Раскрытие скобок с квадратом: правила и примеры (7 класс)
правила и примеры (7 класс)
Основная функция скобок – менять порядок действий при вычислениях значений числовых выражений. Например, в числовом выражении \(5·3+7\) сначала будет вычисляться умножение, а потом сложение: \(5·3+7 =15+7=22\). А вот в выражении \(5·(3+7)\) сначала будет вычислено сложение в скобке, и лишь потом умножение: \(5·(3+7)=5·10=50\).
Однако если мы имеем дело с алгебраическим выражением, содержащим переменную — например таким: \(2(x-3)\) – то вычислить значение в скобке не получается, мешает переменная. Поэтому в таком случае скобки «раскрывают», используя для этого соответствующие правила.
Правила раскрытия скобок
Если перед скобкой стоит знак плюс, то скобка просто снимается, выражение в ней при этом остается неизменным. Иначе говоря:
\((a-b)=a-b\)
Здесь нужно пояснить, что в математике для сокращения записей принято не писать знак плюс, если он стоит в выражении первым.
Пример. Раскройте скобку \((1+y-7x)\).
Решение: \((1+y-7x)=1+y-7x\).
Пример. Упростите выражение: \(3+(5-2x)\).
Решение: Раскрываем скобку согласно правилу, а затем приводим подобные слагаемые:
Пример. Раскройте скобку и приведите подобные слагаемые: \((x-11)+(2+3x)\).
Если перед скобкой стоит знак минус, то при снятии скобки каждый член выражения внутри нее меняет знак на противоположный:
\(-(a-b)=-a+b\)
Здесь нужно пояснить, что у \(a\), пока оно стояло в скобке, был знак плюс (просто его не писали), и после снятия скобки этот плюс поменялся на минус.
Пример: Упростите выражение \(2x-(-7+x)\).
Решение: внутри скобки два слагаемых: \(-7\) и \(x\), а перед скобкой минус. Значит, знаки поменяются – и семерка теперь будет с плюсом, а икс – с минусом. Раскрываем скобку и
Пример. Раскройте скобку: \(-(4m+3)\).
Решение: \(-(4m+3)=-4m-3\).
Пример. Раскройте скобку и приведите подобные слагаемые \(5-(3x+2)+(2+3x)\).
Решение: \(5-(3x+2)+(2+3x)=5-3x-2+2+3x=5\).
Если перед скобкой стоит множитель, то каждый член скобки умножается на него, то есть:
\(c(a-b)=ca-cb\)
Пример. Раскройте скобки \(5(3-x)\).
Решение: В скобке у нас стоят \(3\) и \(-x\), а перед скобкой — пятерка. Значит, каждый член скобки умножается на \(5\) — напоминаю, что
Пример. Раскройте скобки \(-2(-3x+5)\).
Решение: Как и в предыдущем примере, стоящие в скобке \(-3x\) и \(5\) умножаются на \(-2\).
Пример. Упростить выражение: \(5(x+y)-2(x-y)\).
Решение: \(5(x+y)-2(x-y)=5x+5y-2x+2y=3x+7y\).
Осталось рассмотреть последнюю ситуацию.
При умножении скобки на скобку, каждый член первой скобки перемножается с каждым членом второй:
\((c+d)(a-b)=c·(a-b)+d·(a-b)=ca-cb+da-db\)
Пример. Раскройте скобки \((2-x)(3x-1)\).
Решение: У нас произведение скобок и его можно раскрыть сразу по формуле выше. Но чтобы не путаться, давайте сделаем всё по шагам.
Шаг 1. Убираем первую скобку — каждый ее член умножаем на скобку вторую:
Шаг 2. Раскрываем произведения скобки на множитель как описано выше:
— сначала первое…
— потом второе.
Шаг 3. Теперь перемножаем и приводим подобные слагаемые:
Так подробно расписывать все преобразования совсем необязательно, можно сразу перемножать. Но если вы только учитесь раскрывать скобок – пишите подробно, меньше будет шанс ошибиться.
