Натуральные числа таблица – . .
Техническая информация тут | Адрес этой страницы (вложенность) в справочнике dpva.ru: главная страница / / Техническая информация / / Математический справочник / / Таблицы численных значений. (Таблица квадратов, кубов, синусов ….) + Таблицы Брадиса / / Таблицы квадратов чисел от 1. Таблица квадратов от 1 до 100. Таблица квадратных корней. Натуральных чисел от 1 до 30 и от 1 до 100. Таблица квадратов больших чисел. Квадраты чисел. Удобная расчетная таблица 1,00 — 9,99.
|
dpva.ru
Натуральные числа и их свойства
Натуральные числа и их свойства
Для счёта предметов в жизни используют натуральные числа. В записи любого натурального числа используются цифры $0,1,2,3,4,5,6,7,8,9$
Последовательность натуральных чисел, каждое следующее число в котором на $1$ больше предыдущего, образует натуральный ряд, который начинается с единицы (т.к. единица- самое маленькое натуральное число) и не имеет наибольшего значения, т.е. бесконечен.
Нуль не относят к натуральным числам.
Свойства отношения следования
Все свойства натуральных чисел и операций над ними следуют из четырех свойств отношений следования, которые были сформулированы в $1891$ г. Д.Пеано:
Единица- натуральное число, которое не следует ни за каким натуральным числом.
За каждым натуральным числом следует одно и только одно число
Подмножество натуральных чисел, содержащее число $1$, а вместе с каждым числом и следующее за ним число, содержит все натуральные числа.
Если запись натурального числа состоит из одной цифры его называют однозначным (например, $2,6.9$ и т.д.), если запись состоит из двух цифр-двузначным(например,$12,18,45$) и т.д. по аналогии. Двузначные, трехзначные, четырехзначные и т.д. числа называют в математике многозначными.
Свойство сложения натуральных чисел
Переместительное свойство: $a+b=b+a$
Сумма не изменяется при перестановке слагаемых
Сочетательное свойство: $a+ (b+c) =(a+b) +c$
От прибавления нуля число не измениться и если прибавить к нулю какое- нибудь число, то получится прибавленное число.
Свойства вычитания
Свойство вычитания суммы из числа $a-(b+c) =a-b-c$ если $b+c ≤ a$
Для того, чтобы вычесть сумму из числа, можно сначала вычесть из этого числа первое слагаемое, а затем из полученной разности- второе слагаемое
Свойство вычитания числа из суммы $(a+b) -c=a+(b-c)$, если $c ≤ b$
Чтобы из суммы вычесть число, можно вычесть его из одного слагаемого, а к полученной разности прибавить другое слагаемое
Если из числа вычесть нуль, то число не изменится
Если из числа вычесть его само, то получится нуль
Свойства умножения
Переместительное $a\cdot b=b\cdot a$
Произведение двух чисел не изменяется при перестановке множителей
Сочетательное $a\cdot (b\cdot c)=(a\cdot b)\cdot c$
Чтобы умножить число на произведение двух чисел,можно сначала умножить его на первый множитель, а потом полученное произведение умножить на второй множитель
При умножении на единицу произведение не изменяется $m\cdot 1=m$
При умножении на нуль произведение равно нулю
Когда в записи произведения нет скобок, умножение выполняют по порядку слева направо
Свойства умножения относительно сложения и вычитания
Распределительное свойство умножения относительно сложения
$(a+b)\cdot c=ac+bc$
Для того чтобы умножить сумму на число,можно умножить на это число каждое слагаемое и сложить получившиеся произведения
Например, $5(x+y)=5x+5y$
Распределительное свойство умножение относительно вычитания
$(a-b)\cdot c=ac-bc$
Для того,чтобы умножить разность на число,множно умножить на это число уменьшаемое и вычитаемое и из первого произведения вычесть второе
Например, $5(x-y)=5x-5y$
Сравнение натуральных чисел
Для любых натуральных чисел $a$ и $b$ может выполняться только одно из трех соотношений $a=b$, $a
Меньшим считается число, которое в натуральном ряду появляется раньше, а большим, которое появляется позже. Нуль меньше любого натурального числа.
