Из каких органических соединений состоит плазматическая мембрана – Клеточная мембрана — Википедия
Клеточная мембрана — Википедия
Материал из Википедии — свободной энциклопедии
Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 19 декабря 2018; проверки требуют 5 правок. Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 19 декабря 2018; проверки требуют 5 правок. У этого термина существуют и другие значения, см. Мембрана. Модель клеточной мембраны. Маленькие голубые и белые шарики — гидрофильные «головки» фосфолипидов, а присоединённые к ним линии — гидрофобные «хвосты». На рисунке показаны только интегральные мембранные белки (красные глобулы и жёлтые спирали). Жёлтые овальные точки внутри мембраны — молекулы холестерина. Жёлто-зелёные цепочки бусинок на наружной стороне мембраны — цепочки олигосахаридов, формирующие гликокаликсКле́точная мембра́на (также цитолемма, плазмолемма, или плазматическая мембрана) — эластическая молекулярная структура, состоящая из белков и липидов. Отделяет содержимое любой клетки от внешней среды, обеспечивая её целостность; регулирует обмен между клеткой и средой; внутриклеточные мембраны разделяют клетку на специализированные замкнутые отсеки — компартменты или органеллы, в которых поддерживаются определённые условия среды.
Клеточная стенка, если таковая у клетки имеется (обычно есть у растительных клеток), покрывает клеточную мембрану.
Клеточная мембрана представляет собой двойной слой (бислой) молекул класса липидов
ru.wikipedia.org
Плазматическая мембрана состоит из молекул
Плазматическая мембрана клетки. Строение плазматической мембраны. Функции плазматической мембраны.Животные клетки ограничены плазматической мембраной. На ее строении, очень сходном со строением многих внутриклеточных мембран, мы остановимся несколько подробнее. Основной матрикс мембраны состоит из липидов, главным образом фосфатидил-холина. Эти липиды состоят из головной гидрофильной группы, к которой присоединены длинные гидрофобные углеводородные цепи. В воде такие липиды спонтанно формируют двуслойную пленку толщиной 4-5 нм, в которой гидрофильные группы обращены к водной среде, а гидрофобные углеводородные цепи располагаются в два ряда, образуя безводную липидную фазу. Клеточные мембраны представляют собой липидные бислои именно такого типа и содержат гликолипиды, холестерол и фосфолипиды.
Гидрофильная часть гликолипидов образована олигосахаридами. Гликолипиды всегда располагаются на наружной поверхности плазматической мембраны, причем олигосахаридная часть молекулы ориентирована подобно волоску, погруженному в окружающую среду. Разбросанные среди фосфолипидов в почти равном с ними количестве молекулы холестерола стабилизируют мембрану. Распределение различных липидов во внутреннем и наружном слоях мембраны неодинаково, и даже в пределах одного слоя имеются участки, в которых концентрируются отдельные виды липидов. Такое неравномерное распределение, вероятно, имеет какое-то, пока еще неясное, функциональное значение.
Главными функциональными элементами, погруженными в сравнительно инертный липидныи матрикс мембраны, являются белки. Белок по массе составляет от 25 до 75% в различных мембранах, но, поскольку белковые молекулы намного крупнее, чем липидные, 50% по массе эквивалентны соотношению: 1 молекула белка на 50 молекул липида. Одни белки пронизывают мембрану от ее наружной до внутренней поверхности, другие же закреплены в каком-то одном слое. Белковые молекулы обычно ориентированы так, что их гидрофобные группы погружены в липидную мембрану, а полярные гидрофильные группы на поверхности мембраны погружены в водную фазу. Многие белки наружной поверхности мембраны представляют собой гликопротеины; их гидрофильные сахаридные группы обращены во внеклеточную среду.
otvet.mail.ru
плазматическая мембрана — это… Что такое плазматическая мембрана?
Механическая устойчивость плазматической мембраны определяется не только свойствами самой мембраны, но и свойствами прилежащих к ней гликокаликса и кортикального слоя цитоплазмы.
Внешняя поверхность плазматической мембраны покрыта рыхлым волокнистым слоем вещества толщиной 3—4 нм — гликокаликсом. Он состоит из ветвящихся полисахаридных цепей мембранных интегральных белков, между которыми могут располагаться выделенные клеткой гликолипиды и протеогликаны. Тут же обнаруживаются некоторые клеточные гидролитические ферменты, участвующие во внеклеточном расщеплении веществ (внеклеточное пищеварение, например, в эпителии кишечника). Кортикальный слой цитоплазмы, толщиной 0,1—0,5 мкм, не содержит рибосом и мембранных структур, но богат актиновыми микрофиламентами.
