Косинус 1 x – CGI script error

sin x + cos x = 1

Задание.
Решить уравнение .

Решение.
Чтобы решить данное уравнение, его нужно упростить. Вспомним об основном тригонометрическом равенстве и возведём во квадрат все уравнение:

   

По формулам сокращенного умножения распишем полученный квадрат суммы:

   

Основное тригонометрическое равенство позволяет заменить сумму квадрата синуса и квадрата косинуса на единицу. Запишем упрощенное уравнение:

   

В произведении, равном нулю, постоянное число (в нашем примере число 2) не может быть равно нулю. Поэтому или синус, или косинус будет равен нулю:
либо .
Мы получили два простейших уравнения, решения которых известны и считаются стандартными. То есть их решения представлены даже в справочных материалах. Конечно же такие решения можно получить также при помощи таблицы значений синусов и косинусов, при помощи графиков данных функций или же из тригонометрической окружности. Запишем их:
Синус обращается в ноль при , а косинус обращается в ноль при .
Решением данного уравнения будут все полученные корни.
Не забываем, что переменные

l и m — это любые целые числа.

Ответ. ; .

ru.solverbook.com

Решение уравнения sin x — cos x = 1. Урок-семинар

Разделы: Математика


Цели урока:

Главная дидактическая цель: рассмотреть все возможные способы решения данного уравнения.

Обучающие: изучение новых приемов решения тригонометрических уравнений на примере данного в творческой ситуации урока-семинара.

Развивающие: формирование общих приемов решения тригонометрических уравнений; совершенствование мыслительных операций учащихся; развитие умений и навыков устной монологической математической речи при изложении решения тригонометрического уравнения.

Воспитывающие: развивать самостоятельность и творчество; способствовать выработке у школьников желания и потребности обобщения изучаемых фактов.

Вопросы для подготовки и дальнейшего обсуждения на семинаре.

  1. Приведение уравнения к однородному относительно синуса и косинуса.
  2. Разложение левой части уравнения на множители.
  3. Введение вспомогательного угла.
  4. Преобразование разности (или суммы) тригонометрических функций в произведение.
  5. Приведение к квадратному уравнению относительно одной из функций.
  6. Возведение обеих частей уравнения в квадрат.
  7. Выражение всех функций через tg x (универсальная подстановка).
  8. Графическое решения уравнения.

Все учащиеся разбиваются на группы (по 2-4 человека) в зависимости от общего количества учащихся и их индивидуальных способностей и желания. Самостоятельно определяют для себя тему для подготовки и выступления на уроке-семинаре. Выступает один человек от группы, а остальные учащиеся принимают участие в дополнениях и исправлениях ошибок, если в этом возникнет необходимость.

Организационный момент.

Учащимся сообщаются:

Тема урока:

“Различные способы решения тригонометрического уравнения sin x — cos x = 1

Форма проведения: урок – семинар.

Эпиграф к уроку:

“Крупное научное открытие дает решение крупной проблемы, но и в решении любой задачи присутствует крупица открытия. Задача, которую вы решаете, может быть скромной, но если она бросает вызов вашей любознательности и заставляет вас быть изобретательными и если вы решаете ее собственными силами, то вы сможете испытать ведущее к открытию напряжение ума и насладиться радостью победы”

(Д. Пойа)

Задачи урока:

а) рассмотреть возможность решения одного и того же уравнения различными способами;
б) познакомиться с различными общими приемами решения тригонометрических уравнений;
в) изучение нового материала (введение вспомогательного угла, универсальная подстановка).

План семинара

  1. Приведение уравнения к однородному относительно синуса и косинуса.
  2. Разложение левой части уравнения на множители.
  3. Введение вспомогательного угла.
  4. Преобразование разности (или суммы) тригонометрических функций в произведение.
  5. Приведение к квадратному уравнению относительно одной из функций.
  6. Возведение обеих частей уравнения в квадрат.
  7. Выражение всех функций через tg x (универсальная подстановка).
  8. Графическое решения уравнения.

Содержание.

1. Слово предоставляется первому участнику.

