшелона строк.

Шаг 2. В противном случае найдите первый столбец слева, содержащий ненулевую запись (назовите его), и переместите строку, содержащую эту запись, в верхнюю позицию.

Шаг 3. Теперь умножьте новую верхнюю строку на, чтобы создать интерлиньяж.

Шаг 4. Вычитая кратные числа этой строки из строк под ней, сделайте каждую запись ниже начального нуля. Это завершает первую строку, и все дальнейшие операции со строками выполняются с оставшимися строками.

Шаг 5. Повторите шаги 1–4 для матрицы, состоящей из оставшихся строк.

Процесс останавливается, когда либо на шаге 5 не остается строк, либо оставшиеся строки состоят полностью из нулей.

Обратите внимание на то, что гауссовский алгоритм является рекурсивным: когда получен первый ведущий, процедура повторяется для оставшихся строк матрицы. Это упрощает использование алгоритма на компьютере. Обратите внимание, что в решении примера 1.1.3 не использовался гауссовский алгоритм в том виде, в каком он был написан, поскольку первый ведущий не был создан путем деления строки 1 на.Причина этого в том, что он избегает дробей. Однако общий шаблон ясен: создайте ведущие слева направо, используя каждый из них по очереди, чтобы создать нули под ним. Вот один пример.

Решение:

Соответствующая расширенная матрица —

Создайте первую ведущую, поменяв местами строки 1 и 2

Теперь вычтите умноженную строку 1 из строки 2 и вычтите умноженную строку 1 из строки 3.Результат

Теперь вычтите строку 2 из строки 3, чтобы получить

.

Это означает, что следующая сокращенная система уравнений

эквивалентен исходной системе. Другими словами, у них одинаковые решения. Но эта последняя система явно не имеет решения (последнее уравнение требует этого и удовлетворяет, а таких чисел не существует). Следовательно, исходная система не имеет решения.

Для решения линейной системы расширенная матрица преобразуется в сокращенную форму строки-эшелон, а переменные, соответствующие ведущим, называются ведущими переменными .Поскольку матрица представлена ​​в сокращенной форме, каждая ведущая переменная встречается ровно в одном уравнении, поэтому это уравнение может быть решено для получения формулы для ведущей переменной в терминах не ведущих переменных. Принято называть нелидирующие переменные «свободными» переменными и маркировать их новыми переменными, называемыми параметрами . Каждый выбор этих параметров приводит к решению системы, и каждое решение возникает таким образом. Эта процедура в целом работает и получила название

.

Для решения системы линейных уравнений выполните следующие действия:

  1. Перенести расширенную матрицу \ index {расширенная матрица} \ index {матрица! Расширенная матрица} в сокращенную матрицу-эшелон строк, используя элементарные операции со строками.
  2. Если возникает строка, система несовместима.
  3. В противном случае присвойте не ведущие переменные (если они есть) в качестве параметров и используйте уравнения, соответствующие сокращенной матрице строки-эшелон, чтобы найти ведущие переменные в терминах параметров.

Существует вариант этой процедуры, в котором расширенная матрица переносится только в строчно-эшелонированную форму. Не ведущие переменные назначаются как параметры, как и раньше. Затем последнее уравнение (соответствующее форме строки-эшелона) используется для решения последней ведущей переменной в терминах параметров.Эта последняя ведущая переменная затем подставляется во все предыдущие уравнения. Затем второе последнее уравнение дает вторую последнюю ведущую переменную, которая также подставляется обратно. Процесс продолжает давать общее решение. Эта процедура называется обратной заменой . Можно показать, что эта процедура численно более эффективна и поэтому важна при решении очень больших систем.