Рецепторная роль плазмалеммы
Белки-переносчики внешней мембраны клетки являются также рецепторами, узнающими определенные ионы и взаимодействующими с ними. В качестве рецепторов на поверхности клетки могут выступать белки мембраны или элементы гликокаликса. Такие чувствительные к отдельным веществам участки разбросаны по поверхности клетки или собраны в небольшие зоны. Роль многих клеточных рецепторов заключается не только в связывании специфических веществ, но и в передаче сигналов с поверхности внутрь клетки. Например, при действии гормона на клетку цепь событий развертывается следующим образом: молекула гормона специфически взаимодействует с рецепторным белком плазмалеммы и, не проникая в клетку, активирует фермент, синтезирующий ЦАМФ (
Межклеточные соединения
У многоклеточных организмов за счет межклеточных взаимодействий образуются сложные клеточные ансамбли. При тесном соседстве клеток друг с другом гликокаликс обеспечивает слипание клеток за счет присутствия в нем трансмембранных гликопротеидов кадгеринов. Это простой межклеточный контакт, при котором зазор между клетками составляет 10—20 нм. В эпителиях часто встречается плотное, или запирающее, соединение, при котором внешние слои двух плазматических мембран максимально сближены и в точках их соприкосновения лежат глобулы интегральных белков мембраны. Такой контакт непроницаем для молекул и ионов, он запирает межклеточные полости.
Щелевые контакты считаются коммуникационными соединениями клеток. В зоне щелевого контакта может быть от 20—30 до нескольких тысяч коннексонов — цилидрических белковых структур с внутренним каналом диаметром 2 нм. Каждый коннексон состоит из 6 субъединиц белка коннектина. Коннексоны играют роль прямых межклеточных каналов, по которым ионы и низкомолекулярные вещества могут диффундировать из клетки в клетку.
Плазматическая мембрана — это… Что такое Плазматическая мембрана?
- У этого термина существуют и другие значения, см. Мембрана
Кле́точная мембра́на (или цитолемма, или плазмолемма, или плазматическая мембрана) отделяет содержимое любой клетки от внешней среды, обеспечивая ее целостность; регулируют обмен между клеткой и средой; внутриклеточные мембраны разделяют клетку на специализированные замкнутые отсеки — компартменты или органеллы, в которых поддерживаются определенные условия внутриклеточной среды.
Основные сведения
Клеточная стенка, если таковая у клетки имеется (обычно есть у растительных клеток), покрывает клеточную мембрану.
Клеточная мембрана представляет собой двойной слой (бислой) молекул класса липидов, большинство из которых представляет собой так называемые сложные липиды — фосфолипиды. Молекулы липидов имеют гидрофильную («головка») и гидрофобную («хвост») часть. При образовании мембран гидрофобные участки молекул оказываются обращены внутрь, а гидрофильные — наружу. Мембраны — структуры инвариабельные, весьма сходные у разных организмов. Некоторое исключение составляют, пожалуй, археи, у которых мембраны образованы глицерином и терпеноидными спиртами. Толщина мембраны составляет 7-8 нм.
Биологическая мембрана включает и различные белки: интегральные (пронизывающие мембрану насквозь), полуинтегральные (погруженные одним концом во внешний или внутренний липидный слой), поверхностные (расположенные на внешней или прилегающие к внутренней сторонам мембраны). Некоторые белки являются точками контакта клеточной мембраны с цитоскелетом внутри клетки, и клеточной стенкой (если она есть) снаружи. Некоторые из интегральных белков выполняют функцию ионных каналов, различных транспортеров и рецепторов.
Функции биомембран
- барьерная — обеспечивает регулируемый, избирательный, пассивный и активный обмен веществ с окружающей средой. Например, мембрана пероксисом защищает цитоплазму от опасных для клетки пероксидов. Избирательная проницаемость означает, что проницаемость мембраны для различных атомов или молекул зависит от их размеров, электрического заряда и химических свойств. Избирательная проницаемость обеспечивает отделение клетки и клеточных компартментов от окружающей среды и снабжение их необходимыми веществами.
- транспортная — через мембрану происходит транспорт веществ в клетку и из клетки. Транспорт через мембраны обеспечивает: доставку питательных веществ, удаление конечных продуктов обмена, секрецию различных веществ, создание ионных градиентов, поддержание в клетке соответствующего pH и ионной концентрации, которые нужны для работы клеточных ферментов.