Приведение уравнения sin x — cos x = 1 к однородному относительно синуса и косинуса.
Разложим левую часть по формулам двойного аргумента, а правую часть заменим тригонометрической единицей, используя основное тригонометрическое тождество:

2 sin cos — cos + sin = sin + cos ;

2 sin cos — cos =0 ;
cos = 0;
Произведение равно нулю, если хотя бы один из множителей равен нулю, а другие при этом не теряют смысла, поэтому следует

cos =0 ; =

= 0 - однородное уравнение первой степени. Делим обе части уравнения на cos . (cos 0, так как если cos = 0 , то sin — 0 = 0 sin = 0, а это противоречит тригонометрическому тождеству sin + cos = 1).

Получим tg -1 = 0 ; tg = 1 ; =
Ответ:
2. Слово предоставляется второму участнику.

Разложение левой части уравнения sin x — cos x = 1 на множители.

sin x – (1+ cos x ) = 1; используем формулы 1+ cos x = 2 , получим ;

далее аналогично:

произведение равно нулю, если хотя бы один из множителей равен нулю, а другие при этом не теряют смысла, поэтому следует

cos =0 ; =
= 0 - однородное уравнение первой степени. Делим обе части уравнения на cos . (cos 0, так как если cos = 0 , то sin — 0 = 0 sin = 0, а это противоречит тригонометрическому тождеству sin + cos = 1)

Получим tg -1 = 0 ; tg = 1 ; =
Ответ:

3. Слово предоставляется третьему участнику.

Решение уравнения sin x — cos x = 1 введением вспомогательного угла.

Рассмотрим уравнение sin x — cos x = 1. Умножим и разделим каждое слагаемое левой части
уравнения на . Получим и вынесем в левой части уравнения за скобку. Получим ; Разделим обе части уравнения на и используем табличные значения тригонометрических функций. Получим ; Применим формулу синус разности.

;

Легко установить(с помощью тригонометрического круга), что полученное решение распадается на два случая:

;

Ответ:

4. Слово предоставляется четвертому участнику.

Решение уравнения sin x — cos x = 1 способом преобразования разности (или суммы) тригонометрических функций в произведение.

Запишем уравнение в виде , используя формулу приведения . Применяя формулу разности двух синусов, получим

;

и так далее, аналогично предыдущему способу.

Ответ:

5. Слово предоставляется пятому участнику.

Решение уравнения sin x — cos x = 1 способом приведения к квадратному уравнению относительно одной из функций.

Рассмотрим основное тригонометрическое тождество , откуда следует
подставим полученное выражение в данное уравнение.
sin x — cos x = 1 ,

Возведем обе части полученного уравнения в квадрат:

В процессе решения обе части уравнения возводились в квадрат, что могло привести к появлению посторонних решений, поэтому необходима проверка. Выполним ее.

Полученные решения эквивалентны объединению трех решений:

Первое и второе решения совпадают с ранее полученными, поэтому не являются посторонними. Остается проверить третье решение Подставим.

Левая часть:

Правая часть: 1.

Получили: , следовательно, – постороннее решение.

Ответ:

6. Слово предоставляется шестому участнику.

Возведение обеих частей уравнения sin x — cos x = 1 в квадрат.

Рассмотрим уравнение sin x — cos x = 1. Возведем обе части данного уравнения в квадрат.

;

;

Используя основное тригонометрическое тождество и формулу синуса двойного угла, получим ; sin 2x = 0 ; .

Полученное решение эквивалентно объединению четырех решений:

(эти решения можно нанести на единичную окружность). Проверка показывает, что первое и четвертое решения — посторонние.

Ответ:

7. Слово предоставляется седьмому участнику.

Использование универсальной подстановки в решении уравнения sin x — cos x = 1. Выражение всех функций через tg x по формулам:


Запишем данное уравнение с учетом приведенных формул в виде .
,

получим

ОДЗ данного уравнения – все множество R. При переходе к из рассмотрения выпали значения, при которых не имеет смысла, т. е. или .

Следует проверить, не являются ли решениями данного уравнения. Подставим в левую и правую часть уравнения эти решения.

Левая часть: .

Правая часть: 1.

Получили 1=1. Значит, — решение данного уравнения.

