Раскрытие скобок с квадратом: Квадрат разности

Содержание

Раскрытие скобок: правила, формулы, примеры

Раскрытие скобок — это замена выражения, записанного со скобками, на равное ему выражение без скобок.

Правила и формулы раскрытия скобок

Если перед скобками стоит знак  +   (плюс), то все числа, стоящие внутри скобок, сохраняют свой знак.

Общая формула:

a + (-b + cd) = ab + cd.

Пример.

16 + (10 — 15) = 16 + 10 — 15 = 11.

Если перед скобками стоит знак    (минус), то все числа, стоящие внутри скобок, меняют свой знак на противоположный.

Общая формула:

a — (-b + cd) = a + bc + d.

Пример.

16 — (10 — 15) = 16 — 10 + 15 = 21.

Если перед скобками стоит знак умножения, то каждое число, стоящее внутри скобок, умножается на множитель, стоящий перед скобками.

Общие формулы:

a(-b + cd) = —ab + acad,

a(-b + cd) = abac + ad.

Следовательно, скобки в произведениях раскрываются в соответствии с распределительным свойством умножения.

Примеры:

2 · (a — 7) = 2a — 14,

-3 · (-5 + 2x) = 15 — 6x.

Если после скобок стоит знак деления, то каждое число, стоящее внутри скобок, делится на делитель, стоящий после скобок.

Общие формулы:

(a — b + 
c
) : d  =  
a — b + c  =  a  —  b  +  c
d d d d
(ab + c) : —d  =  ab + c  =
d
  =  a  —  b  +  c   =  —
a
  +  b  —  c
d d d d d d

Примеры:

(3a — 21) : 3 = a — 7,

(3a — 21) : -3 = —a + 7.

Если в выражении присутствуют вложенные скобки, то их раскрывают по порядку, начиная с внешних или внутренних:

12 — (a + (6 — b) — 3) = 12 — a — (6 — b) + 3 = 12 — a — 6 + b + 3 = 9 — a + b.

правила и примеры (7 класс)

Математические выражения (формулы) сокращённого умножения (квадрат суммы и разности, куб суммы и разности, разность квадратов, сумма и разность кубов) крайне не заменимы во многих областях точных наук. Эти 7 символьных записей не заменимы при упрощении выражений, решении уравнений, при умножении многочленов, сокращении дробей , решении интегралов и многом другом. А значит будет очень полезно разобраться как они получаются, для чего они нужны, и самое главное, как их запомнить и потом применять. Потом применяя формулы сокращенного умножения на практике самым сложным будет увидеть, что есть

х и что есть у. Очевидно, что никаких ограничений для a и b нет, а значит это могут быть любые числовые или буквенные выражения.

И так вот они:

Первая х 2 — у 2 = (х — у) (х+у) .Чтобы рассчитать разность квадратов двух выражений надо перемножить разности этих выражений на их суммы.

Вторая (х + у) 2 = х 2 + 2ху + у 2 . Чтобы найти квадрат суммы двух выражений нужно к квадрату первого выражения прибавить удвоенное произведение первого выражения на второе плюс квадрат второго выражения.

Третья (х — у) 2 = х 2 — 2ху + у 2 . Чтобы вычислить квадрат разности двух выражений нужно от квадрата первого выражения отнять удвоенное произведение первого выражения на второе плюс квадрат второго выражения.

Четвертая (х + у) 3 = х 3 + 3х 2 у + 3ху 2 + у 3. Чтобы вычислить куб суммы двух выражений нужно к кубу первого выражения прибавить утроенное произведение квадрата первого выражения на второе плюс утроенное произведение первого выражения на квадрат второго плюс куб второго выражения.

Пятая (х — у) 3 = х 3 — 3х 2 у + 3ху 2 — у 3 . Чтобы рассчитать куб разности двух выражений необходимо от куба первого выражения отнять утроенное произведение квадрата первого выражения на второе плюс утроенное произведение первого выражения на квадрат второго минус куб второго выражения.

Шестая х 3 + у 3 = (х + у) (х 2 — ху + у 2) Чтобы высчитать сумму кубов двух выражений нужно умножить суммы первого и второго выражения на неполный квадрат разности этих выражений.

Седьмая х 3 — у 3 = (х — у) (х 2 + ху + у 2) Чтобы произвести вычисление разности кубов двух выражений надо умножить разность первого и второго выражения на неполный квадрат суммы этих выражений.

Не сложно запомнить, что все формулы применяются для произведения расчетов и в противоположном направлении (справа налево).

О существовании этих закономерностей з нали еще около 4 тысяч лет тому назад. Их широко применяли жители древнего Вавилона и Египта. Но в те эпохи они выражались словесно или геометрически и при расчетах не использовали буквы.

Разберем доказательство квадрата суммы (а + b) 2 = a 2 +2ab +b 2 .

Первым эту математическую закономерность доказал древнегреческий учёный Евклид, работавший в Александрии в III веке до н.э., он использовал для этого геометрический способ доказательства формулы, так как буквами для обозначения чисел не пользовались и учёные древней Эллады. Ими повсеместно употреблялись не “а 2 ”, а “квадрат на отрезке а”, не “ab”, а “прямоугольник , заключенный между отрезками a и b”.

В предыдущем уроке мы разобрались с разложением на множители. Освоили два способа: вынесение общего множителя за скобки и группировку. В этом уроке — следующий мощный способ:

формулы сокращённого умножения . В краткой записи — ФСУ.

Формулы сокращённого умножения (квадрат суммы и разности, куб суммы и разности, разность квадратов, сумма и разность кубов) крайне необходимы во всех разделах математики. Они применяются в упрощении выражений, решении уравнений, умножении многочленов, сокращении дробей, решении интегралов и т.д. и т.п. Короче, есть все основания разобраться с ними. Понять откуда они берутся, зачем они нужны, как их запомнить и как применять.

Разбираемся?)

Откуда берутся формулы сокращённого умножения?

Равенства 6 и 7 записаны не очень привычно. Как бы наоборот. Это специально.) Любое равенство работает как слева направо, так и справа налево. В такой записи понятнее, откуда берутся ФСУ.

Они берутся из умножения.) Например:

(a+b) 2 =(a+b)(a+b)=a 2 +ab+ba+b 2 =a 2 +2ab+b 2

Вот и всё, никаких научных хитростей. Просто перемножаем скобки и приводим подобные. Так получаются все формулы сокращённого умножения. Сокращённое умножение — это потому, что в самих формулах нет перемножения скобок и приведения подобных. Сокращены.) Сразу дан результат.

ФСУ нужно знать наизусть. Без первых трёх можно не мечтать о тройке, без остальных — о четвёрке с пятёркой.)

Зачем нужны формулы сокращённого умножения?

Есть две причины, выучить, даже зазубрить эти формулы. Первая — готовый ответ на автомате резко уменьшает количество ошибок. Но это не самая главная причина. А вот вторая…

Если Вам нравится этот сайт…

Кстати, у меня есть ещё парочка интересных сайтов для Вас.)

Можно потренироваться в решении примеров и узнать свой уровень. Тестирование с мгновенной проверкой. Учимся — с интересом!)

можно познакомиться с функциями и производными.

Рассмотрим теперь возведение в квадрат двучлена и, применяясь к арифметической точке зрения, будем говорить о квадрате суммы, т. е. (a + b)² и о квадрате разности двух чисел, т. е. (a – b)².

Так как (a + b)² = (a + b) ∙ (a + b),

то найдем: (a + b) ∙ (a + b) = a² + ab + ab + b² = a² + 2ab + b², т. е.

(a + b)² = a² + 2ab + b²

Этот результат полезно запомнить и в виде вышеописанного равенства и словами: квадрат суммы двух чисел равен квадрату первого числа плюс произведение двойки на первое число и на второе число, плюс квадрат второго числа.

Зная этот результат, мы можем сразу написать, напр.:

(x + y)² = x² + 2xy + y²
(3ab + 1)² = 9a² b² + 6ab + 1

(x n + 4x)² = x 2n + 8x n+1 + 16x 2

Разберем второй из этих примеров. Нам требуется возвести в квадрат сумму двух чисел: первое число есть 3ab, второе 1. Должно получиться: 1) квадрат первого числа, т. е. (3ab)², что равно 9a²b²; 2) произведение двойки на первое число и на второе, т. е. 2 ∙ 3ab ∙ 1 = 6ab; 3) квадрат 2-го числа, т. е. 1² = 1 – все эти три члена должно сложить между собою.

Совершенно также получим формулу для возведения в квадрат разности двух чисел, т. е. для (a – b)²:

(a – b)² = (a – b) (a – b) = a² – ab – ab + b² = a² – 2ab + b².

(a – b)² = a² – 2ab + b² ,

т. е. квадрат разности двух чисел равен квадрату первого числа, минус произведение двойки на первое число и на второе, плюс квадрат второго числа .

Зная этот результат, мы можем сразу выполнять возведение в квадрат двучленов, представляющих с точки зрения арифметики разность двух чисел.

(m – n)² = m² – 2mn + n²
(5ab 3 – 3a 2 b) 2 = 25a 2 b 6 – 30a 3 b 4 + 9a 4 b 2

(a n-1 – a) 2 = a 2n-2 – 2a n + a 2 и т. п.

Поясним 2-ой пример. Здесь мы имеем в скобках разность двух чисел: первое число 5ab 3 и второе число 3a 2 b. В результате должно получиться: 1) квадрат первого числа, т. е. (5ab 3) 2 = 25a 2 b 6 , 2) произведение двойки на 1-ое и на 2-ое число, т. е. 2 ∙ 5ab 3 ∙ 3a 2 b = 30a 3 b 4 и 3) квадрат второго числа, т. е. (3a 2 b) 2 = 9a 4 b 2 ; первый и третий члены надо взять с плюсом, а 2-ой с минусом, получим 25a 2 b 6 – 30a 3 b 4 + 9a 4 b 2 . В пояснение 4-го примера заметим лишь, что 1) (a n-1)2 = a 2n-2 … надо показателя степени умножить на 2 и 2) произведение двойки на 1-ое число и на 2-ое = 2 ∙ a n-1 ∙ a = 2a n .

Если встать на точку зрения алгебры, то оба равенства: 1) (a + b)² = a² + 2ab + b² и 2) (a – b)² = a² – 2ab + b² выражают одно и тоже, а именно: квадрат двучлена равен квадрату первого члена, плюс произведение числа (+2) на первый член и на второй, плюс квадрат второго члена. Это ясно, потому что наши равенства можно переписать в виде:

1) (a + b)² = (+a)² + (+2) ∙ (+a) (+b) + (+b)²
2) (a – b)² = (+a)² + (+2) ∙ (+a) (–b) + (–b)²

В некоторых случаях так именно и удобно толковать полученные равенства:

(–4a – 3b)² = (–4a)² + (+2) (–4a) (–3b) + (–3b)²

Здесь возводится в квадрат двучлен, первый член которого = –4a и второй = –3b. Далее мы получим (–4a)² = 16a², (+2) (–4a) (–3b) = +24ab, (–3b)² = 9b² и окончательно:

(–4a – 3b)² = 6a² + 24ab + 9b²

Возможно было бы также получить и запомнить формулу для возведения в квадрат трехчлена, четырехчлена и вообще любого многочлена. Однако, мы этого делать не будем, ибо применять эти формулы приходится редко, а если понадобится какой-либо многочлен (кроме двучлена) возвести в квадрат, то станем сводить дело к умножению. Например:

31. Применим полученные 3 равенства, а именно:

(a + b) (a – b) = a² – b²
(a + b)² = a² + 2ab + b²
(a – b)² = a² – 2ab + b²

к арифметике.3 \)

Произведение одночлена и многочлена тождественно равно сумме произведений этого одночлена и каждого из членов многочлена.

Этот результат обычно формулируют в виде правила.

Чтобы умножить одночлен на многочлен, надо умножить этот одночлен на каждый из членов многочлена.

Мы уже неоднократно использовали это правило для умножения на сумму.

Произведение многочленов. Преобразование (упрощение) произведения двух многочленов

Вообще, произведение двух многочленов тождественно равно сумме произведении каждого члена одного многочлена и каждого члена другого.

Обычно пользуются следующим правилом.

Чтобы умножить многочлен на многочлен, надо каждый член одного многочлена умножить на каждый член другого и сложить полученные произведения.

Формулы сокращенного умножения. Квадраты суммы, разности и разность квадратов

С некоторыми выражениями в алгебраических преобразованиях приходится иметь дело чаще, чем с другими. Пожалуй, наиболее часто встречаются выражения \((a + b)^2, \; (a — b)^2 \) и \(a^2 — b^2 \), т.2 = (a — b)(a + b) \) — разность квадратов равна произведению разности на сумму.

Эти три тождества позволяют в преобразованиях заменять свои левые части правыми и обратно — правые части левыми. Самое трудное при этом — увидеть соответствующие выражения и понять, чем в них заменены переменные а и b. Рассмотрим несколько примеров использования формул сокращенного умножения.

То части уравнения находится выражение в скобках. Чтобы раскрыть скобки, посмотрите на знак перед скобками. Если стоит знак плюс, при раскрывании скобок в записи выражения ничего не поменяется: просто уберите скобки. Если стоит знак минус, при раскрытии скобок необходимо поменять все знаки , стоящем изначально в скобках, на противоположные. Например, -(2х-3)=-2х+3.

