Квадраты 2 – Таблица квадратов чисел

Полный квадрат — Википедия

Материал из Википедии — свободной энциклопедии

Полный квадрат или квадратное число — число, являющееся квадратом некоторого целого числа. Иными словами, квадратом является целое число, квадратный корень из которого извлекается нацело. Геометрически такое число может быть представлено в виде площади квадрата с целочисленной стороной.

Например, 9 — это квадратное число, так как оно может быть записано в виде 3 × 3, а также представляет площадь квадрата со стороной, равной 3.

Квадратное число входит в категорию классических фигурных чисел.

Последовательность квадратов начинается так:

0, 1, 4, 9, 16, 25, 36, 49, 64, 81, 100, 121, 144, 169, 196, 225, 256, 289, 324, 361, 400, 441, 484, 529, 576, 625, 676, 729, 784, 841, 900, 961, 1024, 1089, 1156, 1225, 1296, 1369, 1444, 1521, 1600, 1681, 1764, 1849, 1936, 2025, 2116, 2209, 2304, 2401, 2500, … (последовательность A000290 в OEIS)
Таблица квадратов
_0_1_2_3_4_5_6_7_8_9
0_0149162536496481
1_100121144169196225256289324361
2_400441484529576625676729784841
3_90096110241089115612251296136914441521
4_1600168117641849193620252116220923042401
5_2500260127042809291630253136324933643481
6_3600372138443969409642254356448946244761
7_490050415184532954765625577659296084
6241
8_6400656167246889705672257396

ru.wikipedia.org

Магический квадрат — Википедия

Материал из Википедии — свободной энциклопедии

Маги́ческий, или волше́бный квадра́т — квадратная таблица n×n{\displaystyle n\times n}, заполненная n2{\displaystyle n^{2}} различными числами таким образом, что сумма чисел в каждой строке, каждом столбце и на обеих диагоналях одинакова. Если в квадрате равны суммы чисел только в строках и столбцах, то он называется полумагическим. Нормальным называется магический квадрат, заполненный натуральными числами от 1{\displaystyle 1} до n2{\displaystyle n^{2}}. Магический квадрат называется ассоциативным или симметричным, если сумма любых двух чисел, расположенных симметрично относительно центра квадрата, равна n2+1{\displaystyle n^{2}+1}.

Нормальные магические квадраты существуют для всех порядков n≥1{\displaystyle n\geq 1}, за исключением n=2{\displaystyle n=2}, хотя случай n=1{\displaystyle n=1} тривиален — квадрат состоит из одного числа. Минимальный нетривиальный случай показан ниже, он имеет порядок 3.

276→{\displaystyle \rightarrow }15
951→{\displaystyle \rightarrow }

ru.wikipedia.org

2-25. Антенна «двойной квадрат» | RadioUniverse

Направленная антенна «двойной квадрат» впервые была описана в литературе в 1948 г. и с тех пор продолжает привлекать к себе внимание со стороны радиолюбителей.

Антенна «двойной квадрат» (рис. 2-56), имеющая оптимальные размеры, обеспечивает коэффициент усиления по отношению к обычному вибратору 8 дб, что соответствует усилению, даваемому трехэлементной антенной «волновой канал». С практической точки зрения антенна «двойной квадрат» даже превосходит трехэлементную антенну «волновой канал», так как имеет большую направленность в вертикальной плоскости и пологий угол вертикального излучения, что особенно важно при установлении дальних связей. Антенна «двойной квадрат» обычно изготовляется из тонкого медного провода или, лучше, из антенного канатика и не требует дорогостоящих металлических трубчатых конструкций. Несколько сложнее изготовление несущей конструкции антенны.

На рис. 2-56 изображена схема антенны «двойной квадрат» в двух видах, в которых она обычно выполняется. Основным элементом является вибратор в виде проволочного квадрата с длиной стороны λ/4 и общей длиной 1λ. На расстоянии А от 0,1λ до 0,2λ помещается второй такой же квадрат, снабженный дополнительным четвертьволновым шлейфом, благодаря которому этот элемент антенны действует как рефлектор. Элементы антенны располагаются или вертикально (рис. 2-56, а), или же на одной из сторон квадрата (рис. 2-56, б). Не изменяя конструкции антенны, перенося точку питания, можно добиваться вертикальной или горизонтальной поляризации поля. Обе антенны (рис. 2-56) имеют горизонтальную поляризацию поля.