Ответ:

8. Слово предоставляется восьмому участнику.

Рассмотрим графическое решение уравнения sin x — cos x = 1.

Запишем рассматриваемое уравнение в виде sin x = 1 + cos x.

Построим в системе координат Оxy графики функций, соответствующих левой и правой частям уравнения. Абсциссы точек пересечения графиков являются решениями данного уравнения.

y = sin x – график: синусоида.
y = cos x +1 – график: косинусоида y = cos x, смещенная на 1 вверх по оси Oy. Абсциссы точек пересечения являются решениями данного уравнения.

Ответ:

Итог урока.

  • Учащиеся научились решать тригонометрические уравнения вида , освоили новый материал.
  • На примере одного уравнения рассмотрели несколько способов решения.
  • Учащиеся были непосредственными участниками урока, была задействована обратная связь в системе ученик-учитель.
  • Учащиеся получили навыки самостоятельной работы с дополнительной литратурой.

Список использованной литературы:

  1. Татарченкова С.С. Урок как педагогический феномен – Санкт-Петербург: Каро, 2005
  2. Выгодский Н.В. Справочник по элементарной математике.-М.: Наука, 1975.
  3. Виленкин Н.Я. и др. За страницами учебника математики: Арифметика. Алгебра. Геометрия: Книга для учащихся 10-11 класса – М.: Просвещение, 1996.
  4. Гнеденко Б.В. Очерки по истории математики в России – М.: ОГИЗ, 1946.
  5. Депман И.Я. и др. За страницами учебника математики – М.: Просвещение, 1999.
  6. Дорофеев Г.В. и др. Математика: для поступающих в вузы – М.: Дрофа, 2000.
  7. Математика: Большой энциклопедический словарь. – М.: БСЭ, 1998.
  8. Мордкович А.Г. и др. Справочник школьника по математике. 10-11кл. Алгебра и начала анализа. – М.: Аквариум, 1997.
  9. 300 конкурсных задач по математике. – М.: Рольф, 2000.
  10. 3600 задач по алгебре и началам анализа. – М.: Дрофа, 1999.
  11. Школьная программа в таблицах и формулах. Большой универсальный справочник. – М.: Дрофа, 1999.
  12. Торосян В.Г. История образования и педагогической мысли: учеб. для студентов вузов. - М.: Изд-во ВЛАДОС-ПРЕСС, 2006.- 351 с.
  13. Крылова Н.Б. Педагогическая, психологическая и нравственная поддержка как пространство личностных изменений ребёнка и взрослого.// Классный руководитель.- 2000.- №3. –С.92-103.