Примечание ко всему разделу. На самом деле, вам нет необходимости запоминать все четыре правила, достаточно помнить только одно, вот это: \(c(a-b)=ca-cb\). Почему? Потому что если в него вместо c подставить единицу, получиться правило \((a-b)=a-b\). А если подставить минус единицу, получим правило \(-(a-b)=-a+b\). Ну, а если вместо c подставить другую скобку – можно получить последнее правило.
Скобка в скобке
Иногда в практике встречаются задачи со скобками, вложенными внутрь других скобок. Вот пример такого задания: упростить выражение \(7x+2(5-(3x+y))\).
Чтобы успешно решать подобные задания, нужно:
— внимательно разобраться во вложенности скобок – какая в какой находиться;
— раскрывать скобки последовательно, начиная, например, с самой внутренней.
При этом важно при раскрытии одной из скобок не трогать все остальное выражение, просто переписывая его как есть.
Давайте для примера разберем написанное выше задание.
Пример. Раскройте скобки и приведите подобные слагаемые \(7x+2(5-(3x+y))\).
Решение:
\(7x+2(5\)\(-(3x+y)\)\()=\) |
Выполнять задание начнем с раскрытия внутренней скобки (той, что внутри). Раскрывая ее, имеем дело только с тем, что к ней непосредственно относиться – это сама скобка и минус перед ней (выделено зеленым). Всё остальное (не выделенное) переписываем также как было. |
|
\(=7x+2(5\)\(-3x-y\)\()=\) |
Теперь раскрываем вторую скобку, внешнюю. |
|
\(=7x+2·5-2·3x-2·y=\) |
Упрощаем получившееся выражение… |
|
\(=7x+10-6x-2y=\) |
…и приводим подобные. |
|
|
Готово. |
Пример. Раскройте скобки и приведите подобные слагаемые \(-(x+3(2x-1+(x-5)))\).
Решение:
\(-(x+3(2x-1\)\(+(x-5)\)\())\) |
Здесь тройная вложенность скобок. Начинаем с самой внутренней (выделено зеленым). Перед скобкой плюс, так что она просто снимается. |
|
\(-(x+3(2x-1\)\(+x-5\)\())\) |
Теперь нужно раскрыть вторую скобку, промежуточную. Но мы перед этим упростим выражение привидением подобный слагаемых в этой второй скобке. |
|
\(=-(x\)\(+3(3x-6)\)\()=\) |
Вот сейчас раскрываем вторую скобку (выделено голубым). Перед скобкой множитель – так что каждый член в скобке умножается на него. |
|
\(=-(x\)\(+9x-18\)\()=\) |
Вновь приводим подобные. |
|
\(=-(10x-18)=\) |
И раскрываем последнюю скобку. Перед скобкой минус – поэтому все знаки меняются на противоположные. |
|
\(=-10x+18\) |
Готово. |
Раскрытие скобок — это базовое умение в математике.
Смотрите также:
Вынесение общего множителя за скобки
Скачать статью
Раскрытие скобок
Продолжаем изучать основы алгебры. В данном уроке мы научимся раскрывать скобки в выражениях. Раскрыть скобки означает избавить выражение от этих скобок.
Чтобы раскрывать скобки, нужно выучить наизусть два правила. При регулярных занятиях раскрывать скобки можно с закрытыми глазами, и про те правила которые требовалось заучивать наизусть, можно благополучно забыть.
Первое правило раскрытия скобок
Рассмотрим следующее выражение:
8 + (−9 + 3)
Значение данного выражения равно 2. Раскроем скобки в данном выражении. Раскрыть скобки означает избавиться от них, не влияя на значение выражения. То есть после избавления от скобок значение выражения 8 + (−9 + 3) по прежнему должно быть равно двум.
Первое правило раскрытия скобок выглядит следующим образом:
При раскрытии скобок, если перед скобками стоит плюс, то этот плюс опускается вместе со скобками.