если $a
Пример 1
Сравнить числа $a$ и $555$, если известно, что существует некоторое число $b$, причем выполняются соотношения: $a
Решение: На основании указанного свойства ,т.к. по условию $a
в любом подмножестве натуральных чисел, содержащем хотя бы одно число, есть наименьшее число
Подмножеством в математике называют часть множества. Говорят, что множество является подмножеством другого, если каждый элемент подмножества является одновременно и элементом большего множества
если $a
Если $c
Часто для сравнения чисел находят их разность и сравнивают ее с нулем. Если разность больше $0$, но первое число больше второго, если разность меньше $0$, то первое число меньше второго.
Округление натуральных чисел
Когда полная точность не нужна, или не возможна ,числа округляют,т.е заменяют их близкими числами с нулями на конце.
Натуральные числа округляют до десятков, сотен,тысяч и т.д
При округлеии числа до десятков его заменяют ближайшим числом,состоящим из целых десятков; у такого числа в разряде единиц стоит цифра $0$
При округлеии числа до сотен его заменяют ближайшим числом,состоящим из целых сотен; у такого числа в разряде десятков и единиц должна стоять цифра $0$. И т.д
Числа,до которых округляют данное называют приближенным значением числа с точностью до указанных разрядов.Например если округлять число $564$ до десятков то получим, что округлить его можно с недостатком и получить $560$, или с избытком и получить $570$.
Правило округления натуральных чисел
Если справа от разряда, до которого округляют число, стоит цифра $5$ или цифра,большая $5$, то к цифре этого разряда прибавляют $1$; в противном случае эту цифру оставляют без изменения
Все цифры, расположенные правее разряда, до которого округляют число ,заменяют нулями
Материал по математике «Числа. Натуральные числа»
Простейшее число — это натуральное число. Их используют в повседневной жизни для подсчета предметов, т. е. для вычисления их количества и порядка.
Что такое натуральное число: натуральными числами называют числа, которые используются для подсчета предметов либо для указывания порядкового номера любого предмета из всех однородных предметов.
Натуральные числа — это числа, начиная с единицы. Они образуются естественным образом при счёте.
Например, 1, 2, 3, 4, 5… –
Наименьшее натуральное число — один. Наибольшего натурального числа не существует. При счёте число ноль не используют, поэтому ноль натуральное число.
Натуральный ряд чисел — это последовательность всех натуральных чисел. Запись натуральных чисел:
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12…
В натуральном ряду каждое число больше предыдущего на единицу.
Сколько чисел в натуральном ряду? Натуральный ряд бесконечен, самого большого натурального числа не существует.
Система счёта (счисления) , которую мы используем, называется десятичной позиционной.
Десятичной так как 10 единиц всякого разряда образуют 1 единицу старшего разряда. Позиционной так как значение цифры зависит от её места в числе, т. е. от разряда, где она записана.
Для подсчета времени в градусной мере углов существует шестидесятеричная система счисления (основа число 60). В 1 часе — 60 минут, в 1 минуте — 60 секунд; в 1 угловом градусе — 60 минут, в 1 угловой минуте — 60 секунд.
Всякое натуральное число легко записать в виде разрядных слагаемых.
Числа 1, 10, 100, 1000… – это разрядные единицы. При их помощи натуральные числа записывают как разрядные слагаемые. Таким образом, число 307 898 в виде разрядных слагаемых записывается так:
307 898 = 300 000 + 7 000 + 800 + 90 + 8
Самые употребляемые числа имеют не больше 12 разрядов. Числа, которые имеют больше 12 разрядов,относятся к группе больших чисел.
Когда запись натурального числа состоит из одного знака — одной цифры, его называют однозначным числом.
числа 1, 5, 8 — однозначные числа.
Если запись числа состоит из 2-х знаков — двух цифр, его называют двузначным числом.
числа 14, 33, 28, 95 — двузначные числа,
числа 386, 555, 951 — трехзначные числа,
числа 1346, 5787, 9999 — четырехзначные числа и т. д.
Обозначение натуральных чисел:
Множество натуральных чисел обозначают символом N.