Частицы, по какой-либо причине не способные пересечь фосфолипидный бислой (например, из-за гидрофильных свойств, так как мембрана внутри гидрофобна и не пропускает гидрофильные вещества, или из-за крупных размеров), но необходимые для клетки, могут проникнуть сквозь мембрану через специальные белки-переносчики (транспортеры) и белки-каналы или путем эндоцитоза.
При пассивном транспорте вещества пересекают липидный бислой без затрат энергии, путем диффузии. Вариантом этого механизма является облегчённая диффузия, при которой веществу помогает пройти через мембрану какая-либо специфическая молекула. У этой молекулы может быть канал, пропускающий вещества только одного типа.
Активный транспорт требует затрат энергии, так как происходит против градиента концентрации. На мембране существуют специальные белки-насосы, в том числе АТФаза, которая активно вкачивают в клетку ионы калия (K+) и выкачивают из неё ионы натрия (Na+).
- матричная — обеспечивает определенное взаиморасположение и ориентацию мембранных белков, их оптимальное взаимодействие;
- механическая — обеспечивает автономность клетки, ее внутриклеточных структур, также соединение с другими клетками (в тканях). Большую роль в обеспечение механической функции имеют клеточные стенки, а у животных — межклеточное вещество.
- энергетическая — при фотосинтезе в хлоропластах и клеточном дыхании в митохондриях в их мембранах действуют системы переноса энергии, в которых также участвуют белки;
- рецепторная — некоторые белки, сидящие в мембране, являются рецепторами (молекулами, при помощи которых клетке воспринимает те или иные сигналы).
Например, гормоны, циркулирующие в крови, действуют только на такие клетки-мишени, у которых есть соответствующие этим гормонам рецепторы. Нейромедиаторы (химические вещества, обеспечивающие проведение нервных импульсов) тоже связываются с особыми рецепторными белками клеток-мишеней.
- ферментативная — мембранные белки нередко являются ферментами. Например, плазматические мембраны эпителиальных клеток кишечника содержат пищеварительные ферменты.
- осуществление генерации и проведения биопотенциалов.
С помощью мембраны в клетке поддерживается постоянная концентрация ионов: концентрация иона К+ внутри клетки значительно выше, чем снаружи, а концентрация Na+ значительно ниже, что очень важно, так как это обеспечивает поддержание разности потенциалов на мембране и генерацию нервного импульса.
- маркировка клетки — на мембране есть антигены, действующие как маркеры — «ярлыки», позволяющие опознать клетку. Это гликопротеины (то есть белки с присоединенными к ним разветвленными олигосахаридными боковыми цепями), играющие роль «антенн». Из-за бесчисленного множества конфигурации боковых цепей возможно сделать для каждого типа клеток свой особый маркер. С помощью маркеров клетки могут распознавать другие клетки и действовать согласованно с ними, например, при формировании органов и тканей. Это же позволяет иммунной системе распознавать чужеродные антигены.
Структура и состав биомембран
Мембраны состоят из липидов трёх классов: фосфолипиды, гликолипиды и холестерол. Фосфолипиды и гликолипиды (липиды с присоединёнными к ним углеводами) состоят из двух длинных гидрофобных углеводородных «хвостов», которые связаны с заряженной гидрофильной «головой». Холестерол придаёт мембране жёсткость, занимая свободное пространство между гидрофобными хвостами липидов и не позволяя им изгибаться. Поэтому мембраны с малым содержанием холестерола более гибкие, а с большим — более жёсткие и хрупкие. Также холестерол служит «стопором», препятствующим перемещению полярных молекул из клетки и в клетку. Важную часть мембраны составляют белки, пронизывающие её и отвечающие за разнообразные свойства мембран. Их состав и ориентация в разных мембранах различаются.
Клеточные мембраны часто асимметричны, то есть слои отличаются по составу липидов, переход отдельной молекулы из одного слоя в другой (так называемый флип-флоп) затруднён.
Мембранные органеллы
Это замкнутые одиночные или связанные друг с другом участки цитоплазмы, отделённые от гиалоплазмы мембранами. К одномембранным органеллам относятся эндоплазматическая сеть, аппарат Гольджи, лизосомы, вакуоли, пероксисомы; к двумембранным — ядро, митохондрии, пластиды. Снаружи клетка ограничена так называемой плазматической мембраной. Строение мембран различных органелл отличается по составу липидов и мембранных белков.