Итак, мы видим что в выражении 8 + (−9 + 3) перед скобками стоит плюс. Этот плюс нужно опустить вместе со скобками. Иными словами, скобки исчезнут вместе с плюсом, который перед ними стоял. А то, что было в скобках запишется без изменений:
Мы получили выражение без скобок 8−9+3. Данное выражение равно 2, как и предыдущее выражение со скобками было равно 2.
8 + (−9 + 3) = 2
8 − 9 + 3 = 2
Таким образом, между выражениями 8+(−9+3) и 8−9+3 можно поставить знак равенства, поскольку они равны одному и тому же значению:
8 + (−9 + 3) = 8 − 9 + 3
2 = 2
Пример 2. Раскрыть скобки в выражении 3 + (−1 − 4)
Перед скобками стоит плюс, значит этот плюс опускается вместе со скобками. То, что было в скобках останется без изменений:
3 + (−1 − 4) = 3 − 1 − 4
Пример 3. Раскрыть скобки в выражении 2 + (−1)
Перед скобками стоит плюс, значит этот плюс опускается вместе со скобками. То, что было в скобках останется без изменений:
2 + (−1) = 2 − 1
В данном примере раскрытие скобок стало своего рода обратной операцией замене вычитания сложением. Как это понимать?
В выражении 2 − 1 происходит вычитание, но его можно заменить сложением. Тогда получится выражение 2 + (−1). Но если в выражении 2 + (−1) раскрыть скобки, то получится изначальное 2 − 1.
Поэтому первое правило раскрытия скобок можно использовать для упрощения выражений после каких-нибудь преобразований. То есть избавить его от скобок и сделать проще.
Например, упростим выражение 2a + a− 5b + b.
Чтобы упростить данное выражение, можно привести подобные слагаемые. Напомним, что для приведения подобных слагаемых, нужно сложить коэффициенты подобных слагаемых и результат умножить на общую буквенную часть:
Получили выражение 3a + (−4b). В этом выражении раскроем скобки. Перед скобками стоит плюс, поэтому используем первое правило раскрытия скобок, то есть опускаем скобки вместе с плюсом, который стоит перед этими скобками:
3a + (−4b) = 3a − 4b
Таким образом, выражение 2a+a−5b+b упрощается до 3a−4b.
Раскрыв одни скобки, по пути могут встретиться другие. К ним применяем те же правила, что и к первым. Например, раскроем скобки в следующем выражении:
2 + (−3 + 1) + 3 + (−6)
Здесь два места, где нужно раскрыть скобки. В данном случае применимо первое правило раскрытия скобок, а именно опускание скобок вместе с плюсом, который стоит перед этими скобками:
2 + (−3 + 1) + 3 + (−6) = 2 − 3 + 1 + 3 − 6
Пример 3. Раскрыть скобки в выражении 6+(−3)+(−2)
В обоих местах, где имеются скобки, перед ними стоит плюс. Здесь опять же применяется первое правило раскрытия скобок:
6 + (−3) + (−2) = 6 − 3 − 2
Иногда первое слагаемое в скобках записано без знака. Например, в выражении 1+(2+3−4) первое слагаемое в скобках 2 записано без знака. Возникает вопрос, а какой знак будет стоять перед двойкой после того, как скобки и плюс, стоящий перед скобками опустятся? Ответ напрашивается сам — перед двойкой будет стоять плюс.
На самом деле даже будучи в скобках перед двойкой стоит плюс, но мы его не видим по причине того, что его не записывают. Мы уже говорили, что полная запись положительных чисел выглядит как +1, +2, +3. Но плюсы по традиции не записывают, поэтому мы и видим привычные для нас положительные числа 1, 2, 3.