Перемножение двух скобок.
Если в уравнении присутствует произведение двух скобок, раскрытие скобок по стандартному правилу. Каждый член первой скобки перемножается с каждым членом второй скобки. Полученные числа суммируются. При этом произведение двух «плюсов» или двух «минусов» дает слагаемому знак «плюс», а если множители имеют разные знаки, то получает знак «минус».3
Формулы возведения выражения больше трех можно при помощи треугольника Паскаля.

Источники:

  • формула раскрытия скобок

Заключенные в скобки математические действия могут содержать переменные и выражения разной степени сложности. Для перемножения таких выражений придется искать решение в общем виде, раскрывая скобки и упрощая полученный результат. Если же в скобках содержатся операции без переменных, только с численными значениями, то раскрывать скобки не обязательно, так как при наличии компьютера его пользователю доступны весьма значительные вычислительные ресурсы – проще воспользоваться ими, чем упрощать выражение.

Инструкция

Перемножайте последовательно каждое (или уменьшаемое с ), содержащееся в одной скобке, на содержимое всех остальных скобок, если требуется получить результат в общем виде. Например, пусть исходное выражение записано так: (5+x)∗(6-х)∗(x+2). Тогда последовательное перемножение (то есть раскрытие скобок) даст следующий результат: (5+x)∗(6-х)∗(x+2) = (5∗6-5∗х)∗(5∗x+5∗2) + (6∗x-х∗x)∗(x∗x+2∗x) = (5∗6∗5∗x+5∗6∗5∗2) — (5∗х∗5∗x+5∗х∗5∗2) + (6∗x∗x∗x+6∗x∗2∗x) — (х∗x∗x∗x+х∗x∗2∗x) = 5∗6∗5∗x + 5∗6∗5∗2 — 5∗х∗5∗x — 5∗х∗5∗2 + 6∗x∗x∗x + 6∗x∗2∗x — х∗x∗x∗x — х∗x∗2∗x = 150∗x + 300 — 25∗x² — 50∗x + 6∗x³ + 12∗x² — x∗x³ — 2∗x³.

Упрощайте после результат, сокращая выражения. Например, полученное на предыдущем шаге выражение можно упростить таким образом: 150∗x + 300 — 25∗x² — 50∗x + 6∗x³ + 12∗x² — x∗x³ — 2∗x³ = 100∗x + 300 — 13∗x² — 8∗x³ — x∗x³.

Воспользуйтесь калькулятором, если требуется перемножить икс равен 4.75, то есть (5+4.75)∗(6-4.75)∗(4.75+2). Для вычисления этого значения перейдите на сайт поисковика Google или Nigma и введите выражение в поле запроса в его исходном виде (5+4.75)*(6-4.75)*(4.75+2). Google покажет 82.265625 сразу, без нажатия кнопки, а Nigma нуждается в отправке данных на сервер нажатием кнопки.

 

Раскрытие скобок: правила, примеры, решения

Раскрытие скобок является одним из видов преобразования выражения. В этом разделе мы опишем правила раскрытия скобок, а также рассмотрим наиболее часто встречающиеся примеры задач.

Что называется раскрытием скобок?

Скобки используются для указания на порядок выполнения действий в числовых и буквенных выражениях, а также в выражениях с переменными. От выражения со скобками удобно перейти к тождественно равному выражению без скобок. Например, заменить выражение 2·(3+4) на выражение вида 2·3+2·4без скобок. Этот прием носит название раскрытия скобок.

Определение 1

Под раскрытием скобок подразумевают приемы избавления от скобок и рассматривают его обычно в отношении выражений, которые могут содержать:

  • знаки «+» или «-» перед скобками, в которые заключены суммы или разности;
  • произведение числа, буквы или нескольких букв и суммы или разности, которая помещена в скобки.

Так мы привыкли рассматривать процесс раскрытия скобок в курсе школьной программы. Однако никто не мешает нам посмотреть на это действие шире. Мы можем назвать раскрытием скобок переход от выражения, которое содержит отрицательные числа в скобках, к выражению, не имеющему скобок. К примеру, мы можем перейти от 5+(−3)−(−7) к 5−3+7. Фактически, это тоже раскрытие скобок.

Точно также мы можем заменить произведение выражений в скобках вида (a+b)·(c+d) на сумму a·c+a·d+b·c+b·d. Такой прием также не противоречит смыслу раскрытия скобок.

Вот еще один пример. Мы можем допустить, что в выражениях вместо чисел и переменных могут быть использованы любые выражения. Например, выражению x2·1a-x+sin(b)  будет соответствовать выражение без скобок вида x2·1a-x2·x+x2·sin(b) .

Отдельного внимания заслуживать еще один момент, который касается особенностей записи решений при раскрытии скобок. Мы можем записать начальное выражение со скобками и полученный после раскрытия скобок результат как равенство. Например, после раскрытия скобок вместо выражения 3−(5−7) мы получаем выражение 3−5+7. Оба этих выражения мы можем записать в виде равенства 3−(5−7)=3−5+7.

Проведение действий с громоздкими выражениями может потребовать записи промежуточных результатов. Тогда решение будет иметь вид цепочки равенств. Например, 5−(3−(2−1))=5−(3−2+1)=5−3+2−1 или 5−(3−(2−1))=5−3+(2−1)=5−3+2−1.

Правила раскрытия скобок, примеры

Приступим к рассмотрению правил раскрытия скобок.

У одиночных чисел в скобках

Отрицательные числа в скобках часто встречаются в выражениях. Например, (−4) и 3+(−4). Положительные числа в скобках тоже имеют место быть.

Сформулируем правило раскрытия скобок, в которых заключены одиночные положительные числа. Предположим, что а – это любое положительное число. Тогда (а) мы можем заменить на а, +(а) на +а, -(а) на –а. Если вместо а взять конкретное число, то согласно правилу: число (5) запишется как 5, выражение 3+(5) без скобок примет вид 3+5, так как +(5) заменяется на +5, а выражение 3+(−5) эквивалентно выражению 3−5, так как +(−5) заменяется на −5.

Положительные числа обычно записываются без использования скобок, так как скобки в этом случае излишни.

Теперь рассмотрим правило раскрытия скобок, внутри которых содержится одиночное отрицательное число. +(−a) мы заменяем на −a,  −(−a) заменяется на +a. Если выражение начинается с отрицательного числа (−a), которое записано в скобках, то скобки опускаются и вместо (−a) остается −a.

Приведем примеры:  (−5) можно записать как  −5,  (−3)+0,5 принимает вид −3+0,5,  4+(−3) превращается в 4−3, а −(−4)−(−3) после раскрытия скобок принимает вид 4+3, так как −(−4) и −(−3) заменяется на +4 и +3.

Следует понимать, что записать выражение 3·(−5) как 3·−5 нельзя. Об этом речь пойдет в следующих пунктах.

Давайте посмотрим, на чем основываются правила раскрытия скобок.

Согласно правилу разность a−b равна a+(−b). На основе свойств действий с числами мы можем составить цепочку равенств (a+(−b))+b=a+((−b)+b)=a+0=a, которая будет справедлива. Эта цепочка равенств в силу смысла вычитания доказывает, что выражение a+(−b)  — это разность a−b.

Основываясь на свойствах противоположных чисел и правил вычитания отрицательных чисел мы можем утверждать, что −(−a)=a, a−(−b)=a+b.

Встречаются выражения, которые составляются из числа, знаков минуса и нескольких пар скобок. Использование приведенных выше правил позволяет последовательно избавляться от скобок, продвигаясь от внутренних скобок к наружным или в обратном направлении. Примером такого выражения может быть −(−((−(5)))). Раскроем скобки, продвигаясь изнутри наружу: −(−((−(5))))=−(−((−5)))=−(−(−5))=−(5)=−5. Также этот пример можно разобрать и в обратном направлении: −(−((−(5))))=((−(5)))=(−(5))=−(5)=−5.

Под a и b можно понимать не только числа, но также произвольные числовые или буквенные выражения со знаком «+» впереди, которые не являются суммами или разностями. Во всех этих случаях можно применять правила точно также, как мы делали это в отношении одиночных чисел в скобках.

К примеру, после раскрытия скобок выражение −(−2·x)−(x2)+(−1x)−(2·x·y2:z) примет вид 2·x−x2−1x−2·x·y2:z. Как мы это сделали? Мы знаем, что −(−2·x) есть +2·x, а так как это выражение стоит вначале, то +2·x можно записать как 2·x, −(x2)=−x2, +(−1x)=−1x и −(2·x·y2:z)=−2·x·y2:z.

В произведениях двух чисел

Начнем с правила раскрытия скобок в произведении двух чисел.

Предположим, что a и b – это два положительных числа. В этом случае произведение двух отрицательных чисел −a и −b вида (−a)·(−b) мы можем заменить на (a·b), а произведения двух чисел с противоположными знаками вида (−a)·b и a·(−b) заменить на (−a·b). Умножение минуса на минус дает плюс, а умножение минуса на плюс, как и умножение плюса на минус дает минус.

Верность первой части записанного правила подтверждается правилом умножения отрицательных чисел. Для подтверждения второй части правила мы можем использовать правила умножения чисел с разными знаками.

Рассмотрим несколько примеров.

Пример 1

Рассмотрим алгоритм раскрытия скобок в произведении двух отрицательных чисел -435 и -2, вида(-2)·-435 . Для этого заменим исходное выражение на 2·435 . Раскроем скобки и получим 2·435 .

А если мы возьмем частное отрицательных чисел (−4):(−2), то запись после раскрытия скобок будет иметь вид 4:2

На месте отрицательных чисел −a и −b могут быть любые выражения со знаком минус впереди, которые  не являются суммами или разностями. К примеру, это могут быть произведения, частные, дроби, степени, корни, логарифмы, тригонометрические функции и т.п.

Раскроем скобки в выражении  -3·xx2+1·x·(ln5). Согласно правилу, мы можем произвести следующие преобразования:   -3·xx2+1·x·(ln5)=-3·xx2+1·x·ln5=3·xx2+1·x·ln5.

Выражение (−3)·2 можно преобразовать в выражение (−3·2). После этого можно раскрыть скобки: −3·2.

 23·-45=-23·45=-23·45

 Деление чисел с разными знаками также может потребовать предварительного раскрытия скобок:  (−5):2=(−5:2)=−5:2 и  234:(-3,5)=-234:3,5=-234:3,5.

Правило может быть использовано для выполнения умножения и деления выражений с разными знаками. Приведем два  примера.

-1x+1:x-3=-1x+1:x-3=-1x+1:x-3

и 

sin(x)·(-x2)=(-sin(x)·x2)=-sin(x)·x2

В произведениях трех и большего количества чисел

Перейдем к произведенимя и частным, которые содержат большее количество чисел. Для раскрытия скобок здесь будет действовать следующее правило. При четном количестве отрицательных чисел можно опустить скобки, заменив числа противоположными. После этого необходимо заключить полученное выражение в новые скобки. При нечетном количестве отрицательных чисел, опустив скобки, заменить числа на противоположные. После этого полученное выражение необходимо взять в новые скобки и поставить перед ним знак минус.

Пример 2

Для примера, возьмем выражение 5·(−3)·(−2), которое представляет собой произведение трех чисел. Отрицательных чисел два, следовательно, мы можем записать выражение как  (5·3·2) и затем окончательно раскрыть скобки, получив выражение 5·3·2.

В произведении (−2,5)·(−3):(−2)·4:(−1,25):(−1)  пять чисел являются отрицательными. поэтому (−2,5)·(−3):(−2)·4:(−1,25):(−1)=(−2,5·3:2·4:1,25:1). Окончательно раскрыв скобки, получаем  −2,5·3:2·4:1,25:1.

Обосновать приведенное выше правило можно следующим образом. Во-первых, такие выражения мы можем переписать как произведение, заменив умножением на обратное число деление. Представляем каждое отрицательное число как произведение множительного числа и -1 или -1 заменяем на (−1)·a.

Используя переместительное свойство умножения меняем местами множители и переносим все множители, равные −1, в начало выражения. Произведение четного числа минус единиц равно 1, а нечетного – равно −1, что позволяет нам использовать знак минус.

Если бы мы не использовали правило, то цепочка действий по раскрытию скобок в выражении -23:(-2)·4:-67 выглядела бы следующим образом:

-23:(-2)·4:-67=-23·-12·4·-76==(-1)·23·(-1)·12·4·(-1)·76==(-1)·(-1)·(-1)·23·12·4·76=(-1)·23·12·4·76==-23·12·4·76

Приведенное выше правило может быть использовано при раскрытии скобок в выражениях, которые представляют собой произведения и частные со знаком минус, не являющихся суммами или разностями. Возьмем для примера выражение

 x2·(-x):(-1x)·x-3:2.

Его можно привести к выражению без скобок  x2·x:1x·x-3:2 .

Нужна помощь преподавателя?

Опиши задание — и наши эксперты тебе помогут!

Описать задание

Раскрытие скобок, перед которыми стоит знак «+»

Рассмотрим правило, которое можно применить для раскрытия скобок, перед которыми стоит знак плюс, а «содержимое» этих скобок не умножается и не делится на какое-либо число или выражение.

Согласно правилу скобки вместе со стоящим перед ними знаком опускаются, при этом знаки всех слагаемых в скобках сохраняются. Если перед первым слагаемым в скобках не стоит никакого знака, то нужно поставить знак плюс.

Пример 3

Для примера приведем выражение (12−3,5)−7.  Опустив скобки, мы сохраняем знаки слагаемых в скобках и ставим перед первым слагаемым знак плюс. Запись будет иметь вид (12−3,5)−7=+12−3,5−7. В приведенном примере знак перед первым слагаемым ставить не обязательно, так как +12−3,5−7=12−3,5−7.

