Как определить определитель матрицы – Определитель матрицы: алгоритм, примеры вычисления, правила

Свойства определителя матрицы | Мозган калькулятор онлайн

Свойства определителя матрицы | Мозган калькулятор онлайн
  1. Определитель единичной матрицы равен единице: det(E) = 1. Единичная матрица — это квадратная матрица, элементы главной диагонали которой равны единице, а все остальные элементы равны 0.

  2. Определитель матрицы с двумя равными строками или столбцами равен нулю.

  3. Определитель матрицы с двумя пропорциональными строками или столбцами равен нулю.

  4. Определитель матрицы, содержащий нулевую строку или столбец, равен нулю.

  5. Определитель матрицы равен нулю, если две или несколько строк или столбцов матрицы линейно зависимы.

  6. При транспонировании значение определителя матрицы не меняется: det(A) = det(AT).

  7. Определитель обратной матрицы:
    det(A-1) = det(A)-1
    .
  8. Определитель матрицы не изменится, если к какой-то его строке или столбцу прибавить другую строку или столбец, умноженную на некоторое число.

  9. Определитель матрицы не изменится, если к какой-то его строке или столбцу прибавить линейную комбинации других строк или столбцов.
  10. Если поменять местами две строки или два столбца матрицы, то определитель матрицы поменяет знак.

  11. Общий множитель в строке или столбце можно выносить за знак определителя:
  12. Если квадратная матрица n-того порядка умножается на некоторое ненулевое число, то определитель полученной матрицы равен произведению определителя исходной матрицы на это число в n-той степени: B = k·A => det(B) = kn·det(A)
    , где A матрица n×n, k — число.
  13. Если каждый элемент в какой-то строке определителя равен сумме двух слагаемых, то исходный определитель равен сумме двух определителей, в которых вместо этой строки стоят первые и вторые слагаемые соответственно, а остальные строки совпадают с исходным определителем:
  14. Определитель верхней или нижней треугольной матрицы равен произведению его диагональных элементов.

  15. Определитель произведения матриц равен произведению определителей этих матриц: det(A·B) = det(A)·det(B).

Другой материал по теме


www.mozgan.ru

Матрицы, определители, системы линейных уравнений (Лекция №12)

ОПРЕДЕЛЕНИЕ МАТРИЦЫ. ВИДЫ МАТРИЦ

Матрицей размером m×n называется совокупность m·n чисел, расположенных в виде прямоугольной таблицы из m строк и n столбцов. Эту таблицу обычно заключают в круглые скобки. Например, матрица может иметь вид:

Для краткости матрицу можно обозначать одной заглавной буквой, например, А или В.

В общем виде матрицу размером m×n записывают так

.

Числа, составляющие матрицу, называются элементами матрицы. Элементы матрицы удобно снабжать двумя индексами aij: первый указывает номер строки, а второй – номер столбца. Например, a23 – элемент стоит во 2-ой строке, 3-м столбце.

Если в матрице число строк равно числу столбцов, то матрица называется

квадратной, причём число ее строк или столбцов называется порядком матрицы. В приведённых выше примерах квадратными являются вторая матрица – её порядок равен 3, и четвёртая матрица – её порядок 1.

Матрица, в которой число строк не равно числу столбцов, называется прямоугольной. В примерах это первая матрица и третья.

Различаются также матрицы, имеющие только одну строку или один столбец.

Матрица, у которой всего одна строка , называется матрицей – строкой (или строковой), а матрица, у которой всего один столбец, матрицей – столбцом.

Матрица, все элементы которой равны нулю, называется нулевой и обозначается (0), или просто 0. Например,

.

Главной диагональю квадратной матрицы назовём диагональ, идущую из левого верхнего в правый нижний угол.

Квадратная матрица, у которой все элементы, лежащие ниже главной диагонали, равны нулю, называется треугольной матрицей.

.

Квадратная матрица, у которой все элементы, кроме, быть может, стоящих на главной диагонали, равны нулю, называется диагональной матрицей. Например, или .

Диагональная матрица, у которой все диагональные элементы равны единице, называется единичной матрицей и обозначается буквой E. Например, единичная матрица 3-го порядка имеет вид .

