Раскрытие скобок с квадратом: Квадрат разности

{2}+2 a b+2 a c+2 b c$

Читать следующую тему: формула «квадрат разности».

Слишком сложно?

Квадрат суммы не по зубам? Тебе ответит эксперт через 10 минут!

Содержание

правила и примеры (7 класс)

Основная функция скобок – менять порядок действий при вычислениях значений числовых выражений. Например, в числовом выражении \(5·3+7\) сначала будет вычисляться умножение, а потом сложение: \(5·3+7 =15+7=22\). А вот в выражении \(5·(3+7)\) сначала будет вычислено сложение в скобке, и лишь потом умножение: \(5·(3+7)=5·10=50\).

Однако если мы имеем дело с алгебраическим выражением, содержащим переменную — например таким: \(2(x-3)\) – то вычислить значение в скобке не получается, мешает переменная. Поэтому в таком случае скобки «раскрывают», используя для этого соответствующие правила.

Правила раскрытия скобок

Если перед скобкой стоит знак плюс, то скобка просто снимается, выражение в ней при этом остается неизменным.

Иначе говоря: 

\((a-b)=a-b\)

Здесь нужно пояснить, что в математике для сокращения записей принято не писать знак плюс, если он стоит в выражении первым. Например, если мы складываем два положительных числа, к примеру, семь и три, то пишем не \(+7+3\), а просто \(7+3\), несмотря на то, что семерка тоже положительное число. Аналогично если вы видите, например, выражение \((5+x)\) – знайте, что перед скобкой стоит плюс, который не пишут.

Пример. Раскройте скобку \((1+y-7x)\).
Решение: \((1+y-7x)=1+y-7x\).

Пример. Упростите выражение: \(3+(5-2x)\).
Решение: Раскрываем скобку согласно правилу, а затем 

приводим подобные слагаемые:


Пример. Раскройте скобку и приведите подобные слагаемые: \((x-11)+(2+3x)\).
Решение: \((x-11)+(2+3x)=x-11+2+3x=4x-9\).


Если перед скобкой стоит знак минус, то при снятии скобки каждый член выражения внутри нее меняет знак на противоположный:

\(-(a-b)=-a+b\)

Здесь нужно пояснить, что у \(a\), пока оно стояло в скобке, был знак плюс (просто его не писали), и после снятия скобки этот плюс поменялся на минус.

Пример: Упростите выражение \(2x-(-7+x)\).
Решение: внутри скобки два слагаемых: \(-7\) и \(x\), а перед скобкой минус. Значит, знаки поменяются – и семерка теперь будет с плюсом, а икс – с минусом. Раскрываем скобку и приводим подобные слагаемые.


Пример. Раскройте скобку: \(-(4m+3)\).
Решение: \(-(4m+3)=-4m-3\).

Пример. Раскройте скобку и приведите подобные слагаемые \(5-(3x+2)+(2+3x)\).
Решение: \(5-(3x+2)+(2+3x)=5-3x-2+2+3x=5\).

Если перед скобкой стоит множитель, то каждый член скобки умножается на него, то есть: 

\(c(a-b)=ca-cb\)

Пример.  Раскройте скобки \(5(3-x)\).
Решение: В скобке у нас стоят \(3\) и \(-x\), а перед скобкой — пятерка. Значит, каждый член скобки умножается на \(5\) — напоминаю, что знак умножения между числом и скобкой в математике не пишут для сокращения размеров записей.

Пример. Раскройте скобки \(-2(-3x+5)\).
Решение: Как и в предыдущем примере, стоящие в скобке \(-3x\) и \(5\) умножаются на \(-2\).


Пример. Упростить выражение: \(5(x+y)-2(x-y)\).
Решение: \(5(x+y)-2(x-y)=5x+5y-2x+2y=3x+7y\).

Осталось рассмотреть последнюю ситуацию.

При умножении скобки на скобку, каждый член первой скобки перемножается с каждым членом второй:

\((c+d)(a-b)=c·(a-b)+d·(a-b)=ca-cb+da-db\)

Пример. Раскройте скобки \((2-x)(3x-1)\).
Решение: У нас произведение скобок и его можно раскрыть сразу по формуле выше. Но чтобы не путаться, давайте сделаем всё по шагам.

Шаг 1. Убираем первую скобку — каждый ее член умножаем на скобку вторую:

Шаг 2. Раскрываем произведения скобки на множитель как описано выше:
— сначала первое…

— потом второе.


Шаг 3. Теперь перемножаем и приводим подобные слагаемые:

Так подробно расписывать все преобразования совсем необязательно, можно сразу перемножать. Но если вы только учитесь раскрывать скобок – пишите подробно, меньше будет шанс ошибиться.

Примечание ко всему разделу. На самом деле, вам нет необходимости запоминать все четыре правила, достаточно помнить только одно, вот это: \(c(a-b)=ca-cb\). Почему? Потому что если в него вместо c подставить единицу, получиться правило \((a-b)=a-b\). А если подставить минус единицу, получим правило \(-(a-b)=-a+b\). Ну, а если вместо c подставить другую скобку – можно получить последнее правило.

Скобка в скобке

Иногда в практике встречаются задачи со скобками, вложенными внутрь других скобок. Вот пример такого задания: упростить выражение \(7x+2(5-(3x+y))\).

Чтобы успешно решать подобные задания, нужно:
— внимательно разобраться во вложенности скобок – какая в какой находиться;
— раскрывать скобки последовательно, начиная, например, с самой внутренней.

При этом важно при раскрытии одной из скобок не трогать все остальное выражение, просто переписывая его как есть. 
Давайте для примера разберем написанное выше задание.

Пример. Раскройте скобки и приведите подобные слагаемые \(7x+2(5-(3x+y))\).
Решение:

\(7x+2(5\)\(-(3x+y)\)\()=\)

Выполнять задание начнем с раскрытия внутренней скобки (той, что внутри).

Раскрывая ее, имеем дело только с тем, что к ней непосредственно относиться – это сама скобка и минус перед ней (выделено зеленым). Всё остальное (не выделенное) переписываем также как было.

\(=7x+2(5\)\(-3x-y\)\()=\)

Теперь раскрываем вторую скобку, внешнюю.

\(=7x+2·5-2·3x-2·y=\)

Упрощаем получившееся выражение…

\(=7x+10-6x-2y=\)

…и приводим подобные.

\(=x+10-2y\)

Готово.

Пример.  Раскройте скобки и приведите подобные слагаемые \(-(x+3(2x-1+(x-5)))\).
Решение:

\(-(x+3(2x-1\)\(+(x-5)\)\())\)

Здесь тройная вложенность скобок. Начинаем с самой внутренней (выделено зеленым). Перед скобкой плюс, так что она просто снимается.

\(-(x+3(2x-1\)\(+x-5\)\())\)

Теперь нужно раскрыть вторую скобку, промежуточную. Но мы перед этим упростим выражение привидением подобный слагаемых в этой второй скобке.

\(=-(x\)\(+3(3x-6)\)\()=\)

Вот сейчас раскрываем вторую скобку (выделено голубым). Перед скобкой множитель – так что каждый член в скобке умножается на него.

\(=-(x\)\(+9x-18\)\()=\)

Вновь приводим подобные.

\(=-(10x-18)=\)

И раскрываем последнюю скобку. Перед скобкой минус – поэтому все знаки меняются на противоположные.

\(=-10x+18\)

Готово.

Раскрытие скобок — это базовое умение в математике. Без этого умения невозможно иметь оценку выше тройки в 8 и 9 классе. Поэтому рекомендую хорошо разобраться в этой теме.

Смотрите также:
Вынесение общего множителя за скобки

Скачать статью

Раскрытие квадратных скобок.

Возведение многочленов в квадрат

Соблюдение Вашей конфиденциальности важно для нас. По этой причине, мы разработали Политику Конфиденциальности, которая описывает, как мы используем и храним Вашу информацию. Пожалуйста, ознакомьтесь с нашими правилами соблюдения конфиденциальности и сообщите нам, если у вас возникнут какие-либо вопросы.

Сбор и использование персональной информации

Под персональной информацией понимаются данные, которые могут быть использованы для идентификации определенного лица либо связи с ним.

От вас может быть запрошено предоставление вашей персональной информации в любой момент, когда вы связываетесь с нами.

Ниже приведены некоторые примеры типов персональной информации, которую мы можем собирать, и как мы можем использовать такую информацию.

Какую персональную информацию мы собираем:

  • Когда вы оставляете заявку на сайте, мы можем собирать различную информацию, включая ваши имя, номер телефона, адрес электронной почты и т. д.

Как мы используем вашу персональную информацию:

  • Собираемая нами персональная информация позволяет нам связываться с вами и сообщать об уникальных предложениях, акциях и других мероприятиях и ближайших событиях.
  • Время от времени, мы можем использовать вашу персональную информацию для отправки важных уведомлений и сообщений.
  • Мы также можем использовать персональную информацию для внутренних целей, таких как проведения аудита, анализа данных и различных исследований в целях улучшения услуг предоставляемых нами и предоставления Вам рекомендаций относительно наших услуг.
  • Если вы принимаете участие в розыгрыше призов, конкурсе или сходном стимулирующем мероприятии, мы можем использовать предоставляемую вами информацию для управления такими программами.

Раскрытие информации третьим лицам

Мы не раскрываем полученную от Вас информацию третьим лицам.

Исключения:

  • В случае если необходимо — в соответствии с законом, судебным порядком, в судебном разбирательстве, и/или на основании публичных запросов или запросов от государственных органов на территории РФ — раскрыть вашу персональную информацию. Мы также можем раскрывать информацию о вас если мы определим, что такое раскрытие необходимо или уместно в целях безопасности, поддержания правопорядка, или иных общественно важных случаях.
  • В случае реорганизации, слияния или продажи мы можем передать собираемую нами персональную информацию соответствующему третьему лицу – правопреемнику.

Защита персональной информации

Мы предпринимаем меры предосторожности — включая административные, технические и физические — для защиты вашей персональной информации от утраты, кражи, и недобросовестного использования, а также от несанкционированного доступа, раскрытия, изменения и уничтожения.

Соблюдение вашей конфиденциальности на уровне компании

Для того чтобы убедиться, что ваша персональная информация находится в безопасности, мы доводим нормы соблюдения конфиденциальности и безопасности до наших сотрудников, и строго следим за исполнением мер соблюдения конфиденциальности.

Рассмотрим теперь возведение в квадрат двучлена и, применяясь к арифметической точке зрения, будем говорить о квадрате суммы, т. е. (a + b)² и о квадрате разности двух чисел, т. е. (a – b)².

Так как (a + b)² = (a + b) ∙ (a + b),

то найдем: (a + b) ∙ (a + b) = a² + ab + ab + b² = a² + 2ab + b², т. е.

(a + b)² = a² + 2ab + b²

Этот результат полезно запомнить и в виде вышеописанного равенства и словами: квадрат суммы двух чисел равен квадрату первого числа плюс произведение двойки на первое число и на второе число, плюс квадрат второго числа.

Зная этот результат, мы можем сразу написать, напр.:

(x + y)² = x² + 2xy + y²
(3ab + 1)² = 9a² b² + 6ab + 1

(x n + 4x)² = x 2n + 8x n+1 + 16x 2

Разберем второй из этих примеров. Нам требуется возвести в квадрат сумму двух чисел: первое число есть 3ab, второе 1. Должно получиться: 1) квадрат первого числа, т. е. (3ab)², что равно 9a²b²; 2) произведение двойки на первое число и на второе, т. е. 2 ∙ 3ab ∙ 1 = 6ab; 3) квадрат 2-го числа, т. е. 1² = 1 – все эти три члена должно сложить между собою.

Совершенно также получим формулу для возведения в квадрат разности двух чисел, т. е. для (a – b)²:

(a – b)² = (a – b) (a – b) = a² – ab – ab + b² = a² – 2ab + b².

(a – b)² = a² – 2ab + b² ,

т. е. квадрат разности двух чисел равен квадрату первого числа, минус произведение двойки на первое число и на второе, плюс квадрат второго числа .

Зная этот результат, мы можем сразу выполнять возведение в квадрат двучленов, представляющих с точки зрения арифметики разность двух чисел.

(m – n)² = m² – 2mn + n²
(5ab 3 – 3a 2 b) 2 = 25a 2 b 6 – 30a 3 b 4 + 9a 4 b 2

(a n-1 – a) 2 = a 2n-2 – 2a n + a 2 и т. п.

Поясним 2-ой пример. Здесь мы имеем в скобках разность двух чисел: первое число 5ab 3 и второе число 3a 2 b. В результате должно получиться: 1) квадрат первого числа, т. е. (5ab 3) 2 = 25a 2 b 6 , 2) произведение двойки на 1-ое и на 2-ое число, т. е. 2 ∙ 5ab 3 ∙ 3a 2 b = 30a 3 b 4 и 3) квадрат второго числа, т. е. (3a 2 b) 2 = 9a 4 b 2 ; первый и третий члены надо взять с плюсом, а 2-ой с минусом, получим 25a 2 b 6 – 30a 3 b 4 + 9a 4 b 2 . В пояснение 4-го примера заметим лишь, что 1) (a n-1)2 = a 2n-2 … надо показателя степени умножить на 2 и 2) произведение двойки на 1-ое число и на 2-ое = 2 ∙ a n-1 ∙ a = 2a n .

Если встать на точку зрения алгебры, то оба равенства: 1) (a + b)² = a² + 2ab + b² и 2) (a – b)² = a² – 2ab + b² выражают одно и тоже, а именно: квадрат двучлена равен квадрату первого члена, плюс произведение числа (+2) на первый член и на второй, плюс квадрат второго члена. Это ясно, потому что наши равенства можно переписать в виде:

1) (a + b)² = (+a)² + (+2) ∙ (+a) (+b) + (+b)²
2) (a – b)² = (+a)² + (+2) ∙ (+a) (–b) + (–b)²

В некоторых случаях так именно и удобно толковать полученные равенства:

(–4a – 3b)² = (–4a)² + (+2) (–4a) (–3b) + (–3b)²

Здесь возводится в квадрат двучлен, первый член которого = –4a и второй = –3b. Далее мы получим (–4a)² = 16a², (+2) (–4a) (–3b) = +24ab, (–3b)² = 9b² и окончательно:

(–4a – 3b)² = 6a² + 24ab + 9b²

Возможно было бы также получить и запомнить формулу для возведения в квадрат трехчлена, четырехчлена и вообще любого многочлена. Однако, мы этого делать не будем, ибо применять эти формулы приходится редко, а если понадобится какой-либо многочлен (кроме двучлена) возвести в квадрат, то станем сводить дело к умножению. Например:

31. Применим полученные 3 равенства, а именно:

(a + b) (a – b) = a² – b²
(a + b)² = a² + 2ab + b²
(a – b)² = a² – 2ab + b²

к арифметике.