Пример 4

Рассмотрим еще один пример. Возьмем выражение  x+2a-3×2+1-x2-4+1x и проведем с ним действия  x+2a-3×2+1-x2-4+1x==x+2a-3×2+1-x2-4+1x

Вот еще один пример раскрытия скобок:

Пример 5

2+x2+1x-x·y·z+2·x-1+(-1+x-x2)==2+x2+1x-x·y·z+2·x-1-1+x+x2

Как раскрываются скобки, перед которыми стоит знак минус

Рассмотрим случаи, когда перед скобками стоит знак минус, и которые не не умножаются (или делятся) на какое-либо число или выражение. Согласно правилу раскрытия скобок, перед которыми стоит знак «-», скобки со знаком «-» опускаются, при этом знаки всех слагаемых внутри скобок меняются на противоположные.

Пример 6

К примеру:

—12=12,-1x+1=-1x+1,-(-x2)=x2

Выражения с переменными могут быть преобразованы с использованием того же правила:

—x+x3-3—2·x2+3·x3·x+1x-1-x+2,

получаем x-x3-3+2·x2-3·x3·x+1x-1-x+2.

Раскрытие скобок при умножении числа на скобку, выражения на скобку

Здесь мы рассмотрим случаи, когда нужно раскрыть скобки, которые умножаются или делятся на какое-либо число или выражение. Тут применимы формулы вида (a1±a2±…±an)·b=(a1·b±a2·b±…±an·b) или b·( a1±a2±…±an)=(b·a1±b·a2±…±b·an), где a1, a2, …, an и b – некоторые числа или выражения.

Пример 7

Например, проведем раскрытие скобок в выражении (3−7)·2. Согласно правилу, мы можем провести следующие преобразования: (3−7)·2=(3·2−7·2). Получаем 3·2−7·2.

Раскрыв скобки в выражении 3·x2·1-x+1x+2, получаем  3×2·1-3·x2·x+3·x2·1x+2.

Умножение скобки на скобку

Рассмотрим произведение двух скобок вида (a1+a2)·(b1+b2). Это поможет нам получить правило для раскрытия скобок при проведении умножения скобки на скобку.

Для того, чтобы решить приведенный пример, обозначим выражение (b1+b2) как b. Это позволит нам использовать правило умножения скобки на выражение. Получим (a1+a2)·(b1+b2)=(a1+a2)·b=(a1·b+a2·b)=a1·b+a2·b. Выполнив обратную замену b на (b1+b2), снова применим правило умножения выражения на скобку:  a1·b+a2·b==a1·(b1+b2)+a2·(b1+b2)==(a1·b1+a1·b2)+(a2·b1+a2·b2)==a1·b1+a1·b2+a2·b1+a2·b2

Благодаря ряду несложных приемов мы можем прийти к сумме произведений каждого из слагаемых из первой скобки на каждое из слагаемых из второй скобки. Правило можно распространить на любое количество слагаемых внутри скобок.

Сформулируем правила умножения скобки на скобку: чтобы перемножить между собой две суммы, необходимо каждое из слагаемых первой суммы перемножить на каждое из слагаемых второй суммы и сложить полученные результаты.

Формула будет иметь вид:

(a1+a2+…+am)·(b1+b2+…+bn)==a1b1+a1b2+…+a1bn++a2b1+a2b2+…+a2bn++…++amb1+amb1+…ambn

Проведем раскрытие скобок в выражении (1+x)·(x2+x+6) Оно представляет собой произведение двух сумм.  Запишем решение: (1+x)·(x2+x+6)==(1·x2+1·x+1·6+x·x2+x·x+x·6)==1·x2+1·x+1·6+x·x2+x·x+x·6

Отдельно стоит остановиться на тех случаях, когда в скобках присутствует знак минус наряду со знаками плюс. Для примера возьмем выражение  (1−x)·(3·x·y−2·x·y3).

Сначала представим выражения в скобках в виде сумм: (1+(−x))·(3·x·y+(−2·x·y3)). Теперь мы можем применить правило: (1+(−x))·(3·x·y+(−2·x·y3))==(1·3·x·y+1·(−2·x·y3)+(−x)·3·x·y+(−x)·(−2·x·y3))

Раскроем скобки: 1·3·x·y−1·2·x·y3−x·3·x·y+x·2·x·y3.

Раскрытие скобок в произведениях нескольких скобок и выражений

При наличии в выражении трех и более выражений в скобках, раскрывать скобки необходимо последовательно. Начать преобразование необходимо с того, что два первых множителя берут в скобки. Внутри этих скобок мы можем проводить преобразования согласно правилам, рассмотренным выше. Например, скобки в выражении (2+4)·3·(5+7·8).

В выражении содержится сразу три множителя (2+4)3 и (5+7·8). Будем раскрывать скобки последовательно. Заключим первые два множителя еще в одни скобки, которые для наглядности сделаем красными: (2+4)·3·(5+7·8)=((2+4)·3)·(5+7·8).

В соответствии с правилом умножения скобки на число мы можем провести следующие действия: ((2+4)·3)·(5+7·8)=(2·3+4·3)·(5+7·8).

Умножаем скобку на скобку: (2·3+4·3)·(5+7·8)=2·3·5+2·3·7·8+4·3·5+4·3·7·8.

Скобка в натуральной степени

Степени, основаниями которых являются некоторые выражения, записанные в скобках, с натуральными показателями можно рассматривать как произведение нескольких скобок. При этом по правилам из двух предыдущих пунктов их можно записать без этих скобок.

Рассмотрим процесс преобразования выражения  (a+b+c)2. Его можно записать в виде произведения двух скобок  (a+b+c)·(a+b+c).  Произведем умножение скобки на скобку и получим a·a+a·b+a·c+b·a+b·b+b·c+c·a+c·b+c·c.

Разберем еще один пример:

Пример 8

1x+23=1x+2·1x+2·1x+2==1x·1x+1x·2+2·1x+2·2·1x+2==1x·1x·1x+1x·2·1x+2·1x·1x+2·2·1x+1x·1x·2++1×2·2+2·1x·2+2·2·2

Деление скобки на число и скобки на скобку

Деление скобки на число предполагает, что необходимо разделить на число все заключенные в скобки слагаемые. Например, (x2-x):4=x2:4-x:4 .

Деление можно предварительно заменить умножением, после чего можно воспользоваться подходящим правилом раскрытия скобок в произведении. Это же правило применимо и при делении скобки на скобку.

Например, нам необходимо раскрыть скобки в выражении (x+2):23 . Для этого сначала заменим деление умножением на обратное число (x+2):23=(x+2)·23. Умножим скобку на число (x+2)·23=x·23+2·23.

Вот еще один пример деления на скобку:

Пример 9

1x+x+1:(x+2) .

Заменим деление умножением: 1x+x+1·1x+2.

Выполним умножение:  1x+x+1·1x+2=1x·1x+2+x·1x+2+1·1x+2.

Порядок раскрытия скобок

Теперь рассмотрим порядок применения правил, разобранных выше в выражениях общего вида, т.е. в выражениях, которые содержат суммы с разностями, произведения с частными, скобки в натуральной степени.

Порядок выполнения действий:

  • первым делом необходимо выполнить возведение скобок в натуральную степень;
  • на втором этапе производится раскрытие скобок в произведениях и частных;
  • заключительным шагом будет раскрытие скобок в суммах и разностях.

Рассмотрим порядок выполнения действий на примере выражения  (−5)+3·(−2):(−4)−6·(−7). Намнем преобразование с выражений 3·(−2):(−4) и 6·(−7), которые должны принять вид (3·2:4) и (−6·7). При подстановке полученных результатов в исходное выражение получаем: (−5)+3·(−2):(−4)−6·(−7)=(−5)+(3·2:4)−(−6·7). Раскрываем скобки:−5+3·2:4+6·7.

Имея дело с выражениями, которые содержат скобки в скобках, удобно проводить преобразования, продвигаясь изнутри наружу.

Сокращенного умножения квадрат разности. Что называется раскрытием скобок? Раскрытие скобок в произведениях нескольких скобок и выражений

Основная функция скобок – менять порядок действий при вычислениях значений . Например , в числовом выражении \(5·3+7\) сначала будет вычисляться умножение, а потом сложение: \(5·3+7 =15+7=22\). А вот в выражении \(5·(3+7)\) сначала будет вычислено сложение в скобке, и лишь потом умножение: \(5·(3+7)=5·10=50\).


Пример. Раскройте скобку: \(-(4m+3)\).
Решение : \(-(4m+3)=-4m-3\).

Пример. Раскройте скобку и приведите подобные слагаемые \(5-(3x+2)+(2+3x)\).
Решение : \(5-(3x+2)+(2+3x)=5-3x-2+2+3x=5\).

Пример. Раскройте скобки \(5(3-x)\).
Решение : В скобке у нас стоят \(3\) и \(-x\), а перед скобкой — пятерка. Значит, каждый член скобки умножается на \(5\) — напоминаю, что знак умножения между числом и скобкой в математике не пишут для сокращения размеров записей .

Пример. Раскройте скобки \(-2(-3x+5)\).
Решение : Как и в предыдущем примере, стоящие в скобке \(-3x\) и \(5\) умножаются на \(-2\).

Пример. Упростить выражение: \(5(x+y)-2(x-y)\).
Решение : \(5(x+y)-2(x-y)=5x+5y-2x+2y=3x+7y\).

Осталось рассмотреть последнюю ситуацию.

При умножении скобки на скобку, каждый член первой скобки перемножается с каждым членом второй:

\((c+d)(a-b)=c·(a-b)+d·(a-b)=ca-cb+da-db\)

Пример. Раскройте скобки \((2-x)(3x-1)\).
Решение : У нас произведение скобок и его можно раскрыть сразу по формуле выше. Но чтобы не путаться, давайте сделаем всё по шагам.
Шаг 1. Убираем первую скобку — каждый ее член умножаем на скобку вторую:

Шаг 2. Раскрываем произведения скобки на множитель как описано выше:
— сначала первое…

Потом второе.

Шаг 3. Теперь перемножаем и приводим подобные слагаемые:

Так подробно расписывать все преобразования совсем необязательно, можно сразу перемножать. Но если вы только учитесь раскрывать скобок – пишите подробно, меньше будет шанс ошибиться.

Примечание ко всему разделу. На самом деле, вам нет необходимости запоминать все четыре правила, достаточно помнить только одно, вот это: \(c(a-b)=ca-cb\) . Почему? Потому что если в него вместо c подставить единицу, получиться правило \((a-b)=a-b\) . А если подставить минус единицу, получим правило \(-(a-b)=-a+b\) . Ну, а если вместо c подставить другую скобку – можно получить последнее правило.

Скобка в скобке

Иногда в практике встречаются задачи со скобками, вложенными внутрь других скобок. Вот пример такого задания: упростить выражение \(7x+2(5-(3x+y))\).

Чтобы успешно решать подобные задания, нужно:
— внимательно разобраться во вложенности скобок – какая в какой находиться;
— раскрывать скобки последовательно, начиная, например, с самой внутренней.

При этом важно при раскрытии одной из скобок не трогать все остальное выражение , просто переписывая его как есть.
Давайте для примера разберем написанное выше задание.

Пример. Раскройте скобки и приведите подобные слагаемые \(7x+2(5-(3x+y))\).
Решение:

Пример. Раскройте скобки и приведите подобные слагаемые \(-(x+3(2x-1+(x-5)))\).
Решение :

\(-(x+3(2x-1\)\(+(x-5)\) \())\)

Здесь тройная вложенность скобок. Начинаем с самой внутренней (выделено зеленым). Перед скобкой плюс, так что она просто снимается.

\(-(x+3(2x-1\)\(+x-5\) \())\)

Теперь нужно раскрыть вторую скобку, промежуточную. Но мы перед этим упростим выражение привидением подобный слагаемых в этой второй скобке.

\(=-(x\)\(+3(3x-6)\) \()=\)

Вот сейчас раскрываем вторую скобку (выделено голубым). Перед скобкой множитель – так что каждый член в скобке умножается на него.

\(=-(x\)\(+9x-18\) \()=\)

И раскрываем последнюю скобку. Перед скобкой минус – поэтому все знаки меняются на противоположные.

Раскрытие скобок — это базовое умение в математике. Без этого умения невозможно иметь оценку выше тройки в 8 и 9 классе. Поэтому рекомендую хорошо разобраться в этой теме.

То части уравнения находится выражение в скобках. Чтобы раскрыть скобки, посмотрите на знак перед скобками. Если стоит знак плюс, при раскрывании скобок в записи выражения ничего не поменяется: просто уберите скобки.3
Формулы возведения выражения больше трех можно при помощи треугольника Паскаля.

Источники:

  • формула раскрытия скобок

Заключенные в скобки математические действия могут содержать переменные и выражения разной степени сложности. Для перемножения таких выражений придется искать решение в общем виде, раскрывая скобки и упрощая полученный результат. Если же в скобках содержатся операции без переменных, только с численными значениями, то раскрывать скобки не обязательно, так как при наличии компьютера его пользователю доступны весьма значительные вычислительные ресурсы – проще воспользоваться ими, чем упрощать выражение.

