Наличие гидролитических ферментов – Гидролитические ферменты

Лизосом гидролитические ферменты — Справочник химика 21

    Внутриклеточный протеолиз протекает в основном в специализированных органеллах — лизосомах, которые содержат большой набор гидролитических ферментов. [c.255]

    Лизосома. Окруженная мембраной органелла в цитоплазме эукариотических клеток, содержащая большое число гидролитических ферментов. [c.1013]

    Структурная организация гидролитических ферментов изучена менее полно. По имеющимся в настоящий момент сведениям, гидролитические ферменты заключены в особые оболочки лизосомы, разрушение кото- [c.187]


    Лизосомы — это мембранные органеллы, в которых содержатся гидролитические ферменты, называемые кислыми гидролазами (высокоактивны при pH около 5,0). Эти ферменты расщепляют белки, нуклеиновые кислоты и другие макромолекулы, а также инородные частицы, бактерии. Лизосомы принимают участие и в регенеративных процессах, обеспечивающих гипертрофию и гиперплазию клеток, что наблюдается в отдельных тканях в процессе спортивной тренировки. 
[c.36]

    Лизосомы — контейнеры с гидролитическими ферментами [c.39]

    Лизосомы присутствуют в самых разных клетках. Некоторые специализированные клетки, например лейкоциты, содержат их в особенно большом количестве. Интересно, что отдельные виды растений, в клетках которых лизосомы не обнаружены, содержат гидролитические ферменты в клеточных вакуолях, которые поэтому могут выполнять ту же функцию, что и лизосомы. Функция лизосом, по-видимому, лежит в основе таких процессов, как автолиз и некроз тканей, когда ферменты освобождаются из этих органелл в результате случайных или запрограммированных процессов. 

[c.94]

    Лизосомы — мембранные везикулы, имеют трехслойную мембрану, которая может быть гофрирована. Мембрана удерживает внутри лизосом гидролитические ферменты, участвующие в гидролизе биополимеров самой клетки белков, полисахаридов, липидов и нуклеиновых кислот. Если клетка разрушается под действием дг-фактора мембраны, лизосомы становятся проницаемыми для ферментов. Они попадают в цитоплазму и гидролизуют все компоненты клетки, т.е. осуществляют автолиз клетки (подробнее см. тему 4). [c.42]


    У растений в вакуолях иногда содержатся гидролитические ферменты и тогда вакуоли функционируют как лизосомы. После гибели клетки тонопласт, как и все другие мембраны, теряет свою избирательную проницаемость, и ферменты высвобождаются из вакуолей, вызывая автолиз. 
[c.207]

    В лизосомах находится около 50 гидролитических ферментов, включающих различные протеиназы — катепсины. Многие из этих ферментов проявляют высокую активность в кислой среде (pH 5,0). В скелетных мышцах, мозге, эритроцитах и других тканях обнаружены нейтральные и щелочные протеиназы. [c.255]

    Лизосомы — микроскопические пузырьки, содержащие гидролитические ферменты, расщепляющие белки, нуклеиновые кислоты и некоторые полисахариды. [c.125]

    Ферменты локализованы во всех компартментах клеток. Ядерные ферменты катализируют синтез информационных макромолекул, а также процессы их созревания, функционирования и распада. В митохондриях действуют ферменты энергетического обмена, в аппарате Гольджи — ферменты, катализирующие созревание белков, в лизосомах — гидролитические ферменты. Значительное число ферментов ассоциировано с внешней и внутренними мембранами. Так, ферменты, защищающие клетку от действия чужеродных химических веществ, локализованы в эндоплазматическом рети1сулуме. Распределение ферментов в клетках определяют методом дифференциального центрифугирования гомогената тканей. Локализация некоторых ферментов идентифицирована гистохимическими методами in situ. Для этого при помощи микротома получают срезы ткани и обрабатывают их раствором субстрата. Идентификация

www.chem21.info

Гидролитические и другие ферменты — КиберПедия

 

К гидролитическим ферментам относят ферменты, ускоряющие рас­щепление жиров, углеводов, белков и других более сложных соединений на более простые (с присоединением воды). В молоке содержатся липа­зы, фосфатазы, протеазы, лактаза, амилаза, лизоцим и некоторые другие гидролитические ферменты.

Липазы.Ферменты катализируют гидролиз триглицеридов молочно­го жира. В молоке содержатся нативная и бактериальная липазы. Количество нативной липазы незначительно. Она связана, главным образом, с казе­ином (плазменная липаза), и лишь небольшая часть ее (около 1%) адсор­бирована оболочками жировых шариков (мембранная липаза). Иногда происходит перераспределение плазменной липазы с белков на жиро­вые шарики. При этом в результате гидролиза жира выделяются низко­молекулярные жирные кислоты (масляная, капроновая, каприловая) и молоко прогоркает.

Прогоркание молока в результате гидролиза жира под действием ли­паз (липолиз) может происходить в процессе хранения и после техноло­гической обработки молока — перекачивания, гомогенизации и т. д.

Нативная липаза инактивируется при температуре пастеризации 80°С. Бактериальные липазы более термостабильны. Они разрушаются при 80 — 90°С.