ДЕЙСТВИЯ НАД МАТРИЦАМИ

Равенство матриц. Две матрицы A и B называются равными, если они имеют одинаковое число строк и столбцов и их соответствующие элементы равны aij = bij. Так если и , то A=B, если

a11 = b11, a12 = b12, a21 = b21 и a22 = b22.

Транспонирование. Рассмотрим произвольную матрицу A из m строк и n столбцов. Ей можно сопоставить такую матрицу B из n строк и m столбцов, у которой каждая строка является столбцом матрицы A с тем же номером (следовательно, каждый столбец является строкой матрицы A с тем же номером). Итак, если , то .

Эту матрицу B называют транспонированной матрицей A, а переход от A к B транспонированием.

Таким образом, транспонирование – это перемена ролями строк и столбцов матрицы. Матрицу, транспонированную к матрице A, обычно обозначают AT.

Связь между матрицей A и её транспонированной можно записать в виде .

Например. Найти матрицу транспонированную данной.

Сложение матриц. Пусть матрицы A и B состоят из одинакового числа строк и одинакового числа столбцов, т.е. имеют одинаковые размеры. Тогда для того, чтобы сложить матрицы A и B нужно к элементам матрицы A прибавить элементы матрицы B, стоящие на тех же местах. Таким образом, суммой двух матриц A и B называется матрица C, которая определяется по правилу, например,

или

Примеры. Найти сумму матриц:

  1. .
  2. — нельзя, т.к. размеры матриц различны.
  3. .

Легко проверить, что сложение матриц подчиняется следующим законам: коммутативному A+B=B+A и ассоциативному (A+B)+C

=A+(B+C).

Умножение матрицы на число. Для того чтобы умножить матрицу A на число k нужно каждый элемент матрицы A умножить на это число. Таким образом, произведение матрицы A на число k есть новая матрица, которая определяется по правилу или .

Для любых чисел a и b и матриц A и B выполняются равенства:

  1. .

Примеры.

  1. .
  2. Найти 2A-B, если , .

    .

  3. Найти C=–3A+4B.

    Матрицу C найти нельзя, т.к. матрицы A и B имеют разные размеры.

Умножение матриц. Эта операция осуществляется по своеобразному закону. Прежде всего, заметим, что размеры матриц–сомножителей должны быть согласованы. Перемножать можно только те матрицы, у которых число столбцов первой матрицы совпадает с числом строк второй матрицы (т.е. длина строки первой равна высоте столбца второй).

Произведением матрицы A не матрицу B называется новая матрица C=AB, элементы которой составляются следующим образом:

.

Таким образом, например, чтобы получить у произведения (т.е. в матрице C) элемент, стоящий в 1-ой строке и 3-м столбце c13, нужно в 1-ой матрице взять 1-ую строку, во 2-ой – 3-й столбец, и затем элементы строки умножить на соответствующие элементы столбца и полученные произведения сложить. И другие элементы матрицы-произведения получаются с помощью аналогичного произведения строк первой матрицы на столбцы второй матрицы.

В общем случае, если мы умножаем матрицу

A = (aij) размера m×n на матрицу B = (bij) размера n×p, то получим матрицу C размера m×p, элементы которой вычисляются следующим образом: элемент cij получается в результате произведения элементов i-ой строки матрицы A на соответствующие элементы j-го столбца матрицы B и их сложения.

Из этого правила следует, что всегда можно перемножать две квадратные матрицы одного порядка, в результате получим квадратную матрицу того же порядка. В частности, квадратную матрицу всегда можно умножить саму на себя, т.е. возвести в квадрат.

Другим важным случаем является умножение матрицы–строки на матрицу–столбец, причём ширина первой должна быть равна высоте второй, в результате получим матрицу первого порядка (т.е. один элемент). Действительно,

.

Примеры.

  1. Пусть

    Найти элементы c12, c23 и c21 матрицы C.

  2. Найти произведение матриц.

    .

  3. .
  4. — нельзя, т.к. ширина первой матрицы равна 2-м элементам, а высота второй – 3-м.
  5. Пусть

    Найти АВ и ВА.

  6. Найти АВ и ВА.

    , B·A – не имеет смысла.