Поэтому, чтобы раскрыть скобки в выражении 1+(2+3−4), нужно как обычно опустить скобки вместе с плюсом, стоящим перед этими скобками, но первое слагаемое которое было в скобках записать со знаком плюс:
1 + (2 + 3 − 4) = 1 + 2 + 3 − 4
Пример 4. Раскрыть скобки в выражении −5 + (2 − 3)
Перед скобками стоит плюс, поэтому применяем первое правило раскрытия скобок, а именно опускаем скобки вместе с плюсом, который стоит перед этими скобками. Но первое слагаемое, которое в скобках записываем со знаком плюс:
−5 + (2 − 3) = −5 + 2 − 3
Пример 5. Раскрыть скобки в выражении (−5)
Перед скобками стоит плюс, но он не записан по причине того, что до него не было других чисел или выражений. Наша задача убрать скобки, применив первое правило раскрытия скобок, а именно опустить скобки вместе с этим плюсом (даже если он невидим)
(−5) = −5
Пример 6. Раскрыть скобки в выражении 2a + (−6a + b)
Перед скобками стоит плюс, значит этот плюс опускается вместе со скобками. То, что было в скобках запишется без изменений:
2a + (−6a + b) = 2a −6a + b
Пример 7. Раскрыть скобки в выражении 5a + (−7b + 6c) + 3a + (−2d)
В данном выражении имеется два места, где нужно раскрыть скобки. В обоих участках перед скобками стоит плюс, значит этот плюс опускается вместе со скобками. То, что было в скобках запишется без изменений:
5a + (−7b + 6c) + 3a + (−2d) = 5a −7b + 6c + 3a − 2d
Второе правило раскрытия скобок
Теперь рассмотрим второе правило раскрытия скобок. Оно применяется тогда, когда перед скобками стоит минус.
Если перед скобками стоит минус, то этот минус опускается вместе со скобками, но слагаемые, которые были в скобках, меняют свой знак на противоположный.
Например, раскроем скобки в следующем выражении
5 − (−2 − 3)
Видим, что перед скобками стоит минус. Значит нужно применить второе правило раскрытия, а именно опустить скобки вместе с минусом, стоящим перед этими скобками. При этом слагаемые, которые были в скобках, поменяют свой знак на противоположный:
Мы получили выражение без скобок 5 + 2 + 3. Данное выражение равно 10, как и предыдущее выражение со скобками было равно 10.
5 − (−2 − 3) = 10
5 + 2 + 3 = 10
Таким образом, между выражениями 5−(−2−3) и 5+2+3 можно поставить знак равенства, поскольку они равны одному и тому же значению:
5 − (−2 − 3) = 5 + 2 + 3
10 = 10
Пример 2. Раскрыть скобки в выражении 6 − (−2 − 5)
Перед скобками стоит минус, поэтому применяем второе правило раскрытия скобок, а именно опускаем скобки вместе с минусом, который стоит перед этими скобками. При этом слагаемые, которые были в скобках, записываем с противоположными знаками:
6 − (−2 − 5) = 6 + 2 + 5
Пример 3. Раскрыть скобки в выражении 2 − (7 + 3)
Перед скобками стоит минус, поэтому применяем второе правило раскрытия скобок:
2 − (7 + 3) = 2 − 7 − 3
Пример 4. Раскрыть скобки в выражении −(−3 + 4)
Перед скобками стоит минус, поэтому применяем второе правило раскрытия скобок:
−(−3 + 4) = 3 − 4
Пример 5. Раскрыть скобки в выражении −(−8 − 2) + 16 + (−9 − 2)
Здесь два места, где нужно раскрыть скобки. В первом случае нужно применить второе правило раскрытия скобок, а когда очередь доходит до выражения +(−9 − 2) нужно применить первое правило:
−(−8 − 2) + 16 + (−9 − 2) = 8 + 2 + 16 − 9 − 2
Пример 6. Раскрыть скобки в выражении −(−a − 1)
Перед скобками стоит минус, поэтому применяем второе правило раскрытия скобок:
−(−a − 1) = a + 1
Пример 7. Раскрыть скобки в выражении −(4a + 3)
Перед скобками стоит минус, поэтому применяем второе правило раскрытия скобок:
−(4a + 3) = −4a − 3
Пример 8. Раскрыть скобки в выражении a − (4b + 3) + 15
Перед скобками стоит минус, поэтому применяем второе правило раскрытия скобок:
a − (4b + 3) + 15 = a − 4b − 3 + 15
Пример 9. Раскрыть скобки в выражении 2a + (3b − b) − (3c + 5)
Здесь два места, где нужно раскрыть скобки. В первом случае нужно применить первое правило раскрытия скобок, а когда очередь доходит до выражения −(3c+5) нужно применить второе правило:
2a + (3b − b) − (3c + 5) = 2a + 3b − b − 3c − 5
Пример 10. Раскрыть скобки в выражении −a − (−4a) + (−6b) − (−8c + 15)
Здесь три места, где нужно раскрыть скобки. Вначале нужно применить второе правило раскрытия скобок, затем первое, а затем опять второе:
−a − (−4a) + (−6b) − (−8c + 15) = −a + 4a − 6b + 8c − 15
Механизм раскрытия скобок
Правила раскрытия скобок, которые мы сейчас рассмотрели, основаны на распределительном законе умножения:
a(b + c) = ab + ac
На самом деле раскрытием скобок называют ту процедуру, когда общий множитель умножают на каждое слагаемое в скобках. В результате такого умножения скобки исчезают. Например, раскроем скобки в выражении 3×(4+5)
3 × (4 + 5) = 3 × 4 + 3 × 5
Поэтому, если нужно умножить число на выражение в скобках (или выражение в скобках умножить на число) надо говорить раскроем скобки.
Но как связан распределительный закон умножения с правилами раскрытия скобок, которые мы рассматривали ранее?
Дело в том, что перед любыми скобками стоит общий множитель. В примере 3 × (4 + 5) общий множитель это 3. А в примере a(b + c) общий множитель это переменная a.
Если перед скобками нет чисел или переменных, то общим множителем является 1 или −1, в зависимости от того, какой знак стоит перед скобками. Если перед скобками стоит плюс, значит общим множителем является 1. Если перед скобками стоит минус, значит общим множителем является −1.
К примеру, раскроем скобки в выражении −(3b − 1). Перед скобками стоит минус, поэтому нужно воспользоваться вторым правилом раскрытия скобок, то есть опустить скобки вместе с минусом, стоящим перед скобками. А выражение, которое было в скобках, записать с противоположными знаками:
−(3b − 1) = −3b + 1
Мы раскрыли скобки, воспользовавшись правилом раскрытия скобок. Но эти же скобки можно раскрыть, воспользовавшись распределительным законом умножения. Для этого сначала записываем перед скобками общий множитель 1, который не был записан:
−1(3b −1)
Минус, который раньше стоял перед скобками относился к этой единице. Теперь можно раскрыть скобки, применяя распределительный закон умножения. Для этого общий множитель −1 нужно умножить на каждое слагаемое в скобках и полученные результаты сложить.
Для удобства заменим разность, находящуюся в скобках на сумму:
−1(3b −1) = −1( 3b + (−1) )
Далее умножаем общий множитель −1 на каждое слагаемое в скобках:
−1(3b −1) = −1(3b + (−1)) = −1 × 3b + (−1) × (−1) = −3b + 1
Как и в прошлый раз мы получили выражение −3b + 1. Каждый согласится с тем, что в этот раз затрачено больше времени на решение столь простейшего примера. Поэтому разумнее пользоваться готовыми правилами раскрытия скобок, которые мы рассматривали в данном уроке:
−(3b − 1) = −3b + 1
Но не мешает знать, как эти правила работают.
