График модуль y равен модуль x: Mathway | Популярные задачи

Содержание

Графики,содержащие знак модуля.Построение графиков,содержащих знак модуля. | Учебно-методический материал по алгебре (10 класс) по теме:

         

 Исследовательская работа

«Построение графиков

функций, аналитическое выражение которых содержит знак абсолютной величины»

                           

                                                             

                                                         

                                                2008  

               

Оглавление.

I. Введение——————————————————————————1

II. Основная часть.——————————————————————-1-13

    1. Историческая справка——————————————————- -3-4

    2.  Геометрическая интерпретация понятия |а|—————————- -4-5

    3.  График функции у=f |(х)|——————————————————5-8

    4. График функции у = | f (х)|  —————————————————8-10

    5. График функции  у=|f |(х)| | — —- ——————————————10-13

III. Заключение.————————————————————————-13

IV. Список литературы —————————————————————14

        

I. Введение.

        

         Построение графиков функций одна их интереснейших тем в школьной математике. Один из крупнейших математиков нашего времени Израиль Моисеевич Гельфанд писал: «Процесс построения графиков является способом превращения формул и описаний в геометрические образы. Это – построение графиков – является средством увидеть формулы и функции и проследить, каким образом эти функции меняются. Например, если написано , то вы сразу видите параболу; если , вы видите параболу, опущенную на четыре единицы; если же , то вы видите предыдущую параболу, перевернутую вниз. Такое умение видеть сразу формулу, и ее геометрическую интерпретацию – является важным не только для изучения математики, но и для других предметов. Это умение, которое остается с вами на всю жизнь, подобно умению ездить на велосипеде, печатать на машинке или водить машину».

        Хотя уравнения с модулями мы начали изучать уже с 6-го – 7-го класса, где мы проходили самые азы уравнений с модулями, я выбрала именно эту тему, потому что считаю, что она требует более глубокого и досконального исследования. Я хочу получить более широкие знания о модуле числа, различных способах построения графиков, содержащих знак абсолютной величины.

        Цель работы: изучить соответствующие теоретические материалы, выявить алгоритм построения графиков функций, аналитическое выражение которых содержит знак абсолютной величины.

        Объект исследования: линейные функции, аналитическое выражение которых содержит знак абсолютной величины.

        Методы исследования: построение графиков функций.

II. Основная часть.

1. Историческая справка.

          В первой половине ХVII века начинает складываться представление о функции как о зависимости одной переменной величины от другой. Так, французские математики Пьер Ферма (1601-1665) и Рене Декарт (1596-1650) представляли себе функцию как зависимость ординаты тоски кривой от ее абсциссы. А английский ученый Исаак Ньютон (1643-1727) понимал функцию как изменяющуюся в зависимости от времени координату движущейся точки. 

        Термин «функция» (от латинского function – исполнение , совершение) впервые ввел немецкий математик Готфрид Лейбниц(1646-1716). У него функция связывалась с геометрическим образом (графиком функции). В дальнейшем швейцарский математик Иоганн Бернулли(1667-1748) и член Петербургской Академии наук знаменитый математик XVIII века Леонард Эйлер(1707-1783) рассматривали функцию как аналитическое выражение. У Эйлера имеется и общее понимание функции как зависимости одной переменной величины от другой.

            Слово «модуль» произошло от латинского слова «modulus», что в переводе означает «мера». Это многозначное слово (омоним), которое имеет множество значений и применяется не только в математике, но и в архитектуре, физике, технике, программировании  и других точных науках.

В архитектуре — это исходная единица измерения, устанавливаемая для данного  архитектурного сооружения и служащая для выражения кратных соотношений его составных элементов.

В технике — это термин, применяемый в различных областях техники, не имеющий универсального значения и служащий для обозначения различных коэффициентов и величин, например модуль зацепления, модуль упругости и .т.п.

Модуль объемного сжатия( в физике)-отношение нормального напряжения в материале к относительному удлинению.

      Определение. Модуль числа a или абсолютная величина числа a равна  a, если a    больше или равно нулю и равна -a, если a меньше нуля:

   Из определения следует, что для любого действительного числа a,

2. Геометрическая интерпретация понятия модуля |а|

Каждому действительному числу можно поставить в соответствие точку числовой прямой, это точка будет геометрическим изображением данного действительного числа. Каждой точке числовой прямой соответствует её расстояние от начало отсчета, или длина отрезка, начало которого в точке начала отсчета, а конец – в данной точке. Длина отрезка всегда рассматривается как величина неотрицательная.   Геометрической интерпретацией действительного числа служит вектор, выходящий из начала отсчета и имеющий конец в точке, изображающей данное число. Длина этого вектора будет геометрической интерпретацией модуля данного действительного числа.