Фосфатазы. Фермент фосфатаза гидролизует эфиры фосфорной кис­лоты. В свежевыдоенном молоке обнаружены щелочная фосфатаза (с оп­тимумом рН 9,6) и незначительное количество кислой фосфатазы (с оп­тимумом рН около 5). Фосфатазы попадают в молоко из клеток молоч­ной железы. Щелочная фосфотаза концентрируется на оболочках жиро­вых шариков, кислая связана с белками. Щелочная фосфатаза молока чувствительна к повышенной температуре, кислая фосфатаза термоста­бильна. Нагревание молока в течение 30 мин при 63°С, кратковременная и моментальная пастеризация при 74—85°С полностью разрушают щелочную фосфатазу. Высокая чувствительность фосфатазы к нагреванию была использована при разработке метода контроля эффективности па­стеризации молока и сливок (фосфатазная проба).

Протеазы (протеолитические ферменты). Протеазы катализируют гид­ролиз пептидных связей белков и полипептидов. В молоке содержится небольшое количество нативной протеазы, переходящей из крови. Она вызывает гидролиз β-казеина. Фермент термостабилен, инактивируется при тем­пературе выше 75°С. Микрофлора молока выделяет более активные про­теазы, которые могут вызвать различные пороки молока и масла. Так, при размножении в молоке микрококков и гнилостных бактерий появ­ляется горький вкус, при пониженной кислотности (35 — 40°Т) наблюда­ется его свертывание.



Молочнокислые бактерии вырабатывают малоактивные протеазы, которые, однако, имеют важное значение при созревании сыров. Актив­ность протеолитических ферментов, выделяемых молочнокислыми па­лочками и стрептококками, различна. Палочки, по сравнению со стреп­тококками, выделяют более активные ферменты.

При производстве сыров для свертывания молока применяют протеолитический фермент животного происхождения -сычужный фермент (химозин). Известны заменители сычужного фермента — пепсин и про­теолитические ферменты микробного происхождения..

Лактаза. Лактаза катализирует реакцию гидролити­ческого расщепления лактозы на глюкозу и галактозу. Молочная железа фермент почти не вырабатывает, его выделяют мо­лочнокислые бактерии и некоторые дрожжи. Лактаза имеет оптимум дей­ствия при рН 5 и температуре 40°С. ). В молочной промышленности применяют при выработке сгущенного молока с сахаром в производстве низко-лактозных молочных продуктов.

Амилаза. Этот гидролитический фермент катализирует расщепление крахмала до декстринов и мальтозы. В нормальном молоке содержится небольшое количество амилазы, при заболевании коров маститом ее содержание повышается. Амилаза имеет оптимум действия при рН 7,4 и температуре 37°С. Фермент инактивируется при пастеризации молока — нагревание до 63°С в тече­ние 30 мин разрушает амилазу полностью.

Лизоцим (мурамидаза).Это очень важный фермент молока: он гидролизует связи в полисахаридах клеточных стенок бактерий и вызывает их гибель. Вместе с другими антибактериальными факторами (имму­ноглобулинами, лактоферрином, лактопероксидазой, лейкоцитами и др.) лизоцим обусловливает бактерицидные свойства свежевыдоенного молока. Коровье молоко содержит небольшое количество лизоцима, в женском молоке его в 3000 раз больше. Он относится к основным бел­кам (имеет изоэлектрическую точку при рН 9,5), в кислой среде термо­стабилен.



 

Контрольные вопросы:

1. Дайте определения ферментов и расскажите об их свойствах.

2. Назовите окислительно-восстановительный ферменты молока.

3. Перечислите гидролитические ферменты молока.

 

Лекция 8

ВИТАМИНЫ В СОСТАВЕ МОЛОКА

Витамины (от лат. vita — жизнь) — низкомолекулярные соединения раз­нообразного химического строения, необходимые для нормальной жиз­недеятельности животных, человека, растений и микроорганизмов. Вита­мины играют важную роль в обмене веществ Отсутствие или недостаток в пище витаминов приводит к нарушению обмена веществ, и в конечном итоге к заболеваниям (авитаминозам и гиповитаминозам).

Витамины были открыты в 1880 г. русским ученым Н. И. Луниным. Он установил, что пища человека и животного кроме белков, жиров, уг­леводов и солей должна содержать незначительное количество каких-то неизвестных жизненно важных веществ. Позже польский ученый К. Функ назвал эти вещества витаминами. В настоящее время известно более 20 витаминов и выяснена их химическая природа. По признаку раство­римости все витамины можно разделить на

жирорастворимые (A, D, Е и К) и водорастворимые (витамины группы В, С и др.)

Молоко содержит практически все витамины, необходимые для нор­мального развития человека. Они попадают в него из поедаемо­го животными корма и синтезируются микрофлорой рубца. Содержание витаминов в молоке колеблется в зависимости от сезона года, стадии лак­тации, рационов кормления, породы и индивидуальных особенностей коров. Кроме того, содержание некоторых витаминов изменя­ется при хранении и тепловой обработке молока (пастеризации, сгуще­нии, сушке).

Жирорастворимые витамины молока включены в оболочки жировых шариков, водорастворимые содержатся в свободном виде и в составе различных ферментов.

 

Жирорастворимые витамины

Витамин А (ретинол).Недостаток витамина А в организме человека вызывает заболевания глаз: куриную слепоту (утрата зрения в сумерках) и сухость роговицы (ксерофтальмия). Этот витамин участвует в окисли­тельных процессах, протекающих в организме. Его считают витамином роста, он повышает сопротивляемость организма инфекционным забо­леваниям и т. д.