Таблица натуральных (простых) чисел до 10 000.
Классы натуральных чисел.
Всякое натуральное число возможно написать при помощи 10-ти арабских цифр:
0, 1, 2, 3, 4, 5, 6, 7, 8, 9.
Для чтения натуральных чисел их разбивают, начиная справа, на группы по 3 цифры в каждой. 3 первые цифры справа – это класс единиц, 3 следующие – это класс тысяч, далее классы миллионов, миллиардов и так далее. Каждая из цифр класса называется его разрядом.
Сравнение натуральных чисел.
Из 2-х натуральных чисел меньше то число, которое при счете называется ранее. Например, число 7 меньше 11 (записывают так: 7 < 11). Когда одно число больше второго, это записывают так: 386 > 99.
Весь материал — в документе.
videouroki.net
2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59 61 67 71 73 79 83 89 97 101 103 107 109 113 127 131 137 139 149 151 157 163 167 173 179 181 191 193 197 199 211 223 227 229 233 239 241 251 257 263 269 271 277 281 283 293 307 311 313 317 331 337 347 349 353 359 367 373 379 383 389 397 401 409 419 421 431 433 439 |
443 449 457 461 463 467 479 487 491 499 503 509 521 523 541 547 557 563 569 571 577 587 593 599 601 607 613 617 619 631 641 643 647 653 659 661 673 677 683 691 701 709 719 727 733 739 743 751 757 761 769 773 787 797 809 811 821 823 827 829 839 853 857 859 863 877 881 883 887 907 911 919 929 937 941 947 953 967 971 977 983 991 997 1009 1013 |
1019 1021 1031 1033 1039 1049 1051 1061 1063 1069 1087 1091 1093 1097 1103 1109 1117 1123 1129 1151 1153 1163 1171 1181 1187 1193 1201 1213 1217 1223 1229 1231 1237 1249 1259 1277 1279 1283 1289 1291 1297 1301 1303 1307 1319 1321 1327 1361 1367 1373 1381 1399 1409 1423 1427 1429 1433 1439 1447 1451 1453 1459 1471 1481 1483 1487 1489 1493 1499 1511 1523 1531 1543 1549 1553 1559 1567 1571 1579 1583 1597 1601 1607 1609 1613 |
1619 1621 1627 1637 1657 1663 1667 1669 1693 1697 1699 1709 1721 1723 1733 1741 1747 1753 1759 1777 1783 1787 1789 1801 1811 1823 1831 1847 1861 1867 1871 1873 1877 1879 1889 1901 1907 1913 1931 1933 1949 1951 1973 1979 1987 1993 1997 1999 2003 2011 2017 2027 2029 2039 2053 2063 2069 2081 2083 2087 2089 2099 2111 2113 2129 2131 2137 2141 2143 2153 2161 2179 2203 2207 2213 2221 2237 2239 2243 2251 2267 2269 2273 2281 2287 |
2293 2297 2309 2311 2333 2339 2341 2347 2351 2357 2371 2377 2381 2383 2389 2393 2399 2411 2417 2423 2437 2441 2447 2459 2467 2473 2477 2503 2521 2531 2539 2543 2549 2551 2557 2579 2591 2593 2609 2617 2621 2633 2647 2657 2659 2663 2671 2677 2683 2687 2689 2693 2699 2707 2711 2713 2719 2729 2731 2741 2749 2753 2767 2777 2789 2791 2797 2801 2803 2819 2833 2837 2843 2851 2857 2861 2879 2887 2897 2903 2909 2917 2927 2939 2953 |
2957 2963 2969 2971 2999 3001 3011 3019 3023 3037 3041 3049 3061 3067 3079 3083 3089 3109 3119 3121 3137 3163 3167 3169 3181 3187 3191 3203 3209 3217 3221 3229 3251 3253 3257 3259 3271 3299 3301 3307 3313 3319 3323 3329 3331 3343 3347 3359 3361 3371 3373 3389 3391 3407 3413 3433 3449 3457 3461 3463 3467 3469 3491 3499 3511 3517 3527 3529 3533 3539 3541 3547 3557 3559 3571 3581 3583 3593 3607 3613 3617 3623 3631 3637 3643 |