                                 

                                   -а                                     0                                   а

                             

                              3. График функции у=f |(х)|

у=f |(х)| — четная функция, т.к. | х | = | -х |, то f |-х| = f | х |

График этой функции симметричен относительно оси координат.

Следовательно, достаточно построить график функции у=f(х) для х>0,а затем достроить его левую часть, симметрично правой относительно оси координат.

Например, пусть графиком функции у=f(х) является кривая, изображенная на рис.1, тогда графиком функции у=f |(х)| будет кривая, изображенная на рис. 2.

                                                                                      Рис.1          

                                                                                       Рис.2.

1. Построить график функции у= |х|

  1. Если х≥0, то |х| =х  и наша функция у=х, т.е. искомый график совпадает с биссектрисой первого координатного угла.
  2. Если х

Таким образом, искомый график есть ломанная, составленная из двух полупрямых. (Рис.3)

Из сопоставления двух графиков: у=х и у= |х|, я сделала  вывод, что второй получается из первого зеркальным отображением относительно ОХ той части первого графика, которая лежит под осью абсцисс. Это положение вытекает из определения абсолютной величины.

Можно ли применять этот метод построения графиков дл квадратичной функции, для графиков обратной пропорциональности, содержащие абсолютную величину?  Для этого я рассмотрела несколько  функций, и сделала для себя вывод.

 2. Например: у=х2 — |х| -3

а) Строю  у=х2 -х -3 для х>0.

Квадратичная функция, графиком является парабола, ветви которой направлены вверх, т.к. а = , а > 0

  1. х0 = —

 у0 =-4

(2; -4) – координаты вершины параболы.

  1. х=0, у= -3

(0; — 3) координаты точки пересечения графика функции с осью ОУ.

  1. у =0,  х2 -х -3 = 0

                  х2 -4х -12 = 0  Имеем, х1= — 2; х2 = 6.

(-2; 0) и (6; 0) – координаты точки пересечения графика функции с осью ОХ.

Если х

Значит, часть требуемого графика, соответствующая значениям х0.

б) Поэтому достраиваю для х

   

Вывод: Для построения графика функции у=f |(х)|  

  1. Достаточно построить график функции у=f(х) для х>0;
  2. Строить для х

                                         4. График функции у = | f (х)|          

 По определению абсолютной величины, можно данную функцию рассмотреть как совокупность двух линий:

у=f(х), если f(х) ≥0;  у  = — f(х), если f(х)

Для любой функции у = f(х), если f(х) >0, то | f (х)|  = f(х), значит в этой части график  функции у = | f (х)|  совпадает с графиком самой функции у=f(х). Если же f(х) f (х)| = — f(х),т.е. точка (х; | f (х)|  ) симметрична точке (х; f (х)) относительно оси ОХ. Поэтому для получения требуемого графика отражаем симметрично относительно оси ОХ «отрицательную» часть графика.

1. Построить график функции у= | х2 – х – 6 |.

а) Построить график функции у=  х2 – х – 6 . Квадратичная функция, графиком является парабола, ветви направлены вверх, т.к. а = 1, а >1.

 х0 = —

у0  = —       (1/2; — 6,25) координаты вершины

х=0; у = -6              (0; -6) координаты точки пересечения с осью ОУ.

у= 0, х2 – х – 6=0

    х1 = -2; х2 = 3.   (-2;0) и (3;0) –координаты точек пересечения с осью ОХ

б) Часть графика, расположенного в нижней полуплоскости, отобразить симметрично оси ОХ. (Рис.5)

Вывод: Для построения графика функции у=|f(х) |  

1.Построить график функции у=f(х) ;

2. На участках, где график расположен в нижней полуплоскости, т.е., где f(х)

(Рис.6, 7.)

     

                          5.  График функции  у=|f |(х)| |

Применяя, определение абсолютной величины и исследуя, графиков функции

у = | 2 · |х | — 3|

у = | х2 – 5 · |х| |

у = | |х3 | — 2 |, я нашла алгоритм построения графиков.

 Для того чтобы построить график функции у=|f |(х)|  | надо:

1. Построить график функции у=f(х) для х>0.

2. Построить кривую графика, симметричную построенной относительно оси ОУ, т.к. данная функция четная.