26.03.2008

urok.1sept.ru

Все формулы по тригонометрии

Все формулы по тригонометрии

Подождите пару секунд пока подгрузятся формулы

Основные тригонометрические тождества
$$sin^2x+cos^2x=1$$
$$tgx= \frac{sinx}{cosx}$$
$$ctgx= \frac{cosx}{sinx}$$
$$tgxctgx=1$$
$$tg^2x+1= \frac{1}{cos^2x}$$
$$ctg^2x+1= \frac{1}{sin^2x}$$
Формулы двойного аргумента (угла)
$$sin2x=2cosxsinx$$
\begin{align} sin2x &=\frac{2tgx}{1+tg^2x}\\ &= \frac{2ctgx}{1+ctg^2x}\\ &= \frac{2}{tgx+ctgx} \end{align}
\begin{align} cos2x & = \cos^2x-sin^2x\\ &= 2cos^2x-1\\ &= 1-2sin^2x \end{align}
\begin{align} cos2x & = \frac{1-tg^2x}{1+tg^2x}\\ &= \frac{ctg^2x-1}{ctg^2x+1}\\ &= \frac{ctgx-tgx}{ctgx+tgx} \end{align}
\begin{align} tg2x & = \frac{2tgx}{1-tg^2x}\\ &= \frac{2ctgx}{ctg^2x-1}\\ &= \frac{2}{ctgx-tgx} \end{align}
\begin{align} ctg2x & = \frac{ctg^2x-1}{2ctgx}\\ &= \frac{2ctgx}{ctg^2x-1}\\ &= \frac{ctgx-tgx}{2} \end{align}
Формулы тройного аргумента (угла)
$$sin3x=3sinx-4sin^3x$$
$$cos3x=4cos^3x-3cosx$$
$$tg3x= \frac{3tgx-tg^3x}{1-3tg^2x}$$
$$ctg3x= \frac{ctg^3x-3ctgx}{3ctg^2x-1}$$
Формулы половинного аргумента (угла)
$$sin^2 \frac{x}{2}= \frac{1-cosx}{2}$$
$$cos^2 \frac{x}{2}= \frac{1+cosx}{2}$$
$$tg^2 \frac{x}{2}= \frac{1-cosx}{1+cosx}$$
$$ctg^2 \frac{x}{2}= \frac{1+cosx}{1-cosx}$$
\begin{align} tg \frac{x}{2} & = \frac{1-cosx}{sinx}\\ &= \frac{sinx}{1+cosx} \end{align}
\begin{align} ctg \frac{x}{2} & = \frac{1+cosx}{sinx}\\ &= \frac{sinx}{1-cosx} \end{align}
Формулы квадратов тригонометрических функций
$$sin^2x= \frac{1-cos2x}{2}$$
$$cos^2x= \frac{1+cos2x}{2}$$
$$tg^2x= \frac{1-cos2x}{1+cos2x}$$
$$ctg^2x= \frac{1+cos2x}{1-cos2x}$$
$$sin^2 \frac{x}{2}= \frac{1-cosx}{2}$$
$$cos^2 \frac{x}{2}= \frac{1+cosx}{2}$$
$$tg^2 \frac{x}{2}= \frac{1-cosx}{1+cosx}$$
$$ctg^2 \frac{x}{2}= \frac{1+cosx}{1-cosx}$$
Формулы кубов тригонометрических функций
$$sin^3x= \frac{3sinx-sin3x}{4}$$
$$cos^3x= \frac{3cosx+cos3x}{4}$$
$$tg^3x= \frac{3sinx-sin3x}{3cosx+cos3x}$$
$$ctg^3x= \frac{3cosx+cos3x}{3sinx-sin3x}$$
Формулы тригонометрических функций в четвертой степени
$$sin^4x= \frac{3-4cos2x+cos4x}{8}$$
$$cos^4x= \frac{3+4cos2x+cos4x}{8}$$
Формулы сложения аргументов
$$sin(\alpha + \beta) = sin \alpha cos \beta + cos \alpha sin \beta$$
$$cos(\alpha + \beta) = cos \alpha cos \beta — sin \alpha sin \beta$$
$$tg(\alpha + \beta)= \frac{tg \alpha + tg \beta}{1 — tg \alpha tg \beta}$$
$$ctg(\alpha + \beta)= \frac{ctg \alpha ctg \beta -1}{ctg \alpha + ctg \beta}$$
$$sin(\alpha — \beta) = sin \alpha cos \beta — cos \alpha sin \beta$$
$$cos(\alpha — \beta) = cos \alpha cos \beta + sin \alpha sin \beta$$
$$tg(\alpha — \beta)= \frac{tg \alpha — tg \beta}{1 + tg \alpha tg \beta}$$
$$ctg(\alpha — \beta)= \frac{ctg \alpha ctg \beta +1}{ctg \alpha — ctg \beta}$$
Формулы суммы тригонометрических функций
$$sin\alpha + sin\beta = 2sin \frac{\alpha + \beta }{2} \cdot cos \frac{\alpha — \beta }{2}$$
$$cos\alpha + cos\beta = 2cos \frac{\alpha + \beta }{2} \cdot cos \frac{\alpha — \beta }{2}$$
$$tg\alpha + tg\beta = \frac{sin(\alpha + \beta) }{cos \alpha cos \beta}$$
$$ctg\alpha + ctg\beta = \frac{sin(\alpha + \beta) }{cos \alpha cos \beta}$$
$$(sin\alpha + cos\alpha)^2= 1+sin2\alpha$$
Формулы разности тригонометрических функций
$$sin\alpha — sin\beta = 2sin \frac{\alpha — \beta }{2} \cdot cos \frac{\alpha + \beta }{2}$$
$$cos\alpha — cos\beta = -2sin \frac{\alpha + \beta }{2} \cdot sin \frac{\alpha — \beta }{2}$$
$$tg\alpha — tg\beta = \frac{sin(\alpha — \beta) }{cos \alpha cos \beta}$$
$$ctg\alpha — ctg\beta = — \frac{sin(\alpha — \beta) }{sin \alpha sin \beta}$$
$$(sin\alpha + cos\alpha)^2= 1-sin2\alpha$$
Формулы произведения тригонометрических функций
$$sin\alpha \cdot sin\beta = \frac{cos(\alpha — \beta)-cos(\alpha + \beta)}{2}$$
$$sin\alpha \cdot cos\beta = \frac{sin(\alpha — \beta)+sin(\alpha + \beta)}{2}$$
$$cos\alpha \cdot cos\beta = \frac{cos(\alpha — \beta)+cos(\alpha + \beta)}{2}$$
\begin{align} tg\alpha \cdot tg\beta & = \frac{cos(\alpha — \beta)-cos(\alpha + \beta)}{cos(\alpha — \beta)+cos(\alpha + \beta)}\\ &= \frac{tg\alpha + tg\beta}{ctg\alpha + ctg\beta} \end{align}
\begin{align} ctg\alpha \cdot ctg\beta & = \frac{cos(\alpha — \beta)+cos(\alpha + \beta)}{cos(\alpha — \beta)-cos(\alpha + \beta)}\\ &= \frac{ctg\alpha + ctg\beta}{tg\alpha + tg\beta} \end{align}
$$tg\alpha \cdot ctg\beta = \frac{sin(\alpha — \beta)+sin(\alpha + \beta)}{sin(\alpha + \beta)-sin(\alpha — \beta)}$$