В данном уроке мы научились ещё одному тождественному преобразованию. Вместе с раскрытием скобок, вынесением общего за скобки и приведением подобных слагаемых можно немного расширить круг решаемых задач. Например:
Раскрыть скобки и привести подобные слагаемые в следующем выражении:
Здесь нужно выполнить два действия — сначала раскрыть скобки, а потом привести подобные слагаемые. Итак, по порядку:
1) Раскрываем скобки:
2) Приводим подобные слагаемые:
В получившемся выражении −10b+(−1) можно раскрыть скобки:
Пример 2. Раскрыть скобки и привести подобные слагаемые в следующем выражении:
1) Раскроем скобки:
2) Приведем подобные слагаемые. В этот раз для экономии времени и места, не будем записывать, как коэффициенты умножаются на общую буквенную часть
Пример 3. Упростить выражение 8m+3m и найти его значение при m=−4
1) Сначала упростим выражение. Чтобы упростить выражение 8m+3m, можно вынести в нём общий множитель m за скобки:
8m + 3m = m(8 + 3)
2) Находим значение выражения m(8 + 3) при m = −4. Для этого в выражение m(8 + 3) вместо переменной m подставляем число −4
m (8 + 3) = −4 (8 + 3) = −4 × 8 + (−4) × 3 = −32 + (−12) = −44
Задания для самостоятельного решения
Задание 1. Раскройте скобки в следующем выражении:
Показать решение
Задание 2. Раскройте скобки в следующем выражении:
Показать решение
Задание 3. Раскройте скобки в следующем выражении:
Показать решение
Задание 4. Раскройте скобки в следующем выражении:
Показать решение
Задание 5. Раскройте скобки в следующем выражении:
Показать решение
Задание 6. Раскройте скобки в следующем выражении:
Показать решение
Задание 7. Раскройте скобки в следующем выражении:
Показать решение
Задание 8. Раскройте скобки в следующем выражении:
Показать решение
Задание 9. Раскройте скобки в следующем выражении:
Показать решение
Задание 10. Раскройте скобки в следующем выражении:
Показать решение
Задание 11. Раскройте скобки в следующем выражении:
Показать решение
Задание 12. Раскройте скобки в следующем выражении:
Показать решение
Задание 13. Раскройте скобки в следующем выражении:
Показать решение
Задание 14. Раскройте скобки в следующем выражении:
Показать решение
Задание 15. Раскройте скобки в следующем выражении:
Показать решение
Задание 16. Раскройте скобки в следующем выражении:
Показать решение
Задание 17. Раскройте скобки в следующем выражении:
Показать решение
Задание 18. Раскройте скобки в следующем выражении:
Показать решение
Задание 19. Раскройте скобки в следующем выражении:
Показать решение
Задание 20. Раскройте скобки в следующем выражении:
Показать решение
Задание 21. Раскройте скобки в следующем выражении:
Показать решение
Задание 22. Раскройте скобки и приведите подобные слагаемые в следующем выражении:
Показать решение
Задание 23. Раскройте скобки и приведите подобные слагаемые в следующем выражении:
Показать решение
Понравился урок?
Вступай в нашу новую группу Вконтакте и начни получать уведомления о новых уроках
Возникло желание поддержать проект?
Используй кнопку ниже
Скобки ( ) [ ] | Написание
Скобки — это символы, которые мы используем для содержания «дополнительной информации» или информации, не являющейся частью основного содержания. Скобки всегда идут парами: «открывающая» скобка перед дополнительной информацией и «закрывающая» скобка после нее. Существует два основных типа скобок: круглая () и квадратная []. Британский английский и американский английский определяют их по-разному, как вы видите ниже.
Круглые скобки или круглые скобки
Британский английский
( ) = круглые скобки или скобки
американский английский
( ) = круглые скобки
Круглые скобки в основном используются для добавления дополнительной информации к предложению. Посмотрите на эти примеры:
- объяснить или пояснить
- Тони Блэр (бывший премьер-министр Великобритании) ушел в отставку в 2007 году.
- Пожалуйста, оставьте свой мобильный телефон у двери.
- Многие люди любят вечеринки (я нет).
- Решение по этому вопросу принимает МОК (Международный олимпийский комитет).
Некоторые грамматики считают, что (по возможности) мы должны использовать запятые.
Некоторые грамматики считают, что по возможности следует использовать запятые.
Помните, что после последней скобки ставится точка, восклицательный или вопросительный знак (если в скобках нет полного предложения). Посмотрите на эти примеры:
- Моя машина в подъезде (с открытым окном).