Пусть надо 41 ∙ 39. Тогда мы можем это представить в виде (40 + 1) (40 – 1) и свести дело к первому равенству – получим 40² – 1 или 1600 – 1 = 1599. Благодаря этому, легко выполнять в уме умножения вроде 21 ∙ 19; 22 ∙ 18; 31 ∙ 29; 32 ∙ 28; 71 ∙ 69 и т. д.

Пусть надо 41 ∙ 41; это все равно, что 41² или (40 + 1)² = 1600 + 80 + 1 = 1681. Также 35 ∙ 35 = 35² = (30 + 5)² = 900 + 300 + 25 = 1225. Если надо 37 ∙ 37, то это равно (40 – 3)² = 1600 – 240 + 9 = 1369. Подобные умножения (или возведение в квадрат двузначных чисел) легко выполнять, при некотором навыке, в уме.

Раскрытие скобок является одним из видов преобразования выражения. В этом разделе мы опишем правила раскрытия скобок, а также рассмотрим наиболее часто встречающиеся примеры задач.

Yandex.RTB R-A-339285-1

Что называется раскрытием скобок?

Скобки используются для указания на порядок выполнения действий в числовых и буквенных выражениях, а также в выражениях с переменными. От выражения со скобками удобно перейти к тождественно равному выражению без скобок. Например, заменить выражение 2 · (3 + 4) на выражение вида 2 · 3 + 2 · 4 без скобок. Этот прием носит название раскрытия скобок.

Определение 1

Под раскрытием скобок подразумевают приемы избавления от скобок и рассматривают его обычно в отношении выражений, которые могут содержать:

  • знаки « + » или « — » перед скобками, в которые заключены суммы или разности;
  • произведение числа, буквы или нескольких букв и суммы или разности, которая помещена в скобки.

Так мы привыкли рассматривать процесс раскрытия скобок в курсе школьной программы. Однако никто не мешает нам посмотреть на это действие шире. Мы можем назвать раскрытием скобок переход от выражения, которое содержит отрицательные числа в скобках, к выражению, не имеющему скобок. К примеру, мы можем перейти от 5 + (− 3) − (− 7) к 5 − 3 + 7 . Фактически, это тоже раскрытие скобок.

Точно также мы можем заменить произведение выражений в скобках вида (a + b) · (c + d) на сумму a · c + a · d + b · c + b · d . Такой прием также не противоречит смыслу раскрытия скобок.

Вот еще один пример. Мы можем допустить, что в выражениях вместо чисел и переменных могут быть использованы любые выражения. Например, выражению x 2 · 1 a — x + sin (b) будет соответствовать выражение без скобок вида x 2 · 1 a — x 2 · x + x 2 · sin (b) .

Отдельного внимания заслуживать еще один момент, который касается особенностей записи решений при раскрытии скобок. Мы можем записать начальное выражение со скобками и полученный после раскрытия скобок результат как равенство. Например, после раскрытия скобок вместо выражения 3 − (5 − 7) мы получаем выражение 3 − 5 + 7 . Оба этих выражения мы можем записать в виде равенства 3 − (5 − 7) = 3 − 5 + 7 .

Проведение действий с громоздкими выражениями может потребовать записи промежуточных результатов. Тогда решение будет иметь вид цепочки равенств. Например, 5 − (3 − (2 − 1)) = 5 − (3 − 2 + 1) = 5 − 3 + 2 − 1 или 5 − (3 − (2 − 1)) = 5 − 3 + (2 − 1) = 5 − 3 + 2 − 1 .

Правила раскрытия скобок, примеры

Приступим к рассмотрению правил раскрытия скобок.

У одиночных чисел в скобках

Отрицательные числа в скобках часто встречаются в выражениях. Например, (− 4) и 3 + (− 4) . Положительные числа в скобках тоже имеют место быть.

Сформулируем правило раскрытия скобок, в которых заключены одиночные положительные числа. Предположим, что а – это любое положительное число. Тогда (а) мы можем заменить на а, + (а) на + а, — (а) на – а. Если вместо а взять конкретное число, то согласно правилу: число (5) запишется как 5 , выражение 3 + (5) без скобок примет вид 3 + 5 , так как + (5) заменяется на + 5 , а выражение 3 + (− 5) эквивалентно выражению 3 − 5 , так как + (− 5) заменяется на − 5 .

Положительные числа обычно записываются без использования скобок, так как скобки в этом случае излишни.

Теперь рассмотрим правило раскрытия скобок, внутри которых содержится одиночное отрицательное число. + (− a) мы заменяем на − a , − (− a) заменяется на + a . Если выражение начинается с отрицательного числа (− a) , которое записано в скобках, то скобки опускаются и вместо (− a) остается − a .

Приведем примеры: (− 5) можно записать как − 5 , (− 3) + 0 , 5 принимает вид − 3 + 0 , 5 , 4 + (− 3) превращается в 4 − 3 , а − (− 4) − (− 3) после раскрытия скобок принимает вид 4 + 3 , так как − (− 4) и − (− 3) заменяется на + 4 и + 3 .

Следует понимать, что записать выражение 3 · (− 5) как 3 · − 5 нельзя. Об этом речь пойдет в следующих пунктах.

Давайте посмотрим, на чем основываются правила раскрытия скобок.

Согласно правилу разность a − b равна a + (− b) . На основе свойств действий с числами мы можем составить цепочку равенств (a + (− b)) + b = a + ((− b) + b) = a + 0 = a , которая будет справедлива. Эта цепочка равенств в силу смысла вычитания доказывает, что выражение a + (− b) — это разность a − b .

Основываясь на свойствах противоположных чисел и правил вычитания отрицательных чисел мы можем утверждать, что − (− a) = a , a − (− b) = a + b .

Встречаются выражения, которые составляются из числа, знаков минуса и нескольких пар скобок. Использование приведенных выше правил позволяет последовательно избавляться от скобок, продвигаясь от внутренних скобок к наружным или в обратном направлении. Примером такого выражения может быть − (− ((− (5)))) . Раскроем скобки, продвигаясь изнутри наружу: − (− ((− (5)))) = − (− ((− 5))) = − (− (− 5)) = − (5) = − 5 . Также этот пример можно разобрать и в обратном направлении: − (− ((− (5)))) = ((− (5))) = (− (5)) = − (5) = − 5 .

Под a и b можно понимать не только числа, но также произвольные числовые или буквенные выражения со знаком « + » впереди, которые не являются суммами или разностями. Во всех этих случаях можно применять правила точно также, как мы делали это в отношении одиночных чисел в скобках.

К примеру, после раскрытия скобок выражение − (− 2 · x) − (x 2) + (− 1 x) − (2 · x · y 2: z) примет вид 2 · x − x 2 − 1 x − 2 · x · y 2: z . Как мы это сделали? Мы знаем, что − (− 2 · x) есть + 2 · x , а так как это выражение стоит вначале, то + 2 · x можно записать как 2 · x , − (x 2) = − x 2 , + (− 1 x) = − 1 x и − (2 · x · y 2: z) = − 2 · x · y 2: z .

В произведениях двух чисел

Начнем с правила раскрытия скобок в произведении двух чисел.

Предположим, что a и b – это два положительных числа. В этом случае произведение двух отрицательных чисел − a и − b вида (− a) · (− b) мы можем заменить на (a · b) , а произведения двух чисел с противоположными знаками вида (− a) · b и a · (− b) заменить на (− a · b) . Умножение минуса на минус дает плюс, а умножение минуса на плюс, как и умножение плюса на минус дает минус.

Верность первой части записанного правила подтверждается правилом умножения отрицательных чисел. Для подтверждения второй части правила мы можем использовать правила умножения чисел с разными знаками.

Рассмотрим несколько примеров.

Пример 1

Рассмотрим алгоритм раскрытия скобок в произведении двух отрицательных чисел — 4 3 5 и — 2 , вида (- 2) · — 4 3 5 . Для этого заменим исходное выражение на 2 · 4 3 5 . Раскроем скобки и получим 2 · 4 3 5 .

А если мы возьмем частное отрицательных чисел (− 4) : (− 2) , то запись после раскрытия скобок будет иметь вид 4: 2

На месте отрицательных чисел − a и − b могут быть любые выражения со знаком минус впереди, которые не являются суммами или разностями. К примеру, это могут быть произведения, частные, дроби, степени, корни, логарифмы, тригонометрические функции и т.п.

Раскроем скобки в выражении — 3 · x x 2 + 1 · x · (- ln 5) . Согласно правилу, мы можем произвести следующие преобразования: — 3 · x x 2 + 1 · x · (- ln 5) = — 3 · x x 2 + 1 · x · ln 5 = 3 · x x 2 + 1 · x · ln 5 .

Выражение (− 3) · 2 можно преобразовать в выражение (− 3 · 2) . После этого можно раскрыть скобки: − 3 · 2 .

2 3 · — 4 5 = — 2 3 · 4 5 = — 2 3 · 4 5

Деление чисел с разными знаками также может потребовать предварительного раскрытия скобок: (− 5) : 2 = (− 5: 2) = − 5: 2 и 2 3 4: (- 3 , 5) = — 2 3 4: 3 , 5 = — 2 3 4: 3 , 5 .

Правило может быть использовано для выполнения умножения и деления выражений с разными знаками. Приведем два примера.

1 x + 1: x — 3 = — 1 x + 1: x — 3 = — 1 x + 1: x — 3

sin (x) · (- x 2) = (- sin (x) · x 2) = — sin (x) · x 2

В произведениях трех и большего количества чисел

Перейдем к произведенимя и частным, которые содержат большее количество чисел. Для раскрытия скобок здесь будет действовать следующее правило. При четном количестве отрицательных чисел можно опустить скобки, заменив числа противоположными. После этого необходимо заключить полученное выражение в новые скобки. При нечетном количестве отрицательных чисел, опустив скобки, заменить числа на противоположные. После этого полученное выражение необходимо взять в новые скобки и поставить перед ним знак минус.

Пример 2

Для примера, возьмем выражение 5 · (− 3) · (− 2) , которое представляет собой произведение трех чисел. Отрицательных чисел два, следовательно, мы можем записать выражение как (5 · 3 · 2) и затем окончательно раскрыть скобки, получив выражение 5 · 3 · 2 .

В произведении (− 2 , 5) · (− 3) : (− 2) · 4: (− 1 , 25) : (− 1) пять чисел являются отрицательными. поэтому (− 2 , 5) · (− 3) : (− 2) · 4: (− 1 , 25) : (− 1) = (− 2 , 5 · 3: 2 · 4: 1 , 25: 1) . Окончательно раскрыв скобки, получаем −2,5·3:2·4:1,25:1 .

Обосновать приведенное выше правило можно следующим образом. Во-первых, такие выражения мы можем переписать как произведение, заменив умножением на обратное число деление. Представляем каждое отрицательное число как произведение множительного числа и — 1 или — 1 заменяем на (− 1) · a .

Используя переместительное свойство умножения меняем местами множители и переносим все множители, равные − 1 , в начало выражения. Произведение четного числа минус единиц равно 1 , а нечетного – равно − 1 , что позволяет нам использовать знак минус.

Если бы мы не использовали правило, то цепочка действий по раскрытию скобок в выражении — 2 3: (- 2) · 4: — 6 7 выглядела бы следующим образом:

2 3: (- 2) · 4: — 6 7 = — 2 3 · — 1 2 · 4 · — 7 6 = = (- 1) · 2 3 · (- 1) · 1 2 · 4 · (- 1) · 7 6 = = (- 1) · (- 1) · (- 1) · 2 3 · 1 2 · 4 · 7 6 = (- 1) · 2 3 · 1 2 · 4 · 7 6 = = — 2 3 · 1 2 · 4 · 7 6

Приведенное выше правило может быть использовано при раскрытии скобок в выражениях, которые представляют собой произведения и частные со знаком минус, не являющихся суммами или разностями. Возьмем для примера выражение

x 2 · (- x) : (- 1 x) · x — 3: 2 .

Его можно привести к выражению без скобок x 2 · x: 1 x · x — 3: 2 .

Раскрытие скобок, перед которыми стоит знак +

Рассмотрим правило, которое можно применить для раскрытия скобок, перед которыми стоит знак плюс, а «содержимое» этих скобок не умножается и не делится на какое-либо число или выражение.

Согласно правилу скобки вместе со стоящим перед ними знаком опускаются, при этом знаки всех слагаемых в скобках сохраняются. Если перед первым слагаемым в скобках не стоит никакого знака, то нужно поставить знак плюс.

Пример 3

Для примера приведем выражение (12 − 3 , 5) − 7 . Опустив скобки, мы сохраняем знаки слагаемых в скобках и ставим перед первым слагаемым знак плюс. Запись будет иметь вид (12 − 3 , 5) − 7 = + 12 − 3 , 5 − 7 . В приведенном примере знак перед первым слагаемым ставить не обязательно, так как + 12 − 3 , 5 − 7 = 12 − 3 , 5 − 7 .

Пример 4

Рассмотрим еще один пример. Возьмем выражение x + 2 a — 3 x 2 + 1 — x 2 — 4 + 1 x и проведем с ним действия x + 2 a — 3 x 2 + 1 — x 2 — 4 + 1 x = = x + 2 a — 3 x 2 + 1 — x 2 — 4 + 1 x

Вот еще один пример раскрытия скобок:

Пример 5

2 + x 2 + 1 x — x · y · z + 2 · x — 1 + (- 1 + x — x 2) = = 2 + x 2 + 1 x — x · y · z + 2 · x — 1 — 1 + x + x 2

Как раскрываются скобки, перед которыми стоит знак минус

Рассмотрим случаи, когда перед скобками стоит знак минус, и которые не не умножаются (или делятся) на какое-либо число или выражение. Согласно правилу раскрытия скобок, перед которыми стоит знак « — », скобки со знаком « — » опускаются, при этом знаки всех слагаемых внутри скобок меняются на противоположные.