Таким образом, эти простые примеры показывают, что матрицы, вообще говоря, не перестановочны друг с другом, т.е. A∙BB∙A. Поэтому при умножении матриц нужно тщательно следить за порядком множителей.

Можно проверить, что умножение матриц подчиняется ассоциативному и дистрибутивному законам, т.е. (AB)C=A(BC) и (A+B)C=AC+BC

.

Легко также проверить, что при умножении квадратной матрицы A на единичную матрицу E того же порядка вновь получим матрицу A, причём AE=EA=A.

Можно отметить следующий любопытный факт. Как известно произведение 2-х отличных от нуля чисел не равно 0. Для матриц это может не иметь места, т.е. произведение 2-х не нулевых матриц может оказаться равным нулевой матрице.

Например, если , то

.

ПОНЯТИЕ ОПРЕДЕЛИТЕЛЕЙ

Пусть дана матрица второго порядка – квадратная матрица, состоящая из двух строк и двух столбцов .

Определителем второго порядка, соответствующим данной матрице, называется число, получаемое следующим образом: a11a22 – a12a21.

Определитель обозначается символом .

Итак, для того чтобы найти определитель второго порядка нужно из произведения элементов главной диагонали вычесть произведение элементов по второй диагонали.

Примеры. Вычислить определители второго порядка.

  1. .
  2. Вычислить определитель матрицы D, если D= -А+2В и

Аналогично можно рассмотреть матрицу третьего порядка и соответствующий ей определитель.

Определителем третьего порядка, соответствующим данной квадратной матрице третьего порядка, называется число, обозначаемое и получаемое следующим образом:

.

Таким образом, эта формула даёт разложение определителя третьего порядка по элементам первой строки a11, a12, a13 и сводит вычисление определителя третьего порядка к вычислению определителей второго порядка.

Примеры. Вычислить определитель третьего порядка.

  1. .
  2. .
  3. Решите уравнение..

    .

    (x+3)(4x-4-3x)+4(3x-4x+4)=0.

    (x+3)(x-4)+4(-x+4)=0.

    (x-4)(x-1)=0.

    x1 = 4, x2 = 1.

Аналогично можно ввести понятия определителей четвёртого, пятого и т.д. порядков, понижая их порядок разложением по элементам 1-ой строки, при этом знаки «+» и «–» у слагаемых чередуются.

Итак, в отличие от матрицы, которая представляют собой таблицу чисел, определитель это число, которое определённым образом ставится в соответствие матрице.

toehelp.ru

Далее будем рассматривать только квадратные матрицы. Каждой квадратной матрице ставится в соответствие действительное число, называемое Определителем матрицы и вычисляемое по определенному правилу.

Определитель матрицы естественно возникает при решении систем линейных уравнений, или в свернутой форме , или в свернутой форме . Предыдущая формула получается разложением определителя по первой строке.

Возьмем теперь квадратную матрицу -го порядка

(9.2)

Для записи определителя -го порядка матрицы будем применять обозначения . При матрица состоит из одного элемента и ее определитель равен этому элементу. При получаем определитель .

Минором элемента матрицы называют определитель матрицы -го порядка, получаемого из матрицы вычеркиванием -той строки и -го столбца.

Пример 7. Найти минор матрицы:

.

По определению, минор элемента есть определитель матрицы, получаемой из матрицы вычеркиванием первой строки и второго столбца. Следовательно, .

Алгебраическим дополнением элемента матрицы называется минор , взятый со знаком . Алгебраическое дополнение элемента обозначается , следовательно, .

Пример 8. Найти алгебраическое дополнение элемента матрицы из примера 7.

.

Определителем квадратной матрицы -го порядка называется число:

,

(9.3)

Где ‑ элементы первой строки матрицы (9.2), а их алгебраические дополнения.

Запись по формуле (9.3) называется Разложением определителя по первой строке.

Рассмотрим свойства определителей.

Свойство 1. При транспонировании матрицы ее определитель не меняется.

Это свойство устанавливает равноправность строк и столбцов определителя, поэтому определение определителя можно сформулировать так:

Определителем квадратной матрицы -го порядка называется число:

,

(9.4)

Где ‑ элементы первого столбца матрицы (9.2), а их алгебраические дополнения.