Избирательная проницаемость
Клеточные мембраны обладают избирательной проницаемостью: через них медленно диффундируют глюкоза, аминокислоты, жирные кислоты, глицерол и ионы, причем сами мембраны в известной мере активно регулируют этот процесс-одни вещества пропускают, а другие нет. существует четыре основных механизма для поступления веществ в клетку или их из клеки наружу:диффузия, осмос, активный транспорт и экзо- или эндоцитоз. Два первых процесса носят пассивный характер, т.е. не требуют затрат энергии; два последних-активные процессы, связанные с потреблением энерги.
Избирательная проницаемость мембраны при пассивном транспорте обусловлена специальными каналами — интегральными белками. Они пронизывают мембрану насквозь, образовывая своего рода проход. Для элементов K, Na и Cl есть свои каналы. Относительно градиента концентрации молекулы этих элементов движутся в клетку и из неё. При раздражении каналы натриевых ионов раскрываются, и происходит резкое поступление в клетку ионов натрия. При этом происходит дисбаланс мембранного потенциала. После чего мембранный потенциал восстанавливается. Каналы калия всегда открыты, через них в клетку медленно попадают ионы калия.
Ссылки
- Bruce Alberts, et al. Molecular Biology Of The Cell. — 5th ed. — New York: Garland Science, 2007. — ISBN 0-8153-3218-1 — учебник по молекулярной биологии на англ. языке
- Рубин А.Б. Биофизика, учебник в 2 тт.. — 3-е издание, исправленное и дополненное. — Москва: издательство Московского университета, 2004. — ISBN 5-211-06109-8
- Геннис Р. Биомембраны. Молекулярная структура и функции: перевод с англ. = Biomembranes. Molecular structure and function (by Robert B. Gennis). — 1-е издание. — Москва: Мир, 1997. — ISBN 5-03-002419-0
- Иванов В.Г., Берестовский Т.Н. Липидный бислой биологических мембран. — Москва: Наука, 1982.
- Антонов В.Ф., Смирнова Е.Н., Шевченко Е.В. Липидные мембраны при фазовых переходах. — Москва: Наука, 1994.
См. также
Wikimedia Foundation. 2010.
dic.academic.ru
Биологические мембраны
СТРУКТУРНАЯ ОРГАНИЗАЦИЯ И ФУНКЦИЯ БИОЛОГИЧЕСКИХ МЕМБРАН
Биологические мембраны — это активный молекулярный комплекс с высокоизбирательными свойствами, обеспечивающий обмен веществ и энергии с окружающей средой. В мембранах находятся специфические молекулярные насосы и каналы, с помощью которых регулируются молекулярный и ионный состав внутриклеточной среды. Помимо внешней цитоплазматической мембраны (плазмолемма) в клетках эукариотов имеются еще и внутренние мембраны, ограничивающие различные внутриклеточные компартменты (отсеки), например митохондрии, лизосомы, хлоропласты и т. д. Мембраны регулируют также обмен информацией между клетками и средой (восприятие внешних стимулов) и т. д. Мембраны различаются как по функции, так и по структуре. Однако всем им присущи следующие основные свойства:
■ мембраны представляют собой плотную структуру толщиной в несколько молекул, 60-100 А, образующую сплошную перегородку между отдельными клетками и внутриклеточными отсеками;
■ мембраны главным образом состоят из липидов и белков. В мембранах имеются также углеводные компоненты, связанные с липидами и белками;
■ липиды мембран представлены относительно небольшими молекулами, несущими гидрофильные и гидрофобные группы. В водной среде эти молекулы спонтанно образуют замкнутые бимолекулярные слои, которые служат барьером для проникновения полярных соединений;
■ большинство функций мембран опосредуются специфическими белками, которые могут играть роль насосов, каналов, рецепторов, ферментов и т. д.
В состав мембран входят три основных типа липидов: фосфолипиды, гликолипиды и холестерин.
СТРОЕНИЕ МЕМБРАН
Фосфолипиды мембран. Среди липидных компонентов мембран главенствующая роль принадлежит фосфолипидам — веществам, производным либо трехатомного спирта глицерола (глицерофосфолипиды), либо более сложного спирта сфингозина (сфингофосфолипиды). Все основные глицерофосфолипиды являются производными фосфатидной кислоты, этерифицированной с гидроксильной группой спиртов, таких как серии (серинфосфатиды — кефалины), этаноламин, холин (холинфосфа-тиды), кардиолипин (дифосфатидилглицерол) и инозитол (фос-фатидилинозитол).
Из сфингофосфолипидов основным является сфингомиелин, основу которого составляет сфингозин — аминоспирт с длинной ненасыщенной углеводородной цепью. В состав сфингомиелина входит также азотистое основание холин.