Пример 6

К примеру:

1 2 = 1 2 , — 1 x + 1 = — 1 x + 1 , — (- x 2) = x 2

Выражения с переменными могут быть преобразованы с использованием того же правила:

X + x 3 — 3 — — 2 · x 2 + 3 · x 3 · x + 1 x — 1 — x + 2 ,

получаем x — x 3 — 3 + 2 · x 2 — 3 · x 3 · x + 1 x — 1 — x + 2 .

Раскрытие скобок при умножении числа на скобку, выражения на скобку

Здесь мы рассмотрим случаи, когда нужно раскрыть скобки, которые умножаются или делятся на какое-либо число или выражение. Тут применимы формулы вида (a 1 ± a 2 ± … ± a n) · b = (a 1 · b ± a 2 · b ± … ± a n · b) или b · (a 1 ± a 2 ± … ± a n) = (b · a 1 ± b · a 2 ± … ± b · a n) , где a 1 , a 2 , … , a n и b – некоторые числа или выражения.

Пример 7

Например, проведем раскрытие скобок в выражении (3 − 7) · 2 . Согласно правилу, мы можем провести следующие преобразования: (3 − 7) · 2 = (3 · 2 − 7 · 2) . Получаем 3 · 2 − 7 · 2 .

Раскрыв скобки в выражении 3 · x 2 · 1 — x + 1 x + 2 , получаем 3 x 2 · 1 — 3 · x 2 · x + 3 · x 2 · 1 x + 2 .

Умножение скобки на скобку

Рассмотрим произведение двух скобок вида (a 1 + a 2) · (b 1 + b 2) . Это поможет нам получить правило для раскрытия скобок при проведении умножения скобки на скобку.

Для того, чтобы решить приведенный пример, обозначим выражение (b 1 + b 2) как b . Это позволит нам использовать правило умножения скобки на выражение. Получим (a 1 + a 2) · (b 1 + b 2) = (a 1 + a 2) · b = (a 1 · b + a 2 · b) = a 1 · b + a 2 · b . Выполнив обратную замену b на (b 1 + b 2) , снова применим правило умножения выражения на скобку: a 1 · b + a 2 · b = = a 1 · (b 1 + b 2) + a 2 · (b 1 + b 2) = = (a 1 · b 1 + a 1 · b 2) + (a 2 · b 1 + a 2 · b 2) = = a 1 · b 1 + a 1 · b 2 + a 2 · b 1 + a 2 · b 2

Благодаря ряду несложных приемов мы можем прийти к сумме произведений каждого из слагаемых из первой скобки на каждое из слагаемых из второй скобки. Правило можно распространить на любое количество слагаемых внутри скобок.

Сформулируем правила умножения скобки на скобку: чтобы перемножить между собой две суммы, необходимо каждое из слагаемых первой суммы перемножить на каждое из слагаемых второй суммы и сложить полученные результаты.

Формула будет иметь вид:

(a 1 + a 2 + . . . + a m) · (b 1 + b 2 + . . . + b n) = = a 1 b 1 + a 1 b 2 + . . . + a 1 b n + + a 2 b 1 + a 2 b 2 + . . . + a 2 b n + + . . . + + a m b 1 + a m b 1 + . . . a m b n

Проведем раскрытие скобок в выражении (1 + x) · (x 2 + x + 6) Оно представляет собой произведение двух сумм. Запишем решение: (1 + x) · (x 2 + x + 6) = = (1 · x 2 + 1 · x + 1 · 6 + x · x 2 + x · x + x · 6) = = 1 · x 2 + 1 · x + 1 · 6 + x · x 2 + x · x + x · 6

Отдельно стоит остановиться на тех случаях, когда в скобках присутствует знак минус наряду со знаками плюс. Для примера возьмем выражение (1 − x) · (3 · x · y − 2 · x · y 3) .

Сначала представим выражения в скобках в виде сумм: (1 + (− x)) · (3 · x · y + (− 2 · x · y 3)) . Теперь мы можем применить правило: (1 + (− x)) · (3 · x · y + (− 2 · x · y 3)) = = (1 · 3 · x · y + 1 · (− 2 · x · y 3) + (− x) · 3 · x · y + (− x) · (− 2 · x · y 3))

Раскроем скобки: 1 · 3 · x · y − 1 · 2 · x · y 3 − x · 3 · x · y + x · 2 · x · y 3 .

Раскрытие скобок в произведениях нескольких скобок и выражений

При наличии в выражении трех и более выражений в скобках, раскрывать скобки необходимо последовательно. Начать преобразование необходимо с того, что два первых множителя берут в скобки. Внутри этих скобок мы можем проводить преобразования согласно правилам, рассмотренным выше. Например, скобки в выражении (2 + 4) · 3 · (5 + 7 · 8) .

В выражении содержится сразу три множителя (2 + 4) , 3 и (5 + 7 · 8) . Будем раскрывать скобки последовательно. Заключим первые два множителя еще в одни скобки, которые для наглядности сделаем красными: (2 + 4) · 3 · (5 + 7 · 8) = ((2 + 4) · 3) · (5 + 7 · 8) .

В соответствии с правилом умножения скобки на число мы можем провести следующие действия: ((2 + 4) · 3) · (5 + 7 · 8) = (2 · 3 + 4 · 3) · (5 + 7 · 8) .

Умножаем скобку на скобку: (2 · 3 + 4 · 3) · (5 + 7 · 8) = 2 · 3 · 5 + 2 · 3 · 7 · 8 + 4 · 3 · 5 + 4 · 3 · 7 · 8 .

Скобка в натуральной степени

Степени, основаниями которых являются некоторые выражения, записанные в скобках, с натуральными показателями можно рассматривать как произведение нескольких скобок. При этом по правилам из двух предыдущих пунктов их можно записать без этих скобок.

Рассмотрим процесс преобразования выражения (a + b + c) 2 . Его можно записать в виде произведения двух скобок (a + b + c) · (a + b + c) . Произведем умножение скобки на скобку и получим a · a + a · b + a · c + b · a + b · b + b · c + c · a + c · b + c · c .

Разберем еще один пример:

Пример 8

1 x + 2 3 = 1 x + 2 · 1 x + 2 · 1 x + 2 = = 1 x · 1 x + 1 x · 2 + 2 · 1 x + 2 · 2 · 1 x + 2 = = 1 x · 1 x · 1 x + 1 x · 2 · 1 x + 2 · 1 x · 1 x + 2 · 2 · 1 x + 1 x · 1 x · 2 + + 1 x 2 · 2 + 2 · 1 x · 2 + 2 · 2 · 2

Деление скобки на число и скобки на скобку

Деление скобки на число предполагает, что необходимо разделить на число все заключенные в скобки слагаемые. Например, (x 2 — x) : 4 = x 2: 4 — x: 4 .

Деление можно предварительно заменить умножением, после чего можно воспользоваться подходящим правилом раскрытия скобок в произведении. Это же правило применимо и при делении скобки на скобку.

Например, нам необходимо раскрыть скобки в выражении (x + 2) : 2 3 . Для этого сначала заменим деление умножением на обратное число (x + 2) : 2 3 = (x + 2) · 2 3 . Умножим скобку на число (x + 2) · 2 3 = x · 2 3 + 2 · 2 3 .

Вот еще один пример деления на скобку:

Пример 9

1 x + x + 1: (x + 2) .

Заменим деление умножением: 1 x + x + 1 · 1 x + 2 .

Выполним умножение: 1 x + x + 1 · 1 x + 2 = 1 x · 1 x + 2 + x · 1 x + 2 + 1 · 1 x + 2 .

Порядок раскрытия скобок

Теперь рассмотрим порядок применения правил, разобранных выше в выражениях общего вида, т.е. в выражениях, которые содержат суммы с разностями, произведения с частными, скобки в натуральной степени.

Порядок выполнения действий:

  • первым делом необходимо выполнить возведение скобок в натуральную степень;
  • на втором этапе производится раскрытие скобок в произведениях и частных;
  • заключительным шагом будет раскрытие скобок в суммах и разностях.

Рассмотрим порядок выполнения действий на примере выражения (− 5) + 3 · (− 2) : (− 4) − 6 · (− 7) . Намнем преобразование с выражений 3 · (− 2) : (− 4) и 6 · (− 7) , которые должны принять вид (3 · 2: 4) и (− 6 · 7) . При подстановке полученных результатов в исходное выражение получаем: (− 5) + 3 · (− 2) : (− 4) − 6 · (− 7) = (− 5) + (3 · 2: 4) − (− 6 · 7) . Раскрываем скобки: − 5 + 3 · 2: 4 + 6 · 7 .

Имея дело с выражениями, которые содержат скобки в скобках, удобно проводить преобразования, продвигаясь изнутри наружу.

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter

Основная функция скобок – менять порядок действий при вычислениях значений . Например , в числовом выражении \(5·3+7\) сначала будет вычисляться умножение, а потом сложение: \(5·3+7 =15+7=22\). А вот в выражении \(5·(3+7)\) сначала будет вычислено сложение в скобке, и лишь потом умножение: \(5·(3+7)=5·10=50\).


Пример. Раскройте скобку: \(-(4m+3)\).
Решение : \(-(4m+3)=-4m-3\).

Пример. Раскройте скобку и приведите подобные слагаемые \(5-(3x+2)+(2+3x)\).
Решение : \(5-(3x+2)+(2+3x)=5-3x-2+2+3x=5\).

Пример. Раскройте скобки \(5(3-x)\).
Решение : В скобке у нас стоят \(3\) и \(-x\), а перед скобкой — пятерка. Значит, каждый член скобки умножается на \(5\) — напоминаю, что знак умножения между числом и скобкой в математике не пишут для сокращения размеров записей .

Пример. Раскройте скобки \(-2(-3x+5)\).
Решение : Как и в предыдущем примере, стоящие в скобке \(-3x\) и \(5\) умножаются на \(-2\).

Пример. Упростить выражение: \(5(x+y)-2(x-y)\).
Решение : \(5(x+y)-2(x-y)=5x+5y-2x+2y=3x+7y\).

Осталось рассмотреть последнюю ситуацию.

При умножении скобки на скобку, каждый член первой скобки перемножается с каждым членом второй:

\((c+d)(a-b)=c·(a-b)+d·(a-b)=ca-cb+da-db\)

Пример. Раскройте скобки \((2-x)(3x-1)\).
Решение : У нас произведение скобок и его можно раскрыть сразу по формуле выше. Но чтобы не путаться, давайте сделаем всё по шагам.
Шаг 1. Убираем первую скобку — каждый ее член умножаем на скобку вторую:

Шаг 2. Раскрываем произведения скобки на множитель как описано выше:
— сначала первое…

Потом второе.

Шаг 3. Теперь перемножаем и приводим подобные слагаемые:

Так подробно расписывать все преобразования совсем необязательно, можно сразу перемножать. Но если вы только учитесь раскрывать скобок – пишите подробно, меньше будет шанс ошибиться.

Примечание ко всему разделу. На самом деле, вам нет необходимости запоминать все четыре правила, достаточно помнить только одно, вот это: \(c(a-b)=ca-cb\) . Почему? Потому что если в него вместо c подставить единицу, получиться правило \((a-b)=a-b\) . А если подставить минус единицу, получим правило \(-(a-b)=-a+b\) . Ну, а если вместо c подставить другую скобку – можно получить последнее правило.

Скобка в скобке

Иногда в практике встречаются задачи со скобками, вложенными внутрь других скобок. Вот пример такого задания: упростить выражение \(7x+2(5-(3x+y))\).

Чтобы успешно решать подобные задания, нужно:
— внимательно разобраться во вложенности скобок – какая в какой находиться;
— раскрывать скобки последовательно, начиная, например, с самой внутренней.

При этом важно при раскрытии одной из скобок не трогать все остальное выражение , просто переписывая его как есть.
Давайте для примера разберем написанное выше задание.

Пример. Раскройте скобки и приведите подобные слагаемые \(7x+2(5-(3x+y))\).
Решение:

Пример. Раскройте скобки и приведите подобные слагаемые \(-(x+3(2x-1+(x-5)))\).
Решение :

\(-(x+3(2x-1\)\(+(x-5)\) \())\)

Здесь тройная вложенность скобок. Начинаем с самой внутренней (выделено зеленым). Перед скобкой плюс, так что она просто снимается.

\(-(x+3(2x-1\)\(+x-5\) \())\)

Теперь нужно раскрыть вторую скобку, промежуточную. Но мы перед этим упростим выражение привидением подобный слагаемых в этой второй скобке.

\(=-(x\)\(+3(3x-6)\) \()=\)

Вот сейчас раскрываем вторую скобку (выделено голубым). Перед скобкой множитель – так что каждый член в скобке умножается на него.

\(=-(x\)\(+9x-18\) \()=\)

И раскрываем последнюю скобку. Перед скобкой минус – поэтому все знаки меняются на противоположные.

Раскрытие скобок — это базовое умение в математике. Без этого умения невозможно иметь оценку выше тройки в 8 и 9 классе. Поэтому рекомендую хорошо разобраться в этой теме.

В данной статье мы подробно рассмотрим основные правила такой важной темы курса математики, как раскрытие скобок. Знать правила раскрытия скобок нужно для того, чтобы верно решать уравнения, в которых они используются.

Как правильно раскрывать скобки при сложении

Раскрываем скобки, перед которыми стоит знак « + »

Эта самый простой случай, ибо если перед скобками стоит знак сложения, при раскрытии скобок знаки внутри них не меняются. Пример:

(9 + 3) + (1 — 6 + 9) = 9 + 3 + 1 — 6 + 9 = 16.

Как раскрыть скобки, перед которыми стоит знак « — »

В данном случае нужно переписать все слагаемые без скобок, но при этом сменить все знаки внутри них на противоположные. Знаки меняются только у слагаемых из тех скобок, перед которыми стоял знак « — ». Пример:

(9 + 3) — (1 — 6 + 9) = 9 + 3 — 1 + 6 — 9 = 8.

Как раскрыть скобки при умножении

Перед скобками стоит число-множитель

В данном случае нужно умножить каждое слагаемое на множитель и раскрыть скобки, не меняя знаков. 2) * 12 = 1728.

Как раскрыть 3 скобки

Бывают уравнения, в которых перемножаются сразу 3 скобки. В таком случае нужно сначала перемножить между собой слагаемые первых двух скобок, и затем сумму этого перемножения умножить на слагаемые третьей скобки. Пример:

(1 + 2) * (3 + 4) * (5 — 6) = (3 + 4 + 6 + 8) * (5 — 6) = — 21.