3. Участки графика, расположенные в нижней полуплоскости, преобразовывать на верхнюю полуплоскость симметрично оси ОХ.

1. у = | 2 · |х | — 3|

1) Строю  у = 2х-3, для х>0.   (1; -1)     (; 0)

2) Строю прямую, симметричную построенной относительно оси ОУ.

3) Участки графика, расположенные в нижней полуплоскости, отображаю симметрично относительно оси ОХ.  Рис.8

2. у = | х2 – 5 · |х| |

а) Строю график функции у = х2 – 5 х     для  х>0.

Квадратичная функция, графиком является парабола, ветви направлены, т. к. а=1, а>0

х0 = -;    

       у0  = 6,25 -12,5 = -6,25        (2,5; -6,25) – координаты вершины

х=0; у=0;                                     (0; 0) – координаты точки пересечения с осью ОУ

у=0;      х2 – 5 х =0                   (0; 0) и ( 5; 0) – координаты точек пересечения с осью ОХ.

х1 =0; х2=5

(Рис.9)

б) Строю  часть графика, симметричную построенной относительно оси ОУ

в) Часть графика, расположенные в нижней полуплоскости, преобразовываю на верхнюю полуплоскость симметрично оси ОХ.

3. у =| |х|3 | — 2 |

  а) Строю у=х3 -2 для х > 0.

     х1= 0; у1= -2

    у2 = 0; х3 -2 =0

                х2 =

 б) Строю  часть графика, симметричную построенной относительно оси ОУ

 

 в) Часть графика, расположенные в нижней полуплоскости, преобразовываю на верхнюю полуплоскость симметрично оси ОХ. (Рис.10)

III. Заключение.

При выполнении исследовательской  работы я делала такие выводы:

— сформировала алгоритмы построения графиков  функций, аналитическое выражение которых содержит знак абсолютной величины.

Алгоритм построения графика функции у=f |(х)|  

    1.Построить график функции у=f(х) для х>0;

2.Построить для х

Алгоритм построения графика функции у=|f(х) |  

1.Построить график функции у=f(х) ;

2. На участках, где график расположен в нижней полуплоскости, т.е., где f(х)

Алгоритм построения графика функции у=|f |(х)|  |

1. Построить график функции у=f(х) для х>0.

2. Построить кривую графика, симметричную построенной относительно оси ОУ, т.к. данная функция четная.

3. Участки графика, расположенные в нижней полуплоскости, преобразовывать на верхнюю полуплоскость симметрично оси ОХ.

   — приобрела опыт построения графиков таких функций, как:

                                у=f |(х)|; у = | f (х)|;  у=|f |(х)| |;

    — научилась работать с дополнительной литературой и материалами, производить отбор

       научных сведений;

   — приобрела опыт выполнения графических работ на компьютере.

Список литературы:

  1. И. М.Гельфанд, Е.Г. Глаголева. Функции и графики. Издательство «Наука»
  2. Р.А. Калнин. Алгебра и элементарные функции. Издательство «Наука»
  3. М.К. Потапов, С.Н. Олехник. Конкурсные задачи по математики, Москва. «Наука»
  4. Ю. Н.Макарычев, Н.Г. Миндюк. Дополнительные главы к школьному учебнику.

Москва, «Просвещение».

у

0

х

0

у

х

х

у

х

у

Рис 3.

0

6

-6

-3

х

у

Рис.4

0

6

-6

-2

3

х

у

Рис.5

у

х

Рис.6

у

х

Рис.7

0

у

х

-3/2

3/2

-3

3

Рис.8

1

-1

-6

-6

0

5

5

Рис.9

-2

0

1

2

2

-2

у

х

Рис.10

График функции y = (|x-1|)/(x-1)