Инструкция

Перемножайте последовательно каждое (или уменьшаемое с ), содержащееся в одной скобке, на содержимое всех остальных скобок, если требуется получить результат в общем виде. Например, пусть исходное выражение записано так: (5+x)∗(6-х)∗(x+2). Тогда последовательное перемножение (то есть раскрытие скобок) даст следующий результат: (5+x)∗(6-х)∗(x+2) = (5∗6-5∗х)∗(5∗x+5∗2) + (6∗x-х∗x)∗(x∗x+2∗x) = (5∗6∗5∗x+5∗6∗5∗2) — (5∗х∗5∗x+5∗х∗5∗2) + (6∗x∗x∗x+6∗x∗2∗x) — (х∗x∗x∗x+х∗x∗2∗x) = 5∗6∗5∗x + 5∗6∗5∗2 — 5∗х∗5∗x — 5∗х∗5∗2 + 6∗x∗x∗x + 6∗x∗2∗x — х∗x∗x∗x — х∗x∗2∗x = 150∗x + 300 — 25∗x² — 50∗x + 6∗x³ + 12∗x² — x∗x³ — 2∗x³.

Упрощайте после результат, сокращая выражения. Например, полученное на предыдущем шаге выражение можно упростить таким образом: 150∗x + 300 — 25∗x² — 50∗x + 6∗x³ + 12∗x² — x∗x³ — 2∗x³ = 100∗x + 300 — 13∗x² — 8∗x³ — x∗x³.

Воспользуйтесь калькулятором, если требуется перемножить икс равен 4.75, то есть (5+4.75)∗(6-4.75)∗(4.75+2). Для вычисления этого значения перейдите на сайт поисковика Google или Nigma и введите выражение в поле запроса в его исходном виде (5+4.75)*(6-4.75)*(4.75+2). Google покажет 82.265625 сразу, без нажатия кнопки, а Nigma нуждается в отправке данных на сервер нажатием кнопки.

Раскрытие скобок является одним из видов преобразования выражения. В этом разделе мы опишем правила раскрытия скобок, а также рассмотрим наиболее часто встречающиеся примеры задач.

Yandex.RTB R-A-339285-1

Что называется раскрытием скобок?

Скобки используются для указания на порядок выполнения действий в числовых и буквенных выражениях, а также в выражениях с переменными. От выражения со скобками удобно перейти к тождественно равному выражению без скобок. Например, заменить выражение 2 · (3 + 4) на выражение вида 2 · 3 + 2 · 4 без скобок. Этот прием носит название раскрытия скобок.

Определение 1

Под раскрытием скобок подразумевают приемы избавления от скобок и рассматривают его обычно в отношении выражений, которые могут содержать:

  • знаки « + » или « — » перед скобками, в которые заключены суммы или разности;
  • произведение числа, буквы или нескольких букв и суммы или разности, которая помещена в скобки.

Так мы привыкли рассматривать процесс раскрытия скобок в курсе школьной программы. Однако никто не мешает нам посмотреть на это действие шире. Мы можем назвать раскрытием скобок переход от выражения, которое содержит отрицательные числа в скобках, к выражению, не имеющему скобок. К примеру, мы можем перейти от 5 + (− 3) − (− 7) к 5 − 3 + 7 . Фактически, это тоже раскрытие скобок.

Точно также мы можем заменить произведение выражений в скобках вида (a + b) · (c + d) на сумму a · c + a · d + b · c + b · d . Такой прием также не противоречит смыслу раскрытия скобок.

Вот еще один пример. Мы можем допустить, что в выражениях вместо чисел и переменных могут быть использованы любые выражения. Например, выражению x 2 · 1 a — x + sin (b) будет соответствовать выражение без скобок вида x 2 · 1 a — x 2 · x + x 2 · sin (b) .

Отдельного внимания заслуживать еще один момент, который касается особенностей записи решений при раскрытии скобок. Мы можем записать начальное выражение со скобками и полученный после раскрытия скобок результат как равенство. Например, после раскрытия скобок вместо выражения 3 − (5 − 7) мы получаем выражение 3 − 5 + 7 . Оба этих выражения мы можем записать в виде равенства 3 − (5 − 7) = 3 − 5 + 7 .

Проведение действий с громоздкими выражениями может потребовать записи промежуточных результатов. Тогда решение будет иметь вид цепочки равенств. Например, 5 − (3 − (2 − 1)) = 5 − (3 − 2 + 1) = 5 − 3 + 2 − 1 или 5 − (3 − (2 − 1)) = 5 − 3 + (2 − 1) = 5 − 3 + 2 − 1 .

Правила раскрытия скобок, примеры

Приступим к рассмотрению правил раскрытия скобок.

У одиночных чисел в скобках

Отрицательные числа в скобках часто встречаются в выражениях. Например, (− 4) и 3 + (− 4) . Положительные числа в скобках тоже имеют место быть.

Сформулируем правило раскрытия скобок, в которых заключены одиночные положительные числа. Предположим, что а – это любое положительное число. Тогда (а) мы можем заменить на а, + (а) на + а, — (а) на – а. Если вместо а взять конкретное число, то согласно правилу: число (5) запишется как 5 , выражение 3 + (5) без скобок примет вид 3 + 5 , так как + (5) заменяется на + 5 , а выражение 3 + (− 5) эквивалентно выражению 3 − 5 , так как + (− 5) заменяется на − 5 .

Положительные числа обычно записываются без использования скобок, так как скобки в этом случае излишни.

Теперь рассмотрим правило раскрытия скобок, внутри которых содержится одиночное отрицательное число. + (− a) мы заменяем на − a , − (− a) заменяется на + a . Если выражение начинается с отрицательного числа (− a) , которое записано в скобках, то скобки опускаются и вместо (− a) остается − a .

Приведем примеры: (− 5) можно записать как − 5 , (− 3) + 0 , 5 принимает вид − 3 + 0 , 5 , 4 + (− 3) превращается в 4 − 3 , а − (− 4) − (− 3) после раскрытия скобок принимает вид 4 + 3 , так как − (− 4) и − (− 3) заменяется на + 4 и + 3 .

Следует понимать, что записать выражение 3 · (− 5) как 3 · − 5 нельзя. Об этом речь пойдет в следующих пунктах.

Давайте посмотрим, на чем основываются правила раскрытия скобок.

Согласно правилу разность a − b равна a + (− b) . На основе свойств действий с числами мы можем составить цепочку равенств (a + (− b)) + b = a + ((− b) + b) = a + 0 = a , которая будет справедлива. Эта цепочка равенств в силу смысла вычитания доказывает, что выражение a + (− b) — это разность a − b .

Основываясь на свойствах противоположных чисел и правил вычитания отрицательных чисел мы можем утверждать, что − (− a) = a , a − (− b) = a + b .

Встречаются выражения, которые составляются из числа, знаков минуса и нескольких пар скобок. Использование приведенных выше правил позволяет последовательно избавляться от скобок, продвигаясь от внутренних скобок к наружным или в обратном направлении. Примером такого выражения может быть − (− ((− (5)))) . Раскроем скобки, продвигаясь изнутри наружу: − (− ((− (5)))) = − (− ((− 5))) = − (− (− 5)) = − (5) = − 5 . Также этот пример можно разобрать и в обратном направлении: − (− ((− (5)))) = ((− (5))) = (− (5)) = − (5) = − 5 .

Под a и b можно понимать не только числа, но также произвольные числовые или буквенные выражения со знаком « + » впереди, которые не являются суммами или разностями. Во всех этих случаях можно применять правила точно также, как мы делали это в отношении одиночных чисел в скобках.

К примеру, после раскрытия скобок выражение − (− 2 · x) − (x 2) + (− 1 x) − (2 · x · y 2: z) примет вид 2 · x − x 2 − 1 x − 2 · x · y 2: z . Как мы это сделали? Мы знаем, что − (− 2 · x) есть + 2 · x , а так как это выражение стоит вначале, то + 2 · x можно записать как 2 · x , − (x 2) = − x 2 , + (− 1 x) = − 1 x и − (2 · x · y 2: z) = − 2 · x · y 2: z .

В произведениях двух чисел

Начнем с правила раскрытия скобок в произведении двух чисел.

Предположим, что a и b – это два положительных числа. В этом случае произведение двух отрицательных чисел − a и − b вида (− a) · (− b) мы можем заменить на (a · b) , а произведения двух чисел с противоположными знаками вида (− a) · b и a · (− b) заменить на (− a · b) . Умножение минуса на минус дает плюс, а умножение минуса на плюс, как и умножение плюса на минус дает минус.

Верность первой части записанного правила подтверждается правилом умножения отрицательных чисел. Для подтверждения второй части правила мы можем использовать правила умножения чисел с разными знаками.

Рассмотрим несколько примеров.

Пример 1

Рассмотрим алгоритм раскрытия скобок в произведении двух отрицательных чисел — 4 3 5 и — 2 , вида (- 2) · — 4 3 5 . Для этого заменим исходное выражение на 2 · 4 3 5 . Раскроем скобки и получим 2 · 4 3 5 .

А если мы возьмем частное отрицательных чисел (− 4) : (− 2) , то запись после раскрытия скобок будет иметь вид 4: 2

На месте отрицательных чисел − a и − b могут быть любые выражения со знаком минус впереди, которые не являются суммами или разностями. К примеру, это могут быть произведения, частные, дроби, степени, корни, логарифмы, тригонометрические функции и т.п.

Раскроем скобки в выражении — 3 · x x 2 + 1 · x · (- ln 5) . Согласно правилу, мы можем произвести следующие преобразования: — 3 · x x 2 + 1 · x · (- ln 5) = — 3 · x x 2 + 1 · x · ln 5 = 3 · x x 2 + 1 · x · ln 5 .

Выражение (− 3) · 2 можно преобразовать в выражение (− 3 · 2) . После этого можно раскрыть скобки: − 3 · 2 .

2 3 · — 4 5 = — 2 3 · 4 5 = — 2 3 · 4 5

Деление чисел с разными знаками также может потребовать предварительного раскрытия скобок: (− 5) : 2 = (− 5: 2) = − 5: 2 и 2 3 4: (- 3 , 5) = — 2 3 4: 3 , 5 = — 2 3 4: 3 , 5 .

Правило может быть использовано для выполнения умножения и деления выражений с разными знаками. Приведем два примера.

1 x + 1: x — 3 = — 1 x + 1: x — 3 = — 1 x + 1: x — 3

sin (x) · (- x 2) = (- sin (x) · x 2) = — sin (x) · x 2

В произведениях трех и большего количества чисел

Перейдем к произведенимя и частным, которые содержат большее количество чисел. Для раскрытия скобок здесь будет действовать следующее правило. При четном количестве отрицательных чисел можно опустить скобки, заменив числа противоположными. После этого необходимо заключить полученное выражение в новые скобки. При нечетном количестве отрицательных чисел, опустив скобки, заменить числа на противоположные. После этого полученное выражение необходимо взять в новые скобки и поставить перед ним знак минус.

Пример 2

Для примера, возьмем выражение 5 · (− 3) · (− 2) , которое представляет собой произведение трех чисел. Отрицательных чисел два, следовательно, мы можем записать выражение как (5 · 3 · 2) и затем окончательно раскрыть скобки, получив выражение 5 · 3 · 2 .

В произведении (− 2 , 5) · (− 3) : (− 2) · 4: (− 1 , 25) : (− 1) пять чисел являются отрицательными. поэтому (− 2 , 5) · (− 3) : (− 2) · 4: (− 1 , 25) : (− 1) = (− 2 , 5 · 3: 2 · 4: 1 , 25: 1) . Окончательно раскрыв скобки, получаем −2,5·3:2·4:1,25:1 .

Обосновать приведенное выше правило можно следующим образом. Во-первых, такие выражения мы можем переписать как произведение, заменив умножением на обратное число деление. Представляем каждое отрицательное число как произведение множительного числа и — 1 или — 1 заменяем на (− 1) · a .

Используя переместительное свойство умножения меняем местами множители и переносим все множители, равные − 1 , в начало выражения. Произведение четного числа минус единиц равно 1 , а нечетного – равно − 1 , что позволяет нам использовать знак минус.

Если бы мы не использовали правило, то цепочка действий по раскрытию скобок в выражении — 2 3: (- 2) · 4: — 6 7 выглядела бы следующим образом:

2 3: (- 2) · 4: — 6 7 = — 2 3 · — 1 2 · 4 · — 7 6 = = (- 1) · 2 3 · (- 1) · 1 2 · 4 · (- 1) · 7 6 = = (- 1) · (- 1) · (- 1) · 2 3 · 1 2 · 4 · 7 6 = (- 1) · 2 3 · 1 2 · 4 · 7 6 = = — 2 3 · 1 2 · 4 · 7 6

Приведенное выше правило может быть использовано при раскрытии скобок в выражениях, которые представляют собой произведения и частные со знаком минус, не являющихся суммами или разностями. Возьмем для примера выражение

x 2 · (- x) : (- 1 x) · x — 3: 2 .

Его можно привести к выражению без скобок x 2 · x: 1 x · x — 3: 2 .

Раскрытие скобок, перед которыми стоит знак +

Рассмотрим правило, которое можно применить для раскрытия скобок, перед которыми стоит знак плюс, а «содержимое» этих скобок не умножается и не делится на какое-либо число или выражение.

Согласно правилу скобки вместе со стоящим перед ними знаком опускаются, при этом знаки всех слагаемых в скобках сохраняются. Если перед первым слагаемым в скобках не стоит никакого знака, то нужно поставить знак плюс.