- Я только что попал в аварию на нашей новой машине. (Тссс! Муж еще не знает.)
- Погода чудесная. (Если бы так было всегда!)
- Вечеринка была фантастической (как всегда)!
- Помнишь Джонни (друга моего брата)?
- Джонни тоже пришел. (Помнишь Джонни?) Мы прекрасно провели время.
Квадратные скобки или скобки
Британский английский
[ ] = квадратных скобок
Американский английский
[ ] = квадратных скобок
Обычно мы используем квадратные скобки, когда хотим изменить слова другого человека . Здесь мы хотим прояснить, что модификация была сделана нами, а не первоначальным автором. Например:
- добавить уточнение:
- Свидетель сказал: «Он [милиционер] ударил меня».
- для добавления информации:
- Две команды в финале первого чемпионата мира по футболу FIFA были из Южной Америки [Уругвая и Аргентины].
- для добавления пропущенных слов:
- Хороший вопрос.
- для добавления редакционного или авторского комментария:
- Они будут а не присутствовать [курсив мой].
- для изменения прямой котировки:
- Он «любит вождение». (Первоначальные слова были «Я люблю водить машину».)
Мы также иногда используем квадратные скобки для вложения, например:
- Квадратные скобки также могут быть вложенными (используя квадратные скобки [подобные этим] внутри круглых скобок).
- Указатель знаков препинания
- Что такое пунктуация?
- Тесты на пунктуацию
- Песня о пунктуации
UEB Math Tutorial — Урок 6.3
Практические задачи — Используйте символьную математику – Используйте 6-точечный ввод Переключиться на Nemeth Tutorial
Symbols
[открывающие квадратные скобки
⠨⠣
]закрывающие квадратные скобки
⠨⠜
{открывающие фигурные скобки
⠸⠣ curly clobraces
07 ⠸⠜
Обзор
В UEB есть индикаторы, которые применяются к элементу, появляющемуся непосредственно перед индикатором или после него. Элемент определяется как любая из следующих групп, если они появляются в позиции, затронутой индикатором:
- Целое число, т. е. начальный числовой символ и все последующие символы в установленном таким образом числовом режиме (который будет включать любые внутренние десятичные точки, запятые, разделительные пробелы или простые числовые дроби).
- Целая общая дробь, заключенная в индикаторы дроби.
- Целое подкоренное выражение, заключенное в подкоренные признаки.
- Стрела.
- Произвольная форма.
- Любое выражение, заключенное в совпадающие пары круглых, квадратных или фигурных скобок.
- Любое выражение, заключенное в индикаторы группировки Брайля.
- Если ничего из вышеперечисленного не применимо, элемент является просто следующим отдельным символом.
Объяснение
Скобки и фигурные скобки, используемые в математике, — это те же символы, что и в художественном тексте. Скобки и фигурные скобки в шрифте Брайля состоят из двух ячеек; префикс, определяющий тип скобки (квадратная или фигурная) и корень, определяющий символ как открывающий или закрывающий. Префикс квадратных скобок — точки четыре шесть, а префикс фигурных скобок (скобки) — точки четыре пять шесть. Корневой символ открытия — точки один два шесть, а корневой символ закрытия — точки три четыре пять.
Скобки и квадратные скобки используются в самых разных контекстах в математике. Они используются в сложных выражениях в дополнение или вместо скобок. Скобки часто используются для группировки. Можно использовать различные виды скобок, чтобы показать несколько уровней группировки в выражении. Они также используются для обозначения наименьшего общего кратного, а в записи интервалов их можно использовать, чтобы показать, что диапазон значений включает определенное значение. Скобки часто используются для обозначения набора обозначений.
Одна буква, которая появляется в открывающих и закрывающих скобках или фигурных скобках, считается стоящей отдельно, и требуется индикатор класса 1. Скобки и фигурные скобки завершают числовой режим. Числовой индикатор должен использоваться с цифрой, которая следует непосредственно за квадратной или фигурной скобкой.