Данные правила раскрытия скобок одинаково распространяются для решения как линейных, так и тригонометрических уравнений.

 

правила и примеры (7 класс)

Математические выражения (формулы) сокращённого умножения (квадрат суммы и разности, куб суммы и разности, разность квадратов, сумма и разность кубов) крайне не заменимы во многих областях точных наук. Эти 7 символьных записей не заменимы при упрощении выражений, решении уравнений, при умножении многочленов, сокращении дробей , решении интегралов и многом другом. А значит будет очень полезно разобраться как они получаются, для чего они нужны, и самое главное, как их запомнить и потом применять. Потом применяя формулы сокращенного умножения на практике самым сложным будет увидеть, что есть х и что есть у. Очевидно, что никаких ограничений для a и b нет, а значит это могут быть любые числовые или буквенные выражения.

И так вот они:

Первая х 2 — у 2 = (х — у) (х+у) .Чтобы рассчитать разность квадратов двух выражений надо перемножить разности этих выражений на их суммы.

Вторая (х + у) 2 = х 2 + 2ху + у 2 . Чтобы найти квадрат суммы двух выражений нужно к квадрату первого выражения прибавить удвоенное произведение первого выражения на второе плюс квадрат второго выражения.

Третья (х — у) 2 = х 2 — 2ху + у 2 . Чтобы вычислить квадрат разности двух выражений нужно от квадрата первого выражения отнять удвоенное произведение первого выражения на второе плюс квадрат второго выражения.

Четвертая (х + у) 3 = х 3 + 3х 2 у + 3ху 2 + у 3. Чтобы вычислить куб суммы двух выражений нужно к кубу первого выражения прибавить утроенное произведение квадрата первого выражения на второе плюс утроенное произведение первого выражения на квадрат второго плюс куб второго выражения.

Пятая (х — у) 3 = х 3 — 3х 2 у + 3ху 2 — у 3 . Чтобы рассчитать куб разности двух выражений необходимо от куба первого выражения отнять утроенное произведение квадрата первого выражения на второе плюс утроенное произведение первого выражения на квадрат второго минус куб второго выражения.

Шестая х 3 + у 3 = (х + у) (х 2 — ху + у 2) Чтобы высчитать сумму кубов двух выражений нужно умножить суммы первого и второго выражения на неполный квадрат разности этих выражений.

Седьмая х 3 — у 3 = (х — у) (х 2 + ху + у 2) Чтобы произвести вычисление разности кубов двух выражений надо умножить разность первого и второго выражения на неполный квадрат суммы этих выражений.

Не сложно запомнить, что все формулы применяются для произведения расчетов и в противоположном направлении (справа налево).

О существовании этих закономерностей з нали еще около 4 тысяч лет тому назад. Их широко применяли жители древнего Вавилона и Египта. Но в те эпохи они выражались словесно или геометрически и при расчетах не использовали буквы.

Разберем доказательство квадрата суммы (а + b) 2 = a 2 +2ab +b 2 .

Первым эту математическую закономерность доказал древнегреческий учёный Евклид, работавший в Александрии в III веке до н.э., он использовал для этого геометрический способ доказательства формулы, так как буквами для обозначения чисел не пользовались и учёные древней Эллады. Ими повсеместно употреблялись не “а 2 ”, а “квадрат на отрезке а”, не “ab”, а “прямоугольник , заключенный между отрезками a и b”.

В предыдущем уроке мы разобрались с разложением на множители. Освоили два способа: вынесение общего множителя за скобки и группировку. В этом уроке — следующий мощный способ: формулы сокращённого умножения . В краткой записи — ФСУ.

Формулы сокращённого умножения (квадрат суммы и разности, куб суммы и разности, разность квадратов, сумма и разность кубов) крайне необходимы во всех разделах математики. Они применяются в упрощении выражений, решении уравнений, умножении многочленов, сокращении дробей, решении интегралов и т.д. и т.п. Короче, есть все основания разобраться с ними. Понять откуда они берутся, зачем они нужны, как их запомнить и как применять.

Разбираемся?)

Откуда берутся формулы сокращённого умножения?

Равенства 6 и 7 записаны не очень привычно. Как бы наоборот. Это специально.) Любое равенство работает как слева направо, так и справа налево. В такой записи понятнее, откуда берутся ФСУ.

Они берутся из умножения.) Например:

(a+b) 2 =(a+b)(a+b)=a 2 +ab+ba+b 2 =a 2 +2ab+b 2

Вот и всё, никаких научных хитростей. Просто перемножаем скобки и приводим подобные. Так получаются все формулы сокращённого умножения. Сокращённое умножение — это потому, что в самих формулах нет перемножения скобок и приведения подобных. Сокращены.) Сразу дан результат.

ФСУ нужно знать наизусть. Без первых трёх можно не мечтать о тройке, без остальных — о четвёрке с пятёркой.)

Зачем нужны формулы сокращённого умножения?

Есть две причины, выучить, даже зазубрить эти формулы. Первая — готовый ответ на автомате резко уменьшает количество ошибок. Но это не самая главная причина. А вот вторая…

Если Вам нравится этот сайт…

Кстати, у меня есть ещё парочка интересных сайтов для Вас.)

Можно потренироваться в решении примеров и узнать свой уровень. Тестирование с мгновенной проверкой. Учимся — с интересом!)

можно познакомиться с функциями и производными.

Рассмотрим теперь возведение в квадрат двучлена и, применяясь к арифметической точке зрения, будем говорить о квадрате суммы, т. е. (a + b)² и о квадрате разности двух чисел, т. е. (a – b)².

Так как (a + b)² = (a + b) ∙ (a + b),

то найдем: (a + b) ∙ (a + b) = a² + ab + ab + b² = a² + 2ab + b², т. е.

(a + b)² = a² + 2ab + b²

Этот результат полезно запомнить и в виде вышеописанного равенства и словами: квадрат суммы двух чисел равен квадрату первого числа плюс произведение двойки на первое число и на второе число, плюс квадрат второго числа.

Зная этот результат, мы можем сразу написать, напр.:

(x + y)² = x² + 2xy + y²
(3ab + 1)² = 9a² b² + 6ab + 1

(x n + 4x)² = x 2n + 8x n+1 + 16x 2

Разберем второй из этих примеров. Нам требуется возвести в квадрат сумму двух чисел: первое число есть 3ab, второе 1. Должно получиться: 1) квадрат первого числа, т. е. (3ab)², что равно 9a²b²; 2) произведение двойки на первое число и на второе, т. е. 2 ∙ 3ab ∙ 1 = 6ab; 3) квадрат 2-го числа, т. е. 1² = 1 – все эти три члена должно сложить между собою.

Совершенно также получим формулу для возведения в квадрат разности двух чисел, т. е. для (a – b)²:

(a – b)² = (a – b) (a – b) = a² – ab – ab + b² = a² – 2ab + b².

(a – b)² = a² – 2ab + b² ,

т. е. квадрат разности двух чисел равен квадрату первого числа, минус произведение двойки на первое число и на второе, плюс квадрат второго числа .

Зная этот результат, мы можем сразу выполнять возведение в квадрат двучленов, представляющих с точки зрения арифметики разность двух чисел.

(m – n)² = m² – 2mn + n²
(5ab 3 – 3a 2 b) 2 = 25a 2 b 6 – 30a 3 b 4 + 9a 4 b 2

(a n-1 – a) 2 = a 2n-2 – 2a n + a 2 и т. п.

Поясним 2-ой пример. Здесь мы имеем в скобках разность двух чисел: первое число 5ab 3 и второе число 3a 2 b. В результате должно получиться: 1) квадрат первого числа, т. е. (5ab 3) 2 = 25a 2 b 6 , 2) произведение двойки на 1-ое и на 2-ое число, т. е. 2 ∙ 5ab 3 ∙ 3a 2 b = 30a 3 b 4 и 3) квадрат второго числа, т. е. (3a 2 b) 2 = 9a 4 b 2 ; первый и третий члены надо взять с плюсом, а 2-ой с минусом, получим 25a 2 b 6 – 30a 3 b 4 + 9a 4 b 2 . В пояснение 4-го примера заметим лишь, что 1) (a n-1)2 = a 2n-2 … надо показателя степени умножить на 2 и 2) произведение двойки на 1-ое число и на 2-ое = 2 ∙ a n-1 ∙ a = 2a n .

Если встать на точку зрения алгебры, то оба равенства: 1) (a + b)² = a² + 2ab + b² и 2) (a – b)² = a² – 2ab + b² выражают одно и тоже, а именно: квадрат двучлена равен квадрату первого члена, плюс произведение числа (+2) на первый член и на второй, плюс квадрат второго члена. Это ясно, потому что наши равенства можно переписать в виде:

1) (a + b)² = (+a)² + (+2) ∙ (+a) (+b) + (+b)²
2) (a – b)² = (+a)² + (+2) ∙ (+a) (–b) + (–b)²

В некоторых случаях так именно и удобно толковать полученные равенства:

(–4a – 3b)² = (–4a)² + (+2) (–4a) (–3b) + (–3b)²

Здесь возводится в квадрат двучлен, первый член которого = –4a и второй = –3b. Далее мы получим (–4a)² = 16a², (+2) (–4a) (–3b) = +24ab, (–3b)² = 9b² и окончательно:

(–4a – 3b)² = 6a² + 24ab + 9b²

Возможно было бы также получить и запомнить формулу для возведения в квадрат трехчлена, четырехчлена и вообще любого многочлена. Однако, мы этого делать не будем, ибо применять эти формулы приходится редко, а если понадобится какой-либо многочлен (кроме двучлена) возвести в квадрат, то станем сводить дело к умножению. Например:

31. Применим полученные 3 равенства, а именно:

(a + b) (a – b) = a² – b²
(a + b)² = a² + 2ab + b²
(a – b)² = a² – 2ab + b²

к арифметике.

Пусть надо 41 ∙ 39. Тогда мы можем это представить в виде (40 + 1) (40 – 1) и свести дело к первому равенству – получим 40² – 1 или 1600 – 1 = 1599. Благодаря этому, легко выполнять в уме умножения вроде 21 ∙ 19; 22 ∙ 18; 31 ∙ 29; 32 ∙ 28; 71 ∙ 69 и т. д.

Пусть надо 41 ∙ 41; это все равно, что 41² или (40 + 1)² = 1600 + 80 + 1 = 1681. Также 35 ∙ 35 = 35² = (30 + 5)² = 900 + 300 + 25 = 1225. Если надо 37 ∙ 37, то это равно (40 – 3)² = 1600 – 240 + 9 = 1369. Подобные умножения (или возведение в квадрат двузначных чисел) легко выполнять, при некотором навыке, в уме.

Среди различных выражений, которые рассматриваются в алгебре, важное место занимают суммы одночленов. 3 \)

Произведение одночлена и многочлена тождественно равно сумме произведений этого одночлена и каждого из членов многочлена.

Этот результат обычно формулируют в виде правила.

Чтобы умножить одночлен на многочлен, надо умножить этот одночлен на каждый из членов многочлена.

Мы уже неоднократно использовали это правило для умножения на сумму.

Произведение многочленов. Преобразование (упрощение) произведения двух многочленов

Вообще, произведение двух многочленов тождественно равно сумме произведении каждого члена одного многочлена и каждого члена другого.

Обычно пользуются следующим правилом.

Чтобы умножить многочлен на многочлен, надо каждый член одного многочлена умножить на каждый член другого и сложить полученные произведения.

Формулы сокращенного умножения. Квадраты суммы, разности и разность квадратов

С некоторыми выражениями в алгебраических преобразованиях приходится иметь дело чаще, чем с другими. Пожалуй, наиболее часто встречаются выражения \((a + b)^2, \; (a — b)^2 \) и \(a^2 — b^2 \), т. 2 = (a — b)(a + b) \) — разность квадратов равна произведению разности на сумму.

Эти три тождества позволяют в преобразованиях заменять свои левые части правыми и обратно — правые части левыми. Самое трудное при этом — увидеть соответствующие выражения и понять, чем в них заменены переменные а и b. Рассмотрим несколько примеров использования формул сокращенного умножения.

То части уравнения находится выражение в скобках. Чтобы раскрыть скобки, посмотрите на знак перед скобками. Если стоит знак плюс, при раскрывании скобок в записи выражения ничего не поменяется: просто уберите скобки. Если стоит знак минус, при раскрытии скобок необходимо поменять все знаки , стоящем изначально в скобках, на противоположные. Например, -(2х-3)=-2х+3.

Перемножение двух скобок.
Если в уравнении присутствует произведение двух скобок, раскрытие скобок по стандартному правилу. Каждый член первой скобки перемножается с каждым членом второй скобки. Полученные числа суммируются. При этом произведение двух «плюсов» или двух «минусов» дает слагаемому знак «плюс», а если множители имеют разные знаки, то получает знак «минус». 3
Формулы возведения выражения больше трех можно при помощи треугольника Паскаля.

Источники:

  • формула раскрытия скобок

Заключенные в скобки математические действия могут содержать переменные и выражения разной степени сложности. Для перемножения таких выражений придется искать решение в общем виде, раскрывая скобки и упрощая полученный результат. Если же в скобках содержатся операции без переменных, только с численными значениями, то раскрывать скобки не обязательно, так как при наличии компьютера его пользователю доступны весьма значительные вычислительные ресурсы – проще воспользоваться ими, чем упрощать выражение.

Инструкция

Перемножайте последовательно каждое (или уменьшаемое с ), содержащееся в одной скобке, на содержимое всех остальных скобок, если требуется получить результат в общем виде. Например, пусть исходное выражение записано так: (5+x)∗(6-х)∗(x+2). Тогда последовательное перемножение (то есть раскрытие скобок) даст следующий результат: (5+x)∗(6-х)∗(x+2) = (5∗6-5∗х)∗(5∗x+5∗2) + (6∗x-х∗x)∗(x∗x+2∗x) = (5∗6∗5∗x+5∗6∗5∗2) — (5∗х∗5∗x+5∗х∗5∗2) + (6∗x∗x∗x+6∗x∗2∗x) — (х∗x∗x∗x+х∗x∗2∗x) = 5∗6∗5∗x + 5∗6∗5∗2 — 5∗х∗5∗x — 5∗х∗5∗2 + 6∗x∗x∗x + 6∗x∗2∗x — х∗x∗x∗x — х∗x∗2∗x = 150∗x + 300 — 25∗x² — 50∗x + 6∗x³ + 12∗x² — x∗x³ — 2∗x³.