Рейтинг

Можно доказать, что уменьшенная строка-эшелонированная форма матрицы однозначно определяется.То есть, независимо от того, какая серия операций со строками используется для переноса в сокращенную матрицу с эшелонированием строк, результатом всегда будет одна и та же матрица. Напротив, это неверно для матриц ряда строк: разные серии операций со строками могут переносить одну и ту же матрицу в разные матрицы ряда строк. В самом деле, матрица может быть перенесена (с помощью одной строковой операции) в матрицу-эшелон строк, а затем с помощью другой строчной операции в (сокращенную) матрицу-эшелон. Однако — это верно, что количество ведущих единиц должно быть одинаковым в каждой из этих матриц строки-эшелон (это будет доказано позже).Следовательно, количество зависит только от того, каким образом приведено в строй.

Ранг матрицы — это количество ведущих s в любой матрице-эшелоне строки, в которую можно перенести операции со строками.

Вычислить ранг.

Решение:

Приведение к строчной форме

Так как эта матрица эшелонов строк имеет два ведущих s, rank.

Предположим, что ранг, где — матрица со строками и столбцами.Тогда потому что ведущие s лежат в разных строках, и потому что ведущие s лежат в разных столбцах. Кроме того, у ранга есть полезное приложение к уравнениям. Напомним, что система линейных уравнений называется непротиворечивой, если она имеет хотя бы одно решение.

Проба:

Тот факт, что ранг расширенной матрицы равен, означает, что есть ровно ведущие переменные и, следовательно, точно не ведущие переменные. Все эти нелидирующие переменные назначаются как параметры в гауссовском алгоритме, поэтому набор решений включает в себя именно параметры.Следовательно, если существует хотя бы один параметр, а значит, и решений бесконечно много. Если, нет параметров и поэтому единственное решение.

Теорема 1.2.2 показывает, что для любой системы линейных уравнений существуют ровно три возможности:

  1. Нет решения . Это происходит, когда ряд встречается в форме эшелона строк. Это тот случай, когда система непоследовательна.
  2. Уникальное решение . Это происходит, когда каждая переменная является ведущей переменной.
  3. Бесконечно много решений . Это происходит, когда система согласована и есть хотя бы одна не ведущая переменная, поэтому задействован хотя бы один параметр.

https://www.geogebra.org/m/cwQ9uYCZ
Пожалуйста, ответьте на эти вопросы после открытия веб-страницы:
1. Для данной линейной системы, что представляет каждая из них?

2. Исходя из графика, что можно сказать о решениях? Есть ли у системы одно решение, нет решения или бесконечно много решений? Почему

3.Измените постоянный член в каждом уравнении на 0, что изменилось на графике?

4. Для следующей линейной системы:

Можете ли вы решить это методом исключения Гаусса? Что вы наблюдаете, когда смотрите на график?

Многие важные проблемы связаны с линейными неравенствами , а не с линейными уравнениями Например, условие для переменных может принимать форму неравенства, а не равенства.Существует метод (называемый симплексным алгоритмом ) для поиска решений системы таких неравенств, который максимизирует функцию вида где и — фиксированные константы.

Система уравнений с переменными называется однородной , если все постоянные члены равны нулю, то есть если каждое уравнение системы имеет вид

Очевидно, решение такой системы; это называется тривиальным решением .Любое решение, в котором хотя бы одна переменная имеет ненулевое значение, называется нетривиальным решением .
Наша главная цель в этом разделе — дать полезное условие, при котором однородная система имеет нетривиальные решения. Следующий пример поучителен.

Покажите, что следующая однородная система имеет нетривиальные решения.

Решение:

Приведение расширенной матрицы к сокращенной форме эшелона строк описано ниже.

Ведущими переменными являются,, и, например, назначается в качестве параметра.Тогда общее решение:,,,. Следовательно, взяв (скажем), мы получим нетривиальное решение:,,,.

Существование нетривиального решения в примере 1.3.1 обеспечивается наличием параметра в решении. Это связано с тем, что есть нелидирующая переменная (в данном случае). Но здесь должно быть не ведущей переменной, потому что здесь четыре переменных и только три уравнения (и, следовательно, не более три ведущие переменные).Это обсуждение обобщает доказательство следующей основной теоремы.

Если однородная система линейных уравнений имеет больше переменных, чем уравнений, то она имеет нетривиальное решение (фактически бесконечно много).