Пример 3

Для примера приведем выражение (12 − 3 , 5) − 7 . Опустив скобки, мы сохраняем знаки слагаемых в скобках и ставим перед первым слагаемым знак плюс. Запись будет иметь вид (12 − 3 , 5) − 7 = + 12 − 3 , 5 − 7 . В приведенном примере знак перед первым слагаемым ставить не обязательно, так как + 12 − 3 , 5 − 7 = 12 − 3 , 5 − 7 .

Пример 4

Рассмотрим еще один пример. Возьмем выражение x + 2 a — 3 x 2 + 1 — x 2 — 4 + 1 x и проведем с ним действия x + 2 a — 3 x 2 + 1 — x 2 — 4 + 1 x = = x + 2 a — 3 x 2 + 1 — x 2 — 4 + 1 x

Вот еще один пример раскрытия скобок:

Пример 5

2 + x 2 + 1 x — x · y · z + 2 · x — 1 + (- 1 + x — x 2) = = 2 + x 2 + 1 x — x · y · z + 2 · x — 1 — 1 + x + x 2

Как раскрываются скобки, перед которыми стоит знак минус

Рассмотрим случаи, когда перед скобками стоит знак минус, и которые не не умножаются (или делятся) на какое-либо число или выражение. Согласно правилу раскрытия скобок, перед которыми стоит знак « — », скобки со знаком « — » опускаются, при этом знаки всех слагаемых внутри скобок меняются на противоположные.

Пример 6

К примеру:

1 2 = 1 2 , — 1 x + 1 = — 1 x + 1 , — (- x 2) = x 2

Выражения с переменными могут быть преобразованы с использованием того же правила:

X + x 3 — 3 — — 2 · x 2 + 3 · x 3 · x + 1 x — 1 — x + 2 ,

получаем x — x 3 — 3 + 2 · x 2 — 3 · x 3 · x + 1 x — 1 — x + 2 .

Раскрытие скобок при умножении числа на скобку, выражения на скобку

Здесь мы рассмотрим случаи, когда нужно раскрыть скобки, которые умножаются или делятся на какое-либо число или выражение. Тут применимы формулы вида (a 1 ± a 2 ± … ± a n) · b = (a 1 · b ± a 2 · b ± … ± a n · b) или b · (a 1 ± a 2 ± … ± a n) = (b · a 1 ± b · a 2 ± … ± b · a n) , где a 1 , a 2 , … , a n и b – некоторые числа или выражения.

Пример 7

Например, проведем раскрытие скобок в выражении (3 − 7) · 2 . Согласно правилу, мы можем провести следующие преобразования: (3 − 7) · 2 = (3 · 2 − 7 · 2) . Получаем 3 · 2 − 7 · 2 .

Раскрыв скобки в выражении 3 · x 2 · 1 — x + 1 x + 2 , получаем 3 x 2 · 1 — 3 · x 2 · x + 3 · x 2 · 1 x + 2 .

Умножение скобки на скобку

Рассмотрим произведение двух скобок вида (a 1 + a 2) · (b 1 + b 2) . Это поможет нам получить правило для раскрытия скобок при проведении умножения скобки на скобку.

Для того, чтобы решить приведенный пример, обозначим выражение (b 1 + b 2) как b . Это позволит нам использовать правило умножения скобки на выражение. Получим (a 1 + a 2) · (b 1 + b 2) = (a 1 + a 2) · b = (a 1 · b + a 2 · b) = a 1 · b + a 2 · b . Выполнив обратную замену b на (b 1 + b 2) , снова применим правило умножения выражения на скобку: a 1 · b + a 2 · b = = a 1 · (b 1 + b 2) + a 2 · (b 1 + b 2) = = (a 1 · b 1 + a 1 · b 2) + (a 2 · b 1 + a 2 · b 2) = = a 1 · b 1 + a 1 · b 2 + a 2 · b 1 + a 2 · b 2

Благодаря ряду несложных приемов мы можем прийти к сумме произведений каждого из слагаемых из первой скобки на каждое из слагаемых из второй скобки. Правило можно распространить на любое количество слагаемых внутри скобок.

Сформулируем правила умножения скобки на скобку: чтобы перемножить между собой две суммы, необходимо каждое из слагаемых первой суммы перемножить на каждое из слагаемых второй суммы и сложить полученные результаты.

Формула будет иметь вид:

(a 1 + a 2 + . . . + a m) · (b 1 + b 2 + . . . + b n) = = a 1 b 1 + a 1 b 2 + . . . + a 1 b n + + a 2 b 1 + a 2 b 2 + . . . + a 2 b n + + . . . + + a m b 1 + a m b 1 + . . . a m b n

Проведем раскрытие скобок в выражении (1 + x) · (x 2 + x + 6) Оно представляет собой произведение двух сумм. Запишем решение: (1 + x) · (x 2 + x + 6) = = (1 · x 2 + 1 · x + 1 · 6 + x · x 2 + x · x + x · 6) = = 1 · x 2 + 1 · x + 1 · 6 + x · x 2 + x · x + x · 6

Отдельно стоит остановиться на тех случаях, когда в скобках присутствует знак минус наряду со знаками плюс. Для примера возьмем выражение (1 − x) · (3 · x · y − 2 · x · y 3) .

Сначала представим выражения в скобках в виде сумм: (1 + (− x)) · (3 · x · y + (− 2 · x · y 3)) . Теперь мы можем применить правило: (1 + (− x)) · (3 · x · y + (− 2 · x · y 3)) = = (1 · 3 · x · y + 1 · (− 2 · x · y 3) + (− x) · 3 · x · y + (− x) · (− 2 · x · y 3))

Раскроем скобки: 1 · 3 · x · y − 1 · 2 · x · y 3 − x · 3 · x · y + x · 2 · x · y 3 .

Раскрытие скобок в произведениях нескольких скобок и выражений

При наличии в выражении трех и более выражений в скобках, раскрывать скобки необходимо последовательно. Начать преобразование необходимо с того, что два первых множителя берут в скобки. Внутри этих скобок мы можем проводить преобразования согласно правилам, рассмотренным выше. Например, скобки в выражении (2 + 4) · 3 · (5 + 7 · 8) .

В выражении содержится сразу три множителя (2 + 4) , 3 и (5 + 7 · 8) . Будем раскрывать скобки последовательно. Заключим первые два множителя еще в одни скобки, которые для наглядности сделаем красными: (2 + 4) · 3 · (5 + 7 · 8) = ((2 + 4) · 3) · (5 + 7 · 8) .

В соответствии с правилом умножения скобки на число мы можем провести следующие действия: ((2 + 4) · 3) · (5 + 7 · 8) = (2 · 3 + 4 · 3) · (5 + 7 · 8) .

Умножаем скобку на скобку: (2 · 3 + 4 · 3) · (5 + 7 · 8) = 2 · 3 · 5 + 2 · 3 · 7 · 8 + 4 · 3 · 5 + 4 · 3 · 7 · 8 .

Скобка в натуральной степени

Степени, основаниями которых являются некоторые выражения, записанные в скобках, с натуральными показателями можно рассматривать как произведение нескольких скобок. При этом по правилам из двух предыдущих пунктов их можно записать без этих скобок.

Рассмотрим процесс преобразования выражения (a + b + c) 2 . Его можно записать в виде произведения двух скобок (a + b + c) · (a + b + c) . Произведем умножение скобки на скобку и получим a · a + a · b + a · c + b · a + b · b + b · c + c · a + c · b + c · c .

Разберем еще один пример:

Пример 8

1 x + 2 3 = 1 x + 2 · 1 x + 2 · 1 x + 2 = = 1 x · 1 x + 1 x · 2 + 2 · 1 x + 2 · 2 · 1 x + 2 = = 1 x · 1 x · 1 x + 1 x · 2 · 1 x + 2 · 1 x · 1 x + 2 · 2 · 1 x + 1 x · 1 x · 2 + + 1 x 2 · 2 + 2 · 1 x · 2 + 2 · 2 · 2

Деление скобки на число и скобки на скобку

Деление скобки на число предполагает, что необходимо разделить на число все заключенные в скобки слагаемые. Например, (x 2 — x) : 4 = x 2: 4 — x: 4 .

Деление можно предварительно заменить умножением, после чего можно воспользоваться подходящим правилом раскрытия скобок в произведении. Это же правило применимо и при делении скобки на скобку.

Например, нам необходимо раскрыть скобки в выражении (x + 2) : 2 3 . Для этого сначала заменим деление умножением на обратное число (x + 2) : 2 3 = (x + 2) · 2 3 . Умножим скобку на число (x + 2) · 2 3 = x · 2 3 + 2 · 2 3 .

Вот еще один пример деления на скобку:

Пример 9

1 x + x + 1: (x + 2) .

Заменим деление умножением: 1 x + x + 1 · 1 x + 2 .

Выполним умножение: 1 x + x + 1 · 1 x + 2 = 1 x · 1 x + 2 + x · 1 x + 2 + 1 · 1 x + 2 .

Порядок раскрытия скобок

Теперь рассмотрим порядок применения правил, разобранных выше в выражениях общего вида, т.е. в выражениях, которые содержат суммы с разностями, произведения с частными, скобки в натуральной степени.

Порядок выполнения действий:

  • первым делом необходимо выполнить возведение скобок в натуральную степень;
  • на втором этапе производится раскрытие скобок в произведениях и частных;
  • заключительным шагом будет раскрытие скобок в суммах и разностях.

Рассмотрим порядок выполнения действий на примере выражения (− 5) + 3 · (− 2) : (− 4) − 6 · (− 7) .3 \)

Произведение одночлена и многочлена тождественно равно сумме произведений этого одночлена и каждого из членов многочлена.

Этот результат обычно формулируют в виде правила.

Чтобы умножить одночлен на многочлен, надо умножить этот одночлен на каждый из членов многочлена.

Мы уже неоднократно использовали это правило для умножения на сумму.

Произведение многочленов. Преобразование (упрощение) произведения двух многочленов

Вообще, произведение двух многочленов тождественно равно сумме произведении каждого члена одного многочлена и каждого члена другого.

Обычно пользуются следующим правилом.

Чтобы умножить многочлен на многочлен, надо каждый член одного многочлена умножить на каждый член другого и сложить полученные произведения.

Формулы сокращенного умножения. Квадраты суммы, разности и разность квадратов

С некоторыми выражениями в алгебраических преобразованиях приходится иметь дело чаще, чем с другими. Пожалуй, наиболее часто встречаются выражения \((a + b)^2, \; (a — b)^2 \) и \(a^2 — b^2 \), т.2 = (a — b)(a + b) \) — разность квадратов равна произведению разности на сумму.

Эти три тождества позволяют в преобразованиях заменять свои левые части правыми и обратно — правые части левыми. Самое трудное при этом — увидеть соответствующие выражения и понять, чем в них заменены переменные а и b. Рассмотрим несколько примеров использования формул сокращенного умножения.

Формулы сокращенного выражения очень часто применяются на практике, так что их все желательно выучить наизусть. До этого момента нам будет служить верой и правдой , которую мы рекомендуем распечатать и все время держать перед глазами:

Первые четыре формулы из составленной таблицы формул сокращенного умножения позволяют возводить в квадрат и куб сумму или разность двух выражений. Пятая предназначена для краткого умножения разности и суммы двух выражений. А шестая и седьмая формулы используются для умножения суммы двух выражений a и b на их неполный квадрат разности (так называют выражение вида a 2 −a·b+b 2 ) и разности двух выражений a и b на неполный квадрат их суммы (a 2 +a·b+b 2 ) соответственно.

Стоит отдельно заметить, что каждое равенство в таблице представляет собой тождество . Этим объясняется, почему формулы сокращенного умножения еще называют тождествами сокращенного умножения.

При решении примеров, особенно в которых имеет место разложение многочлена на множители , ФСУ часто используют в виде с переставленными местами левыми и правыми частями:


Три последних тождества в таблице имеют свои названия. Формула a 2 −b 2 =(a−b)·(a+b) называется формулой разности квадратов , a 3 +b 3 =(a+b)·(a 2 −a·b+b 2 ) — формулой суммы кубов , а a 3 −b 3 =(a−b)·(a 2 +a·b+b 2 ) — формулой разности кубов . Обратите внимание, что соответствующим формулам с переставленными частями из предыдущей таблицы фсу мы никак не назвали.

Дополнительные формулы

В таблицу формул сокращенного умножения не помешает добавить еще несколько тождеств.

Сферы применения формул сокращенного умножения (фсу) и примеры

Основное предназначение формул сокращенного умножения (фсу) объясняется их названием, то есть, оно состоит в кратком умножении выражений. Однако сфера применения ФСУ намного шире, и не ограничивается кратким умножением. Перечислим основные направления.

Несомненно, центральное приложение формулы сокращенного умножения нашли в выполнении тождественных преобразований выражений . Наиболее часто эти формулы используются в процессе упрощения выражений .

Пример.

Упростите выражение 9·y−(1+3·y) 2 .

Решение.

В данном выражении возведение в квадрат можно выполнить сокращенно, имеем 9·y−(1+3·y) 2 =9·y−(1 2 +2·1·3·y+(3·y) 2) . Остается лишь раскрыть скобки и привести подобные члены: 9·y−(1 2 +2·1·3·y+(3·y) 2)= 9·y−1−6·y−9·y 2 =3·y−1−9·y 2 .

Формулы сокращенного умножения

Формулы сокращенного умножения позволяют преобразовать математическое выражение к более простому виду, который позволяет выполнить дальнейшие преобразования или найти нужное решение. Примером формул для математических преобразований является факторизация многочленов, с помощью которой выполнятся понижение степени многочленов. А например с помощью Бинома Ньютона выполняется разложение на отдельные слагаемые степени двух переменных.