Для того, чтобы найти экстремумы, нужно решить уравнение
$$\frac{d}{d x} f{\left (x \right )} = 0$$
(производная равна нулю),
и корни этого уравнения будут экстремумами данной функции:
$$\frac{d}{d x} f{\left (x \right )} = $$
Первая производная
$$\frac{\operatorname{sign}{\left (x — 1 \right )}}{x — 1} — \frac{\left|{x — 1}\right|}{\left(x — 1\right)^{2}} = 0$$
Решаем это уравнение
Корни этого ур-ния
$$x_{1} = 34$$
$$x_{2} = 92$$
$$x_{3} = -100$$
$$x_{4} = 12$$
$$x_{5} = 80$$
$$x_{6} = 4$$
$$x_{7} = 70$$
$$x_{8} = -82$$
$$x_{9} = 90$$
$$x_{10} = -14$$
$$x_{11} = -78$$
$$x_{12} = -90$$
$$x_{13} = -46$$
$$x_{14} = -48$$
$$x_{15} = 46$$
$$x_{16} = 66$$
$$x_{17} = 22$$
$$x_{18} = 72$$
$$x_{19} = -66$$
$$x_{20} = -4$$
$$x_{21} = 82$$
$$x_{22} = 98$$
$$x_{23} = 74$$
$$x_{24} = 36$$
$$x_{25} = -70$$
$$x_{26} = -54$$
$$x_{27} = -74$$
$$x_{28} = -30$$
$$x_{29} = -32$$
$$x_{30} = -12$$
$$x_{31} = 52$$
$$x_{32} = 32$$
$$x_{33} = -60$$
$$x_{34} = -20$$
$$x_{35} = 40$$
$$x_{36} = 68$$
$$x_{37} = -86$$
$$x_{38} = -34$$
$$x_{39} = 24$$
$$x_{40} = -10$$
$$x_{41} = 18$$
$$x_{42} = -44$$
$$x_{43} = 62$$
$$x_{44} = -76$$
$$x_{45} = 50$$
$$x_{46} = -2$$
$$x_{47} = 88$$
$$x_{48} = 10$$
$$x_{49} = -94$$
$$x_{50} = -56$$
$$x_{51} = -52$$
$$x_{52} = 0$$
$$x_{53} = -80$$
$$x_{54} = -36$$
$$x_{55} = 78$$
$$x_{56} = 54$$
$$x_{57} = 60$$
$$x_{58} = -64$$
$$x_{59} = -40$$
$$x_{60} = -68$$
$$x_{61} = 26$$
$$x_{62} = 28$$
$$x_{63} = -38$$
$$x_{64} = -42$$
$$x_{65} = -22$$
$$x_{66} = -84$$
$$x_{67} = -50$$
$$x_{68} = 38$$
$$x_{69} = 64$$
$$x_{70} = 30$$
$$x_{71} = 14$$
$$x_{72} = 86$$
$$x_{73} = -6$$
$$x_{74} = -98$$
$$x_{75} = -28$$
$$x_{76} = 6$$
$$x_{77} = -18$$
$$x_{78} = 94$$
$$x_{79} = 48$$
$$x_{80} = 16$$
$$x_{81} = 20$$
$$x_{82} = 2$$
$$x_{83} = 96$$
$$x_{84} = -26$$
$$x_{85} = -92$$
$$x_{86} = -96$$
$$x_{87} = -8$$
$$x_{88} = 58$$
$$x_{89} = 76$$
$$x_{90} = -88$$
$$x_{91} = 8$$
$$x_{92} = -16$$
$$x_{93} = 100$$
$$x_{94} = -24$$
$$x_{95} = 42$$
$$x_{96} = 84$$
$$x_{97} = -62$$
$$x_{98} = 56$$
$$x_{99} = -58$$
$$x_{100} = -72$$
$$x_{101} = 44$$
Зн. экстремумы в точках:
(34, 1)
(92, 1)
(-100, -1)
(12, 1)
(80, 1)
(4, 1)
(70, 1)
(-82, -1)
(90, 1)
(-14, -1)
(-78, -1)
(-90, -1)
(-46, -1)
(-48, -1)
(46, 1)
(66, 1)
(22, 1)
(72, 1)
(-66, -1)
(-4, -1)
(82, 1)
(98, 1)
(74, 1)
(36, 1)
(-70, -1)
(-54, -1)
(-74, -1)
(-30, -1)
(-32, -1)
(-12, -1)
(52, 1)
(32, 1)
(-60, -1)
(-20, -1)
(40, 1)
(68, 1)
(-86, -1)
(-34, -1)
(24, 1)
(-10, -1)
(18, 1)
(-44, -1)
(62, 1)
(-76, -1)
(50, 1)
(-2, -1)
(88, 1)
(10, 1)
(-94, -1)
(-56, -1)
(-52, -1)
(0, -1)
(-80, -1)
(-36, -1)
(78, 1)
(54, 1)
(60, 1)
(-64, -1)
(-40, -1)
(-68, -1)
(26, 1)
(28, 1)
(-38, -1)
(-42, -1)
(-22, -1)
(-84, -1)
(-50, -1)
(38, 1)
(64, 1)
(30, 1)
(14, 1)
(86, 1)
(-6, -1)
(-98, -1)
(-28, -1)
(6, 1)
(-18, -1)
(94, 1)
(48, 1)
(16, 1)
(20, 1)
(2, 1)
(96, 1)
(-26, -1)
(-92, -1)
(-96, -1)
(-8, -1)
(58, 1)
(76, 1)
(-88, -1)
(8, 1)
(-16, -1)
(100, 1)
(-24, -1)
(42, 1)
(84, 1)
(-62, -1)
(56, 1)
(-58, -1)
(-72, -1)
(44, 1)