Упрощайте после результат, сокращая выражения. Например, полученное на предыдущем шаге выражение можно упростить таким образом: 150∗x + 300 — 25∗x² — 50∗x + 6∗x³ + 12∗x² — x∗x³ — 2∗x³ = 100∗x + 300 — 13∗x² — 8∗x³ — x∗x³.

Воспользуйтесь калькулятором, если требуется перемножить икс равен 4.75, то есть (5+4.75)∗(6-4.75)∗(4.75+2). Для вычисления этого значения перейдите на сайт поисковика Google или Nigma и введите выражение в поле запроса в его исходном виде (5+4.75)*(6-4.75)*(4.75+2). Google покажет 82.265625 сразу, без нажатия кнопки, а Nigma нуждается в отправке данных на сервер нажатием кнопки.

 

Как раскрывать скобки в выражениях и уравнениях. Правила математики.

Скобки используются для указания на порядок выполнения действий в числовых и буквенных выражениях, а также в выражениях с переменными. От выражения со скобками удобно перейти к тождественно равному выражению без скобок. Этот прием носит название раскрытия скобок.

Раскрыть скобки означает избавить выражение от этих скобок.

Отдельного внимания заслуживает еще один момент, который касается особенностей записи решений при раскрытии скобок. Мы можем записать начальное выражение со скобками и полученный после раскрытия скобок результат как равенство. Например, после раскрытия скобок вместо выражения
3−(5−7) мы получаем выражение 3−5+7. Оба этих выражения мы можем записать в виде равенства 3−(5−7)=3−5+7.

И еще один важный момент. В математике для сокращения записей принято не писать знак плюс, если он стоит в выражении или в скобках первым. Например, если мы складываем два положительных числа, к примеру, семь и три, то пишем не +7+3, а просто 7+3, несмотря на то, что семерка тоже положительное число. Аналогично если вы видите, например, выражение (5+x) – знайте, что и перед скобкой стоит плюс, который не пишут, и перед пятеркой стоит плюс +(+5+x).

Правило раскрытия скобок при сложении

При раскрытии скобок, если перед скобками стоит плюс, то этот плюс опускается вместе со скобками.

Пример. Раскрыть скобки в выражении 2 + (7 + 3) Перед скобками плюс, значит знаки перед числами в скобках не меняем.

2 + (7 + 3) = 2 + 7 + 3

Правило раскрытия скобок при вычитании

Если перед скобками стоит минус, то этот минус опускается вместе со скобками, но слагаемые, которые были в скобках, меняют свой знак на противоположный. Отсутствие знака перед первым слагаемым в скобках подразумевает знак +.

Пример. Раскрыть скобки в выражении 2 − (7 + 3)

Перед скобками стоит минус, значит нужно поменять знаки перед числами из скобок. В скобках перед цифрой 7 знака нет, это значит, что семерка положительная, считается, что перед ней знак +.

2 − (7 + 3) = 2 − (+ 7 + 3)

При раскрытии скобок убираем из примера минус, который был перед скобками, и сами скобки 2 − (+ 7 + 3)  , а знаки, которые были в скобках, меняем на противоположные.

2 − (+ 7 + 3) = 2 − 7 − 3

Раскрытие скобок при умножении

Если перед скобками стоит знак умножения, то каждое число, стоящее внутри скобок, умножается на множитель, стоящий перед скобками. При этом умножение минуса на минус дает плюс, а умножение минуса на плюс, как и умножение плюса на минус дает минус.

Таким образом, сскобки в произведениях раскрываются в соответствии с распределительным свойством умножения.

Пример. 2 · (9 — 7) = 2 · 9 — 2 · 7

При умножении скобки на скобку, каждый член первой скобки перемножается с каждым членом второй скобки.

(2 + 3) · (4 + 5) = 2 · 4 + 2 · 5 + 3 · 4 + 3 · 5

На самом деле, нет необходимости запоминать все правила, достаточно помнить только одно, вот это: c(a−b)=ca−cb. Почему? Потому что если в него вместо c подставить единицу, получится правило (a−b)=a−b. А если подставить минус единицу, получим правило −(a−b)=−a+b. Ну, а если вместо c подставить другую скобку – можно получить последнее правило.

Раскрываем скобки при делении

Если после скобок стоит знак деления, то каждое число, стоящее внутри скобок, делится на делитель, стоящий после скобок, и наоборот.

Пример.  (9 + 6) : 3=9 : 3 + 6 : 3

Как раскрыть вложенные скобки

Если в выражении присутствуют вложенные скобки, то их раскрывают по порядку, начиная с внешних или внутренних.

При этом важно при раскрытии одной из скобок не трогать остальные скобки, просто переписывая их как есть. 

Пример.    12 — (a + (6 — b) — 3) = 12 — a — (6 — b) + 3 = 12 — a — 6 + b + 3 = 9 — a + b

Раскрытие скобки в кубе. Формулы сокращенного умножения

Формулы сокращенного выражения очень часто применяются на практике, так что их все желательно выучить наизусть. До этого момента нам будет служить верой и правдой , которую мы рекомендуем распечатать и все время держать перед глазами:

Первые четыре формулы из составленной таблицы формул сокращенного умножения позволяют возводить в квадрат и куб сумму или разность двух выражений. Пятая предназначена для краткого умножения разности и суммы двух выражений. А шестая и седьмая формулы используются для умножения суммы двух выражений a и b на их неполный квадрат разности (так называют выражение вида a 2 −a·b+b 2 ) и разности двух выражений a и b на неполный квадрат их суммы (a 2 +a·b+b 2 ) соответственно.

Стоит отдельно заметить, что каждое равенство в таблице представляет собой тождество . Этим объясняется, почему формулы сокращенного умножения еще называют тождествами сокращенного умножения.

При решении примеров, особенно в которых имеет место разложение многочлена на множители , ФСУ часто используют в виде с переставленными местами левыми и правыми частями:


Три последних тождества в таблице имеют свои названия. Формула a 2 −b 2 =(a−b)·(a+b) называется формулой разности квадратов , a 3 +b 3 =(a+b)·(a 2 −a·b+b 2 ) — формулой суммы кубов , а a 3 −b 3 =(a−b)·(a 2 +a·b+b 2 ) — формулой разности кубов . Обратите внимание, что соответствующим формулам с переставленными частями из предыдущей таблицы фсу мы никак не назвали.

Дополнительные формулы

В таблицу формул сокращенного умножения не помешает добавить еще несколько тождеств.

Сферы применения формул сокращенного умножения (фсу) и примеры

Основное предназначение формул сокращенного умножения (фсу) объясняется их названием, то есть, оно состоит в кратком умножении выражений. Однако сфера применения ФСУ намного шире, и не ограничивается кратким умножением. Перечислим основные направления.

Несомненно, центральное приложение формулы сокращенного умножения нашли в выполнении тождественных преобразований выражений . Наиболее часто эти формулы используются в процессе упрощения выражений .

Пример.

Упростите выражение 9·y−(1+3·y) 2 .

Решение.

В данном выражении возведение в квадрат можно выполнить сокращенно, имеем 9·y−(1+3·y) 2 =9·y−(1 2 +2·1·3·y+(3·y) 2) . Остается лишь раскрыть скобки и привести подобные члены: 9·y−(1 2 +2·1·3·y+(3·y) 2)= 9·y−1−6·y−9·y 2 =3·y−1−9·y 2 .

При расчёте алгебраических многочленов для упрощения вычислений используются формулы сокращенного умножения . Всего таких формул семь. Их все необходимо знать наизусть.

Следует также помнить, что вместо a и b в формулах могут стоять как числа, так и любые другие алгебраические многочлены.

Разность квадратов

Разность квадратов двух чисел равна произведению разности этих чисел и их суммы.

a 2 — b 2 = (a — b)(a + b)

Квадрат суммы

Квадрат суммы двух чисел равен квадрату первого числа плюс удвоенное произведение первого числа на второе плюс квадрат второго числа.

(a + b) 2 = a 2 + 2ab + b 2

Обратите внимание, что с помощью этой формулы сокращённого умножения легко находить квадраты больших чисел , не используя калькулятор или умножение в столбик. Поясним на примере:

Найти 112 2 .

Разложим 112 на сумму чисел, чьи квадраты мы хорошо помним.2
112 = 100 + 1

Запишем сумму чисел в скобки и поставим над скобками квадрат.
112 2 = (100 + 12) 2

Воспользуемся формулой квадрата суммы:
112 2 = (100 + 12) 2 = 100 2 + 2 x 100 x 12 + 12 2 = 10 000 + 2 400 + 144 = 12 544

Помните, что формула квадрат суммы также справедлива для любых алгебраических многочленов.

(8a + с) 2 = 64a 2 + 16ac + c 2

Предостережение!!!

(a + b) 2 не равно a 2 + b 2

Квадрат разности

Квадрат разности двух чисел равен квадрату первого числа минус удвоенное произведение первого на второе плюс квадрат второго числа.

(a — b) 2 = a 2 — 2ab + b 2

Также стоит запомнить весьма полезное преобразование:

(a — b) 2 = (b — a) 2
Формула выше доказывается простым раскрытием скобок:

(a — b) 2 = a 2 — 2ab + b 2 = b 2 — 2ab + a 2 = (b — a) 2

Куб суммы

Куб суммы двух чисел равен кубу первого числа плюс утроенное произведение квадрата первого числа на второе плюс утроенное произведение первого на квадрат второго плюс куб второго.

(a + b) 3 = a 3 + 3a 2 b + 3ab 2 + b 3

Запомнить эту «страшную» на вид формулу довольно просто.

Выучите, что в начале идёт a 3 .

Два многочлена посередине имеют коэффициенты 3.

В спомним, что любое число в нулевой степени есть 1. (a 0 = 1, b 0 = 1). Легко заметить, что в формуле идёт понижение степени a и увеличение степени b. В этом можно убедиться:
(a + b) 3 = a 3 b 0 + 3a 2 b 1 + 3a 1 b 2 + b 3 a 0 = a 3 + 3a 2 b + 3ab 2 + b 3

Предостережение!!!

(a + b) 3 не равно a 3 + b 3

Куб разности

Куб разности двух чисел равен кубу первого числа минус утроенное произведение квадрата первого числа на второе плюс утроенное произведение первого числа на квадрат второго минус куб второго.

(a — b) 3 = a 3 — 3a 2 b + 3ab 2 — b 3

Запоминается эта формула как и предыдущая, но только с учётом чередования знаков «+» и «-». Перед первым членом a 3 стоит «+» (по правилам математики мы его не пишем). Значит, перед следующим членом будет стоять «-», затем опять «+» и т.д.

(a — b) 3 = + a 3 — 3a 2 b + 3ab 2 — b 3 = a 3 — 3a 2 b + 3ab 2 — b 3

Сумма кубов ( Не путать с кубом суммы!)

Сумма кубов равна произведению суммы двух чисел на неполный квадрат разности.

a 3 + b 3 = (a + b)(a 2 — ab + b 2)

Сумма кубов — это произведение двух скобок.

Первая скобка — сумма двух чисел.

Вторая скобка — неполный квадрат разности чисел. Неполным квадратом разности называют выражение:

A 2 — ab + b 2
Данный квадрат неполный, так как посередине вместо удвоенного произведения обычное произведение чисел.

Разность кубов (Не путать с кубом разности!!!)

Разность кубов равна произведению разности двух чисел на неполный квадрат суммы.

a 3 — b 3 = (a — b)(a 2 + ab + b 2)

Будьте внимательны при записи знаков. Следует помнить, что все формулы, приведённые выше, используется также и справа налево.

Трудно запоминаются формулы сокращенного умножения? Делу легко помочь. Нужно просто запомнить, как изображается такая простая вещь, как треугольник Паскаля. Тогда вы вспомните эти формулы всегда и везде, вернее, не вспомните, а восстановите.

Что же такое треугольник Паскаля? Этот треугольник состоит из коэффициентов, которые входят в разложение любой степени двучлена вида в многочлен.

Разложим, например, :

В этой записи легко запоминается, что вначале стоит куб первого, а в конце — куб второго числа. А вот что посередине — запоминается сложно. И даже то, что в каждом следующем слагаемом степень одного множителя все время уменьшается, а второго — увеличивается — несложно заметить и запомнить, труднее дело обстоит с запоминанием коэффициентов и знаков (плюс там или минус?).

Итак, сначала коэффициенты. Не надо их запоминать! На полях тетрадки быстренько рисуем треугольник Паскаля, и вот они — коэффициенты, уже перед нами. Рисовать начинаем с трех единичек, одна сверху, две ниже, правее и левее — ага, уже треугольник получается:

Первая строка, с одной единичкой — нулевая. Потом идет первая, вторая, третья и так далее. Чтобы получить вторую строку, нужно по краям снова приписать единички, а в центре записать число, полученное сложением двух чисел, стоящих над ним:

Записываем третью строку: опять по краям единицы, и опять, чтобы получить следующее число в новой строке, сложим числа, стоящие над ним в предыдущей:


Как вы уже догадались, мы получаем в каждой строке коэффициенты из разложения двучлена в многочлен:


Ну а знаки запомнить еще проще: первый — такой же, как в раскладываемом двучлене (раскладываем сумму — значит, плюс, разность — значит, минус), а дальше знаки чередуются!

Вот такая это полезная штука — треугольник Паскаля. Пользуйтесь!

В предыдущем уроке мы разобрались с разложением на множители. Освоили два способа: вынесение общего множителя за скобки и группировку. В этом уроке — следующий мощный способ: формулы сокращённого умножения . В краткой записи — ФСУ.

Формулы сокращённого умножения (квадрат суммы и разности, куб суммы и разности, разность квадратов, сумма и разность кубов) крайне необходимы во всех разделах математики. Они применяются в упрощении выражений, решении уравнений, умножении многочленов, сокращении дробей, решении интегралов и т.д. и т.п. Короче, есть все основания разобраться с ними. Понять откуда они берутся, зачем они нужны, как их запомнить и как применять.

Разбираемся?)

Откуда берутся формулы сокращённого умножения?

Равенства 6 и 7 записаны не очень привычно. Как бы наоборот. Это специально.) Любое равенство работает как слева направо, так и справа налево. В такой записи понятнее, откуда берутся ФСУ.