Формулы упрощения применяются для раскрытия скобок степеней, понижения степени суммы или разности, а так же для других математических упрощений. В приведенных ниже формулах, вместо символов «a» и «b» могут применяться числовые значения, переменные или любые математические выражения и формулы.

Внизу страницы можно скачать формулы в виде картинок для последующей печати и использования в качестве справочного материала при решении задач.


1. Квадрат суммы

… … подготовка формул … …



2. Квадрат разности




3. Сумма и разность квадратов




4. Сумма в третьей степени (куб суммы)





5. Разность в третьей степени (куб разности)




6. Сумма и разность кубов




7. Формулы сокращенного умножения для четвертой степени






8. Формулы сокращенного умножения для пятой степени






9. Формулы сокращенного умножения для шестой степени





10. Формулы сокращенного умножения для степени n, где

n — любое натуральное число


11. Формулы сокращенного умножения для степени n, где

n — четное положительное число

12. Формулы сокращенного умножения для степени n, где

n — нечетное положительное число

13. Некоторые свойства формул






Скачать формулы в виде изображения в виде картинок

Скачать формулы в виде изображения:


Как раскрывать скобки в выражениях и уравнениях. Правила математики.

Скобки используются для указания на порядок выполнения действий в числовых и буквенных выражениях, а также в выражениях с переменными. От выражения со скобками удобно перейти к тождественно равному выражению без скобок. Этот прием носит название раскрытия скобок.

Раскрыть скобки означает избавить выражение от этих скобок.

Отдельного внимания заслуживает еще один момент, который касается особенностей записи решений при раскрытии скобок. Мы можем записать начальное выражение со скобками и полученный после раскрытия скобок результат как равенство. Например, после раскрытия скобок вместо выражения
3−(5−7) мы получаем выражение 3−5+7. Оба этих выражения мы можем записать в виде равенства 3−(5−7)=3−5+7.

И еще один важный момент. В математике для сокращения записей принято не писать знак плюс, если он стоит в выражении или в скобках первым. Например, если мы складываем два положительных числа, к примеру, семь и три, то пишем не +7+3, а просто 7+3, несмотря на то, что семерка тоже положительное число. Аналогично если вы видите, например, выражение (5+x) – знайте, что и перед скобкой стоит плюс, который не пишут, и перед пятеркой стоит плюс +(+5+x).

Правило раскрытия скобок при сложении

При раскрытии скобок, если перед скобками стоит плюс, то этот плюс опускается вместе со скобками.

Пример. Раскрыть скобки в выражении 2 + (7 + 3) Перед скобками плюс, значит знаки перед числами в скобках не меняем.

2 + (7 + 3) = 2 + 7 + 3

Правило раскрытия скобок при вычитании

Если перед скобками стоит минус, то этот минус опускается вместе со скобками, но слагаемые, которые были в скобках, меняют свой знак на противоположный. Отсутствие знака перед первым слагаемым в скобках подразумевает знак +.

Пример. Раскрыть скобки в выражении 2 − (7 + 3)

Перед скобками стоит минус, значит нужно поменять знаки перед числами из скобок. В скобках перед цифрой 7 знака нет, это значит, что семерка положительная, считается, что перед ней знак +.

2 − (7 + 3) = 2 − (+ 7 + 3)

При раскрытии скобок убираем из примера минус, который был перед скобками, и сами скобки 2 − (+ 7 + 3)  , а знаки, которые были в скобках, меняем на противоположные.

2 − (+ 7 + 3) = 2 − 7 − 3

Раскрытие скобок при умножении

Если перед скобками стоит знак умножения, то каждое число, стоящее внутри скобок, умножается на множитель, стоящий перед скобками. При этом умножение минуса на минус дает плюс, а умножение минуса на плюс, как и умножение плюса на минус дает минус.

Таким образом, сскобки в произведениях раскрываются в соответствии с распределительным свойством умножения.

Пример. 2 · (9 — 7) = 2 · 9 — 2 · 7

При умножении скобки на скобку, каждый член первой скобки перемножается с каждым членом второй скобки.

(2 + 3) · (4 + 5) = 2 · 4 + 2 · 5 + 3 · 4 + 3 · 5

На самом деле, нет необходимости запоминать все правила, достаточно помнить только одно, вот это: c(a−b)=ca−cb. Почему? Потому что если в него вместо c подставить единицу, получится правило (a−b)=a−b. А если подставить минус единицу, получим правило −(a−b)=−a+b. Ну, а если вместо c подставить другую скобку – можно получить последнее правило.

Раскрываем скобки при делении

Если после скобок стоит знак деления, то каждое число, стоящее внутри скобок, делится на делитель, стоящий после скобок, и наоборот.

Пример.  (9 + 6) : 3=9 : 3 + 6 : 3

Как раскрыть вложенные скобки

Если в выражении присутствуют вложенные скобки, то их раскрывают по порядку, начиная с внешних или внутренних.

При этом важно при раскрытии одной из скобок не трогать остальные скобки, просто переписывая их как есть. 

Пример.    12 — (a + (6 — b) — 3) = 12 — a — (6 — b) + 3 = 12 — a — 6 + b + 3 = 9 — a + b

Как решать квадратное уравнение

Как решать квадратные уравнения

Алгоритм решения квадратного уравнения


Речь идет о поиске только действительных корней квадратного уравнения.

Шаг 1:  Записываем уравнение в стандартном виде

В общем виде квадратное уравнение можно записать так:

Здесь — любое ненулевое число,  — любые числа, a — то число, которое необходимо найти. Такой вид уравнения называют стандартным. Например, — квадратное уравнение в стандартном виде, причем , и . Число называют старшим коэффициентом, число — свободным коэффициентом. А все выражение вида называют квадратным трехчленом.

Типичная ошибка: считать, что , то есть забыть про знак «-«.

Cтоит заметить, что все коэффициенты уравнения можно уменьшить в раза. Уравнение примет вид . Числа , и , естественно, изменились (уменьшились!). Зато корни уравнения остались прежними. Поэтому всегда стоит проверять, а нельзя ли таким образом упростить уравнение, чтобы легче было далее находить корни.

Итак, первым делом необходимо привести квадратное уравнение  к стандартному виду. Для этого можно раскрывать скобки, приводить подобные слагаемые, переносить слагаемые из одной части уравнения в другую (при этом слагаемые меняют знак). Например, . Раскрываем скобки: . Приводим подобные слагаемые: . Переносим все слагаемые из правой части в левую: (повторю: такие слагаемые меняют свой знак).  И опять приводим подобные слагаемые: . Получим квадратное уравнение в стандартном виде. Причем , и .

Типичная ошибка: забыть поменять знак слагаемого при переносе.

Типичная ошибка: перепутать слагаемые местами и неправильно определить коэффициенты. Например, . И кажется, что , и . На самом деле, , и .

Интересный случай: предположим, что получилось уравнение . Чему равно ? На этот вопрос не каждый может ответить уверенно. Ответ: .

Интересный случай: дано уравнение . Мы смело раскрываем скобки и переносим и из правой части в левую. Но после приведения подобных слагаемых получается уравнение .  Нет ! Ни о каком стандартном виде квадратного уравнения здесь не может быть и речи просто потому, что это не квадратное уравнение, а совсем другая история под названием «Линейное уравнение».

Замечание: опытные в квадратных уравнениях математики советуют всегда делать коэффициент положительным. Для этого левую и правую части уравнения всегда можно домножить на . Например, заменим на . По-простому говоря, каждое слагаемое меняет знак. Да, это другое уравнение и коэффициенты другие. Но корни у него такие же, как и у исходного уравнения. Поэтому далее спокойно можно работать с новым. Зачем делать положительным? Например, затем, чтобы было меньше арифметических ошибок, когда будем находить дискриминант. Что такое дискриминант, узнаем в следующем шаге.

Шаг 2: Находим дискриминант.

У нас есть квадратное уравнение в виде . Вычисляем число , которое называется дискриминантом квадратного уравнения. Например, для уравнения дискриминант равен .

Типичная ошибка: часто вместо пишут  , то есть забывают скобки, но это уже , а не .

Типичная ошибка: неправильно определяют коэффициенты , и

Типичная ошибка: в слагаемом неправильно определяют окончательный знак. Например, в все-таки в итоге получается , а не .

Редкая ошибка: дискриминант пишут с большой буквы, видимо, из уважения или считая, что это фамилия.

Шаг 3: Находим корни уравнения

У нас есть дискриминант . Далее все зависит от его знака.

Если , то корней у уравнения нет. Ответ: корней нет. Вот так внезапно решение закончилось. Например, в уравнении дискриминант равен . Поэтому корней нет. Кстати, что это значит? Это значит, что какое бы число вы не выбрали, подстановка его в выражение вместо никогда не даст . Проверим число , например: . Не ноль. То есть — не корень. Аналогично с любым другим числом: ноль никогда не получится.

Если , то . Числа и — это как раз те коэффициенты из стандартной записи уравнения. Например, в уравнении дискриминант . Тогда . Ответ: .

Типичная ошибка: неправильно подставляют в формулу . Ошибаются со знаком. Ведь если , например, то .

Если . То в ответе будет два корня, которые можно найти по формулам и . Например, в уравнении дискриминант . Тогда и . Так как , то и . Ответ: .

Замечание: часто для сокращения пишут две формулы в одной: .

Замечание: иногда дискриминант может оказаться «некрасивым», например, . Такое может быть, и терять самообладание не стоит. Совет один: перепроверить решение и, если ошибка не найдена, со спокойной совестью решать дальше. Чаще всего задачи придумывают так, чтобы дискриминант были полным квадратом (кстати, полезно выучить таблицу квадратов чисел от 1 до 20). Но иногда попадаются ответы вида .

Типичная ошибка: неправильно находят . Например, считают, что . На самом деле, . Отрицательным выражение быть не может (по определению арифметического квадратного корня).

Вот и весь алгоритм. Конечно, есть еще много деталей. Например, есть неполные квадратные уравнения, когда лучше решать способами без дискриминанта. Есть еще уравнения, сводящиеся к квадратным. Есть еще поиск комплексных корней квадратного уравнения (для ЕГЭ это излишне). Кстати, проверить свое решение квадратного уравнения всегда можно здесь. Далее стоит изучить теорему Виета, понять, а как возникает формула для дискриминанта, как быть с уравнением третьей степени.

Полный пример решения квадратного уравнения.

Условие

Решить уравнение

Решение

Согласно алгоритму, раскрываем скобки: .
На всякий случай, расписал все подробно. Но вообще такие действия надо научиться делать почти устно. Более того, лучше заметить, что к первому слагаемому применима формула сокращенного умножения, точнее, разность квадратов. Такие формулы позволяют значительно экономить время и силы (потренироваться можно здесь).
Но продолжим решение: . Приводим подобные слагаемые и переносим в левую часть уравнения: .
Изменим знак : .
Находим дискриминант. Так как , и , то . Дискриминант , поэтому у уравнения два корня: и .
Осталось заметить, что корни можно упростить, ведь .
Получаем окончательный ответ, который запишем одной формулой: .
Как видите, малейшая неточность в арифметических вычислениях — и весь труд в итоге напрасен.
Поэтому стоит потренироваться выполнять арифметические вычисления устно и без ошибок.

Ответ:  

Задачи для самостоятельного решения

Номера 41, 42, 43, 51, 52, 53  (ответы находятся после условий)

все статьи по математике

 

Раскрывающиеся скобки — Алгебраические выражения — Edexcel — GCSE Maths Revision — Edexcel

Раскрывающие скобки означает умножение всего внутри скобок на букву или число вне скобок. Например, в выражении \ (3 (m + 7) \) оба \ (m \) и 7 должны быть умножены на 3:

\ (3 (m + 7) = 3 \ times m + 3 \ times 7 = 3m + 21 \). 2 \).4q \]

Расширение и упрощение

Выражения со скобками часто можно смешивать с другими терминами. Например, \ (3 (h + 2) — 4 \). В этих случаях сначала разверните скобку, а затем соберите любые похожие термины.

Пример 1

Расширить и упростить \ (3 (h + 2) — 4 \).

\ [3 (h + 2) — 4 = 3 \ times h + 3 \ times 2-4 = 3h + 6-4 = 3h + 2 \]

Пример 2

Расширить и упростить \ (6g + 2g (3g + 7) \).

BIDMAS или BODMAS — это порядок операций: скобки, индексы или степени, деление или умножение, сложение или вычитание.2 + 20г \).

Ответы обычно пишутся в порядке убывания степени.

Упрощение вложенных круглых скобок | Purplemath

Purplemath

Круглые скобки внутри других скобок называются «вложенными» скобками. Процесс упрощения работает так же, как и в более простых примерах на предыдущей странице, но нам нужно быть немного более осторожными, работая над символами группировки.

И, «прокладывая себе путь», я имею в виду «прокладывать себе путь изнутри, упрощая по ходу дела».

MathHelp.com

  • Упростить 3 [2 — 1 (3
    2 -2 3 )]

Самая внутренняя скобка — это показатель степени внутри скобок.Я начну с упрощения этой части выражения:

3 [2 — 1 (3 2 — 2 3 )]

3 [2 — 1 (9 — 8)]

3 [2 — 1 (1)]

Далее следует упрощение в квадратных скобках.