www.100formul.ru

Уравнение cos x = а

Мы знаем, что значения косинуса заключены в промежутке [-1; 1], т.е. -1 ≤ cos α ≤ 1. Поэтому если |а| > 1, то уравнение cos x = а не имеет корней. Например, уравнение cos x = -1,5 корней не имеет.

Рассмотрим несколько задач.

Задача 1.

Решить уравнение cos x = 1/2.

Решение.

Вспомним, что cos x – это абсцисса точки окружности с радиусом, равным 1, полученной в результате поворота точки Р (1; 0) на угол х вокруг начала координат.

Абсцисса 1/2 есть у двух точек окружности М1 и М2. Так как 1/2 = cos π/3, то точку М1 мы можем получить из точки Р (1; 0) путем поворота на угол х1 = π/3, а также на углы х = π/3 + 2πk, где k = +/-1, +/-2, … 

Точка М2 получается из точки Р (1; 0) поворотом на угол х2 = -π/3, а также на углы -π/3 + 2πk, где k = +/-1, +/-2, …

Итак, все корни уравнения cos x = 1/2 можно найти по формулам
х = π/3 + 2πk                      
х = -π/3 + 2πk,

где k € Z.

Две представленные формулы можно объединить в одну:

х = +/-π/3 + 2πk, k € Z.

Задача 2.

Решить уравнение cos x = -1/2 .

Решение.

Абсциссу, равную – 1/2 , имеют две точки окружности М1 и М2. Так как -1/2 =  cos 2π/3, то угол х1 = 2π/3, а потому угол х2 = -2π/3.

Следовательно, все корни уравнения cos x = -1/2 можно найти по формуле: х = +/-2π/3 + 2πk, k € Z.

Таким образом, каждое из уравнений cos x = 1/2 и cos x = -1/2 имеет бесконечное множество корней. На отрезке 0 ≤ х ≤ π каждое из этих уравнений имеет только один корень: х1 = π/3 – корень уравнения cos x = 1/2 и х1 = 2π/3 – корень уравнения cos x = -1/2.

Число π/3 называют арккосинусом числа 1/2 и записывают: arccos 1/2 = π/3, а число 2π/3 – арккосинусом числа (-1/2) и записывают: arccos (-1/2) = 2π/3.