Антенна «двойной квадрат» излучает в одном направлении, т. е. обратное излучение сильно ослаблено. Направление основного излучения перпендикулярно плоскости антенны и направлено в сторону от рефлектора к вибратору. Максимальное усиление антенны, как указывают многие авторы, при расположении рефлектора на расстоянии 0,2λ от вибратора лежит в пределах от 10 до 11 дб (измерения, проведенные радиолюбителем G4ZU, при указанных размерах дали величину коэффициента усиления, равную 8 дб).

Входное сопротивление собственно вибратора лежит в пределах от 110 до 120 ом. При подключении пассивных элементов (рефлекторов или директоров) входное сопротивление в зависимости от расстояния до пассивного элемента уменьшается до 45—75 ом. Таблица 2-12 содержит значения входных сопротивлений и коэффициентов усиления различных видов антенн «двойной квадрат». Приведенные данные получены радиолюбителем W5DQV.

Таблица 2-12.
Виды антеннВходное сопротивление, омКоэффициент усиления, дб
Собственно вибратор1102
Вибратор с рефлектором (расстояние 0,2λ)7510
Вибратор с рефлектором (расстояние 0,15λ)658
Вибратор с рефлектором (расстояние 0,1λ)548
Вибратор с директором (расстояние 0,2λ)505

Получаемые входные сопротивления антенны позволяют использовать для ее питания обычный коаксиальный кабель, что, как правило, и делается. Следует помнить, что при отсутствии симметрирующего устройства диаграмма направленности антенны несколько косит. На этот недостаток, однако, не обращают внимания, так как величина коэффициента усиления от этого не меняется, а только несколько ухудшается диаграмма направленности. Для того чтобы понять, как действует антенна «двойной квадрат», необходимо рассмотреть распределение тока по длине вибратора. На рис. 2-57 показано четыре примера распределения тока по длине элемента антенны «двойной квадрат»; направление тока обозначено стрелками. В точках питания А действуют те же соотношения, что и в случае полуволнового вибратора; вибратор питается в пучности тока, и обе половины его возбуждаются синфазно (стрелки, указывающие направление тока, имеют одинаковое направление). Во внешних точках В и D расположены узлы тока, и в них происходит изменение направления тока (см. указатели тока). При рассмотрении квадрата, изображенного на рис. 2-57, а и б, видно, что стороны А и С возбуждаются синфазно, а стороны В и D — в противофазе. Таким образом, поляризация электрического поля в направлении перпендикуляра к плоскости антенны горизонтальная, так как горизонтальные стороны квадрата возбуждаются синфазно. На рис. 2-57, б питание производится со стороны вертикального элемента квадрата и обе вертикальные стороны квадрата возбуждаются синфазно, а горизонтальные стороны — в противофазе; следовательно, в данном случае поляризация поля вертикальная. При питании антенны «двойной квадрат» в отношении поляризации поля справедливо следующее правило: если питание антенны производится со стороны горизонтального элемента, то поляризация поля горизонтальная, если питание антенны производится со стороны вертикального элемента, то поляризация поля вертикальная.

Рассуждения о поляризации поля становятся несколько менее наглядными при рассмотрении квадрата, стоящего на одной из своих вершин (рис. 2-57, в и г). Если обозначить направления токов, как показано на рис. 2-58, то становится ясным, что и в этом случае поляризация поля квадрата, стоящего на одной из его вершин, определяется вполне однозначно. Из рис. 2-58 видно, что поля от горизонтальных составляющих тока от всех четырех сторон складываются в фазе, а от вертикальных составляющих находятся в противофазе. Отсюда следует, что поле излучения квадрата в этом случае имеет горизонтальную поляризацию. При питании в точках В или D поляризация поля вертикальная. В середине стороны квадрата, находящейся против точки питания, имеется узел напряжения, и поэтому эта точка может быть заземлена. На рис. 2-59 показано несколько вариантов питания квадрата с заземлением узла напряжения в случае горизонтальной и вертикальной поляризации. С теоретической точки зрения совершенно безразлично, в какой точке подключать линию питания — к точке А или С в случае горизонтальной поляризации или к точке В или D в случае вертикальной поляризации. Место подключения линии питания на практике определяется из конструктивных соображений. В диапазоне УКВ обычно используют полностью металлические конструкции, для чего точки A и С заземляют (рис. 2-60, а и б).