Витамин А образуется и накапливается лишь в организме человека и животных. В растениях содержится желтый пигмент — β-каротин, из которого в животном организме образуется витамин А. В молоке витамина А содержится 0,004- 0,1 мг%. Молозиво содержит в 10 — 12 раз больше витамина А, чем мо­локо. Наиболее богаты витамином А молоко и сливки лет­не-осеннего периода, когда животные поедают зеленый корм, содержа­щий много каротина. Масло, выработанное из летнего молока, содержит в 4 раза больше витамина А, чем масло из зимнего молока.

Витамин D (кальциферол).Этот витамин регулирует фосфорно-кальциевый обмен в организме человека. Его недостаток в пище нарушает процесс отложения в костях солей кальция и фосфора, что приводит к заболеванию рахитом. Витамин D образуется в организме животных и человека при их ультрафиолетовом об­лучении. Молоко содержит сравнительно мало витамина D, летом его в 5 — 8 раз больше, чем зимой.

Витамин Е (токоферолы).Недостаток витамина Е вызывает стериль­ность (бесплодие) животных. Витамин Е предохраняет жиры от окисле­ния, т. е. обладает антиокислительными свойствами. Токоферолы синтези­руются только в растениях (ими богаты растительные масла). В организм животных токоферолы попадают с растительными кормами. В молоке содержится в среднем 0,09 мг% витамина Е, причем его количество летом больше, чем зимой.

Витамин К (витамин коагуляции крови).Этот витамин влияет на про­цесс свертывания крови. Содержится в зеленых растениях, в организме животных и человека синтезируется микрофлорой кишечника. В коро­вьем молоке витамин К содержится в незначительных количествах.

 

Водорастворимые витамины

Витамин B1 (тиамин).Витамин B1, имеет важное значение для обмена углеводов, жиров и белков. При недостатке витамина B1, накапливается пировиноградная кислота, избыточное количество которой отрицательно действует на нервную ткань. Недостаток витамина вызывает расстройство нервной системы и заболевание «бери-бери», или полиневрит.

В молоке содержится, в среднем, 0,04% витамина B1. Его количество в молоке в течение года почти постоянно и практически не зависит от корма. Способностью синтезировать витамин B1, а также витамин В2 обладают некоторые микроорганизмы заквасок. По­этому его содержание в кисломолочных продуктах можно повысить пу­тем применения активных заквасок.

Витамин В2 (рибофлавин).Рибофлавин представляет собой желто-зе­леный пигмент, который был впервые выделен из молочной сыворотки. При его недостатке нарушаются процессы окис­ления органических веществ, прекращается рост животных и т. д. Вита­мин В2 синтезируется микрофлорой кишечника человека и животных.

Содержание витамина В2 в среднем 0,28 мг%. В молозиве его содержится в 3- 4 раза больше, чем в молоке. Витамин по­ступает в молоко из корма и синтезируется микрофлорой рубца. Потреб­ность человека в витамине В2 удовлетворяется, в основном, за счет мо­лочных продуктов.

Витамин РР (ниацин, никотиновая кислот,).При его недостатке возникают кожные заболевания (пеллагра), рас­стройство нервной системы и пищеварения. Витамин образуется микро­организмами рубца животного.

В молоке содержится мало витамина РР. Оно, однако, богато триптофаном, из которого в организме человека синтезируется никотиновая кислота.

Витамин В12 (кобаламин).Витамин обладает высокой биологической активностью. Недостаток витами­на В12 вызывает злокачественную анемию (злокачественное малокровие). Витамин В12 в природе синтезируется, главным образом, микроорганиз­мами, которые и служат основным источником его промышленного по­лучения. В организме человека и животных он не синтезируется.. В молоке витами­на В12 содержится около 0,4 мкг на 100 г (суточная потребность состав­ляет 3 мкг). Молоко и молочные продукты покрывают более 20% суточ­ной потребности человека в витамине В12.

Витамин С (аскорбиновая кислота).Она участвует в окислительно-вос­становительных процессах, происходящих в организме. Недостаток ви­тамина С в пище может вызывать цингу. В сыром молоке содержится 0,3 — 2,0 мг% витамина С. Витамин С син­тезируется микрофлорой рубца, его содержание в молоке зависит от ин­дивидуальных особенностей животного. Обычно оно повышается зимой и понижается летом.

При хранении молока количество аскорбиновой кислоты снижается. Свет действует разрушающе на аскорбиновую кислоту, поэтому при хра­нении молока в прозрачных бутылках потери витамина С составляют 50% и более. Лучше сохраняется витамин в бутылках из темного стекла и бумажных пакетах. Это важно учитывать при выпуске витаминизирован­ного молока и кисломолочных напитков.

Витамины В6, В3 и другие, Витамин В6 (пиридоксин) входит в со­став ферментов. Содержание пиридоксина в молоке составляет 0,05 мг%.

В3 (пантотеновая кислота), биотин, фолиевая кислота (фолацин) вхо­дят в состав ряда ферментов и имеют важное биологичес­кое значение. Данные витамины необходимы для роста дрожжей и мо­лочнокислых бактерий. Поэтому недостаток их в молоке весной может быть причиной плохого сквашивания молока при приготовлении бакте­риальных заквасок и выработке молочнокислых продуктов.

 

 

Контрольные вопросы:

1. Назовите основные водорастворимые витамины молока.

2. Назовите основные жирорастворимые витамины молока.