Вообще уравнение cos x = а, где -1 ≤ а ≤ 1, имеет на отрезке 0 ≤ х ≤ π только один корень. Если а ≥ 0, то корень заключен в промежутке [0; π/2]; если а < 0, то в промежутке (π/2; π]. Этот корень называют арккосинусом числа а и обозначают: arccos а.

Таким образом, арккосинусом числа а € [-1; 1 ] называется такое число а € [0; π], косинус которого равен а:

arccos а = α, если cos α = а и 0 ≤ а ≤ π      (1).

Например, arccos √3/2 = π/6, так как cos π/6 = √3/2 и 0 ≤ π/6 ≤ π;
arccos (-√3/2) = 5π/6, так как cos 5π/6 = -√3/2 и 0 ≤ 5π/6 ≤ π.

Аналогично тому, как это сделано в процессе решения задач 1 и 2, можно показать, что все корни уравнения cos x = а, где |а| ≤ 1, выражаются формулой

х = +/-arccos а + 2 πn, n € Z         (2).

Задача 3.

Решить уравнение cos x = -0,75.

Решение.

По формуле (2) находим, х = +/-arccos (-0,75) + 2 πn, n € Z.

Значение arcos (-0,75) можно приближенно найти на рисунке, измерив угол при помощи транспортира. Приближенные значения арккосинуса также можно находить с помощью специальных таблиц (таблицы Брадиса) или микрокалькулятора. Например, значение arccos (-0,75) можно вычислить на микрокалькуляторе, получив приблизительное значение 2,4188583. Итак, arccos (-0,75) ≈ 2,42. Следовательно, arccos (-0,75) ≈ 139°.

Ответ: arccos (-0,75) ≈ 139°.

Задача 4.

Решить уравнение (4cos x – 1)(2cos 2x + 1) = 0.

Решение.

1) 4cos x – 1 = 0, cos x = 1/4, х = +/-arcos 1/4 + 2 πn, n € Z.

2) 2cos 2x + 1 = 0, cos 2x = -1/2, 2х = +/-2π/3 + 2 πn, х = +/-π/3 + πn, n € Z.

Ответ. х = +/-arcos 1/4 + 2 πn, х = +/-π/3 + πn.

Можно доказать, что для любого а € [-1; 1] справедлива формула arccos (-а) = π – arccos а       (3).

Эта формула позволяет выражать значения арккосинусов отрицательных чисел через значения арккосинусов положительных чисел. Например:

arccos (-1/2) = π – arccos 1/2 = π – π/3 = 2π/3;

arccos (-√2/2) = π – arсcos √2/2 = π – π/4 = 3π/4

из формулы (2) следует, что корни уравнения, cos x = а при а = 0, а = 1 и а = -1 можно находить по более простым формулам:

cos х = 0           х = π/2 + πn, n € Z        (4)

cos х = 1           х = 2πn, n € Z                (5)

cos х = -1        х = π + 2πn, n € Z          (6).

© blog.tutoronline.ru, при полном или частичном копировании материала ссылка на первоисточник обязательна.

blog.tutoronline.ru

Решите уравнение cos(x)^2=1 (косинус от (х) в квадрате равно 1)

Дано уравнение
$$\cos^{2}{\left (x \right )} = 1$$
преобразуем
$$- \sin^{2}{\left (x \right )} = 0$$
$$\cos^{2}{\left (x \right )} — 1 = 0$$
Сделаем замену
$$w = \cos{\left (x \right )}$$
Это уравнение вида
a*w^2 + b*w + c = 0

Квадратное уравнение можно решить
с помощью дискриминанта.
Корни квадратного уравнения:
$$w_{1} = \frac{\sqrt{D} — b}{2 a}$$
$$w_{2} = \frac{- \sqrt{D} — b}{2 a}$$
где D = b^2 — 4*a*c — это дискриминант.
Т.к.
$$a = 1$$
$$b = 0$$
$$c = -1$$
, то
D = b^2 - 4 * a * c = 
(0)^2 - 4 * (1) * (-1) = 4

Т.к. D > 0, то уравнение имеет два корня.
w1 = (-b + sqrt(D)) / (2*a)
w2 = (-b - sqrt(D)) / (2*a)