Проба:

Предположим, что есть уравнения в переменных, где, и пусть обозначают сокращенную строчно-эшелонированную форму расширенной матрицы. Если есть ведущие переменные, есть не ведущие переменные и, следовательно, параметры. Следовательно, достаточно показать это.Но потому что имеет ведущие единицы и строки, и по гипотезе. Итак, что дает.

Обратите внимание, что обратное утверждение теоремы 1.3.1 неверно: если однородная система имеет нетривиальные решения, она не обязательно должна иметь больше переменных, чем уравнения (система имеет нетривиальные решения, но.)

Теорема 1.3.1 очень полезна в приложениях. В следующем примере представлена ​​иллюстрация из геометрии.

Мы называем график уравнения коникой , если не все числа, и равны нулю.Покажите, что есть хотя бы одна коника, проходящая через любые пять точек на плоскости, которые не все лежат на одной прямой.

Решение:

Пусть координаты пяти точек будут,,, и. График проходов if

Это дает пять уравнений, по одному для каждого, линейных по шести переменным,,,,, и. Следовательно, по теореме 1.1.3 существует нетривиальное решение. Если все пять точек лежат на линии с уравнением, вопреки предположению. Следовательно, один из « отличен от нуля.

Линейные комбинации и базовые решения

Что касается строк, два столбца считаются равными , если они имеют одинаковое количество записей и соответствующие записи одинаковы. Позвольте и быть столбцами с одинаковым количеством записей. Что касается операций с элементарными строками, их сумма получается путем сложения соответствующих записей, и, если это число, скалярное произведение определяется путем умножения каждой записи на. Точнее:

Сумма скалярных кратных нескольких столбцов называется линейной комбинацией этих столбцов.Например, это линейная комбинация и для любого выбора чисел и.

Решение:

Для, мы должны определить, существуют ли числа, и такие, что, то есть

Приравнивание соответствующих элементов дает систему линейных уравнений,, и для,, и. Путем исключения Гаусса решение есть, и где — параметр. Взяв, мы видим, что это линейная комбинация, и.

Обращаясь к, снова ищем, и такие, что; то есть

, что приводит к уравнениям,, и для действительных чисел, и.Но на этот раз существует без решения , как может проверить читатель, а также , а не , линейная комбинация, и.

Наш интерес к линейным комбинациям проистекает из того факта, что они предоставляют один из лучших способов описания общего решения однородной системы линейных уравнений. Когда
решает такую ​​систему с переменными, запишите переменные в виде матрицы столбцов:. Обозначается тривиальное решение. В качестве иллюстрации, общее решение в
Пример 1.3.1 — это,,, и, где — параметр, и теперь мы бы выразили это как
, говоря, что общее решение -, где произвольно.

Теперь пусть и — два решения однородной системы с переменными. Тогда любая линейная комбинация этих решений снова оказывается решением системы. В более общем плане:

Фактически, предположим, что типичное уравнение в системе имеет вид, и предположим, что

, являются решениями. Затем и
.
Следовательно, это тоже решение, потому что

Аналогичный аргумент показывает, что Утверждение 1.1 верно для линейных комбинаций более двух решений.

Примечательно то, что каждое решение однородной системы представляет собой линейную комбинацию определенных частных решений, и, фактически, эти решения легко вычисляются с использованием гауссовского алгоритма. Вот пример.

Решить однородную систему с матрицей коэффициентов

Решение:

Приведение расширенной матрицы к уменьшенной форме —

, поэтому решениями являются,, и методом исключения Гаусса.Следовательно, мы можем записать общее решение в матричной форме

Вот и частные решения, определяемые гауссовским алгоритмом.

Решения и в примере 1.3.5 обозначены следующим образом:

Алгоритм Гаусса систематически выдает решения для любой однородной линейной системы, называемые базовыми решениями , по одному для каждого параметра.

Кроме того, алгоритм дает стандартный способ выразить каждое решение как линейную комбинацию основных решений, как в Примере 1.3.5, где общее решение принимает вид

Следовательно, вводя новый параметр, мы можем умножить исходное базовое решение на 5 и, таким образом, исключить дроби.