 

Лекция 9

ГОРМОНЫ И ГАЗЫ.

cyberpedia.su

Гидролитический фермент — Большая Энциклопедия Нефти и Газа, статья, страница 1

Гидролитический фермент

Cтраница 1

Гидролитические ферменты катализируют и другие реакции, в результате которых образуются новые пептидные связи. К ним относятся превращения, названные трансамидированием и транс-пептидированием.  [1]

Гидролитические ферменты, субстратом которых являются эфиры фосфорных кислот, называются фосфатазами. Сюда относятся фосфомо-но — и диэстеразы, действующие на эфиры ортофосфорной кислоты, пиро-фосфатазы, гидролизующие эфиры пирофосфорной кислоты, метафос-фатазы, превращающие метафосфаты в ортофосфаты. К этой группе относится и важный фермент, гидролизующий аденозитрифосфорную кислоту, АТФ-фосфатаза. При этом отщепляется молекула ортофосфорной кислоты. Реакция замечательна значительным энергетическим эффектом, благодаря которому она представляет собой один из наиболее существенных процессов в энергетике организма.  [2]

Гидролитические ферменты, расщепляющие гликозидные связи, — гл икозидазы ( гидролазы) — проявляют высокую специфичность к определенному типу гликозидных связей. По характеру действия они разделяются на экзо — и эндо-гидролазы. Гидролазы отщепляют однотипные остатки с одного — конца полимерной цепи. Например, ( 3-мальта-за превращает амилозу почти количественно в мальтозу. Гидро-лазы гидролизуют гл икозидные связи беспорядочно и дают набор гомологичных серий олигосахаридов. Однако разные типы гликозидных связей расщепляются эндо-гидролазами с различной скоростью, что может быть использовано для направленного гидролиза лишь одного типа гликозидных связей. Гидролазы используют для получения олигосахаридов из декстрана.  [3]

Гидролитические ферменты имеют большое практическое значение. В СССР и во многих других развитых странах организовано промышленное производство гидролитических ферментов, в основном амилолитических и протеолитических. Амилолитические и протеолитические ферментные препараты из микробов производятся в СССР на специальных заводах для пивоваренной, винокуренной и кожевенной промышленности. Среди гидролаз есть действующие на галоидные связи С-га-лоидных соединений.  [4]

Гидролитические ферменты составляют основную часть содержимого макрофагальных лизосом и гранул у нейтрофилов. Они участвуют в процессах гидролитического расщепления фагоцитированного материала.  [5]

Гидролитические ферменты катализируют присоединение элементов воды. Например, щелочные и кислые фосфатазы гидроли-зуют фосфорные зфиры в щелочной и кислой среде соответственно.  [6]

Внутриклеточные гидролитические ферменты осуществляют, по-видимому, одновременно как распад, так и синтез всех указанных выше сложных веществ. Обратимость действия гидролитических ферментов доказана на примере липаз.  [7]

Примером гидролитического фермента может служить химо-грипсин, который получается при воздействии особого вещества — трипсиногена ( трипсиноген синтезируется в поджелудочной железе) на трипсин. Химотрипсин ускоряет гидролиз пептидных связей в слабощелочной среде, он катализирует также и гидролиз некоторых сложных эфиров. Предполагают, что активный участок молекулы химотрипсина состоит из четырех остатков аминокислот: серина, изолейцина и двух остатков гистидина. Составные части активного центра должны быть очень точно расположены относительно друг друга и молекулы субстрата.  [8]

Ингибирование гидролитических ферментов может быть вызвано непосредственным воздействием ПАВ путем блокирования функциональных групп фермента или нарушения его третичной структуры либо вследствие блокирования субстрата в результате сорбции на нем ПАВ, что определяет его недопустимость для действия фермента. К тому же присутствие ПАВ вызывает нарушение энергетических соотношений на поверхности раздела между бактериальной клеткой и средой, что приводит при определенных концентрациях к подавлению активных обменных процессов бактерий, и в первую очередь метановых. Последнее подтверждается накоплением в иловой жидкости летучих жирных кислот и снижением фактического выхода газа по сравнению с расчетным, определяемым по распаду жиров, белков и углеводов.  [9]

Действие гидролитических ферментов неоднократно исследовалось, однако полученные результаты неполны, как и следовало ожидать. В процессе, обусловленном гидролитическим ферментом, например в инверсии тростникового сахара инвертазой, нужно принимать во внимание три главных фактора: вещество, которое гидролизуется, фермент и воду. Из этих факторов только два первых могут изменяться, в то время как третий, вода, остается всегда постоянным, и его количественное участие в процессе не может быть определено, ибо процесс протекает в водном растворе. Однако едва ли необходимо указывать, что вода играет при этом существенную роль и что все ферментативные гидролитические процессы следует рассматривать только как активацию воды соответственными ферментами. Так, например, тростниковый сахар инвертируется одной водой, хотя и чрезвычайно медленно, инвертаза же только неизмеримо ускоряет этот процесс. Если количественное участие воды в гидролитическом процессе остается неопределимым, то действие ферментов выявляется чрезвычайно односторонне.  [10]

У гидролитических ферментов активные центры находятся на поверхности самого белка.  [11]

Среди различных гидролитических ферментов, выделенных из термофильных микроорганизмов, развивающихся при 55 — 65 С, наиболее изучена а-амилаза. Она не инактивиру-ется после 24-часовой выдержки при 65 — 70 С.  [12]