или
$$w_{1} = 1$$
$$w_{2} = -1$$
делаем обратную замену
$$\cos{\left (x \right )} = w$$
Дано уравнение
$$\cos{\left (x \right )} = w$$
— это простейшее тригонометрическое ур-ние
Это ур-ние преобразуется в
$$x = \pi n + \operatorname{acos}{\left (w \right )}$$
$$x = \pi n + \operatorname{acos}{\left (w \right )} — \pi$$
Или
$$x = \pi n + \operatorname{acos}{\left (w \right )}$$
$$x = \pi n + \operatorname{acos}{\left (w \right )} — \pi$$
, где n — любое целое число
подставляем w:
$$x_{1} = \pi n + \operatorname{acos}{\left (w_{1} \right )}$$
$$x_{1} = \pi n + \operatorname{acos}{\left (1 \right )}$$
$$x_{1} = \pi n$$
$$x_{2} = \pi n + \operatorname{acos}{\left (w_{2} \right )}$$
$$x_{2} = \pi n + \operatorname{acos}{\left (-1 \right )}$$
$$x_{2} = \pi n + \pi$$
$$x_{3} = \pi n + \operatorname{acos}{\left (w_{1} \right )} — \pi$$
$$x_{3} = \pi n — \pi + \operatorname{acos}{\left (1 \right )}$$
$$x_{3} = \pi n — \pi$$
$$x_{4} = \pi n + \operatorname{acos}{\left (w_{2} \right )} — \pi$$
$$x_{4} = \pi n — \pi + \operatorname{acos}{\left (-1 \right )}$$
$$x_{4} = \pi n$$

www.kontrolnaya-rabota.ru

cos x = 1 / 3

Задание.
Решить уравнение:

   

Решение.
Исходное уравнение относят к простым видам тригонометрических уравнений, для которых существует специальная формула, согласно которой легко найти все корни данного уравнения.
Разберемся, что значит — решить уравнение. Это значит, что нужно найти такие аргументы для заданной функции, при которых косинус будет равен . Сразу можно обратиться к таблице значений тригонометрических функций, в частности косинуса. В таблице ищем среди значений косинуса число . Таких чисел для косинуса нет, это значит, что косинус может быть равен этому значению от каких-либо других углов, отличных от тех, которые представлены в таблице.
Что такой угол существует, говорит тот факт, что значение лежит между —1 и 1. Только на этом промежутке могут находиться значения функции косинус.
Для таких случаев используется специальная формула, которая использует обратную функцию к косинусу — арккосинус. Запишем решение согласно этой формуле:
, переменная z может быть любым целым числом.

Ответ. , z —целое число.

Также о существовании корней любого уравнения можно узнать из графика функции. Или с помощью тригонометрической окружности.

ru.solverbook.com

Область значений cosx

Чтобы найти область значений cosx, нужно вспомнить определение косинуса.

Косинус альфа на единичной окружности — это абсцисса точки, полученной при повороте из точки P0 на угол альфа.

 Таким образом, наименьшее значение косинуса равно-1, так как на единичной окружности наименьшее значение х равно -1 (точка с наименьшей абсциссой находится слева, в α=П).

Наибольшее значение косинуса равно 1, поскольку наибольшее значение x на единичной окружности равно 1 (оно достигается справа, в α=0).

Следовательно, область значений косинуса — промежуток [-1;1]. С помощью двойного неравенства область значений косинуса можно записать так:

   

Область значений косинуса не зависит от аргумента (за исключением случаев, когда аргумент представляет собой сложное выражение с дополнительными ограничениями на область определения и область значений):

   

   

   

   

Таким образом, наименьшее значение cos x, cos(15α), cos(5-11x) и т.д. равно -1;

наибольшее значение cos x, cos(4φ), cos(5х+3) и т.д. равно 1.

Область значений функции y=cos x — также промежуток [-1;1].

Так как число в четной степени неотрицательно, область значений квадрата косинуса — промежуток[0;1] или

   

Аналогично находим область значений модуля косинуса — промежуток [0;1] или

   

Далее рассмотрим, как, опираясь на ограничения значений косинуса и синуса, можно оценить значения тригонометрического выражения и найти область значения функции.

www.uznateshe.ru