Интервалы возрастания и убывания функции:
Найдём интервалы, где функция возрастает и убывает, а также минимумы и максимумы функции, для этого смотрим как ведёт себя функция в экстремумах при малейшем отклонении от экстремума:
Минимумы функции в точках:
$$x_{101} = -30$$
$$x_{101} = -86$$
$$x_{101} = 50$$
$$x_{101} = -62$$
Максимумы функции в точках:
$$x_{101} = -48$$
$$x_{101} = 88$$
$$x_{101} = 64$$

Убывает на промежутках

[50, oo)

Возрастает на промежутках
(-oo, -86]

Построение графиков содержащих знак модуля построение графика функции содержащей переменную или функцию под знаком модуля согласно определению модуля

Построение графиков, содержащих знак модуля

Построение графика функции, содержащей переменную

или функцию под знаком модуля согласно определению модуля:

x, если х>=0 f(x), если f(x)>=0

|x| = ; |f(x) | =

-x, если x<0 -f(x), если f(x)<0

Пример:

Построить график функции у=|2x-3|-х.

Рассмотрим два случая.

2х-3>=0 2х-3<0

y=2x-3-x или y=-2x+3-x

x>=

x<

y=x-3 y= -3x+3

Таким образом, чтобы построить график функции у=|2x-3|-x, надо построить графики функций, заданными различными выражениями на различных промежутках.

х-3, х>=

у=

— 3х+3, х<

График изображен ниже:

y=|2x-3|-x

Построить график:

  1. Y=|X|+X

  2. Y=|X| · (X-2)

  3. Y=|X+4| · X

  4. Y=

  5. Y=

  6. Y=2–1)

  7. Y=2+4X+3)

  8. Y=

  9. Y=

  10. Y=X — 1 — |X-1|

  11. Y=|3X-4|-X

  12. Y=

13. Y=

  1. Y=

  2. Y=

  3. Y=

  4. Y=X2 — 2|X+1|-1

  5. Y=X+

  6. Y=|X2-4X+3|+2X

  7. Y=

  8. Y=|X2-4|+4X

  9. Y=

Элементарные преобразования графика функции у=f(x)

Если формула зависимости имеют вид |y| = f(x):

  1. Надо построить график у = f(x)

  2. Часть графика, расположенную выше оси Ох (и на самой оси) оставить без изменения

  3. Часть графика расположенную ниже оси Ох стереть

  4. Для оставленной части построить симметричную относительно оси Ох

Пример:

Построить график |y| = 2х-1

Построить график:

  1. Y|=5X-4

  2. |Y|=9-X2

  3. |Y|=

  4. |Y|=(X+4)2-5

  5. |Y|=

  6. |Y|=X+2

  7. |Y|=X2-6X+8

  8. |Y|=X2-4X

  9. X|Y|=2

  10. |Y|=

  11. |Y| · (X+1)=1

  12. |Y|=1-

  13. |Y|=|2X-X2|

  14. Y2=-2X

  15. |Y|=8+2X-X2

  16. Y2=0,5X

Элементарные преобразования графика функции у=f(x)

Если формула зависимости у = f(|x|):

  1. Надо построить график функции у = f(x), часть графика расположенную правее оси Оу(и на самой оси) оставить без изменения

  2. Часть графика расположенную левее оси Оу стереть

  3. Построить для оставленной части симметричную относительно оси Оу

Пример:

Построить график у=2|x|-1

Построить график:

  1. Y=5|X|-5

  2. Y=9-|X|2

  3. Y=

  4. Y=

  5. Y=

  6. Y=(|X|+4)2-5

  7. Y=

  8. Y=

  9. Y=|X|-1

  10. Y=

  11. Y=X2-|X|-6

  12. Y=-X2+6|X|-8

  13. Постройте график. С его помощью укажите пути функции, интервалы знакопостоянства, промежутки монотонности, наибольшее и наименьшее значения функции, область значений функции:

2-, если |X|<=4

у= , если |X|>4

  1. Y=X2-|X|-2

  2. Решите уравнение X2+3|X|-18=0 графически.