Свойство 2. Если поменять местами две строки или два столбца матрицы , то ее определитель изменит знак на противоположный.

Свойства 1 и 2 позволяют обобщить формулы (9.3) и (9.4) следующим образом:

Определитель квадратной матрицы -го порядка (будем в дальнейшем говорить определитель -го порядка) равен сумме попарных произведений любой строки (столбца) на их алгебраические дополнения.

, или .

Свойство 3. Определитель, у которого две строки или два столбца одинаковы, равен нулю.

Действительно, поменяем в определителе две одинаковые сроки местами. Тогда, по свойству 2 получим определитель , но с другой стороны, определитель не изменится, т. е. . Отсюда .

Свойство 4. Если все элементы какой-нибудь строки (столбца) определителя умножить на число , то определитель умножится на .

.

Умножим элементы -той строки на . Тогда получим определитель:

.

Следствие 1. Если все элементы какой-нибудь строки (столбца) имеют общий множитель, то его можно вынести за знак определителя.

Следствие 2. Если все элементы какой-нибудь строки (столбца) равны нулю, то определитель равен нулю.

Свойство 5. Определитель, у которого две строки (два столбца) пропорциональны, равен нулю.

Пусть -я строка пропорциональна -ой строке. Вынося коэффициент пропорциональности за знак определителя, получим определитель с двумя одинаковыми строками, который по свойству 3 равен нулю.

Свойство 6. Если каждый элемент строки (столбца) определителя есть сумма двух слагаемых, то определитель равен сумме двух определителей: у одного из них -той строкой (столбцом)служат первые слагаемые, а у другого – вторые.

Разложив определитель по -той строке получим:

.

Свойство 7. Определитель не изменится, если к элементам какой-нибудь строки (столбца) прибавить соответствующие элементы другой строки (столбца), умноженные на одно и то же число.

Прибавив к элементам -той строки определителя соответствующие элементы -ой строки, умноженные на число , получим определитель . Определитель равен сумме двух определителей: первый есть , а второй равен нулю, так как у него -тая и -тая строки пропорциональны.

Свойство 8. Определитель диагональной матрицы равен произведению элементов, стоящих на главной диагонали, т. е.:

Свойство 9. Сумма произведений элементов какой-нибудь строки (столбца) определителя на алгебраические дополнения элементов другой строки (столбца) равна нулю.

Рассмотрим вспомогательный определитель , который получается из данного определителя заменой -той строки -той строкой. Определитель равен нулю, так как у него две одинаковые строки. Разложив его по -той строке получим:

.

Большое значение имеет следующий критерий равенства определителя нулю. Определитель квадратной матрицы равен нулю тогда и только тогда когда его строки (столбцы) линейно зависимы.

Строки (столбцы) матрицы называются линейно зависимыми, если одна (один) из них является линейной комбинацией с действительными коэффициентами остальных.

Теорема об определителе произведения двух квадратных матриц. Определитель произведения двух квадратных матриц равен произведению определителей этих квадратных матриц, т. е. .

< Предыдущая   Следующая >

matica.org.ua

Определитель матрицы

Для решения заданий в высшей математике периодически нужно находить определитель матрицы. Встречается он не только в алгебре, но и в геометрии, математический анализ также может его содержать. Следовательно, нужно уметь находить определитель матрицы, так как это необходимо.
Что такое матрица — это таблица прямоугольной формы содержащая в себе различные выражения. Матрица может иметь n столбцов и m строк, ее называют как (m,n) — матрице.

Только квадратная матрица имеет определитель. Который больше всего встречается второго, третьего и четвертого порядка.

Следует запомнить что выражения (числа) стоят сами по себе, значит и вычитать ни чего не нужно, перестановку делать так же нельзя. Иногда можно поменять местами столбцы и строки парами. В результате это даст нам смену знака, но часто этого не требуется. Из чего следует, что в любом данном определителе, не нужно ни чего трогать или менять.

Разберемся в названиях обозначений:

— Определитель матрицы обозначается как {A}, реже встречается как D либо ?
— Вычисление определителя — то нахождение числа, которое обозначается знаком вопроса, подразумевая обычное число.