Адениндезамнназа — гидролитический фермент, осуществляющий дезаминирова-ние аденина с превращением его в гипоксантин.  [13]

АРГИНАЗА — гидролитический фермент, относящийся к группе дезаминаз, мол. L-аргинин на орнитин и мочмину ( D-аргинин практически А.  [14]

Страницы:      1    2    3    4

www.ngpedia.ru

Гидролазы гидролитические ферменты — Справочник химика 21

    А. ГИДРОЛИТИЧЕСКИЕ ФЕРМЕНТЫ (ГИДРОЛАЗЫ) [c.102]

    Гидролазы. К гидролазам относят ферменты, которые катализируют расщепление сложных веществ на простые, сопровождающееся присоединением воды, и ускоряют синтезы веществ, связанные с выделением воды. Эти реакции называются гидролитическими. Под влиянием гидролаз разрываются связи между атомами углерода и кислорода (в жирах и углеводах) и связи [c.120]


    Наиболее распространенный в растительном мире третий класс-гидролитические ферменты, которые регулируют в растениях процессы роста и развития в период их прорастания. Данный класс включает ферменты, имеющие, в основном, промышленное значение, и большинство пищеварительных ферментов. Общим свойством всех гидролаз является способность катализировать реакции гидролиза, то есть расшепление сложных соединений на простые с присоединением воды. [c.208]

    Гидролазы гликозидов — ферменты, катализирующие гидролитическое расщепление углеводов и гликозидов по схеме  [c.66]

    Лизосомы — это мембранные органеллы, в которых содержатся гидролитические ферменты, называемые кислыми гидролазами (высокоактивны при pH около 5,0). Эти ферменты расщепляют белки, нуклеиновые кислоты и другие макромолекулы, а также инородные частицы, бактерии. Лизосомы принимают участие и в регенеративных процессах, обеспечивающих гипертрофию и гиперплазию клеток, что наблюдается в отдельных тканях в процессе спортивной тренировки. [c.36]

    Сейчас главным специфическим признаком, на основании которого отличают один фермент от другого, является химическая реакция, катализируемая данным ферментом. На этом признаке базируется современная классификация и номенклатура ферментов. Все ферменты делят на группы, согласно типу катализируемой реакции, который в сочетании с названием субстрата служит основой наименований отдельных ферментов. В настоящее время в зависимости от тина реакций, катализируемых ферментами, их подразделяют на шесть главных классов 1) оксидоредуктазы (окислительно-восстановительные ферменты) 2) трансферазы (ферменты переноса) 3) гидролазы (гидролитические ферменты) 4] лиазы (отщепление от субстратов отдельных групп с образованием двойных связей или присоединение групп к двойным связям) 5) изомеразы (ферменты изомеризации) 6) лигазы (синтетазы). [c.51]

    Гидролазы, или гидролитические ферменты, катализирующие реакции гидролитического расщепления внутримолекулярных связей. Эти ферменты участвуют в расщеплении и синтезе углеводов, жиров и белков, причем компонентом реакции является вода. К этому классу относятся карбогидразы, расщеп- [c.83]

    Лиазы. К классу лиаз относят ферменты, катализирующие разрыв связей С—О, С—С, С—N и других, а также обратимые реакции отщепления различных групп от субстратов не гидролитическим путем. Эти реакции сопровождаются образованием двойной связи или присоединением групп к месту разрыва двойной связи. Ферменты обозначают термином суб-страт-лиазы . Например, фумарат-гидратаза (систематическое название Г-малат-гидролаза ) катализирует обратимое отщепление молекулы воды от яблочной кислоты с образованием фумаровой кислоты. В эту же группу входят декарбоксилазы (карбокси-лиазы), амидин-лиазы и др. [c.161]

    До настоящего времени о реактивных группировках гидролаз известно весьма немногое. Некоторые данные относительно реактивных группировок их субстратов можно получить, изучая скорости каталитических реакций в присутствии конкурентных ингибиторов [51]. Конкурентными ингибиторами будут все вещества, близкие к субстратам гидролитических ферментов в структурном отношении, но отличающиеся от них некоторыми особенностями молекулярной структуры. Обладая, как и субстрат, способностью соединяться с ферментом, они конкурируют с ним и тем самым снижают скорость каталитической реакции. [c.289]

    А. Гидролитические ферменты (гидролазы). … Работа № 53. Получение Р-фруктофуранозидазы (саха разы) из дрожжей по способу Лебедева.  [c.338]

    Биохимические процессы в клетке контролируются специальными белками -ферментами. Ферменты являются биокатализаторами с очень высокой эффективностью и специфичностью. Они могут увеличивать скорость реакций в 10 и более раз. Очень часто ферменты называют по субстрату с окончанием аза . Так, фермент цел-люлаза катализирует гидролиз целлюлозы. Используются также названия ферментов по катализируемой реакции. Например, гидролазы катализируют гидролиз, дегидрогеназы — отрыв водорода и т.д. В связи с увеличением числа известных ферментов в настоящее время по катализируемым реакциям все ферменты разделены на шесть классов оксидоредуктазы, трансферазы, гидролазы, лиазы, изомеразы и лигазы. Ок-сидоредуктазы катализируют обратимые окислительно-восстановительные реакции, в которых происходит перенос водорода, электронов или гидрид-нонов. Трансферазы переносят группы атомов от одного соединения к другому. Гидролазы катализируют гидролитическое расщепление различных связей (гликозидных, пептидных, эфирных и др.). Лиазы катализируют реакции, в которых происходит расщепление химических связей с образованием двойных связей илн присоединение по двойным связям. Изомеразы воздействуют на процессы изомеризации. Л и газы (син-тетазы) катализируют образование связи между двумя соединениями, используя энергию АТФ и других высокоэнергетических соединений. [c.327]