Излучатель антенны «двойной квадрат» можно рассматривать как параллельное включение двух полуволновых вибраторов, расположенных на расстоянии λ/4. Отсюда следует, что «двойной квадрат» имеет ярко выраженную направленность в вертикальной плоскости (пологий вертикальный угол излучения).

На практике стремятся так выбрать общую Длину питаемого элемента антенны, чтобы он без дополнительных корректировок был бы настроен на рабочую частоту. В первых публикациях конструкции антенны «двойной квадрат» общая длина проводников питаемого элемента составляла 0,97λ, т. е. учитывался коэффициент укорочения. В последнее время ряд авторов указывает, что резонанс антенны наступает при общей длине излучателя 1,00λ — 1,02λ. Этот факт объясняется тем, что в случае излучателя в виде квадрата не проявляется укорачивающее действие емкостного краевого эффекта, который имеет место на открытых концах прямого вибратора. Для вычисления резонансной длины излучателя антенны «двойной квадрат» в коротковолновом диапазоне справедлива следующая приближенная формула: $$l[м]=\frac{302}{f[Мгц]}.$$

Для дополнительных корректировок длины излучателя можно воспользоваться следующим приемом: общая длина проводника выбирается несколько меньше требуемой и по обе стороны от точек питания включаются изоляторы, которые перекрываются короткозамкнутыми шлейфами, как показано на рис. 2-61, а. Уменьшая или удлиняя шлейфы, добиваются точной настройки излучателя. На рис. 2-60, б изображен этот же способ настройки излучателя, но использующий только один изолятор и один шлейф. Сказанное выше, разумеется, справедливо и по отношению к квадрату, расположенному на одной из своих вершин.

На расстоянии 0,2λ, располагается рефлектор. Это расстояние выбрано в результате практических экспериментов; отклонение от него в обе стороны приводит к уменьшению коэффициента усиления антенны и изменению входного сопротивления. Настройка рефлектора может производиться или по максимальному излучению в прямом направлении, или по минимальному излучению в обратном направлении. Следует отметить, что эти настройки не совпадают. Обычно радиолюбители настраивают рефлектор на наибольший коэффициент усиления в прямом направлении. По сравнению с настройкой на максимальный коэффициент усиления в прямом направлении настройка на максимальное обратное ослабление значительно более критична и более резко выражена, поэтому ее следует проводить очень осмотрительно. При некотором уменьшении коэффициента усиления может быть получено обратное ослабление порядка 30 дб. В качестве элемента настройки почти всегда используется двухпроводная линия с подвижным короткозамыкающим мостиком (рис. 2-56) Часто длина рефлектора выбирается равной длине излучателя; в этом случае линию выбирают такой длины, чтобы пассивный элемент работал в качестве рефлектора, а с помощью короткозамыкающей перемычки проводят точную настройку. Однако с электрической точки зрения лучше, если рефлектор имеет размеры, несколько превосходящие размеры излучателя; при этом регулировочная линия может быть выбрана очень короткой или может совсем отсутствовать, если размеры рефлектора выбраны такими, что он представляет собой замкнутый квадрат, настроенный на работу в качестве рефлектора. Для того чтобы определить оптимальные размеры рефлектора, в каждом отдельном случае требуется провести много экспериментов, поэтому при описании конструкций антенн «двойной квадрат» будут даваться уже проверенные экспериментально размеры их элементов, не требующие дополнительных корректировок.

В диапазоне коротких волн почти все антенны «двойной квадрат» состоят из двух элементов — излучателя (вибратора) и рефлектора. Антенны этого типа, использующие, кроме рефлектора, еще и директор, не получили распространения, так как незначительное увеличение коэффициента усиления антенны не идет ни в какое сравнение с усложнением конструкции и увеличением расхода материалов, необходимых для построения трехэлементной антенны.