3659 3671 3673 3677 3691 3697 3701 3709 3719 3727 3733 3739 3761 3767 3769 3779 3793 3797 3803 3821 3823 3833 3847 3851 3853 3863 3877 3881 3889 3907 3911 3917 3919 3923 3929 3931 3943 3947 3967 3989 4001 4003 4007 4013 4019 4021 4027 4049 4051 4057 4073 4079 4091 4093 4099 4111 4127 4129 4133 4139 4153 4157 4159 4177 4201 4211 4217 4219 4229 4231 4241 4243 4253 4259 4261 4271 4273 4283 4289 4297 4327 4337 4339 4349 4357 |
4363 4373 4391 4397 4409 4421 4423 4441 4447 4451 4457 4463 4481 4483 4493 4507 4513 4517 4519 4523 4547 4549 4561 4567 4583 4591 4597 4603 4621 4637 4639 4643 4649 4651 4657 4663 4673 4679 4691 4703 4721 4723 4729 4733 4751 4759 4783 4787 4789 4793 4799 4801 4813 4817 4831 4861 4871 4877 4889 4903 4909 4919 4931 4933 4937 4943 4951 4957 4967 4969 4973 4987 4993 4999 5003 5009 5011 5021 5023 5039 5051 5059 5077 5081 5087 |
5099 5101 5107 5113 5119 5147 5153 5167 5171 5179 5189 5197 5209 5227 5231 5233 5237 5261 5273 5279 5281 5297 5303 5309 5323 5333 5347 5351 5381 5387 5393 5399 5407 5413 5417 5419 5431 5437 5441 5443 5449 5471 5477 5479 5483 5501 5503 5507 5519 5521 5527 5531 5557 5563 5569 5573 5581 5591 5623 5639 5641 5647 5651 5653 5657 5659 5669 5683 5689 5693 5701 5711 5717 5737 5741 5743 5749 5779 5783 5791 5801 5807 5813 5821 5827 |
5839 5843 5849 5851 5857 5861 5867 5869 5879 5881 5897 5903 5923 5927 5939 5953 5981 5987 6007 6011 6029 6037 6043 6047 6053 6067 6073 6079 6089 6091 6101 6113 6121 6131 6133 6143 6151 6163 6173 6197 6199 6203 6211 6217 6221 6229 6247 6257 6263 6269 6271 6277 6287 6299 6301 6311 6317 6323 6329 6337 6343 6353 6359 6361 6367 6373 6379 6389 6397 6421 6427 6449 6451 6469 6473 6481 6491 6521 6529 6547 6551 6553 6563 6569 6571 |
6577 6581 6599 6607 6619 6637 6653 6659 6661 6673 6679 6689 6691 6701 6703 6709 6719 6733 6737 6761 6763 6779 6781 6791 6793 6803 6823 6827 6829 6833 6841 6857 6863 6869 6871 6883 6899 6907 6911 6917 6947 6949 6959 6961 6967 6971 6977 6983 6991 6997 7001 7013 7019 7027 7039 7043 7057 7069 7079 7103 7109 7121 7127 7129 7151 7159 7177 7187 7193 7207 7211 7213 7219 7229 7237 7243 7247 7253 7283 7297 7307 7309 7321 7331 7333 |
7349 7351 7369 7393 7411 7417 7433 7451 7457 7459 7477 7481 7487 7489 7499 7507 7517 7523 7529 7537 7541 7547 7549 7559 7561 7573 7577 7583 7589 7591 7603 7607 7621 7639 7643 7649 7669 7673 7681 7687 7691 7699 7703 7717 7723 7727 7741 7753 7757 7759 7789 7793 7817 7823 7829 7841 7853 7867 7873 7877 7879 7883 7901 7907 7919 7927 7933 7937 7949 7951 7963 7993 8009 8011 8017 8039 8053 8059 8069 8081 8087 8089 8093 8101 8111 |
8117 8123 8147 8161 8167 8171 8179 8191 8209 8219 8221 8231 8233 8237 8243 8263 8269 8273 8287 8291 8293 8297 8311 8317 8329 8353 8363 8369 8377 8387 8389 8419 8423 8429 8431 8443 8447 8461 8467 8501 8513 8521 8527 8537 8539 8543 8563 8573 8581 8597 8599 8609 8623 8627 8629 8641 8647 8663 8669 8677 8681 8689 8693 8699 8707 8713 8719 8731 8737 8741 8747 8753 8761 8779 8783 8803 8807 8819 8821 8831 8837 8839 8849 8861 8863 |
8867 8887 8893 8923 8929 8933 8941 8951 8963 8969 8971 8999 9001 9007 9011 9013 9029 9041 9043 9049 9059 9067 9091 9103 9109 9127 9133 9137 9151 9157 9161 9173 9181 9187 9199 9203 9209 9221 9227 9239 9241 9257 9277 9281 9283 9293 9311 9319 9323 9337 9341 9343 9349 9371 9377 9391 9397 9403 9413 9419 9421 9431 9433 9437 9439 9461 9463 9467 9473 9479 9491 9497 9511 9521 9533 9539 9547 9551 9587 9601 9613 9619 9623 9629 9631 |