Независимо от структурных разнообразий каждая молекула фосфолипида в водной среде — это амфипатическая молекула с полярной головкой и неполярной хвостовой частью. Полярная головка образуется за счет остатков спиртовых групп, азотистых оснований и фосфорной кислоты. Хвостовая же часть — за счет радикалов двух жирных кислот насыщенного и ненасыщенного ряда. Благодаря своим амфипатическим свойствам фосфолипиды в водной среде спонтанно формируют липидные бислои, где полярные головки фосфолипидов направлены в сторону растворимой части клетки с образованием водородных связей с диполями воды, а неполярные хвосты — внутрь бислоя, скрепляясь между собой за счет гидрофобных взаимодействий. Именно бислойная структура фосфолипидов определяет полупроницаемые свойства мембран.
В качестве примера можно привести фосфатидилэтаноламин и фосфатидилхолин. Оба они имеют в верхней части молекулы полярные головки Nh5 (фосфатидилэтаноламин) и N+ (фосфатидилхолин), которые через остаток фосфорной кислоты и глицерина присоединены к двум остаткам жирных кислот, из которых одна насыщенная, другая — ненасыщенная (рис. 1).
Фосфолипиды с ненасыщенными жирными кислотами |
Фосфолипиды с насыщенными жирными кислотами |
В 1972 г. С. Дж. Сингер и Г. Никольсон сформулировали теорию строения мембран, согласно которой мембраны имеют жидкостно-мозаичную структуру. При обычной для клетки температуре мембранный бислой находится в жидком состоянии, что обеспечивается определенным соотношением между насыщенными и ненасыщенными жирными кислотами в гидрофобных хвостах полярных фосфолипидов. Жирные кислоты с ненасыщенными связями характеризуются большей гибкостью (в отличие от насыщенных ЖК) и способностью создавать изгибы, что предотвращает плотную упаковку, затрудняет «замораживание» мембран и таким образом влияет на их текучесть ().
Упаковка углеводородов в бислое зависит от температуры. При низких температурах бислой находится в виде геля и упакован плотно, при высоких же температурах (температура тела) бислой фактически «расплавляется» и становится текучим, позволяя липидным молекулам двигаться вокруг своей оси, вращаться, меняться местами. Это, в свою очередь, способствует перемещению уже других компонентов в мембране, в частности белков.
Мембранные гликолипиды. Следующим важным компонентом мембран являются гликолипиды — липиды, содержащие углеводы. Гликолипиды животных клеток, подобно сфингомиелину, являются производными спирта сфингозина, связанного с ацильным радикалом. Отличие между этими липидами заключается в том, что в гликолипидах к сфингозиновому остатку присоединены один или несколько остатков сахара, а в сфингомиелине — фосфорилхолин.
Гликолипиды могут быть простые и сложные. Простейший гликолипид — цереброзид, содержащий только один остаток сахара (глюкозу или галактозу). В более сложных гликолипидах число сахарных остатков может достигать семи (ганглиозиды)
Гликолипиды в мембранах могут выполнять защитную, полупроводниковую, рецепторсвязывающую роль. Среди молекул, способных связываться с гликолипидами, встречаются также такие клеточные яды, как холера, токсин тетануса и др.
Холестерин в мембранах. Другой представитель липидов в мембранах — это холестерин. Количество его в мембранах варьирует в зависимости от типа клеток. В плазматических мембранах в среднем на каждую молекулу фосфолипида приходится примерно 1 молекула холестерина. У других (например, бактерий) — холестерина нет вообще. У холестерина так же, как у фосфолипидов, имеются участки полярные и неполярные.
Внутри мембран холестерин внедряется между фосфолипидами и ориентируется в том же направлении, что и сами молекулы фосфолипидов. Таким образом, полярная головка холестерина оказывается в той же плоскости, что и полярные головки фосфолипидов (рис. 2).
В мембранах холестерин выполняет следующие функции:
■ фиксируют первые несколько ближайших углеводородных групп, входящих в состав фосфолипидных жирных кислот. Это делает липидный бислой более устойчивым к деформациям и ограничивает прохождение через них небольших водорастворимых молекул. В случае отсутствия холестерина (как, например, у бактерий) клетка нуждается в оболочке;
■ предотвращает кристаллизацию углеводородов и фазовые сдвиги в мембране.