Для того чтобы найти данное неизвестное число определителя нужно знать правила, алгоритмы и формулы. Такие как:

1) Для вычисления определителя второго порядка, нужна формула

Разберем на примере:

2) Для вычисления определителя третьего порядка, существует 8 способов, разберем 2 самых простых.

Разберем на примере:

В использовании данной формулы, нужно быть внимательным что бы не допустить ошибку, так как формула довольно длинная. В избежание допущения ошибок существует еще один вариант решения. Названный как способ Саррюса. Он похож на предыдущий способ, но фишка заключается в том что через матрицу выражений проводятся параллельные линии, вынося за определитель в правую сторону два первых столбца.

Таким образом числа зачеркнутые красным цветом вписываются с положительным знаком, а числа зачеркнутые синим цветом с отрицательным.

Разберем на примере:

Если сравнить оба варианта вычисления, видно что они практически одинаковы, но во втором варианте допущение ошибки сводится к нулю, так как представлены множители.
Затронем еще один способ нормального вычисления, так как он используется в большинстве случаев. Найти определитель можно путем раскрытия его в любом столбце либо строке. Вычисляется путем сложения произведений выражений данного столбца или строки на алгебраические дополнения.
Для наглядности разберем определитель по первой строке.

3) Для вычисления определителя четвертого порядка, нужно действовать так же как и при вычислении третьего порядка, просто таблица буде больше. Приведу пример и разложу на определитель третьего порядка, а потренироваться в решении вы сможете сами. В ответе должно получиться 18.

Это очень познавательно и интересно, главное быть внимательнее!


Если материал был полезен, вы можете отправить донат или поделиться данным материалом в социальных сетях:

reshit.ru

Определитель матрицы

Дисциплина: Высшая математика

Тема: Определитель матрицы

1. Понятие определителя

Матрица — это прямоугольная таблица, составленная из чисел. Особое место среди матриц занимают квадратные матрицы. Рассмотрим произвольную квадратную матрицу порядка

или просто : .

Оказывается, что с такой матрицей всегда можно связать вполне определенную числовую характеристику.

Определение 1. Численная характеристика квадратной матрицы называется ее определителем .

Рассмотрим матрицу первого порядка

.

Определение 2. Численной характеристикой матрицы первого порядка, то есть определителем первого порядка, называется величина ее элемента .

Обозначается определитель одним из символов

.

Определение 3. Определителем второго порядка, соответствующим матрице второго порядка, называется число, равное .

Обозначается определитель одним из символов

.

Очевидно, что для составления определителя второго порядка, необходимо найти разность произведения элементов, стоящих на главной диагонали матрицы, и произведения элементов, стоящих на побочной диагонали этой матрицы.

Поскольку одна из форм обозначения определителя и обозначения матрицы имеют много общего (записывается таблица из чисел), то так же, как и у матрицы, говорят о столбцах, строках и элементах определителя.

После того как рассмотрены определители 1-го и 2-го порядков, можно перейти к понятию определителя любого порядка. Но перед этим введем понятие минора.

Определение 4. Минором любого элемента квадратной матрицы порядка называется определитель порядка , соответствующий той матрице, которая получается из первоначальной матрицы в результате вычеркивания -ой строки и -го столбца, на пересечении которых стоит элемент .

Обычно минор элемента обозначается

.

Определение 5. Определителем порядка , соответствующим матрице порядка , называется число, равное

.

Обозначается определитель одним из символов

.

Приведенное выражение представляет собой правило вычисления определителя

-го порядка по элементам первой строки соответствующей ему матрицы и по минорам элементов этой строки, которые являются определителями порядка . Для это правило дает: .

В приведенном правиле вычисления определителя фигурирует лишь первая строка. Возникает вопрос, а нельзя ли вычислить определитель, используя элементы других строк?

Теорема 1. Каков бы ни был номер строки (), для определителя -го порядка справедлива формула

,

называемая разложением этого определителя по -ой строке .

Нетрудно заметить, что в этой формулировке степень при (-1) равна сумме номеров строки и столбца, на пересечении которых стоит элемент

.

Докажем сначала эту теорему для

. В этом случае может быть равно только 2, так как входит в основное определение величины определителя. Итак: .