9643 9649 9661 9677 9679 9689 9697 9719 9721 9733 9739 9743 9749 9767 9769 9781 9787 9791 9803 9811 9817 9829 9833 9839 9851 9857 9859 9871 9883 9887 9901 9907 9923 9929 9931 9941 9949 9967 9973 |
math4school.ru
Натуральные числа | интернет проект BeginnerSchool.ru
Мы каждый день отвечаем на вопрос «сколько?». При этом помимо слов много или мало, мы называем конкретные числа.
Число является основным понятием математики, которое сложилось в ходе очень длительного исторического развития.
А чтобы ответить на вопрос «сколько?» надо сосчитать.
Числа, которые мы получаем в результате счета называются натуральными числами.
Название «натуральное» происходит от латинского слова natura – природа. То есть натуральные числа как бы происходят от природы, но, конечно, изобретены человеческим мозгом.
А впервые термин «натуральное число» появляется в трудах римского философа Боэция, жившего в V – VI веке.
Самое маленькое натуральное число 1. А вот самого большого натурального числа не существует.
Для того, чтобы получить следующее натуральное число надо прибавить к текущему натуральному числу 1.
Нет наибольшего натурального числа.
Натуральных чисел бесконечно много, а вот несуществующих предметов человеку не приходило в голову считать. Поэтому 0 не натуральное число, так как оно не может получиться в результате счета.
Число 0 не является натуральным числом.
Считается, что 0 получился в результате изобретения вычитания и с потребностью обозначить то, что в результате некоторых вычислений не остается ни одного предмета.
Но давайте поговорим об известном человеку наибольшем натуральном числе.
Число, которое считается самым большим натуральным числом, называется «гугол». Чтобы представить это число не хватит воображения, а чтобы сосчитать от 1 до гугола нам не хватит жизни. Записать число гугол сложно, так как нам понадобится изобразить после единицы сто нулей:
Располагая все натуральные числа в порядке возрастания, мы получаем натуральный ряд чисел.
Натуральный ряд записывается, начиная с 1 и далее в порядке возрастания, не пропуская ни одного числа, в конце ряда ставится многоточие:
Многоточие указывает на бесконечность натурального ряда.
Итак, ряды, изображенные на следующем рисунке, не являются натуральными:
В первом случае ряд начинается не с 1, а также в нем пропущены некоторые числа. Во втором случае ряд начинается с нуля, а это число, как мы говорили ранее, не является натуральным. Такой ряд иногда называют расширенным натуральным рядом.
Известно два натуральных ряда, это ряд количественных и порядковых чисел.
Когда мы считаем (один, два, три и так далее), мы получаем ряд количественных чисел. Количественные числа отвечают на вопрос «сколько?», они называются количественными числительными.
А вот порядковые числительные указывают на место, которое занимает какой-либо предмет: пятый день, шестая строка, четвертый квадрат и так далее.
Арифметические действия выполняются только над количественными числами, поэтому их иногда называют арифметическими.