По этой причине:

Любое ненулевое скалярное кратное базового решения будет по-прежнему называться базовым решением.

Таким же образом алгоритм Гаусса выдает базовые решения для каждой однородной системы, по одному для каждого параметра (есть нет базовых решений, если система имеет только тривиальное решение).Более того, каждое решение задается алгоритмом как линейная комбинация
этих базовых решений (как в Примере 1.3.5). Если имеет ранг, теорема 1.2.2 показывает, что есть ровно параметры, а значит, и базовые решения. Это доказывает:

Найдите основные решения однородной системы с матрицей коэффициентов и выразите каждое решение как линейную комбинацию основных решений, где

Решение:

Приведение расширенной матрицы к сокращенной строчно-эшелонированной форме —

, поэтому общее решение — это,,,, и где, и — параметры.В матричной форме это

Отсюда базовые решения —

Решение матричных уравнений

А матричное уравнение уравнение, в котором переменная обозначает матрица .

Вы можете решить более простые матричные уравнения, используя матрица сложения а также скалярное умножение .

Примеры 1:

Решить для матрицы Икс : Икс + [ 3 2 1 0 ] знак равно [ 6 3 7 — 1 ]

Икс + [ 3 2 1 0 ] — [ 3 2 1 0 ] знак равно [ 6 3 7 — 1 ] — [ 3 2 1 0 ] Икс + [ 0 0 0 0 ] знак равно [ 6 — 3 3 — 2 7 — 1 — 1 — 0 ] Икс знак равно [ 3 1 6 — 1 ]

Примеры 2:

Решить для матрицы Икс : Икс — [ — 9 — 3 6 0 ] знак равно [ 4 0 12 — 10 ]

Икс — [ — 9 — 3 6 0 ] знак равно [ 4 0 12 — 10 ] Икс — [ — 9 — 3 6 0 ] + [ — 9 — 3 6 0 ] знак равно [ 4 0 12 — 10 ] + [ — 9 — 3 6 0 ] Икс — [ 0 0 0 0 ] знак равно [ 4 + ( — 9 ) 0 + ( — 3 ) 12 + 6 — 10 + 0 ] Икс знак равно [ — 5 — 3 18 — 10 ]

Решение систем линейных уравнений с использованием матриц:

Матричные уравнения можно использовать для решать системы линейных уравнений используя левую и правую части уравнений.

Примеры 3:

Решите систему уравнений с помощью матриц: { 7 Икс + 5 y знак равно 3 3 Икс — 2 y знак равно 22

7 Икс + 5 y знак равно 3 3 Икс — 2 y знак равно 22 → [ 7 Икс + 5 y 3 Икс — 2 y ] знак равно [ 3 22 ]

Запишите матрицу слева как произведение коэффициентов и переменных.

[ 7 5 3 — 2 ] [ Икс y ] знак равно [ 3 22 ]

↑ ↑ ↑

коэффициент Переменная постоянный матрица матрица матрица

Сначала найдите обратную матрицу коэффициентов.Обратное [ 7 5 3 — 2 ] является

1 7 ( — 2 ) — ( 3 ) ( 5 ) [ — 2 — 5 — 3 7 ] знак равно — 1 29 [ — 2 — 5 — 3 7 ] знак равно [ 2 29 5 29 3 29 — 7 29 ]

Затем умножьте каждую сторону матричного уравнения на обратная матрица .Поскольку матричное умножение нет коммутативной, обратная матрица должна быть слева на каждый сторона матричного уравнения.

[ 2 29 5 29 3 29 — 7 29 ] [ 7 5 3 — 2 ] [ Икс y ] знак равно [ 2 29 5 29 3 29 — 7 29 ] [ 3 22 ]

[ 1 0 0 1 ] [ Икс y ] знак равно [ 4 — 5 ]

В единичная матрица слева подтверждает, что обратная матрица была рассчитана правильно.