Полученное выражение совпадает с тем, которое было дано в определении, следовательно, для определителя 2-го порядка теорема доказана.

Для произвольного

данная теорема доказывается методом математической индукции.

Итак, показано, что определитель может быть разложен по любой строке. Возникает вопрос, а нельзя ли сделать то же самое, использовав произвольный столбец.

Теорема 2. Каков бы ни был номер столбца (), для определителя -го порядка справедлива формула

,

называемая разложением этого определителя по -му столбцу .

Докажем теорему для

: .

Данное выражение равно величине определителя, введенной по определению.

Итак, на основании теорем можно сказать, что для вычисления определителя

-го порядка необходимо его разложить по произвольной строке или столбцу.

2. Свойства определителей

Рассмотрим ряд свойств, которыми обладают определители.

1. Равноправность строк и столбцов.

Определение 1. Транспонированием определителя называется операция, в результате которой меняются местами строки и столбцы с сохранением порядка их следования .

Определитель, полученный в результате транспонирования, называется транспонированным по отношению к исходному и обозначается

.

Свойство 1. При транспонировании величина определителя сохраняется, то есть .

Доказательство этого свойства вытекает из того, что разложение определителя по первой строке тождественно совпадает с разложением по первому столбцу. Данное свойство указывает на равноправность строк и столбцов, поэтому все дальнейшие свойства можно рассматривать лишь для строк.

2. Антисимметрия при перестановке двух строк.

Свойство При перестановке местами двух строк определитель сохраняет свою абсолютную величину, но меняет знак на противоположный .

Докажем для определителя второго порядка. Действительно,

; .

Для определителя

-го порядка докажем это свойство по индукции. Пусть свойство справедливо для определителя -го порядка. Разложим определитель -го порядка по любой строке, отличной от переставленных. Тогда переставленные строки входят во все миноры, на которые умножаются элементы , но эти миноры являются определителями -го порядка и меняют свой знак при перестановке строк. Следовательно, и определитель -го порядка также меняет свой знак.

3. Линейное свойство определителя.

Определение Некоторая строка () является линейной комбинацией строк () и () с коэффициентами и , если .

mirznanii.com

Как посчитать определитель матрицы 🚩 Математика

Автор КакПросто!

Математическая матрица представляет собой прямоугольный массив элементов (например, комплексных или действительных чисел). Каждая матрица имеет размерность, которая обозначается m*n, где m – число строк, n – число столбцов. На пересечении строк и столбцов располагаются элементы заданного множества. Матрицы обозначаются заглавными буквами A, B, C, D и т.д., либо A = (aij), где aij – элемент на пересечении i – й строки и j – го столбца матрицы. Матрица называется квадратной, если у неё число строк равно числу столбцов. Теперь введём понятие определителя квадратной матрицы n – го порядка.

Статьи по теме:

Инструкция

Рассмотрим квадратную матрицу A = (aij) любого n – го порядка.
Минором элемента aij матрица A называется определитель порядка n -1, соответствующий матрице полученной из матрицы A вычеркиванием из неё i – й строки и j – го столбца, т.е. строки и столбца на которых расположен элемент aij. Минор обозначается буквой M с коэффициентами: i – номер строки, j – номер столбца.
Определителем порядка n, соответствующим матрице A называется число обозначаемое символом ?. Определитель вычисляется по формуле, представленной на рисунке, где M — минор к элементу a1j.

Таким образом, если матрица A имеет второй порядок, т.е. n = 2, то соответствующий этой матрице определитель будет равен ? = detA = a11a22 – a12a21

Если матрица A имеет третий порядок, т.е. n = 3, то соответствующим этой матрице определитель будет равен ? = detA = a11a22a33 ? a11a23a32 ? a12a21a33 + a12a23a31 + a13a21a32 ? a13a22a31

Вычисление определителей порядка n > 3 можно произвести метод понижения порядка определителя, который основан на обнулении всех, кроме одного, элементов определителя с помощью свойств определителей.

Совет полезен?

Распечатать

Как посчитать определитель матрицы

Статьи по теме:

Не получили ответ на свой вопрос?
Спросите нашего эксперта:

www.kakprosto.ru