Мембранные белки. В то время как мембранные липиды ответственны за создание барьера проницаемости, мембранные белки опосредуют отдельные функции мембран, т. е. транспорт веществ, передачу информации, энергии и т. д. Соотношение между липидами и белками у разных мембран может быть разным, например, миелин, изолятор нервных клеток, содержит только 18% белков и 76% липидов, а митохондриальная внутренняя мембрана, наоборот — содержит 76% белков и только 24% липидов. В зависимости от характера локализации в мембранах выделяют белки интегральные (трансмембранные), периферические и «заякоренные».
Интегральные белки пронизывают бислой мембраны насквозь и благодаря своим бифильным свойствам фиксируются в нем. Белки, пронизывающие мембрану только один раз, называют однократно пронизывающими белками, а несколько раз — многократно пронизывающими.
Периферические белки локализуются на поверхности мембран и скрепляются только за счет электростатических взаимодействий и водородных связей. Довольно часто периферические белки присоединяются к некоторым участкам интегральных белков (рис. 3).
Олигосахариды Гликопротеины Олигосахариды
Рис. 3. Белковый состав мембран
«Заякоренные» белки фиксируются в мембранах с помощью коротких хвостовых липофильных доменов, образованных либо за счет гидрофобных аминокислотных остатков (цитохром b5), либо за счет ковалентно связанных ацильных радикалов (фермент щелочная фосфатаза).
Участки белков, которые обращены во внеклеточную среду, могут подвергаться гликозилированию.
Транспортные белки. Мембранным белкам принадлежит решающая роль в транспорте веществ через мембраны, и для выполнения этой роли наилучшим образом подходят интегральные белки, которые охватывают пространство как внутриклеточное, так и межклеточное.
Транспорт веществ через мембраны белки осуществляют различными способами; они могут выступать в качестве белковых насосов, каналов, транспортеров.
АТР — зависимые насосы, представляют собой АТРазы, которые способствуют движению через мембраны ионов или небольших молекул против их концентрационного градиента (или электрохимического потенциала) за счет энергии расщепления АТР. Такой вид транспорта известен как активный транспорт. С активным транспортом сопряжены определенные химические реакции, так, например, благодаря таким насосам в животных клетках обеспечивается поддержание низких концентраций Са2+ внутри клетки и высокое содержание ионов Nа+ в межклеточном пространстве, низкое значение рН в желудочном соке у человека и животных (моногастричных), внутри лизосом клеток, вакуолей растительных клеток.
Белковые каналы обеспечивают быстрое (до 108 молекул в секунду) перемещение одновременно молекул воды и других молекул и ионов по направлению снижения их концентрационного градиента (или электрохимического потенциала). Такие перемещения молекул обычно являются энергетически выгодными. Так, плазматические мембраны всех животных клеток содержат К+ — специфичные белковые каналы, которые открываются и закрываются в определенное время. Другие белковые каналы в это время закрыты и открываются только в ответ на воздействие специальных сигналов. Особенно большую роль играют такие каналы в нервных клетках.
Белки-транспортеры способствуют транспорту различных ионов и молекул через мембрану; однако, в отличие от канальных белков, белки-транспортеры связывают одну (или несколько) молекул субстрата одновременно, что приводит к изменению конформации белка и в результате к транспорту этих связанных молекул через мембрану. Такие транспортеры могут переносить в клетку около 102-104 молекул в секунду, что гораздо медленнее, чем движение по белковым каналам.
Обнаружены 3 типа белка-транспортера.
Юнипортеры осуществляют транспорт через мембрану животных клеток молекул одного типа в сторону уменьшения их концентрационного градиента, например, глюкозу, аминокислоты.
Антипортеры и симпортеры обеспечивают согласованный ко-транспорт одних молекул или ионов через мембрану против их концентрационного градиента с движением других молекул или ионов в процессе их перемещения в сторону уменьшения их концентрационного градиента.
АКТИВНЫЙ ТРАНСПОРТ ЧЕРЕЗ МЕМБРАНУ
Активный транспорт — это транспорт веществ через мембраны за счет потребления энергии расщепления АТР. Активным транспортом осуществляется транспорт некоторых ионов и небольших молекул против их концентрационного градиента.
Белки, участвующие в активном транспорте через мембраны (белковые насосы), условно подразделяют на 4 класса: суперсемейство белков АВС, белки класса Р., F., и V. Белки класса Р., F. и V транспортируют только ионы, а АВС — небольшие молекулы и ионы.
Белки (насосы) Р. — класса состоят из 2 субъединиц — α и β; α — субъединица содержит АТР — связывающий участок и является каталитической, а β — субъединица — регуляторной. Большинство белков этого класса являются тетрамерами, составленными из 2 α, и 2 β — субъединиц. В процессе транспорта, по крайней мере, одна из α — субъединиц сначала подвергается фосфорилированию (поэтому и обозначается как «Р»), и именно через нее происходит транспорт ионов.