Ширина полосы пропускания антенн «двойной квадрат» больше, чем у антенн «волновой канал», и перекрывает целиком любительские диапазоны 10, 15 и 20 м при условии, что антенна настроена на середину диапазона. Диаграмма направленности этой антенны, с точки зрения радиолюбителей, также обладает некоторыми преимуществами по сравнению с диаграммой направленности антенны «волновой канал». В горизонтальной плоскости диаграмма направленности имеет относительно широкий основной лепесток, излучение в стороны сильно ослаблено, а в обратном направлении имеются два небольших боковых лепестка, величина которых определяется качеством настройки рефлектора. Кроме этого, антенны «двойной квадрат» имеют узкую диаграмму направленности в вертикальной плоскости, что определяет преимущество этого типа антенны по сравнению с другими антенными системами. Антенну «двойной квадрат» также желательно подвешивать как можно выше над поверхностью земли, хотя влияние земли в этом случае сказывается меньше, чем в случае антенны другого типа. Желательно, чтобы точка питания была по крайней мере на высоте λ/2 от поверхности земли при общей высоте конструкции 1λ, при этом влияние земли практически не ухудшает диаграммы направленности.

Несущая конструкция антенны может быть выполнена в самых разнообразных вариантах. Однодиапазонная антенна «двойной квадрат» для диапазонов 10 и 15 м может иметь деревянную несущую конструкцию из планок и брусков, усиленных железными полосами. Антенна для диапазона 20 м обычно имеет несущую конструкцию, выполненную для уменьшения веса и улучшения ее механической прочности из бамбуковых трубок. Различные варианты выполнения несущих конструкций будут описаны в разделе, посвященном многодиапазонным антеннам «двойной квадрат».

На рис. 2-62 изображена простая конструкция «двойного квадрата», стоящего на одной из своих вершин. Такая же конструкция может быть использована и для антенны, расположенной на одной из своих сторон. Для увеличения механической прочности антенны используются растяжки из синтетических материалов. Если несущая конструкция изготовляется из бамбуковых или синтетических трубок, то антенный провод может укрепляться на них без изоляторов В таблице 2-13 приведены размеры «двойного квадрата».

Таблица 2-13. Размеры антенны «двойной квадрат», показанной на рис. 2-62
Диапазон, мСтороны элементовРасстояние А, мДлина шлейфа рефлектора, мДлина стороны настроенного рефлектора, м
B, мС, м0,2λ0,15λ
102,652,652,121,600,702,81
153,553,552,832,121,003,75
205,355,354,253,201,505,56

Расстояние между проводниками линии настройки рефлектора некритично и может изменяться от 5 до 15 см. В графе «Длина стороны настроенного рефлектора» приведены размеры рефлектора, не требующего дополнительной настройки, т. е. в этом случае рефлектор представляет собой замкнутый квадрат. Диаметр медного одно- или многожильного проводника не имеет в данном случае никакого значения с точки зрения влияния на электрические характеристики антенны; из механических соображений он выбирается равным 1,5 мм.

Первые конструкции «двойного квадрата» имели элементы, выполненные в виде шлейфовых проводников. При этом входное сопротивление увеличивалось по сравнению с однопроводным элементом в 4 раза, незначительно увеличиваются коэффициент усиления и полоса пропускания антенны. Радиолюбителем W8RLT был описан такой «двойной квадрат» для диапазона 10 м (рис. 2-63). Общая длина проводника, расположенного в виде двух витков, равна 2λ, так что длина стороны равна λ/4. Питание может осуществляться в режиме бегущей волны по линии, имеющей волновое сопротивление 280 ом (УКВ кабель). Однако W8RLT предлагает питать антенну по настроенной линии с волновым сопротивлением от 300 до 600 ом.Для рефлектора не имеет существенного значения, изготовлен ли он в виде простого квадрата или же в виде шлейфового квадрата, так как отражающее действие его при этом не изменяется. Поэтому более поздние конструкции используют шлейфовый излучатель и обычный рефлектор. В таблице 2-14 приведены все размеры антенны «двойной квадрат», изображенной на рис. 2-62.

Расстояние между проводниками линии настройки рефлектора может быть взято от 10 до 15 см.