3 [2 — 1 (1)]

3 [2–1]

3 [1]

3

С этим ничего нельзя поделать, поэтому мой ответ:


Вы можете спросить, почему я не поставил знак «равно» между каждой из вышеприведенных строк.Хотя это было бы законным (математически), я видел, как многие студенты не понимают, когда знаки «равно» «имеют значение», а когда нет.

Для ясности, один должен иметь знаки «равно», когда кто-то работает с уравнениями (то есть когда он работает с «(одно выражение) равно (другое выражение)», и нужно найти значение Переменная). Один должен иметь знак «равно» для работы с уравнениями. У нет , чтобы использовать их для упрощения автономных выражений.Чтобы избежать путаницы, я стараюсь не использовать знаки «равно», когда только упрощает. (Подробнее об этом позже.)


  • Упростить 4 [
    x + 3 (2 x + 1)]

С вложенными круглыми скобками безопаснее всего работать изнутри. Поэтому я сначала возьму 3 через внутренние круглые скобки, прежде чем я даже подумаю о о работе с 4 и квадратными скобками снаружи.Я также буду упрощать, насколько смогу, по мере продвижения. Я буду описывать каждый шаг полностью по мере продвижения. Я начинаю с исходного упражнения, а затем провожу тройку до самой внутренней скобки:

4 [ x + 3 (2 x + 1)]

4 [ x + 3 (2 x ) + 3 (1)]

4 [ x + 6 x + 3]

Теперь я могу комбинировать одинаковые термины (являющиеся двумя терминами, содержащими переменные), чтобы получить:

Теперь, когда внутренняя часть квадратных скобок упростилась, я могу начать перемещать 4 через скобки:

4 [7 x + 3]

4 [7 x ] + 4 [3]

28 x + 12

Я не могу объединить эти два термина, так что я закончил.

Между прочим, квадратные скобки («[» и «]») не имеют особого значения по сравнению с круглыми скобками по сравнению с фигурными скобками («{» и «}»). Использование различных символов группировки — это просто хороший способ помочь пользователю отслеживать различные пары символов. Это похоже на работу с некоторыми электронными таблицами, где пары скобок в выделенной формуле будут иметь цветовую кодировку, как вы можете видеть ниже:

Эта цветовая кодировка помогает увидеть, какой символ «)» (то есть, с каким «закрытым парнем») сочетается с каким символом «(» (то есть с каким «открытым парнем») в формуле.Различные типы группирующих символов в математике служат той же цели, что и цветные скобки в электронной таблице.

FYI: Традиционная последовательность символов группировки, работающая изнутри наружу, — это «круглые скобки», затем «квадратные скобки», а затем «фигурные скобки»; затем при необходимости повторяете последовательность. Но, насколько мне известно, это не правило; это просто обычное соглашение.


  • Упростить –5 {3 — 2 [1 — 4 (3 — 2
    2 )]}

Ага! Минусов много?

Я начну с самых внутренних символов группировки — скобок.

–5 {3–2 [1–4 (3–2 2 )]}

–5 {3–2 [1–4 (3–4)]}

–5 {3–2 [1–4 (–1)]}

Теперь я могу умножить на 4 перед круглыми скобками и упростить в квадратных скобках:

–5 {3 — 2 [1 — (–4)]}

–5 {3–2 [1 + 4]}

–5 {3–2 [5]}

А теперь я могу упростить фигурные скобки, а затем провести 5 через фигурные скобки, чтобы завершить упрощение:

–5 {3 — 10}

–5 {–7}

+35

У этого выражения не было никаких переменных, поэтому я смог полностью упростить его до простого числа, которое является моим практическим ответом (хотя я оставлю плюс перед числом, потому что это не является ни необходимым, ни обычным).

Да, вы должны ожидать хотя бы одну подобную проблему со всеми знаками «минус» при следующем тесте. Не пытайтесь делать слишком много шагов за один раз, когда вы упрощаете подобное. Не торопитесь и напишите сколько шагов вам нужно.


  • Упростить 9–3 [
    x — (3 x + 2)] + 4

Я не буду ничего делать с «9 -» или «+ 4», пока не упрощу то, что находится внутри скобок и скобок.Я буду работать изнутри, вставив «понял» 1 там, где считаю полезным:

9 — 3 [ x — (3 x + 2)] + 4

9 — 3 [ x — 1 (3 x + 2)] + 4

9 — 3 [ x — 1 (3 x ) — 1 (2)] + 4

9 — 3 [ x — 3 x — 2] + 4

9 — 3 [–2 x — 2] + 4

9 — 3 [–2 x ] — 3 [–2] + 4

9 + 6 x + 6 + 4

6 x + 19

Я не могу объединить эти термины, поэтому нечего упрощать.Мой ответ:

Необязательно, чтобы вы выписывали столько (или несколько) шагов. Тем не менее, вы должны быть осторожны, делая по одному шагу за раз, полностью записывая все и упрощая по мере продвижения. Вы должны сделать столько шагов, сколько вам нужно, чтобы постоянно приходить к правильному ответу.


  • Упростить 5 + 2 {[3 + (2
    x — 1) + x ] — 2}

Я буду осторожно работать изнутри, начиная с круглых скобок в середине, затем двигаясь наружу к скобкам, а затем к скобкам.

5 + 2 {[3 + (2 x — 1) + x ] — 2}

5 + 2 {[3 + 2 x — 1 + x ] — 2}

5 + 2 {[2 x + x + 3-1] — 2}

5 + 2 {[3 x + 2] — 2}

5 + 2 {3 x + 2 — 2}

5 + 2 {3 x }

5 + 6 х

Этот ответ является математически правильным, но для удобства я переставлю термины в порядке убывания.


URL: https://www.purplemath.com/modules/simparen2.htm


Вы можете использовать виджет Mathway ниже, чтобы попрактиковаться в упрощении с помощью скобок. Попробуйте выполнить указанное упражнение или введите свое собственное. Затем нажмите кнопку, чтобы сравнить свой ответ с ответом Mathway. (Или пропустите виджет и продолжите урок.)

(Нажмите «Нажмите, чтобы просмотреть шаги», чтобы перейти непосредственно на сайт Mathway для платного обновления.)


открытых учебников | Сиявула

Математика

Наука

    • Читать онлайн
    • Учебники

      • Английский

        • Марка 7A

        • Марка 7Б

        • Класс 7 (вместе A и B)

      • Африкаанс

        • Граад 7А

        • Граад 7Б

        • Граад 7 (A en B saam)

    • Пособия для учителя

    • Читать онлайн
    • Учебники

      • Английский

        • Марка 8A

        • Марка 8Б

        • Оценка 8 (вместе A и B)

      • Африкаанс

        • Граад 8А

        • Граад 8Б

        • Граад 8 (A en B saam)

    • Пособия для учителя

    • Читать онлайн
    • Учебники

      • Английский

        • Марка 9А

        • Марка 9Б

        • Оценка 9 (вместе A и B)

      • Африкаанс

        • Граад 9А

        • Граад 9Б

        • Граад 9 (A en B saam)

    • Пособия для учителя

    • Читать онлайн
    • Учебники

      • Английский

        • Марка 4A

        • Марка 4Б

        • Класс 4 (вместе A и B)

      • Африкаанс

        • Граад 4А

        • Граад 4Б

        • Граад 4 (A en B saam)

    • Пособия для учителя

    • Читать онлайн
    • Учебники

      • Английский

        • Марка 5А

        • Марка 5Б

        • Оценка 5 (вместе A и B)

      • Африкаанс

        • Граад 5А

        • Граад 5Б

        • Граад 5 (A en B saam)

    • Пособия для учителя

    • Читать онлайн
    • Учебники

      • Английский

        • Марка 6А

        • Марка 6Б

        • Оценка 6 (вместе A и B)

      • Африкаанс

        • Граад 6А

        • Граад 6Б

        • Граад 6 (A en B saam)

    • Пособия для учителя

Наша книга лицензионная

Эти книги не просто бесплатные, они также имеют открытую лицензию! Один и тот же контент, но разные версии (брендированные или нет) имеют разные лицензии, как объяснено:

CC-BY-ND (фирменные версии)

Вам разрешается и поощряется свободное копирование этих версий.Вы можете делать ксерокопии, распечатывать и распространять их сколько угодно раз. Вы можете скачать их на свой мобильный телефон, iPad, ПК или флешку. Вы можете записать их на компакт-диск, отправить по электронной почте или загрузить на свой веб-сайт. Единственное ограничение заключается в том, что вы не можете адаптировать или изменять эти версии учебников, их содержание или обложки, поскольку они содержат соответствующие бренды Siyavula, спонсорские логотипы и одобрены Департаментом базового образования. Для получения дополнительной информации посетите Creative Commons Attribution-NoDerivs 3.0 Непортированный.

Узнайте больше о спонсорстве и партнерстве с другими, которые сделали возможным выпуск каждого из открытых учебников.

CC-BY (версии без марочного знака)

Эти версии одного и того же контента без товарного знака доступны для вас, чтобы вы могли делиться ими, адаптировать, преобразовывать, модифицировать или дополнять их любым способом, с единственным требованием — дать соответствующую оценку Siyavula. Для получения дополнительной информации посетите Creative Commons Attribution 3.0 Unported.

свойств вещественных чисел | Безграничная алгебра

Интервальное обозначение

Интервальная запись использует круглые и квадратные скобки для описания наборов действительных чисел и их конечных точек.

Цели обучения

  • Использовать обозначение интервала для представления наборов чисел

Основные выводы

Ключевые моменты
  • Реальный интервал — это набор действительных чисел, обладающий тем свойством, что любое число, лежащее между двумя числами, включенными в набор, также включается в набор.
  • Интервал чисел между [латексом] a [/ латексом] и [латексом] b [/ латексом], включая [латекс] a [/ латекс] и [латекс] b [/ латекс], обозначается [латекс] [a , б] [/ латекс].Два числа [latex] a [/ latex] и [latex] b [/ latex] называются конечными точками интервала.
  • Чтобы указать, что конечная точка набора не включена в набор, квадратная скобка, заключающая конечную точку, может быть заменена круглой скобкой.
  • Открытый интервал не включает его конечные точки и заключен в круглые скобки. Закрытый интервал включает его конечные точки и заключен в квадратные скобки.
  • Интервал считается ограниченным, если обе конечные точки являются действительными числами.Интервал неограничен, если обе конечные точки не являются действительными числами.
  • Замена конечной точки положительной или отрицательной бесконечностью — например, [latex] (- \ infty, b] [/ latex] — указывает на то, что набор неограничен в одном направлении или наполовину ограничен.
Ключевые термины
  • интервал : расстояние в пространстве.
  • ограниченный интервал : набор, для которого обе конечные точки являются действительными числами.
  • открытый интервал : набор действительных чисел, не включающий его конечные точки.
  • конечная точка : любая из двух точек на концах линейного сегмента.
  • полуограниченный интервал : набор, для которого одна конечная точка является действительным числом, а другая — нет.
  • закрытый интервал : набор действительных чисел, который включает обе его конечные точки.
  • неограниченный интервал : набор, для которого ни одна конечная точка не является действительным числом.

«Реальный интервал» — это набор действительных чисел, так что любое число, которое находится между двумя числами в наборе, также включается в набор.Например, набор всех чисел [latex] x [/ latex], удовлетворяющих [latex] 0 \ leq x \ leq 1 [/ latex], представляет собой интервал, содержащий 0 и 1, а также все числа между ними. Другие примеры интервалов включают набор всех действительных чисел и набор всех отрицательных действительных чисел.

Интервал чисел между [латексом] a [/ латексом] и [латексом] b [/ латексом], включая [латекс] a [/ латекс] и [латекс] b [/ латекс], часто обозначается [латекс] [ а, б] [/ латекс]. Эти два числа называются конечными точками интервала.

Открытые и закрытые интервалы

Открытый интервал не включает его конечные точки и обозначен круглыми скобками. Например, [latex] (0,1) [/ latex] описывает интервал больше 0 и меньше 1.

Закрытый интервал включает в себя его конечные точки и обозначен квадратными скобками, а не скобками. Например, [latex] [0,1] [/ latex] описывает интервал больше или равный 0 и меньше или равный 1.

Чтобы указать, что в этот набор включена только одна конечная точка интервала, будут использоваться оба символа.Например, интервал чисел от 1 до 5, включая 1, но исключая 5, записывается как [латекс] [1,5) [/ латекс].

На изображении ниже показаны открытые и закрытые интервалы на числовой прямой.

Интервалы: Отображение открытых и закрытых интервалов на числовой прямой.

Ограниченные и неограниченные интервалы

Интервал называется ограниченным , если обе его конечные точки являются действительными числами. Ограниченные интервалы также обычно известны как конечных интервалов .И наоборот, если ни одна из конечных точек не является действительным числом, интервал считается неограниченным . Например, интервал [латекс] (1,10) [/ латекс] считается ограниченным; интервал [latex] (- \ infty, + \ infty) [/ latex] считается неограниченным.

Набор всех действительных чисел — единственный интервал, который не ограничен с обоих концов; пустое множество (множество, не содержащее элементов) ограничено.

Интервал, который имеет только одну конечную точку действительного числа, называется полуограниченным , или, более описательно, ограниченным слева или ограниченным справа. Например, интервал [latex] (1, + \ infty) [/ latex] наполовину ограничен; в частности, он ограничен слева.

Абсолютное значение

Абсолютное значение можно представить как расстояние действительного числа от нуля.