Они берутся из умножения. ) Например:

(a+b) 2 =(a+b)(a+b)=a 2 +ab+ba+b 2 =a 2 +2ab+b 2

Вот и всё, никаких научных хитростей. Просто перемножаем скобки и приводим подобные. Так получаются все формулы сокращённого умножения. Сокращённое умножение — это потому, что в самих формулах нет перемножения скобок и приведения подобных. Сокращены.) Сразу дан результат.

ФСУ нужно знать наизусть. Без первых трёх можно не мечтать о тройке, без остальных — о четвёрке с пятёркой.)

Зачем нужны формулы сокращённого умножения?

Есть две причины, выучить, даже зазубрить эти формулы. Первая — готовый ответ на автомате резко уменьшает количество ошибок. Но это не самая главная причина. А вот вторая…

Если Вам нравится этот сайт…

Кстати, у меня есть ещё парочка интересных сайтов для Вас.)

Можно потренироваться в решении примеров и узнать свой уровень. Тестирование с мгновенной проверкой. Учимся — с интересом!)

можно познакомиться с функциями и производными.

Математические выражения (формулы) сокращённого умножения (квадрат суммы и разности, куб суммы и разности, разность квадратов, сумма и разность кубов) крайне не заменимы во многих областях точных наук. Эти 7 символьных записей не заменимы при упрощении выражений, решении уравнений, при умножении многочленов, сокращении дробей , решении интегралов и многом другом. А значит будет очень полезно разобраться как они получаются, для чего они нужны, и самое главное, как их запомнить и потом применять. Потом применяя формулы сокращенного умножения на практике самым сложным будет увидеть, что есть х и что есть у. Очевидно, что никаких ограничений для a и b нет, а значит это могут быть любые числовые или буквенные выражения.

И так вот они:

Первая х 2 — у 2 = (х — у) (х+у) .Чтобы рассчитать разность квадратов двух выражений надо перемножить разности этих выражений на их суммы.

Вторая (х + у) 2 = х 2 + 2ху + у 2 . Чтобы найти квадрат суммы двух выражений нужно к квадрату первого выражения прибавить удвоенное произведение первого выражения на второе плюс квадрат второго выражения.

Третья (х — у) 2 = х 2 — 2ху + у 2 . Чтобы вычислить квадрат разности двух выражений нужно от квадрата первого выражения отнять удвоенное произведение первого выражения на второе плюс квадрат второго выражения.

Четвертая (х + у) 3 = х 3 + 3х 2 у + 3ху 2 + у 3. Чтобы вычислить куб суммы двух выражений нужно к кубу первого выражения прибавить утроенное произведение квадрата первого выражения на второе плюс утроенное произведение первого выражения на квадрат второго плюс куб второго выражения.

Пятая (х — у) 3 = х 3 — 3х 2 у + 3ху 2 — у 3 . Чтобы рассчитать куб разности двух выражений необходимо от куба первого выражения отнять утроенное произведение квадрата первого выражения на второе плюс утроенное произведение первого выражения на квадрат второго минус куб второго выражения.

Шестая х 3 + у 3 = (х + у) (х 2 — ху + у 2) Чтобы высчитать сумму кубов двух выражений нужно умножить суммы первого и второго выражения на неполный квадрат разности этих выражений.

Седьмая х 3 — у 3 = (х — у) (х 2 + ху + у 2) Чтобы произвести вычисление разности кубов двух выражений надо умножить разность первого и второго выражения на неполный квадрат суммы этих выражений.

Не сложно запомнить, что все формулы применяются для произведения расчетов и в противоположном направлении (справа налево).

О существовании этих закономерностей з нали еще около 4 тысяч лет тому назад. Их широко применяли жители древнего Вавилона и Египта. Но в те эпохи они выражались словесно или геометрически и при расчетах не использовали буквы.

Разберем доказательство квадрата суммы (а + b) 2 = a 2 +2ab +b 2 .

Первым эту математическую закономерность доказал древнегреческий учёный Евклид, работавший в Александрии в III веке до н. э., он использовал для этого геометрический способ доказательства формулы, так как буквами для обозначения чисел не пользовались и учёные древней Эллады. Ими повсеместно употреблялись не “а 2 ”, а “квадрат на отрезке а”, не “ab”, а “прямоугольник , заключенный между отрезками a и b”.

Формулы или правила сокращенного умножения используются в арифметике, а точнее — в алгебре, для более быстрого процесса вычисления больших алгебраических выражений. Сами же формулы получены из существующих в алгебре правил для умножения нескольких многочленов.

Использование данных формул обеспечивает достаточно оперативное решение различных математических задач, а также помогает осуществлять упрощение выражений. Правила алгебраических преобразований позволяют выполнять некоторые манипуляции с выражениями, следуя которым можно получить в левой части равенства выражение, стоящее в правой части, или преобразовать правую часть равенства (чтобы получить выражение, стоящее в левой части после знака равенства).

Удобно знать формулы, применяемые для сокращенного умножения, на память, так как они нередко используются при решении задач и уравнений. Ниже перечислены основные формулы, входящие в данный список, и их наименование.

Квадрат суммы

Чтобы вычислить квадрат суммы, необходимо найти сумму, состоящую из квадрата первого слагаемого, удвоенного произведения первого слагаемого на второе и квадрата второго. В виде выражения данное правило записывается следующим образом: (а + с)² = a² + 2ас + с².

Квадрат разности

Чтобы вычислить квадрат разности, необходимо вычислить сумму, состоящую из квадрата первого числа, удвоенного произведения первого числа на второе (взятое с противоположным знаком) и квадрата второго числа. В виде выражения данное правило выглядит следующим образом: (а — с)² = а² — 2ас + с².

Разность квадратов

Формула разности двух чисел, возведенных в квадрат, равна произведению суммы этих чисел на их разность. В виде выражения данное правило выглядит следующим образом: a² — с² = (a + с)·(a — с).

Куб суммы

Чтобы вычислить куб суммы двух слагаемых, необходимо вычислить сумму, состоящую из куба первого слагаемого, утроенного произведения квадрата первого слагаемого и второго, утроенного произведения первого слагаемого и второго в квадрате, а также куба второго слагаемого. В виде выражения данное правило выглядит следующим образом: (а + с)³ = а³ + 3а²с + 3ас² + с³.

Сумма кубов

Согласно формуле, приравнивается к произведению суммы данных слагаемых на их неполный квадрат разности. В виде выражения данное правило выглядит следующим образом: а³ + с³ = (а + с)·(а² — ас + с²).

Пример. Необходимо вычислить объем фигуры, которая образована сложением двух кубов. Известны лишь величины их сторон.

Если значения сторон небольшие, то выполнить вычисления просто.

Если же длины сторон выражаются в громоздких числах, то в этом случае проще применить формулу «Сумма кубов», которая значительно упростит вычисления.

Куб разности

Выражение для кубической разности звучит так: как сумма третьей степени первого члена, утроенного отрицательного произведения квадрата первого члена на второй, утроенного произведения первого члена на квадрат второго и отрицательного куба второго члена. В виде математического выражения куб разности выглядит следующим образом: (а — с)³ = а³ — 3а²с + 3ас² — с³.

Разность кубов

Формула разности кубов отличается от суммы кубов лишь одним знаком. Таким образом, разность кубов — формула, равная произведению разности данных чисел на их неполный квадрат суммы. В виде математического выражения разность кубов выглядит следующим образом: а 3 — с 3 = (а — с)(а 2 + ас + с 2).

Пример. Необходимо вычислить объем фигуры, которая останется после вычитания из объема синего куба объемной фигуры желтого цвета, которая также является кубом. Известна лишь величина стороны маленького и большого куба.

Если значения сторон небольшие, то вычисления довольно просты. А если длины сторон выражаются в значительных числах, то стоит применить формулу, озаглавленную «Разность кубов» (или «Куб разности»), которае значительно упростит вычисления.

Как решать квадратное уравнение

Как решать квадратные уравнения

Алгоритм решения квадратного уравнения


Речь идет о поиске только действительных корней квадратного уравнения.

Шаг 1:  Записываем уравнение в стандартном виде

В общем виде квадратное уравнение можно записать так:

Здесь — любое ненулевое число,  — любые числа, a — то число, которое необходимо найти. Такой вид уравнения называют стандартным. Например, — квадратное уравнение в стандартном виде, причем , и . Число называют старшим коэффициентом, число — свободным коэффициентом. А все выражение вида называют квадратным трехчленом.

Типичная ошибка: считать, что , то есть забыть про знак «-«.

Cтоит заметить, что все коэффициенты уравнения можно уменьшить в раза. Уравнение примет вид . Числа , и , естественно, изменились (уменьшились!). Зато корни уравнения остались прежними. Поэтому всегда стоит проверять, а нельзя ли таким образом упростить уравнение, чтобы легче было далее находить корни.

Итак, первым делом необходимо привести квадратное уравнение  к стандартному виду. Для этого можно раскрывать скобки, приводить подобные слагаемые, переносить слагаемые из одной части уравнения в другую (при этом слагаемые меняют знак). Например, . Раскрываем скобки: . Приводим подобные слагаемые: . Переносим все слагаемые из правой части в левую: (повторю: такие слагаемые меняют свой знак).  И опять приводим подобные слагаемые: . Получим квадратное уравнение в стандартном виде. Причем , и .

Типичная ошибка: забыть поменять знак слагаемого при переносе.

Типичная ошибка: перепутать слагаемые местами и неправильно определить коэффициенты. Например, . И кажется, что , и . На самом деле, , и .

Интересный случай: предположим, что получилось уравнение . Чему равно ? На этот вопрос не каждый может ответить уверенно. Ответ: .

Интересный случай: дано уравнение . Мы смело раскрываем скобки и переносим и из правой части в левую. Но после приведения подобных слагаемых получается уравнение .  Нет ! Ни о каком стандартном виде квадратного уравнения здесь не может быть и речи просто потому, что это не квадратное уравнение, а совсем другая история под названием «Линейное уравнение».

Замечание: опытные в квадратных уравнениях математики советуют всегда делать коэффициент положительным. Для этого левую и правую части уравнения всегда можно домножить на . Например, заменим на . По-простому говоря, каждое слагаемое меняет знак. Да, это другое уравнение и коэффициенты другие. Но корни у него такие же, как и у исходного уравнения. Поэтому далее спокойно можно работать с новым. Зачем делать положительным? Например, затем, чтобы было меньше арифметических ошибок, когда будем находить дискриминант. Что такое дискриминант, узнаем в следующем шаге.

Шаг 2: Находим дискриминант.

У нас есть квадратное уравнение в виде . Вычисляем число , которое называется дискриминантом квадратного уравнения. Например, для уравнения дискриминант равен .

Типичная ошибка: часто вместо пишут  , то есть забывают скобки, но это уже , а не .

Типичная ошибка: неправильно определяют коэффициенты , и

Типичная ошибка: в слагаемом неправильно определяют окончательный знак. Например, в все-таки в итоге получается , а не .

Редкая ошибка: дискриминант пишут с большой буквы, видимо, из уважения или считая, что это фамилия.

Шаг 3: Находим корни уравнения

У нас есть дискриминант . Далее все зависит от его знака.

Если , то корней у уравнения нет. Ответ: корней нет. Вот так внезапно решение закончилось. Например, в уравнении дискриминант равен . Поэтому корней нет. Кстати, что это значит? Это значит, что какое бы число вы не выбрали, подстановка его в выражение вместо никогда не даст . Проверим число , например: . Не ноль. То есть — не корень. Аналогично с любым другим числом: ноль никогда не получится.

Если , то . Числа и — это как раз те коэффициенты из стандартной записи уравнения. Например, в уравнении дискриминант . Тогда . Ответ: .

Типичная ошибка: неправильно подставляют в формулу . Ошибаются со знаком. Ведь если , например, то .

Если . То в ответе будет два корня, которые можно найти по формулам и . Например, в уравнении дискриминант . Тогда и . Так как , то и . Ответ: .

Замечание: часто для сокращения пишут две формулы в одной: .

Замечание: иногда дискриминант может оказаться «некрасивым», например, . Такое может быть, и терять самообладание не стоит. Совет один: перепроверить решение и, если ошибка не найдена, со спокойной совестью решать дальше. Чаще всего задачи придумывают так, чтобы дискриминант были полным квадратом (кстати, полезно выучить таблицу квадратов чисел от 1 до 20). Но иногда попадаются ответы вида .

Типичная ошибка: неправильно находят . Например, считают, что . На самом деле, . Отрицательным выражение быть не может (по определению арифметического квадратного корня).

Вот и весь алгоритм. Конечно, есть еще много деталей. Например, есть неполные квадратные уравнения, когда лучше решать способами без дискриминанта. Есть еще уравнения, сводящиеся к квадратным. Есть еще поиск комплексных корней квадратного уравнения (для ЕГЭ это излишне). Кстати, проверить свое решение квадратного уравнения всегда можно здесь. Далее стоит изучить теорему Виета, понять, а как возникает формула для дискриминанта, как быть с уравнением третьей степени.

Полный пример решения квадратного уравнения.

Условие

Решить уравнение

Решение

Согласно алгоритму, раскрываем скобки: .
На всякий случай, расписал все подробно. Но вообще такие действия надо научиться делать почти устно. Более того, лучше заметить, что к первому слагаемому применима формула сокращенного умножения, точнее, разность квадратов. Такие формулы позволяют значительно экономить время и силы (потренироваться можно здесь).
Но продолжим решение: . Приводим подобные слагаемые и переносим в левую часть уравнения: .
Изменим знак : .
Находим дискриминант. Так как , и , то . Дискриминант , поэтому у уравнения два корня: и .
Осталось заметить, что корни можно упростить, ведь .
Получаем окончательный ответ, который запишем одной формулой: .
Как видите, малейшая неточность в арифметических вычислениях — и весь труд в итоге напрасен.
Поэтому стоит потренироваться выполнять арифметические вычисления устно и без ошибок.

Ответ:  

Задачи для самостоятельного решения

Номера 41, 42, 43, 51, 52, 53  (ответы находятся после условий)

все статьи по математике

 

Скобки (скобки)

Скобки — это символы, которые используются попарно для группировки предметов.