К белкам Р — класса относятся:
■ Nа+/К+- АТРаза — фермент, локализованный в плазматической мембране и регулирующий внутриклеточное содержание ионов Nа+ и К+ в клетках животных;
■ Са2+- АТРазы — насосы, перекачивающие ионы Са2+ из цитозоля в межклеточное пространство против их концентрационного градиента для поддержания низкого уровня кальция (10-2 М) в цитоплазме клеток животных, дрожжей и растений. Помимо плазматических Са2+-АТРаз клетки мышц содержат еще другую Са2+-АТРазу (мышечный Са2+-й насос), которая осуществляет перекачивание ионов кальция из цитозоля в саркоплазматический ретикулум (СР) — внутриклеточное хранилище кальция;
■ мембранные белки эпителиальных клеток желудка у млекопитающих, способствующие поступлению соляной кислоты в желудок;
■ Н+- насосы, транспортирующие протоны водорода из клетки взамен поступления ионов К+ внутрь клетки;
■ Н+- насосы, регулирующие мембранный электрический потенциал в клетках растений, грибов, бактерий. Эти насосы не содержат фосфопротеиновой части.
Ионные насосы класса F и V структурно похожи друг на друга, но гораздо сложнее, чем белки класса Р. Насосы F и V состоят из 3 трансмембранных белков и 5 различных полипептидов, которые ориентированы в цитозольную часть белка и формируют внутрицитозольный домен. Некоторые субъединицы трансмембранных белков, ориентированные во внешнюю часть биомембран, структурно аналогичны внутрицитозольным доменным полипептидам.
Насосы класса V в основном участвуют в поддержании низкого значения рН в вакуолях растений и лизосомах и других кислотных везикулах животных клеток за счет расходования энергии расщепления АТР и перекачивая протоны водорода через мембрану из цитозоля в межклеточное пространство против протонного электрохимического градиента. Насосы класса F найдены в плазматических мембранах бактерий, мембранах хлоропластов и митохондрий. В отличие от насосов класса V их функция в основном направлена на синтез АТР из АDР и неорганического фосфата за счет движения протонов водорода из цитозольного межмембранного пространства в сторону уменьшения электрохимического градиента.
Последний класс АTР — зависимых транспортных белков — это суперсемейство АВС (АТР-binding cassette). Этот класс включает до 100 различных транспортных белков, и обнаружены они в клетках всех организмов. Каждый АВС — белок специфичен по отношению к одному какому-то субстрату, или группе субстратов, похожих друг на друга, включая ионы, углеводы, пептиды, полисахариды и даже белки.
Все АВС — транспортные белки объединяет наличие у них 4 главных доменов — двух трансмембранных доменов (Т), образующих так называемые ворота для «прохождения» молекул через мембрану, и двух внутрицитозольных домена (А), участвующих в связывании АТР. Таких АТР — связывающих участков у АВС — белков могут быть один или два, и их часто называют АТРазами, хотя и не всегда они проявляют АТР — гидролизующие свойства. В отдельных случаях такие трансмембранные белки могут проявить АТР — синтезирующие свойства, что играет решающую роль при синтезе АТР в митохондриальных мембранах.
veterinarua.ru
Строение и функции плазматических мембран
Строение плазматической мембраны
Цитоплазматическая мембрана имеет толщину 8-12 нм, поэтому рассмотреть ее в световой микроскоп невозможно. Строение мембраны изучают при помощи электронного микроскопа.
Плазматическая мембрана образована двумя слоями липидов – билипидным слоем, или бислоем. Каждая молекула липида состоит из гидрофильной головки и гидрофобного хвоста, причем в биологических мембранах липиды расположены головками наружу, хвостами внутрь.
В билипидный слой погружены многочисленные молекулы белков. Одни из них находятся на поверхности мембраны (внешней или внутренней), другие пронизывают мембрану насквозь.
Функции плазматической мембраны
Мембрана защищает содержимое клетки от повреждений, поддерживает форму клетки, избирательно пропускает необходимые вещества внутрь клетки и выводит продукты обмена, а также обеспечивает связь клеток между собой.
Барьерную, отграничительную функцию мембраны обеспечивает двойной слой липидов. Он не дает содержимому клетки растекаться, смешиваться с окружающей средой или межклеточной жидкостью, и препятствует проникновению в клетку опасных веществ.