    Эффект дыбы объясняет механизм действия гидролаз, лиаз, многих трансфераз. Гидролитический фермент связывается с молекулой субстрата в двух точках. Структурные аналоги субстрата, нормальная конфигурация которых соответствует [c.141]

    Протеины могут накапливаться в специализированных алейроновых вакуолях (запасные белки в алейроновых клетках бобовых и злаков), выделяться во внутреннюю среду организма (например, гидролитические ферменты алейроновых клеток в эндосперме злаков) или выводиться наружу (гликопротеины листьев тополя, гидролазы пищеварительного сока насекомоядных растений и др.). Секреция протеаз у насекомоядных растений индуцируется хеморецепторами, чувствительными к азоту и фосфору. Выделение гидролитических ферментов из алейроновых клеток злаков находится под контролем гиббереллина. [c.306]

    Все упомянутые выше ферменты, производящие переваривание протеинов, принадлежат к классу гидролаз. Они катализируют гидролитические процессы—реакции распада молекулы вещества с присоединением воды. Как мы установили ранее, гидролитическое расщепление белковых веществ идет ступенями от белкового ве

www.chem21.info

7.2 Гидролитические и другие ферменты

К гидролитическим ферментам относят ферменты, ускоряющие рас­щепление жиров, углеводов, белков и других более сложных соединений на более простые (с присоединением воды). В молоке содержатся липа­зы, фосфатазы, протеазы, лактаза, амилаза, лизоцим и некоторые другие гидролитические ферменты.

Липазы. Ферменты катализируют гидролиз триглицеридов молочно­го жира. В молоке содержатся нативная и бактериальная липазы. Количество нативной липазы незначительно. Она связана, главным образом, с казе­ином (плазменная липаза), и лишь небольшая часть ее (около 1%) адсор­бирована оболочками жировых шариков (мембранная липаза). Иногда происходит перераспределение плазменной липазы с белков на жиро­вые шарики. При этом в результате гидролиза жира выделяются низко­молекулярные жирные кислоты (масляная, капроновая, каприловая) и молоко прогоркает.

Прогоркание молока в результате гидролиза жира под действием ли­паз (липолиз) может происходить в процессе хранения и после техноло­гической обработки молока — перекачивания, гомогенизации и т. д.

Нативная липаза инактивируется при температуре пастеризации 80°С. Бактериальные липазы более термостабильны. Они разрушаются при 80 — 90°С.

Фосфатазы. Фермент фосфатаза гидролизует эфиры фосфорной кис­лоты. В свежевыдоенном молоке обнаружены щелочная фосфатаза (с оп­тимумом рН 9,6) и незначительное количество кислой фосфатазы (с оп­тимумом рН около 5). Фосфатазы попадают в молоко из клеток молоч­ной железы. Щелочная фосфотаза концентрируется на оболочках жиро­вых шариков, кислая связана с белками. Щелочная фосфатаза молока чувствительна к повышенной температуре, кислая фосфатаза термоста­бильна. Нагревание молока в течение 30 мин при 63°С, кратковременная и моментальная пастеризация при 74—85°С полностью разрушают щелочную фосфатазу. Высокая чувствительность фосфатазы к нагреванию была использована при разработке метода контроля эффективности па­стеризации молока и сливок (фосфатазная проба).

Протеазы (протеолитические ферменты). Протеазы катализируют гид­ролиз пептидных связей белков и полипептидов. В молоке содержится небольшое количество нативной протеазы, переходящей из крови. Она вызывает гидролиз β-казеина. Фермент термостабилен, инактивируется при тем­пературе выше 75°С. Микрофлора молока выделяет более активные про­теазы, которые могут вызвать различные пороки молока и масла. Так, при размножении в молоке микрококков и гнилостных бактерий появ­ляется горький вкус, при пониженной кислотности (35 — 40°Т) наблюда­ется его свертывание.

Молочнокислые бактерии вырабатывают малоактивные протеазы, которые, однако, имеют важное значение при созревании сыров. Актив­ность протеолитических ферментов, выделяемых молочнокислыми па­лочками и стрептококками, различна. Палочки, по сравнению со стреп­тококками, выделяют более активные ферменты.

При производстве сыров для свертывания молока применяют протеолитический фермент животного происхождения -сычужный фермент (химозин). Известны заменители сычужного фермента — пепсин и про­теолитические ферменты микробного происхождения..

Лактаза. Лактаза катализирует реакцию гидролити­ческого расщепления лактозы на глюкозу и галактозу. Молочная железа фермент почти не вырабатывает, его выделяют мо­лочнокислые бактерии и некоторые дрожжи. Лактаза имеет оптимум дей­ствия при рН 5 и температуре 40°С. ). В молочной промышленности применяют при выработке сгущенного молока с сахаром в производстве низко-лактозных молочных продуктов.

Амилаза. Этот гидролитический фермент катализирует расщепление крахмала до декстринов и мальтозы. В нормальном молоке содержится небольшое количество амилазы, при заболевании коров маститом ее содержание повышается. Амилаза имеет оптимум действия при рН 7,4 и температуре 37°С. Фермент инактивируется при пастеризации молока — нагревание до 63°С в тече­ние 30 мин разрушает амилазу полностью.