При этом следует отметить, что размеры, приведенные W8RLT, в свете сегодняшних взглядов выбраны несколько короче требуемых, что, очевидно, объясняется питанием антенны по настроенной линии, с помощью которой, как известно, можно в некоторой степени компенсировать неточность, допущенную при выборе размеров излучателя. Поэтому размеры, приведенные в табл. 2-14, следует рассматривать только как приблизительные. Рефлектор конструируется в виде простого квадрата, а питание осуществляется с помощью согласованной линии с волновым сопротивлением, равным 300 ом.

Таблица 2-14. Размеры антенны «двойной квадрат» с шлейфовыми элементами (рис. 2-63)
Диапазон, мСтороны элементовРасстояние А, мРасстояние а, мДлина шлейфа S, м
B, мC, м
102,442,521,600,150,30—0,50
153,303,402,160,150,40—0,65
204,885,043,200,200,70—1,00

Отличные результаты, получаемые при работе с антенной «двойной квадрат», естественно, привели бы к созданию целого ряда конструкций, которые в большей или меньшей мере являются развитием принципов, заложенных в основе действия «двойного квадрата».

www.radiouniverse.ru

Сколько будет (-2) в квадрате

Будет просто 2. Если что, -2 в кубе будет -8

будет 4 минус на минус это плюс а два в квадрате это 4

будет двойка по математике а ответ (-2)^2=4

Будет 4,так как (-2)*(-2)=+4

Господи это же самая лёгкая задача конечно же будет 4!

<a rel=»nofollow» href=»https://vk.com/wall-38815402_1333557″ target=»_blank»>https://vk.com/wall-38815402_1333557</a>

Всем два балла Минус никогда не возводится в степень, потому что в степень возводится только число Получается так -(2) в квадрате, кубе и т. д. Всегда будет минус

touch.otvet.mail.ru

что значит два в квадрате?

Валерий Вот тут есть страница 252 ссылка: vsegdz(точка) ga

Например, 2(2) Это значит, что число 2 надо умножить само на себя 2 раза, например

Валерий Посмотри тут, страница 391(!зашифрованная ссылка: скопируй и вставь в адресную строку браузера!) 5c2e%2ecf/c

Валерий, нашел ответ тут <a href=»/» rel=»nofollow» title=»18283812:##:https://t.co/8AMl8Q0gNo»>[ссылка заблокирована по решению администрации проекта]</a>

берём цифру 2, помещаем её в квадрат, потом считаем сколько в квадрате граней (палочек, чёрточек) и получаем ответ. ЫЫЫЫ.

Произведение одинаковых сомножителей записывается в виде степени: Одинаковый сомножитель называется основанием степени. Число сомножителей — это показатель степени. 2*2 = 2^2 = 4.

Это значит, что двойка сама на себя умножена. Если в кубе, то 3 раза, если в четвертой степени, то это 2×2×2×2=16

touch.otvet.mail.ru

чему равна диаганаль квадрата? если все его стороны по 2 метра

Квадратный корень из восьми

примерно 2,83, если округлить

два корня из двух

Диагональ любого параллелепипеда равна корню из суммы квадратов трёх сторон, выходящих из одной точки. А а квадрат тот же пар-мм, следовательно 2 корня из 3

Квадрат гипотенузы равен сумме квадратов катетов: из суммы 2 в квадрате + 2 в квадрате, извлеките квадратный корень, то есть (2х2)+(2х2)=8. Квадратный корень из числа 8 = 2,82842712474

По теореме Пифагора квадрат гипотенузы равен сумме квадратов катетов. В данном случае гипотенуза — диагональ, а стороны равны 2 м, следовательно диагональ в квадрате=2 в квадрате+2 в квадрате. А диагональ тогда равна корню квадратному из 8, или 2 корня из двух

touch.otvet.mail.ru

(a-b) в квадрате как она пишется. (а квадрат + 2* а*b +b квадрат)?

а квадрат — 2* а*b +b квадрат

Вот так: (a-b)^2 = (а^2 — 2*а*b + b^2)!

(а квадрат — 2* а*b +b квадрат) там не плюс, а минус первый

а квадрат-2аb+b квадрат

(а-b) в квадрате = а в квадрате — 2аb + b в квадрате.

<img src=»//otvet.imgsmail.ru/download/7a4257433f8dc1d0b7d6771b1c07df2c_i-64.jpg» >

touch.otvet.mail.ru