А вот такие ряды как:
называются отрезком натурального ряда чисел. Даже одно число, например 10, можно назвать отрезком натурального ряда чисел.
Если числа в отрезке ряда перечислены не по порядку или хотя бы одно число пропущено или числа перечислены в обратном порядке, то такой отрезок ряда не является натуральным.
Если надо записать очень длинный отрезок ряда чисел можно записать часть отрезка ряда, затем поставить многоточие, а затем записать несколько последних чисел ряда. Это может выглядеть так:
Спасибо, что Вы с нами!
Понравилась статья — поделитесь с друзьями:
Подпишитесь на новости сайта:
Оставляйте пожалуйста комментарии в форме ниже
beginnerschool.ru
Таблицы квадратов чисел от 1 до 300
Квадрат чисел — это число умноженное на само себя или возведение его во вторую степень.
На данной странице можно познакомиться или вспомнить квадраты натуральных чисел от 1 до 300. Так же под каждой таблицей есть возможность сохранения таблицы на компьютер простым перетаскиванием.
На калькуляторе можно вычислить квадрат любого натурального числа.
Аналогичным образом можно найти и более сложные квадраты, таблица квадратов натуральных чисел от 1 до 10000.
Таблица квадратов натуральных чисел 1 до 100
12 = 1 22 = 4 32 = 9 42 = 16 52 = 25 62 = 36 72 = 49 82 = 64 92 = 81 102 = 100 |
112 = 121 122 = 144 132 = 169 142 = 196 152 = 225 162 = 256 172 = 289 182 = 324 192 = 361 202 = 400 |
212 = 441 222 = 484 232 = 529 242 = 576 252 = 625 262 = 676 272 = 729 282 = 784 292 = 841 302 = 900 |
312 = 961 322 = 1024 332 = 1089 342 = 1156 352 = 1225 362 = 1296 372 = 1369 382 = 1444 392 = 1521 402 = 1600 |
412 = 1681 422 = 1764 432 = 1849 442 = 1936 452 = 2025 462 = 2116 472 = 2209 482 = 2304 492 = 2401 502 = 2500 |
512 = 2601 522 = 2704 532 = 2809 542 = 2916 552 = 3025 562 = 3136 572 = 3249 582 = 3364 592 = 3481 602 = 3600 |
612 = 3721 622 = 3844 632 = 3969 642 = 4096 652 = 4225 662 = 4356 672 = 4489 682 = 4624 692 = 4761 702 = 4900 |
712 = 5041 722 = 5184 732 = 5329 742 = 5476 752 = 5625 762 = 5776 772 = 5929 782 = 6084 792 = 6241 802 = 6400 |
812 = 6561 822 = 6724 832 = 6889 842 = 7056 852 = 7225 862 = 7396 872 = 7569 882 = 7744 892 = 7921 902 = 8100 |
912 = 8281 922 = 8464 932 = 8649 942 = 8836 952 = 9025 962 = 9216 972 = 9409 982 = 9604 992 = 9801 1002 = 10000 |
Таблица квадратов натуральных чисел 100 до 200
1012 = 10 201 1022 = 10 404 1032 = 10 609 1042 = 10 816 1052 = 11 025 1062 = 11 236 1072 = 11 449 1082 = 11 664 1092 = 11 881 1102 = 12 100 |
1112 = 12 321 1122 = 12 544 1132 = 12 769 1142 = 12 996 1152 = 13 225 1162 = 13 456 1172 = 13 689 1182 = 13 924 1192 = 14 161 1202 = 14 400 |
1212 = 14 641 1222 = 14 884 1232 = 15 129 1242 = 15 376 1252 = 15 625 1262 = 15 876 1272 = 16 129 1282 = 16 384 1292 = 16 641 1302 = 16 900 |