Лизоцим (мурамидаза). Это очень важный фермент молока: он гидролизует связи в полисахаридах клеточных стенок бактерий и вызывает их гибель. Вместе с другими антибактериальными факторами (имму­ноглобулинами, лактоферрином, лактопероксидазой, лейкоцитами и др.) лизоцим обусловливает бактерицидные свойства свежевыдоенного молока. Коровье молоко содержит небольшое количество лизоцима, в женском молоке его в 3000 раз больше. Он относится к основным бел­кам (имеет изоэлектрическую точку при рН 9,5), в кислой среде термо­стабилен.

studfiles.net

Гидролитические ферменты — Справочник химика 21

    По данным А. Н. Баха и А. И. Опарина, в зерне активность ферментов дыхания — оксидазы, пероксидазы и каталазы — выше активности гидролитических ферментов. Проращивание повышает активность обеих групп ферментов, но соотношение их активности резко изменяется в обратную сторону и тем сильнее, чем ниже температура. Поэтому в процессе солодоращения накапливается значи- [c.131]

    Ферменты являются катализаторами биологических реакций. Их каталитическая эффективность часто совершенно удивительна и в сочетании со специфичностью к субстрату позволяет организму выбрать для данной конкретной молекулы только один единственный путь метаболизма из многочисленных возможных химических реакций, в которые может вступать эта молекула и продукты ее превращений. Специфичность фермента к определенному субстрату может иметь структурную или стереохимическую природу. Структурная специфичность может быть либо достаточно отчетливо выраженной, либо, напротив, она может быть относительно широкой как, например, это показано для гидролитических ферментов пищеварительной системы. Стереоспецифичность является характерной особенностью ферментативно катализируемых реакций, в ко- [c.24]


    В число наиболее известных гидролитических ферментов, для которых получены сведения о структуре и механизме действия, входят экзопептидаза карбоксипептидаза А (гл. 6), рибонуклеаза А (гл. 3) и лизоцим. В настоящей главе мы рассмотрим химию последнего. [c.238]

    С этой целью при рассмотрении гидролитических ферментов вводится понятие активный центр. Однако прежде всего следует определить основные понятия катализа с привлечением теории переходного состояния. Далее будет показано, что факторами, определяющими ферментативную активность, являются сближение и соответствующая ориентация химических групп. Впоследствии это поможет связать неферментативный гетерогенный катализ с ферментативным. [c.189]

    Созревание мяса — совокупность автолитических превращений биохимических веществ, результатом которых являются положительные изменения свойств сырья формируется нежная консистентность, сочность, специфические аромат и вкус. Такие изменения наступают после разрешения мышечного окоченения под действием гидролитических ферментов и других физико-химических факторов. В технологической практике нет установленных показателей полной зрелости мяса, а следовательно, и точных сроков его созревания. [c.1131]

    Другие гидролитические ферменты [c.238]

    Клеточная стенка микроорганизмов — один из наиболее важных органоидов, принимающих участие в обмене веществ. Она обеспечивает проникновение питательных веществ во внутрь клетки п экскрецию, т. е. удаление из нее неиспользуемых продуктов обмена, в том числе и многих гидролитических ферментов. [c.247]

    При рациональном использовании культуральной жидкости после отделения мицелия из нее можно получить препараты гидролитических ферментов, например путем осаждения органическими растворителями. В состав таких ферментных препаратов входят пектиназа, целлюлаза, амилаза, и они могут быть использованы для приготовления соков и вина. [c.118]

    Эта кислота является настоящим аккумулятором химической энергии она образуется в результате процессов окисления пищевых веществ в клетках организма и расходуется, когда организм должен быстро произвести какую-либо работу. Исключительные свойства богатых энергией фосфатов Б. и А. Пюльман и Грабе связывают, во-первых, с наличием в их молекулах цепочки атомов, каждый из которых обладает суммарным положительным зарядом, что означает недостаток я-электронов, во-вторых, с существованием электронного облака , окружающего эту цепочку. Молекула получается как бы слоистой. Большой запас энергии в ней сочетается с очень большой устойчивостью по отношению к гидролизу (в отсутствие гидролитических ферментов). Предполагается, что эти качества и способствовали тому, что фосфаты приобрели осо- [c.183]

    Таким образом, различная доступность связей — ONH- гидролитическому распаду определяется преимущественно особенностями первичной структуры макромолекулы. Это явление позволяет решать задачи выбора специфических деструктирую-щих реагентов, способных селективно разрывать пептидные связи между определенными аминокислотными звеньями. Наиболее подходящими в этом отношении являются гидролитические ферменты. Например, фермент трипсин разрывает связь ONH- практически исключительно между Arg и Lys. Другой фермент, химотрипсин, разрывает пептидные связи преимущественно между звеньями, имеющими ароматические ядра (например, между Туг и Phe). [c.360]

    Относительно высокая стойкость полиэфира к действию гидролитических ферментов в биологических условиях объясняется высокой кристалличностью материала. [c.263]

    Рассмотрим ферменты, разрушающие крахмал с присоединением к его «осколкам» молекул воды, т.е. гидролитические ферменты. Среди них — амилазы, о которых мы уже рассказывали в главе «Опыты с углеводами». Поскольку суть действия таких ферментов вы уже знаете, займемся сразу сравнительными опытами проверим, как действуют на крахмал амилазы человека и животных. [c.151]