Типы кронштейнов включают:

  • круглые скобки или «круглые скобки» ()
  • «квадратные скобки» или «квадратные скобки» []
  • фигурные скобки или фигурные скобки {}
  • «Кронштейны угловые» <>
(Примечание. Угловые скобки могут сбивать с толку, поскольку они
выглядят как знаки «меньше» и «больше»)

Когда мы видим что-то внутри скобок, мы делаем это в первую очередь (как описано в разделе «Порядок операций»).

Пример: (3 + 2) × (6-4)

Скобки группируют 3 и 2 вместе, а 6 и 4 вместе, поэтому они выполняются первыми:

(3 + 2) × (6-4)
= (5) × (2)
= 5 × 2
= 10

Без скобок сначала выполняется умножение:

3 + 2 × 6 — 4
= 3 + 12 — 4
= 11 (не 10)

При более сложной группировке хорошо использовать кронштейны разных типов :

Пример: [(3 + 2) × (6–4) + 2] × 4

Скобки группируют 3 и 2 вместе, а 6 и 4 вместе, а квадратные скобки говорят нам выполнить все вычисления внутри них перед умножением на 4:

.
[(3 + 2) × (6–4) + 2] × 4
= [(5) × (2) + 2] × 4
= [10 + 2] × 4
= 12 × 4
= 48

Фигурные скобки

Фигурные скобки {} используются в наборах:

Пример: {2, 4, 6, 8}

Набор четных чисел от 2 до 8

Раскрывающиеся скобки — Алгебраические выражения — Edexcel — GCSE Maths Revision — Edexcel

Раскрывающие скобки означает умножение всего внутри скобок на букву или число вне скобок.4q \]

Расширение и упрощение

0.0.0.1:0.1.0.$0.$3.$1″> Выражения со скобками часто можно смешивать с другими терминами. Например, \ (3 (h + 2) — 4 \). В этих случаях сначала разверните скобку, а затем соберите любые похожие термины.

Пример 1

Расширить и упростить \ (3 (h + 2) — 4 \).

\ [3 (h + 2) — 4 = 3 \ times h + 3 \ times 2-4 = 3h + 6-4 = 3h + 2 \]

Пример 2

Расширить и упростить \ (6g + 2g (3g + 7) \).

BIDMAS или BODMAS — это порядок операций: скобки, индексы или степени, деление или умножение, сложение или вычитание.2 + 20г \).

Ответы обычно пишутся в порядке убывания степени.

Скобки по математике: типы и примеры — видео и стенограмма урока

Скобки и группировка

Часто можно встретить математические скобки, используемые для группировки . Эти скобки могут включать:

При использовании для группирования скобки всегда идут парами. Будет открывающая скобка и закрывающая скобка .

Скобки используются для пояснения порядка операций , порядка, в котором несколько операций должны выполняться в математическом выражении.

Например, предположим, что у вас есть следующее выражение: 2 + 4 * 6 — 1. Несмотря на то, что вы могли прочитать на Facebook, есть только один правильный ответ на это выражение. Вы выполняете умножение и деление, двигаясь слева направо, прежде чем выполнять сложение и вычитание, также двигаясь слева направо. Произведя сначала умножение, вы получите 2 + 24 — 1 = 25.

Что, если вместо этого вы захотите сначала выполнить сложение и вычитание (а затем умножить результаты)? Используйте скобки.Теперь проблема принимает следующий вид: (2 + 4) * (6 — 1) = 6 * 5 = 30. В этом примере круглые скобки говорят вам сделать что-то отличное от обычного порядка операций. В других случаях они просто используются для визуальной ясности.

Несколько уровней группировки

Возможно, вы захотите выполнить группировку внутри группировки. Если так, то такие выражения сбивают с толку: 2 + (1 + (3 + 2 * (4 + 5))). Хотя нет ничего плохого в использовании нескольких уровней круглых скобок (а иногда в компьютерных приложениях у вас нет выбора), на это немного сложно смотреть.

Вместо этого вы можете использовать разные виды скобок для каждого уровня. В математике чаще всего используются круглые скобки для первого уровня (первая операция, которую вы должны выполнить), квадратные скобки для следующего уровня и фигурные скобки для последнего уровня: 2 + {1 + [3 + 2 * (4 + 5)]}.

В любом случае вы сначала выполняете внутреннюю группировку (4 + 5), а оттуда двигаетесь наружу, как показано ниже:

 2 + {1 + [3 + 2 * 9]} = 2 + {1 + [3 + 18 ]} = 2 + {1 + 21} = 2 + 22 = 24 

Это немного похоже на поиск выхода из особняка вашего дяди Джерома.Сначала вам нужно выбраться из гостевого люкса, затем вы выберетесь с третьего этажа, а затем вы выберетесь из самого дома. Сначала вы начинаете с самой внутренней «загадки», а оттуда двигаетесь наружу.

Другое применение скобок

Однако иногда скобки используются не для группирования. Например, если вы работаете с функциями , тогда f ( x ) означает «функция f с x в качестве входных данных». В этом случае скобки используются для обозначения аргументов или входных данных функции.

Кроме того, скобки могут использоваться для обозначения упорядоченной пары , например (3, -1). Вы часто будете видеть, что это используется для обозначения декартовых координат : если вы наносите точку на оси x и y , то (3, -1) будет конкретной точкой на декартовой плоскости, где x равно 3, а y равно -1.

Или скобки могут представлять обозначение интервала . (1,5) может означать все значения от чуть более одного до почти пяти.[4,6] может означать все числа от четырех до шести, включая четыре и шесть.

Фигурные скобки также часто используются для обозначения множеств. Например, {3, 4, 5, 6} означает набор, включающий числа 3, 4, 5 и 6. Угловые скобки, такие как <1,3>, могут указывать на внутренний продукт в продвинутой математике или физике. class, а квадратные скобки могут означать, что внутри находится матрица.

Итак, как узнать, что означают скобки, если их можно использовать по-разному? Точно так же вы узнаете, относится ли «голубой» к цвету глаз вашего любимого человека или к тому чувству, которое вы испытываете, когда он бросает вас ради лучшего друга — по контексту.

Краткое содержание урока

Математические скобки часто используются для группировки, чтобы указать порядок, в котором должен выполняться набор математических операций. Однако в некоторых случаях скобки используются для специальных математических целей.

Ключевые точки

  • Группировка : скобки будут включать: (), [] & {}
  • Открывающая скоба и закрывающая скоба : все скобки попарно
  • Порядок операций : порядок, в котором несколько операций должны выполняться в математическом выражении
  • Функции : в скобках используется f ( x ), что означает «функция f с x в качестве входных данных»
  • Аргументы : скобки используются для указания входных данных функции
  • Упорядоченная пара : круглые скобки могут использоваться для обозначения пар, например (3, -1)
  • Декартовы координаты : нанесение точки на оси x и y
  • Обозначение интервала : (1,5) может означать все значения от чуть более одного до почти пяти
  • Внутренний продукт : угловые скобки, такие как <1,3>; может указывать наборы в продвинутом классе математики или физики

Результаты обучения

Просматривая урок по использованию скобок, поставьте своей целью:

  • Иллюстрировать математические скобки
  • Приведите примеры использования скоб.
  • Выделите их использование для нескольких уровней группировки
  • Обсудите роль скобок в сообщении аргументов и указании упорядоченных пар, а также в представлении обозначений интервалов и наборов.

Порядок операций: примеры

Purplemath

Большинство проблем с упрощением использования порядка операций проистекают из вложенных круглых скобок, показателей степени и знаков «минус».Итак, в следующих ниже примерах я продемонстрирую, как работать с такого рода выражениями.

(Ссылки приведены для дополнительного обзора работы с негативами, группировочными символами и полномочиями.)

  • Упростить 4–3 [4–2 (6–3)] ÷ 2.

MathHelp.

com

Я буду упрощать изнутри: сначала круглые скобки, затем квадратные скобки, помня, что знак «минус» на цифре 3 перед скобками идет с цифрой 3. Только после того, как группировка будет завершена, я смогу сделайте деление с последующим добавлением 4.

4–3 [4–2 (6–3)] ÷ 2

4–3 [4–2 (3)] ÷ 2

4–3 [4–6] ÷ 2

4 — 3 [–2] ÷ 2

4 + 6 ÷ 2

4 + 3

7

Помните, что в leiu символов группировки, говорящих вам об обратном, деление идет перед сложением, поэтому это выражение в конечном итоге упростилось до «4 + 3», а не «10 ÷ 2».

(Если вы не чувствуете себя комфортно со всеми этими знаками «минус», просмотрите «Негативы».)


  • Упростить 16-3 (8-3)
    2 ÷ 5.

Я должен не забыть упростить в скобках перед квадратом I, потому что (8 — 3) 2 — это , а не , то же самое, что 8 2 — 3 2 .

16-3 (8-3) 2 ÷ 5

16-3 (5) 2 ÷ 5

16-3 (25) ÷ 5

16 — 75 ÷ 5

16–15

1


Если вы узнали о переменных и объединении «похожих» терминов, вы также можете увидеть такие упражнения, как это:

  • Упростить 14
    x + 5 [6 — (2 x + 3)].

Если у меня возникают проблемы с вычитанием через круглые скобки, я могу превратить его в умножение отрицательной единицы через круглые скобки (обратите внимание на выделенную красным цифру «1» ниже):

14 x + 5 [6 — (2 x + 3)]

14 x + 5 [6 — 1 (2 x + 3)]

14 x + 5 [6 — 2 x — 3]

14 x + 5 [3–2 x ]

14 x + 15-10 x

4 x + 15


  • Упростить — {2
    x — [3 — (4 — 3 x )] + 6 x }.

Мне нужно не забывать упрощать на каждом этапе, комбинируя одинаковые термины, когда и где я могу:

— {2 x — [3 — (4 — 3 x )] + 6 x }

–1 {2 x — 1 [3 — 1 (4 — 3 x )] + 6 x }

–1 {2 x — 1 [3 — 4 + 3 x ] + 6 x }

–1 {2 x — 1 [- 1 + 3 x ] + 6 x }

–1 {2 x + 1-3 x + 6 x }

–1 {2 x + 6 x — 3 x + 1}

–1 {5 x + 1}

–5 x — 1

(Дополнительные примеры такого рода см. В разделе «Упрощение с круглыми скобками».)


Выражения, содержащие дробные формы, тоже могут вызывать путаницу. Но пока вы работаете с числителем (то есть сверху) и знаменателем (то есть снизу) по отдельности, пока они сначала полностью не упростят, и только затем объедините (или уменьшите), если возможно, тогда вы все должно быть в порядке. Если дробная форма добавляется или вычитается из другого члена, дробного или иного, убедитесь, что вы полностью упростили и уменьшили дробную форму, прежде чем пытаться выполнить сложение или вычитание.

  • Упростить [45] / [8 (5 — 4) — 3] + [3 (2)
    2 ] / [5 — 3]

Прежде чем я смогу добавить два термина, я должен упростить.

[45] / [8 (5 — 4) — 3] + [3 (2) 2 ] / [5 — 3]

[45] / [8 (1) — 3] + [3 (4)] / [2]

[45] / [8–3] + [12] / [2]

[45] / [5] + 6

9 + 6

15


  • Упростить [(3–2) + (1 + 2)
    2 ] / [5 + (4–1)]

Работает так же, как и в предыдущих примерах. Мне просто нужно работать над «верхом» и «низом» отдельно, пока я не получу дробь, которую я могу (возможно) уменьшить.

[(3–2) + (1 + 2) 2 ] / [5 + (4–1)]

[(1) + (3) 2 ] / [5 + (3)]

[1 + 9] / [8]

10/8

5/4

(Примеры с множеством экспонент см. В разделе Упрощение с экспонентами.)


Вы можете использовать виджет Mathway ниже, чтобы попрактиковаться в упрощении порядка операций. Попробуйте выполнить указанное упражнение или введите свое собственное. Затем нажмите кнопку и выберите «Упростить» или «Оценить» во всплывающем окне, чтобы сравнить свой ответ с ответом Mathway. (Или пропустите виджет и продолжите урок.)

(Нажмите «Нажмите, чтобы просмотреть шаги», чтобы перейти непосредственно на сайт Mathway для платного обновления. )


Боковое форматирование и умножение на сопоставление

В следующем примере показана проблема, которая почти никогда не возникает, но когда она возникает, спорам, кажется, нет конца. (Публиковать их в Facebook стало досадно.)

  • Упростить 16 ÷ 2 [8 — 3 (4 — 2)] +1.

Упрощаю обычным способом:

16 ÷ 2 [8 — 3 (4 — 2)] + 1

16 ÷ 2 [8 — 3 (2)] + 1

16 ÷ 2 [8–6] + 1

16 ÷ 2 [2] + 1 (**)

16 ÷ 4 + 1

4 + 1

5

Непонятная часть в приведенном выше вычислении заключается в том, как «16, разделенное на 2 [2] + 1» (в строке, отмеченной двойной звездой) превращается в «16, разделенное на 4 + 1» вместо «8 раз на 2 + 1 «.

Это потому, что, хотя умножение и деление находятся на одном уровне (поэтому должно применяться правило слева направо), скобки каким-то образом превосходят деление по рангу, поэтому первые 2 в строке, отмеченной звездочкой, часто рассматриваются как идущие с [ 2], которая следует за ней, а не с «16, разделенными на», которая предшествует ей. То есть умножение, которое указывается путем помещения в круглые скобки (или скобки и т. Д.), Часто рассматривается (научными людьми) как более сильное, чем «обычное» умножение, которое обозначается каким-либо символом, например как «×».

Набор всей задачи в графическом калькуляторе подтверждает существование этой иерархии, по крайней мере, в некотором программном обеспечении:

Обратите внимание, что различных программных пакета обрабатывают это выражение по-разному ; даже разные модели графических калькуляторов Texas Instruments будут обрабатывать это выражение по-разному. Общее мнение среди математиков состоит в том, что «умножение на сопоставление» (то есть умножение путем простого размещения элементов рядом друг с другом, а не использования знака «×») указывает на то, что сопоставленные значения должны быть умножены вместе перед обработкой других операций.Но не все программы запрограммированы таким образом, и иногда учителя смотрят на вещи иначе. Если сомневаетесь, спрашивайте! И, печатая что-то боком, будьте очень осторожны с скобками и проясните свой смысл, чтобы избежать именно этой двусмысленности.