Ряд важнейших функций цитоплазматической мембраны осуществляется за счет погруженных в нее белков. При помощи белков-рецепторов клетка может воспринимать различные раздражения на свою поверхность. Транспортные белки образуют тончайшие каналы, по которым внутрь клетки и из нее проходят ионы калия, кальция, натрия и другие ионы малого диаметра. Белки-ферменты обеспечивают процессы жизнедеятельности в самой клетке.
Крупные пищевые частицы, не способные пройти через тонкие мембранные каналы, попадают внутрь клетки путем фагоцитоза или пиноцитоза. Общее название этим процессам – эндоцитоз.
Как происходит эндоцитоз – проникновение крупных пищевых частиц в клетку
Пищевая частица соприкасается с наружной мембраной клетки, и в этом месте образуется впячивание. Затем частица, окруженная мембраной, попадает внутрь клетки, образуется пищеварительная вакуоль, и внутрь образовавшегося пузырька проникают пищеварительные ферменты.
Лейкоциты крови, способные захватывать и переваривать чужеродные бактерии, называются фагоцитами.
В случае пиноцитоза впячиванием мембраны захватываются не твердые частицы, а капельки жидкости с растворенными в ней веществами. Этот механизм является одним из основных путей проникновения веществ в клетку.
Клетки растений, покрытые поверх мембраны твердым слоем клеточной стенки, не способны к фагоцитозу.
Процесс, обратный эндоцитозу, – экзоцитоз. Синтезированные в клетке вещества (к примеру, гормоны) упаковываются в мембранные пузырьки, подходят к мембране, встраиваются в нее, и содержимое пузырька выбрасывается из клетки. Таким образом клетка может избавляться и от ненужных продуктов обмена.
www.kakprosto.ru
Плазматическая мембрана строение и функции
Плазматическая мембрана строение и функции
В Строения мембраны входят липиды. Они состоят из гидрофильной группы, к которой прикреплены гидрофобные углеводородные цепи.
Главные функции мембраны:
Наша кожа является барьером защищающая клетки, это и есть клеточная мембрана. Она не позволяет цитоплазме вытечь наружу. А значит Главная функция мембраны – это удержать клетку в целости и сохранности, должна так же определить что может проникнуть внутрь, а что выйти.
От того что клеточная мембрана является полупроницаемой, то соответственно, некоторые виды молекул могут проникнуть внутрь клетки и так же наружу, через мембрану, это называют диффузией. А если мембрана не проницаема, то соответственно, маленькая молекула не сможет в нее проникнуть. Нужно учесть то что молекула сможет только перейти из переполненной области в более свободную. В пример можно взять аминокислоты, захотели они пробраться к клетки, нужно что бы концентрация аминокислоты была больше чем в самой клетки, в этом случаи клеточная мембрана будет открытой для нее.
функции клеточной мембраны:
1) Избирательное проникновение в клетку и из нее молекул и ионов, необходимых для выполнения специфических функций клеток;
2) Избирательный транспорт ионов через мембрану, поддерживая трансмембранную разницу электрического потенциала;
3) Специфику межклеточных контактов.
Строения мембраны:
В строения мембраны входят множество рицептеров, они в свою очередь воспринимают активные биологические вещества. Так же к функциям клеточной мембраны относят ее специфику иммунных проявлений, благодаря тому, что она имеет в свою очередь антигены.
Так же В строения клеточной мембраны входят липидные би -слои, холестерол, гликолипиды и фосфолипиды. В водной среде такие липиды формируют пленку примерно в 4-5 нм, в которых гидрофильные группы будут обращены к воде, а углеводородные цепи расположатся в два ряда, образуя липидную без водную фазу. Функциональными элементами мембраны являются белки, они составляет от 25 до 75% В соотношении 1 молекула белка на 50 молекул липидов. [см. классы липидов]
1 — двойной слой амфифильных липидов;
2 — молекула липида и в ней:
2-а — гидрофобная часть (углеводородные «хвосты»),
2-6 — гидрофильная часть;
3 — интегральные белки: пронизывают мембрану насквозь;
4 — периферические белки: связаны лишь с одной стороны мембраны;
5 — углеводные компоненты: связаны с белками на внешней стороне мембраны;
6 — срединная (гидрофобная) часть липидного бислоя.
Похожие статьи:
Медицина «Л» → Лизофосфатидилхолин
Медицина «С» → Сфингомиелин
Медицина «Л» → Лизофосфатидилхолинацилтрансфераза
Медицина «С» → Сукцинил КоА
youpedia.ru