    В деятельности гидролитических ферментов, содержащих гистидин в качестве главного активного центра  [c.331]

    В клетке нет ничего статичного. Структуры постоянно создаются и снова разрушаются. Всё с большей или меньшей скоростью подвергается взаимопревращению. Гидролитические ферменты атакуют все полимеры, из которых состоят клетки, а активные катаболические реакции разрушают образующиеся в результате таких атак мономеры. Мембранные структуры также подвергаются изменениям в результате гидроксилирования и гликозилирования. Эти реакции являются источником движущей силы, обеспечивающей перемещение материала, образующегося в результате распада мембран, на наружную поверхность клетки. В это же время другие процессы, включая процессы распада под действием лизосомных ферментов, дают возможность материалу, из которого строятся мембраны, вновь проникать в клетку. Окислительные процессы приводят к разрушению веществ гидрофобной природы, таких, как стерины и жирные кислоты мембранных липидов, и к их превращению в более легко растворимые вещества, которые затем распадаются н подвергаются полному окислению. [c.502]

    Фермент благодаря своей жесткой трехмерной структуре образует каталитический центр, в котором и осуществляется каталитическая реакция. В то же время небольшой по размеру пептид имеет слабожесткую структуру и не обладает каталитическими свойствами. Интересно, что если ион металла связан с пептидом, то можег происходить гидролиз амидной связи, аналогичный гидролизу, наблюдаемому в присутствии гидролитических ферментов. Таким образом, гидролиз амидов (и эфиров) подвержен каталитическому действию различных ионов металлов, поскольку а-ами-ногруппа и кислород карбонильной группы — два хороших потенциальных лиганда при комплексообразовании. Другими слов

www.chem21.info

— гидролазы — Биохимия

Гидролазы – ферменты, осуществляющие разрыв внутримолекулярных связей в субстрате путем присоединения элементов Н2О, подразделяются на 13 подклассов. Ввиду сложности многих субстратов у ряда ферментов сохранены тривиальные названия, например, пепсин, трипсин. Коферменты отсутствуют.

Гидролазы широко представлены ферментами желудочно-кишечного тракта (пепсин, трипсин, липаза, амилаза и другие) и лизосомальными ферментами. Осуществляют распад макромолекул, образуя легко адсорбируемые мономеры.

Примером подклассов служат группы ферментов, действующие на сложные эфиры, на простые эфиры, на пептиды, на углерод-углеродные связи.

Если рассматриватиь вcе подклассы, то в них выделяют группы ферментов, катализирующие гидролиз:

3.1. сложных эфиров;
3.2. О-гликозидов;
3.3. простых эфиров;
3.4. пептидов;
3.5. не пептидных азот-углеродных связей;
3.6. ангидридов кислот;
3.7. углерод-углеродных связей;
3.8. связей с участием галогена;
3.9. связей фосфор-азот;
3.10. связей сера-азот;
3.11. связей углерод-фосфор;
3.12. связей сера-сера;
3.13. связей углерод-сера.

Среди подподклассов выделяют гидролазы карбоновых кислот (3.1.1.), гидролазы фосфомоноэфиров (3.1.3.).

Исторически названия гидролаз складывались из названия  субстрата с окончанием «-аза» – коллагеназа, амилаза, липаза, ДНК-аза. Наиболее часто встречаются следующие рабочие названия гидролаз:

1. Эстеразы – гидролиз сложноэфирных связей.

2. Липазы – гидролиз нейтральных жиров (триацилглицеролов).

3. Фосфатазы – отщепление фосфорной кислоты от веществ.

4. Гликозидазы – гидролизуют О- и S-гликозидные связи.

5. Протеазы и пептидазы – гидролиз белков и пептидов.

6. Нуклеазы – гидролиз нуклеиновых кислот.

Систематическое название образуется:

Гидролизуемый субстрат : отделяемая группа гидролаза.


Пример 1
Характеристика фермента
Систематическое название Триацилглицерол:ацилгидролаза
Рабочее название ТАГ-липаза
Класс 3. Гидролазы
Подкласс 3.1. Действующие на сложные эфиры
Подподкласс 3.1.1. Гидролазы карбоновых кислот
Классификационный номер КФ 3.1.1.3.
   

Пример 2
Характеристика фермента
Систематическое название L-глутамин:амидгидролаза
Рабочее название Глутаминаза
Класс 3. Гидролазы
Подкласс 3.5. Действующие на связи углерод-азот (не пептидные)
Подподкласс 3.5.1. Действующие в линейных амидах
Классификационный номер КФ 3.5.1.2.
   

Пример 3
Характеристика фермента
Систематическое название α-D-глюкозид:глюкогидролаза
Рабочее название Мальтаза
Класс 3. Гидролазы
Подкласс 3.2. Гликозидазы
Подподкласс 3.2.1. Гидролизующие О-гликозидные связи
Классификационный номер КФ 3.2.1.20.
   

Пример 4
Характеристика фермента
Систематическое название Ацетилхолин:ацетил-гидролаза
Рабочее название Холинэстераза
Класс 3. Гидролазы
Подкласс 3.1. Действующие на сложные эфиры
Подподкласс 3.1.1. Гидролазы карбоновых кислот
Классификационный номер КФ 3.1.1.7.
   

 


biokhimija.ru