1312 = 17 161 1322 = 17 424 1332 = 17 689 1342 = 17 956 1352 = 18 225 1362 = 18 496 1372 = 18 769 1382 = 19 044 1392 = 19 321 1402 = 19 600 |
1412 = 19 881 1422 = 20 164 1432 = 20 449 1442 = 20 736 1452 = 21 025 1462 = 21 316 1472 = 21 609 1482 = 21 904 1492 = 22 201 1502 = 22 500 |
1512 = 22 801 1522 = 23 104 1532 = 23 409 1542 = 23 716 1552 = 24 025 1562 = 24 336 1572 = 24 649 1582 = 24 964 1592 = 25 281 1602 = 25 600 |
1612 = 25 921 1622 = 26 244 1632 = 26 569 1642 = 26 896 1652 = 27 225 1662 = 27 556 1672 = 27 889 1682 = 28 224 1692 = 28 561 1702 = 28 900 |
1712 = 29 241 1722 = 29 584 1732 = 29 929 1742 = 30 276 1752 = 30 625 1762 = 30 976 1772 = 31 329 1782 = 31 684 1792 = 32 041 1802 = 32 400 |
1812 = 32 761 1822 = 33 124 1832 = 33 489 1842 = 33 856 1852 = 34 225 1862 = 34 596 1872 = 34 969 1882 = 35 344 1892 = 35 721 1902 = 36 100 |
1912 = 36 481 1922 = 36 864 1932 = 37 249 1942 = 37 636 1952 = 38 025 1962 = 38 416 1972 = 38 809 1982 = 39 204 1992 = 39 601 2002 = 40 000 |
Таблица квадратов натуральных чисел 200 до 300
2012 = 40 401 2022 = 40 804 2032 = 41 209 2042 = 41 616 2052 = 42 025 2062 = 42 436 2072 = 42 849 2082 = 43 264 2092 = 43 681 2102 = 44 100 |
2112 = 44 521 2122 = 44 944 2132 = 45 369 2142 = 45 796 2152 = 46 225 2162 = 46 656 2172 = 47 089 2182 = 47 524 2192 = 47 961 2202 = 48 400 |
2212 = 48 841 2222 = 49 284 2232 = 49 729 2242 = 50 176 2252 = 50 625 2262 = 51 076 2272 = 51 529 2282 = 51 984 2292 = 52 441 2302 = 52 900 |
2312 = 53 361 2322 = 53 824 2332 = 54 289 2342 = 54 756 2352 = 55 225 2362 = 55 696 2372 = 56 169 2382 = 56 644 2392 = 57 121 2402 = 57 600 |
2412 = 58 081 2422 = 58 564 2432 = 59 049 2442 = 59 536 2452 = 60 025 2462 = 60 516 2472 = 61 009 2482 = 61 504 2492 = 62 001 2502 = 62 500 |
2512 = 63 001 2522 = 63 504 2532 = 64 009 2542 = 64 516 2552 = 65 025 2562 = 65 536 2572 = 66 049 2582 = 66 564 2592 = 67 081 2602 = 67 600 |
2612 = 68 121 2622 = 68 644 2632 = 69 169 2642 = 69 696 2652 = 70 225 2662 = 70 756 2672 = 71 289 2682 = 71 824 2692 = 72 361 2702 = 72 900 |
2712 = 73 441 2722 = 73 984 2732 = 74 529 2742 = 75 076 2752 = 75 625 2762 = 76 176 2772 = 76 729 2782 = 77 284 2792 = 77 841 2802 = 78 400 |
2812 = 78 961 2822 = 79 524 2832 = 80 089 2842 = 80 656 2852 = 81 225 2862 = 81 796 2872 = 82 369 2882 = 82 944 2892 = 83 521 2902 = 84 100 |
2912 = 84 681 2922 = 85 264 2932 = 85 849 2942 = 86 436 2952 = 87 025 2962 = 87 616 2972 = 88 209 2982 = 88 804 2992 = 89 401 3002 = 90 000 |
formula-xyz.ru
Таблица степеней натуральных чисел | Формулы с примерами
Калькулятор степени натурального числа
Таблица степеней натуральных чисел от 2 до 25
! Наведите на ячейку, для того, чтобы увеличить значение в таблице.