(Пожалуйста, не присылайте мне электронное письмо с просьбой или предложением окончательного вердикта по этому вопросу. Насколько я знаю, такого окончательного вердикта нет. Если я скажу мне действовать по-вашему, , а не , решит проблему проблема!) (Для примера того типа писем, которые я получаю по этому поводу, перейдите на следующую страницу, которая также содержит больше примеров дробной формы.)


Филиал



URL: https://www. purplemath.com/modules/orderops2.htm

Порядок работы

У нас есть два ответа на ваш вопрос.

Привет.

В арифметике есть известная аббревиатура: BEDMAS. Он дает порядок операций (какие операции выполнять в правильном порядке).
B = квадратные скобки (или скобки или фигурные скобки). Начните с определения значений, заключенных в самые внутренние круглые скобки.
E = экспоненты (их у вас нет)
D, M = деление и умножение
A, S = сложение, вычитание — это последнее, что вы делаете.

В остальном действуйте слева направо.

Вы правы в том, что в вашем примере скобки на самом деле не влияют на то, как все работает, потому что ÷ 16 в любом случае произойдет до x 14. Итого 84. Это единственный правильный ответ на это выражение.

Стивен Ла Рок.>

Привет,

BEDMAS означает
. Скобки, показатели, деление, умножение, сложение, вычитание
— это порядок, в котором мы выполняем вычисления: сначала скобки, затем показатели, затем деление и умножение в порядке слева направо, затем сложение и вычитание в порядке слева направо.

[(20 + 82 — 6) ÷ 16] x 14
= [(102–6) ÷ 16] x 14
= [(96) ÷ 16] x 14
= [96 ÷ 16] x 14
= [6] x 14
= 6 х 14
= 84

Примечание — учитывая, что мы выполняем деление и умножение слева направо, квадратные скобки не нужны:
(20 + 82-6) ÷ 16 х 14
= 96 ÷ 16 x 14 (сначала деление, так как оно идет первым, двигаясь слева направо)
= 6 х 14
= 84
Возможно, в квадратные скобки включены, чтобы вас «обмануть». Но они избыточны с точки зрения правил порядка операций.

Мы должны использовать скобки, чтобы сначала произвести умножение:
(20 + 82-6) ÷ (16 х 14)
= (96) ÷ (224)
= 96 ÷ 224
= 0,428571428571 …

Пол

Учебник по математике UEB — Урок 6.3

Символы

[открывающие квадратные скобки
⠨⠣

] закрывающие квадратные скобки
⠨⠜

{фигурные скобки открывающиеся
⠸⠣

} закрывающие фигурные скобки
⠸⠜

Обзор

В UEB есть индикаторы, которые относятся к элементу, появляющемуся непосредственно перед или после индикатора.Элемент определяется как любая из следующих групп, если они появляются в позиции, на которую указывает индикатор:

  • Целое число, то есть начальный числовой символ и все последующие символы в рамках установленного таким образом числового режима (который будет включать любые внутренние десятичные точки, запятые, разделительные пробелы или простые числовые дробные линии).
  • Целая общая дробь, заключенная в индикаторы дроби.
  • Полное радикальное выражение, заключенное в радикальные индикаторы.
  • Стрела.
  • Произвольной формы.
  • Любое выражение, заключенное в соответствующие пары круглых скобок, квадратных скобок или фигурных скобок.
  • Любое выражение, заключенное в индикаторы группировки Брайля.
  • Если ничего из вышеперечисленного не применимо, элемент является просто следующим отдельным символом.

Пояснение

Скобки и фигурные скобки, используемые в математике, — это те же символы, которые используются в художественном тексте. Скобки и фигурные скобки в шрифте Брайля состоят из двух ячеек; префикс, который различает тип скобки (квадратный или фигурный) и корень, который определяет символ как открывающий или закрывающий.Префикс квадратных скобок — точки четыре-шесть, а префикса фигурных скобок — точки четыре, пять, шесть. Корневой символ открытия — это точки один, два, шесть, а корневой символ закрытия — это точки три, четыре, пять.

Фигурные скобки и скобки используются в математике во многих контекстах. Они используются в сложных выражениях в дополнение к круглым скобкам или вместо них. Скобки часто используются при группировке. Для отображения нескольких уровней группировки в выражении можно использовать разные типы скобок.Они также используются для обозначения наименьшего общего кратного, а в обозначении интервалов они могут использоваться, чтобы показать, что диапазон значений включает определенное значение. Фигурные скобки часто используются для обозначения обозначений множеств.

Одна буква, которая появляется в открывающих и закрывающих скобках или скобках, считается стоящей отдельно, и требуется индикатор степени 1. Скобки и фигурные скобки завершают числовой режим. Цифровой индикатор должен использоваться с цифрой, которая следует сразу за скобкой или фигурной скобкой. Следите за пробелами и пунктуацией при печати.

Пример 1

[8- (6 ÷ 3)]
⠨⠣⠼⠓⠐⠤⠐⠣⠼⠋⠐⠌⠼⠉⠐⠜⠨⠜

Пример 2

–62
⠨⠣⠐⠤⠼⠋⠂⠀⠼⠃⠨⠜

Пример 3

-53
⠨⠣⠐⠤⠼⠑⠂⠀⠼⠉⠐⠜

Пример 4

B = -124,4
⠰⠠⠃⠀⠐⠶⠀⠸⠣⠐⠤⠼⠁⠂⠀⠼⠃⠂⠀⠼⠙⠲⠙⠸⠜

Помните, что вам следует уменьшить количество индикаторов, используемых в уравнениях. Вот почему при чтении математических выражений с многократным прерыванием обычно лучше всего использовать индикаторы отрывка первой степени.Они менее навязчивы, чем использование внутренних индикаторов для каждого прерывания.

Пример 5

A = {x | x = 4 & InvisibleTimes; y}
⠰⠰⠰⠠⠁⠀⠐⠶⠀⠸⠣⠭⠀⠸⠳⠀⠭⠀⠐⠶⠀⠼⠙⠽⠸⠜⠰⠄

Пример 6

5-12 МПБ
⠰⠰⠰⠸⠣⠼⠑⠂⠀⠐⠤⠼⠁⠂⠀⠼⠃⠂⠀⠍⠂⠀⠏⠂⠀⠠⠃⠸⠜⠰⠄

Пример 7

0
⠸⠣⠼⠚⠸⠜

Пример 8

л
⠸⠣⠽⠸⠜

Пример 9

{y = z}
⠸⠣⠰⠽⠀⠐⠶⠀⠰⠵⠸⠜

Пример 10


⠸⠣⠀⠸⠜

предыдущая — следующая (упражнения)

Финансируется за счет гранта William M.Wood Foundation, Bank of America, N.A., Доверительный управляющий

Уведомление: доступность веб-сайтов APH

Упорядочивание математических операций, BODMAS | SkillsYouNeed

Для вычисления, которое включает только одну математическую операцию с двумя числами, это простой случай сложения, вычитания, умножения или деления, чтобы найти свой ответ.

А что делать, если есть несколько номеров и разные операции? Может быть, вам нужно делить и умножать или складывать и делить.Что вы делаете тогда?

К счастью, математика — дисциплина, основанная на логике. Как это часто бывает, есть несколько простых правил, которые помогут вам определить порядок выполнения расчетов. Они известны как «Порядок действий» .


Правила упорядочивания в математике — BODMAS

BODMAS — полезная аббревиатура, которая сообщает вам порядок, в котором вы решаете математические задачи. Важно, чтобы вы соблюдали правила BODMAS, потому что без них ваши ответы могут быть неправильными.

Аббревиатура BODMAS означает:

  • B ракетки (части расчета внутри скобок всегда идут на первом месте).
  • O rders (числа, содержащие степени или квадратные корни).
  • D ivision.
  • M повторение.
  • A изд.
  • S убирание.

BODMAS, BIDMAS или PEMDAS?


Вы часто можете увидеть BIDMAS вместо BODMAS.Они точно такие же. В BIDMAS буква «I» относится к индексам, которые аналогичны заявкам. Для получения дополнительной информации см. Нашу страницу «Специальные числа и понятия».


PEMDAS

PEMDAS обычно используется, в США он работает так же, как BODMAS. Акроним PEMDAS:

.

P аренцев,

E xponents (степени и корни),

M ultiplication и D ivision,

A ddition и S ddition.



Дополнительные материалы по навыкам, которые вам нужны


Руководство по навыкам, которые вам нужны

Это руководство из четырех частей познакомит вас с основами математики от арифметики до алгебры с остановками на дробях, десятичных дробях, геометрии и статистике.

Если вы хотите освежить в памяти основы или помочь детям в учебе, эта книга для вас.


Использование BODMAS

Кронштейны

Начните с чего-нибудь внутри скобок , идя слева направо.

Пример:

4 × (3 + 2) =?

Вам нужно выполнить операцию, сначала в скобках 3 + 2, а затем умножить ответ на 4.

3 + 2 = 5.
4 × 5 = 20

Если вы проигнорируете скобки и произведете расчет слева направо 4 × 3 + 2, вы получите 14. Вы можете увидеть, как скобки влияют на ответ.

Заказы

Далее выполните все, что связано с степенью или квадратным корнем (они также известны как orders ), снова работая слева направо, если их больше одного.

Пример:

3 2 + 5 =?

Прежде чем прибавить 5, вам необходимо вычислить мощность.

3 2 = 3 × 3 = 9
9 + 5 = 14

Деление и умножение

После того, как вы выполнили какие-либо части вычислений с использованием скобок или степеней, следующим шагом будет деление и умножение .

Умножение и деление ранжируются одинаково, поэтому вы работаете с суммой слева направо, выполняя каждую операцию в том порядке, в котором она появляется.

Пример:

6 ÷ 2 + 7 × 4 =?

Сначала вам нужно выполнить деление и умножение, но у вас есть по одному каждого из них.

Начните слева и двигайтесь вправо, что означает, что вы начинаете с 6 ÷ 2 = 3. Затем выполните умножение, 7 × 4 = 28.

Ваш расчет теперь 3 + 28.

Завершите вычисление сложения, чтобы найти ответ: 31 .

Смотрите наши страницы: Умножение и Деление для получения дополнительной информации.

Сложение и вычитание

Последний шаг — вычислить любое прибавление или вычитание . Опять же, вычитание и сложение равны, и вы просто работаете слева направо.

Пример:

4 + 6-7 + 3 =?

Вы начинаете слева и продвигаетесь вперед.

4 + 6 = 10
10-7 = 3
3 + 3 = 6
Ответ: 6 .

См. Наши страницы: Сложение и Вычитание , чтобы узнать больше.

Собираем все вместе

Этот последний рабочий пример включает все элементы BODMAS.

Пример:

4 + 8 2 × (30 ÷ 5) =?

Начнем с расчета в скобках.

30 ÷ 5 = 6
Это дает вам 4 + 8 2 × 6 =?

Затем посчитайте заказы — в данном случае квадрат 8.

8 2 = 64
Теперь ваш расчет 4 + 64 × 6

Затем переходим к умножению 64 × 6 = 384

Наконец, выполните сложение.4 + 384 = 388

Ответ: 388 .



Контрольные вопросы BODMAS

Правила BODMAS легче всего понять с помощью некоторой практики и примеров.

Попробуйте эти вычисления самостоятельно, а затем откройте окно (щелкните символ + слева), чтобы увидеть работу и ответы.

3 + 20 × 3

В этом расчете нет скобок или порядков.

  1. Умножение предшествует сложению, поэтому начните с 20 × 3 = 60.
  2. Расчет теперь показывает 3 + 60

Следовательно, ответ: 63 .

25-5 ÷ (3 + 2)

  1. Начать с скобок. (3 + 2) = 5.
  2. Расчет теперь показывает 25-5 ÷ 5
  3. Деление предшествует вычитанию.5 ÷ 5 = 1.
  4. Расчет теперь показывает 25 — 1

Следовательно, ответ: 24 .

10 + 6 × (1 + 10)

  1. Начать с скобок. (1 + 10) = 11.
  2. Расчет теперь показывает 10 + 6 × 11
  3. Умножение предшествует сложению. 6 × 11 = 66.
  4. Расчет теперь показывает 10 + 66.

Следовательно, ответ: 76 .

5 (3 + 2) + 5 2

Если в этом вычислении нет знака, подобного этому, оператор представляет собой умножение, то же самое, что и запись 5 × (3 + 2) + 5 2 .

  1. Сначала завершите расчет в скобках: (3 + 2) = 5.
  2. Это дает вам 5 × 5 + 5 2 .
  3. Следующий шаг — заказы, в данном случае квадрат. 5 2 = 5 × 5 = 25.Теперь у вас 5 × 5 + 25.
  4. Деление и умножение предшествуют сложению и вычитанию, поэтому следующий шаг — 5 × 5 = 25. Теперь вычисление показывает 25 + 25 = 50.

Ответ: 50 .

(105 + 206) — 550 ÷ 5 2 + 10

В этом есть все! Но не паникуйте. BODMAS по-прежнему применяется, и все, что вам нужно сделать, это отменить расчет.

  1. Начать с скобок.(105 + 206) = 311.
  2. Теперь расчет 311-550 ÷ 5 2 + 10
  3. Далее, приказы или полномочия. В данном случае это 5 2 = 25.
  4. Расчет теперь показывает 311-550 ÷ 25 + 10
  5. Далее, деление и умножение. Умножения нет, но деление 550 ÷ 25 = 22.
  6. Теперь расчет показывает 311 — 22 + 10.
  7. Хотя у вас еще остались две операции, сложение и вычитание ранжируются одинаково, поэтому вы просто идете слева направо.311 — 22 = 289 и 289 + 10 = 299.

Ответ: 299 .

7 + 7 ÷ 7 + 7 × 7-7 =?

Подобные проблемы часто появляются на сайтах социальных сетей с такими заголовками, как «90% людей ошибаются». Просто следуйте правилам BODMAS, чтобы получить правильный ответ.

  1. Здесь нет скобок или порядков, поэтому начните с деления и умножения.
  2. 7 ÷ 7 = 1 и 7 × 7 = 49.
  3. Расчет теперь показывает 7 + 1 + 49-7
  4. Теперь выполните сложение и вычитание. 7 + 1 + 49 = 57-7 = 50

Следовательно, ответ будет 50 .


Как у вас дела?

Надеюсь, вам удалось правильно ответить на все вопросы. Если нет, вернитесь и проверьте, где вы ошиблись, и еще раз прочтите правила.

Чем больше вы тренируетесь, тем легче становится BODMAS, и в конечном итоге вам даже не придется об этом думать.