Цели обучения

Определите абсолютное значение числа

Основные выводы

Ключевые точки

  • Абсолютное значение действительного числа можно представить как его расстояние от нуля вдоль линии действительного числа.
  • Абсолютное значение [латекса] a [/ latex] обозначается [латекс] \ left | а \ правый | [/ латекс].
Ключевые термины
  • абсолютное значение : Расстояние действительного числа от [latex] 0 [/ latex] вдоль линии действительного числа.

В математике абсолютное значение (иногда называемое модулем ) действительного числа [латекс] a [/ latex] обозначается [латекс] \ left | а \ правый | [/ латекс]. Это относится к расстоянию [латекса] до [/ латекса] от нуля.Следовательно, [латекс] \ left | a \ right |> 0 [/ latex] для всех чисел. Например, абсолютное значение 5 равно 5, а абсолютное значение −5 также равно 5, потому что оба числа находятся на одинаковом расстоянии от 0.

Абсолютное значение: Абсолютные значения 5 и -5 показаны в числовой строке.

Применительно к разнице между действительными числами абсолютное значение представляет собой расстояние между числами в числовой строке.

История

Абсолютное значение тесно связано с математическими и физическими понятиями величины, расстояния и нормы.Термин «абсолютная величина» используется в этом смысле по крайней мере с 1806 года на французском языке и с 1857 года на английском языке. Обозначение [латекс] \ left | a \ right | [/ latex] был введен Карлом Вейерштрассом в 1841 году. Другие названия абсолютного значения включают «числовое значение», «модуль» и «величина».

Примеры

Ниже приведены некоторые примеры уравнений, содержащих абсолютное значение:

  • [латекс] \ левый | 7 \ right | = 7 [/ латекс]
  • [латекс] \ левый | -2 \ right | = 2 [/ латекс]
  • [латекс] — \ левый | 4 \ right | = -4 [/ латекс]
  • [латекс] — \ левый | -3 \ right | = -3 [/ латекс]

Наборы номеров

Набор — это набор уникальных чисел, часто обозначаемых фигурными скобками: {}.

Цели обучения

Использовать обозначение набора для представления наборов чисел и описания свойств часто используемых наборов чисел

Основные выводы

Ключевые моменты
  • Набор — это набор отдельных объектов, который считается самостоятельным объектом. С числами набор представляет собой набор уникальных чисел, например [latex] \ left \ {1, 2, 5, 8, 4 \ right \} [/ latex].
  • В наборах порядок номеров не имеет значения; важно только, чтобы номера не дублировались.
  • Если каждый член множества A также является членом множества B, то говорят, что A является подмножеством B, записывается [латекс] A \ substeq B [/ latex] (также произносится как «A содержится в B»). И наоборот, [latex] B [/ latex] можно рассматривать как надмножество [latex] A [/ latex]. Это пишется [латекс] B \ supseteq A [/ латекс].
  • Общие категории наборов чисел — это натуральные числа, действительные числа, целые числа, рациональные числа, мнимые числа и комплексные числа.
Ключевые термины
  • расширенный набор : набор, содержащий другой набор.
  • набор : набор уникальных объектов потенциально бесконечного размера, не зависящий от порядка объектов, содержащихся в нем.
  • подмножество : набор, который также является элементом другого набора.

Наборы — одно из самых фундаментальных понятий в математике. Набор представляет собой набор отдельных объектов и считается самостоятельным объектом. Например, числа 2, 4 и 6 являются разными объектами, если рассматривать их по отдельности, но когда они рассматриваются вместе, они образуют единый набор размера три, записанный [латекс] \ left \ {2,4,6 \ right \} [/латекс].

Определение набора

Существует два способа описания или определения членов набора. Один из способов — это намеренное определение с использованием правила или семантического описания. Например: «[latex] A [/ latex] — это набор, членами которого являются первые четыре положительных целых числа».

Второй способ описания набора — это расширение: перечисление каждого члена набора. Экстенсиональное определение обозначается заключением списка членов в фигурные скобки: [latex] C = \ left \ {4, 2, 1, 3 \ right \} [/ latex].

Каждый элемент набора должен быть уникальным; никакие два члена не могут быть идентичными. Все операции с наборами сохраняют это свойство. Порядок, в котором перечислены элементы набора, не имеет значения (в отличие от последовательности). Следовательно:

[латекс] \ left \ {6, 11 \ right \} = \ left \ {11, 6 \ right \} = \ left \ {11, 6, 6, 11 \ right \} [/ латекс]

, потому что расширенная спецификация означает просто, что каждый из перечисленных элементов является членом набора.

Для наборов с большим количеством элементов перечисление элементов может быть сокращено.Например, набор из первой тысячи положительных целых чисел может быть задан расширенно как:

[латекс] \ left \ {1,2,3, \ cdots, 1000 \ right \} [/ латекс]

, где многоточие ([latex] \ cdots [/ latex]) указывает, что список продолжается очевидным образом. Эллипсы также могут использоваться, когда наборы имеют бесконечно много элементов. Таким образом, множество положительных четных чисел можно записать как [latex] \ left \ {2,4,6,8, \ cdots \ right \} [/ latex].

Подмножества и надмножества

Подмножество — это набор, каждый элемент которого также содержится в другом наборе.Например, если каждый член набора [latex] A [/ latex] также является членом набора [latex] B [/ latex], то [latex] A [/ latex] называется подмножеством [latex] Б [/ латекс]. Это пишется [латекс] A \ substeq B [/ латекс] (также произносится как «[латекс] A [/ латекс] содержится в [латекс] B [/ латекс]»). Эквивалентно, мы можем сказать, что [latex] B [/ latex] представляет собой надмножество [latex] A [/ latex], что означает, что [latex] B [/ latex] включает [latex] A [/ latex], или [латекс] B [/ latex] содержит [латекс] A [/ latex]. Это пишется [латекс] B \ supseteq A [/ латекс].

Например, [латекс] \ left \ {1,3 \ right \} \ substeq \ left \ {1,2,3,4 \ right \} [/ latex].

Общие наборы

Ниже приведены некоторые из наиболее часто используемых наборов чисел.

Набор из натуральных чисел , также известный как «счетные числа», включает в себя все целые числа, начинающиеся с 1 и затем увеличивающиеся. Набор натуральных чисел представлен символом [latex] \ mathbb {N} [/ latex] и может обозначаться как [latex] \ mathbb {N} = \ left \ {1,2,3,4, \ cdots \ right \} [/ латекс].

Набор из действительных чисел включает в себя все числа, включая отрицательные и десятичные, которые существуют в числовой строке. Набор действительных чисел представлен символом [латекс] \ mathbb {R} [/ latex].

Набор из целых чисел включает все целые числа (положительные и отрицательные), включая [латекс] 0 [/ латекс]. Набор целых чисел представлен символом [латекс] \ mathbb {Z} [/ latex]. (Это может показаться странным, но это означает немецкий термин «Zahlen», что означает «числа.”)

Набор из рациональных чисел , обозначенных символом [latex] \ mathbb {Q} [/ latex], включает любое число, которое записывается как дробь. Символ [латекс] \ mathbb {Q} [/ latex] используется, потому что Q представляет слово «частное».

Набор из мнимых чисел , обозначаемых символом [latex] \ mathbb {I} [/ latex], включает в себя все числа, которые в квадрате дают отрицательное число.

Набор из комплексных чисел, обозначенный символом [latex] \ mathbb {C} [/ latex], включает комбинацию действительных и мнимых чисел в форме [latex] a + bi [/ latex], где [ latex] a [/ latex] и [latex] b [/ latex] — действительные числа, а [latex] i [/ latex] — мнимые числа.

Факторы

Можно разложить на множители любое целое число больше единицы, что означает, что оно может быть разбито на более мелкие целые числа.

Цели обучения

Вычислить множители чисел и простые множители

Основные выводы

Ключевые моменты
  • Факторизация (или факторизация) — это процесс разбиения объекта (например, числа или алгебраического выражения) на произведение других объектов или факторов, которые при умножении вместе дают исходное число или выражение.
  • Факторизация на простые множители — это особый тип факторизации, который разбивает интересующее число на простые числа, которые при обратном умножении дают исходное число.
  • Каждое положительное целое число больше 1 имеет отдельную факторизацию на простые множители.
  • Факторные деревья можно использовать, чтобы найти факторизацию числа на простые множители.
Ключевые термины
  • простой множитель : множитель, который также является простым числом.
  • фактор : Любой из различных объектов, умноженных вместе, чтобы сформировать единое целое.
  • факторизация : процесс создания списка элементов, умножение которых дает желаемое количество или выражение.
  • простое число : целое число больше 1, которое может делиться поровну только на число 1 и само.

В математике факторизация (или факторизация) — это процесс разбиения объекта (например, числа или алгебраического выражения) на произведение других объектов, или множителей , которые при умножении дают исходное число или выражение.Цель факторинга — свести что-то к «основным строительным блокам». Этот процесс имеет множество реальных приложений и может помочь нам решать математические задачи.

В частности, разложение числа на множители означает его разбиение на числа, которые при обратном умножении дают данное число. А пока мы сосредоточимся на факторинге целых чисел.

Например, рассмотрим число 24. Чтобы найти множители, рассмотрим числа, которые дают произведение 24. Мы знаем, что [латекс] 6 \ умножить на 4 = 24 [/ латекс], поэтому и 6, и 4 являются множителями 24. .3 [/ латекс].

Основная факторизация

Факторизация

на простые множители — это особый тип факторизации, который разбивает интересующее число на простых чисел , которые при обратном умножении дают исходное число. Такие простые числа называются простыми множителями.

Пример 1

Например, рассмотрим число 6. Мы знаем, что [латекс] 2 \ times 3 = 6 [/ latex], поэтому 2 и 3 оба делятся на 6. Также обратите внимание, что 2 и 3 — простые числа, потому что каждое из них делится. всего 1 и сам.Следовательно, 2 и 3 — простые множители 6.

Пример 2

Теперь рассмотрим число 12. Мы знаем, что [латекс] 2 \ умножить на 6 = 12 [/ латекс], поэтому 2 и 6 оба делятся на 12. Однако 6 не является простым делителем. В этом случае мы также должны уменьшить число 6 до простых множителей. Поскольку мы знаем из предыдущего примера, что простые множители 6 равны 2 и 3 (потому что [латекс] 2 \ times 3 = 6 [/ latex]), мы можем легко узнать, что [латекс] 2 \ times 2 \ times 3 = 12 [/ латекс]. Мы нашли множители для 12, которые являются простыми числами.Следовательно, разложение на простые множители для 12 равно [латекс] 2 \ умножить на 2 \ умножить 3 [/ латекс].

Факторные деревья и прайм-факторизация

Каждое положительное целое число больше 1 имеет отдельную факторизацию на простые множители. Чтобы разложить на множители большие числа, может быть полезно нарисовать дерево факторов.

В факторном дереве интересующее число написано вверху. Затем находятся два фактора этого числа и соединяются под этим числом с ветвями. Этот процесс повторяется для каждого последующего множителя исходного числа, пока все множители в нижней части ветвей не станут простыми.

предварительное вычисление алгебры — Что означают квадратные скобки в $ [5- (6-7 (2-6) +2)] + 4 $?

предварительное вычисление алгебры — Что означают квадратные скобки в $ [5- (6-7 (2-6) +2)] + 4 $? — Обмен стеками математики
Сеть обмена стеков

Сеть Stack Exchange состоит из 178 сообществ вопросов и ответов, включая Stack Overflow, крупнейшее и пользующееся наибольшим доверием онлайн-сообщество, где разработчики могут учиться, делиться своими знаниями и строить свою карьеру.

Посетить Stack Exchange
  1. 0
  2. +0
  3. Авторизоваться Зарегистрироваться

Mathematics Stack Exchange — это сайт вопросов и ответов для людей, изучающих математику на любом уровне, и профессионалов в смежных областях.Регистрация займет всего минуту.

Зарегистрируйтесь, чтобы присоединиться к этому сообществу

Кто угодно может задать вопрос

Кто угодно может ответить

Лучшие ответы голосуются и поднимаются наверх

Спросил

Просмотрено 2k раз

$ \ begingroup $

При просмотре видеоролика на YouTube о математическом эпизоде ​​Симпсонов в 1:27 появляется головоломка, в которой есть квадратные скобки.

$$ [5- (6-7 (2-6) +2)] + 4 $$

Очевидно, ответ — $ -27 $, и я не могу понять, как прийти к такому ответу. Я погуглил, что квадратные скобки означают интервалы. Но тогда я не понимаю контекста этого вопроса, так как обязательно интервал должен состоять из двух чисел, разделенных запятой?

Как вы получите -27 $?

Камил Ярош

4,777 33 золотых знака1414 серебряных знаков3232 бронзовых знака

Создан 21 фев.

Союзник

14555 бронзовых знаков

$ \ endgroup $ 3 $ \ begingroup $

В данном случае это вопрос удобочитаемости; квадратные скобки такие же, как круглые скобки;

$$ [5- (6-7 (2-6) +2)] + 4 = [5- (6-7 (-4) +2)] + 4 = [5- (6+ (28) + 2)] + 4 = [5- (36)] + 4 = [-31 + 4] = -27.$$ Обратите внимание, что есть случаи, когда квадратные скобки означают нечто иное, например функцию ближайшего целого числа.


Приложение: Я не обратил внимания на другую вашу озабоченность.

Да, обозначение интервалов должно содержать запятую;
например, если $ a, b \ in \ mathbb R $, то $$ [a, b] = \ {x \ in \ mathbb R: a \ leq x \ leq b \}. $$