x | В степени: | ||||||||
---|---|---|---|---|---|---|---|---|---|
Число | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
2 | 4 | 8 | 16 | 32 | 64 | 128 | 256 | 512 | 1 024 |
3 | 9 | 27 | 81 | 243 | 729 | 2 187 | 6 561 | 19 683 | 59 049 |
4 | 16 | 64 | 256 | 1 024 | 4 096 | 16 384 | 65 536 | 262 144 | 1 048 576 |
5 | 25 | 125 | 625 | 3 125 | 15 625 | 78 125 | 390 625 | 1 953 125 | 9 765 625 |
6 | 36 | 216 | 1 296 | 7 776 | 46 656 | 279 936 | 1 679 616 | 10 077 696 | 60 466 176 |
7 | 49 | 343 | 2 401 | 16 807 | 117 649 | 823 543 | 5 764 801 | 40 353 607 | 282 475 249 |
8 | 64 | 512 | 4 096 | 32 768 | 262 144 | 2 097 152 | 16 777 216 | 134 217 728 | 1 073 741 824 |
9 | 81 | 729 | 6 561 | 59 049 | 531 441 | 4 782 969 | 43 046 721 | 387 420 489 | 3 486 784 401 |
10 | 100 | 1 000 | 10 000 | 100 000 | 1 000 000 | 10 000 000 | 100 000 000 | 1 000 000 000 | 10 000 000 000 |
11 | 121 | 1 331 | 14 641 | 161 051 | 1 771 561 | 19 487 171 | 214 358 881 | 2 357 947 691 | 25 937 424 601 |
12 | 144 | 1 728 | 20 736 | 248 832 | 2 985 984 | 35 831 808 | 429 981 696 | 5 159 780 352 | 61 917 364 224 |
13 | 169 | 2 197 | 28 561 | 371 293 | 4 826 809 | 62 748 517 | 815 730 721 | 10 604 499 373 | 137 858 491 849 |
14 | 196 | 2 744 | 38 416 | 537 824 | 7 529 536 | 105 413 504 | 1 475 789 056 | 20 661 046 784 | 289 254 654 976 |
15 | 225 | 3 375 | 50 625 | 759 375 | 11 390 625 | 170 859 375 | 2 562 890 625 | 38 443 359 375 | 576 650 390 625 |
16 | 256 | 4 096 | 65 536 | 1 048 576 | 16 777 216 | 268 435 456 | 4 294 967 296 | 68 719 476 736 | 1 099 511 627 776 |
17 | 289 | 4 913 | 83 521 | 1 419 857 | 24 137 569 | 410 338 673 | 6 975 757 441 | 118 587 876 497 | 2 015 993 900 449 |
18 | 324 | 5 832 | 104 976 | 1 889 568 | 34 012 224 | 612 220 032 | 11 019 960 576 | 198 359 290 368 | 3 570 467 226 624 |
19 | 361 | 6 859 | 130 321 | 2 476 099 | 47 045 881 | 893 871 739 | 16 983 563 041 | 322 687 697 779 | 6 131 066 257 801 |
20 | 400 | 8 000 | 160 000 | 3 200 000 | 64 000 000 | 1 280 000 000 | 25 600 000 000 | 512 000 000 000 | 10 240 000 000 000 |
21 | 441 | 9 261 | 194 481 | 4 084 101 | 85 766 121 | 1 801 088 541 | 37 822 859 361 | 794 280 046 581 | 16 679 880 978 201 |
22 | 484 | 10 648 | 234 256 | 5 153 632 | 113 379 904 | 2 494 357 888 | 54 875 873 536 | 1 207 269 217 792 | 26 559 922 791 424 |
23 | 529 | 12 167 | 279 841 | 6 436 343 | 148 035 889 | 3 404 825 447 | 78 310 985 281 | 1 801 152 661 463 | 41 426 511 213 649 |
24 | 576 | 13 824 | 331 776 | 7 962 624 | 191 102 976 | 4 586 471 424 | 110 075 314 176 | 2 641 807 540 224 | 63 403 380 965 376 |
25 | 625 | 15 625 | 390 625 | 9 765 625 | 244 140 625 | 6 103 515 625 | 152 587 890 625 | 3 814 697 265 625 | 95 367 431 640 625 |
formula-xyz.ru