  3. Y=|X|-X2

  4. Y=

Элементарные преобразования графика функции у=f(x)

Если формула зависимости имеет вид у = |f(x)|,

  1. График функции у = f(x) выше оси Ох (и на самой оси Ох) оставить без изменения

  2. Для части графика расположенной ниже оси Ох строят симметричную относительно

оси Ох

  1. Часть графика расположенная ниже оси Ох стирается.

Пример:

Построить график функции у=|2x-1|

Построить график:

  1. Y=|5X-4|

  2. Y=|9 -X2|

  3. Y=

  4. Y=|(X-4)2-5)|

  5. Y=|X+2|

  6. Y=|X-1|

  7. Y=|X2+2X|

  8. Y=

  9. Y=||

  10. Y=||X2-3|-1|

  11. Y=|X2-1|

  12. Y=|X+1|-2

  13. Y=4+|X-3|

  14. Y=3 ∙ |X-2|

  15. Найдите наибольшее и наименьшее значение функции Y=:

а)на отрезке [-2;2]

б)на луче [0;+ )

в)на луче (- ;3]

г)на отрезке [-5;0]

16. Найдите наименьшее и наибольшее значение функции Y=:

а)на луче (- ;5]

б)на отрезке [4;7]

в)на луче [2;+ )

г)на полуинтервале [-1;6]

17.Решите уравнение графически:

а)|X2-9|=5 б)|X-2|=X2 в)|X+1|= -2X2

г)|X2-1|=|X2-X+1| д)|X-3|=X2+1 е)|X+5|=-X-1

ё) -2(X+2)2 ж) з)(X+3)2

и)-X

Построение графиков уравнений, содержащих несколько модулей

Пример: построить график функции

1). Найти те значения переменной, при которых выражение, стоящее под знаком модуля, равно нулю. ; ; .

2). Числовую прямую разбивают на промежутки точками, соответствующими найденным значениям переменной

0 1

3). На каждом промежутке определяют знак выражения, стоящего под знаком модуля (берут числа из промежутка и ставят в под модульное выражение). Определяют знак выражения стоящего под знаком модуля

− 0 − 1 +

− + +

4). Берут промежуток, раскрывают модуль (пользуясь определением модуля) на данном промежутке и упрощают

Составляют формулу кусочной функции

y

Строят график кусочной функции

1

x

0 1

1). Найдите промежутки убывания функции и ее наибольшее значение на отрезке . Ответ: , .

2). Найдите множество значений функции и ее наименьшее значение на отрезке . Ответ: , .

3). Найдите множество значений функции и значения, которые функция принимает ровно три раза. Ответ: ; ; .

4). Найдите все значения , при которых значения функции положительны и значения, принимаемые функцией ровно 2 раза. Ответ: ; , .

5). Постройте график функции и для каждого укажите количество общих точек этого графика и прямой .

а). . Ответ: Общих точек нет при ;

При , одна точка;

При и , две точки;

При , бесконечное множество точек.

б). . Ответ: Общих точек нет при ;

При , одна точка;

При и , две точки;

При ,, три точки;

При , четыре точки.

6). Найдите наибольшее и наименьшее значения функции на отрезке . Ответ: ; .

7). Найдите наименьшее значение функции

а). .Ответ: при .

б). .Ответ: при .

9). Докажите, что если , то наименьшее значение функции равно .

10). Исследуйте функцию на промежутки монотонности

а). . Ответ: На промежутках ; функция убывает. На промежутках возрастает.

б). . Ответ: На промежутках ; функция убывает. На промежутках и возрастает. На промежутках и функция постоянна.

11). Постройте графики функций

1). 2).

3). 4).

Решение неравенств, содержащих знак модуля

Неравенства вида

> , где > 0

Если выражение, стоящее под знаком модуля , обозначить через t (f(x) = t), то данное неравенство примет вид > . Используя геометрический смысл модуля (модуль на числовой прямой представляет собой расстояние от точки, которая изображает данное число, до точки ноль). Изображаем на числовой прямой все точки, расстояние от которых до ноля больше .

———∙——————∙—————∙————►t

0

t < — или t >

Решаем совокупность неравенств

Пример:

Решите неравенство > 11

Решение: > 11

Пусть , >11

———∙——————∙—————∙————►t

-11 0 11

; ;

Ответ: ; ;

Неравенство вида > , где < 0 верно при всех из области допустимых значений неравенства.

Решите неравенства

1). > 11. Ответ:

2). . Ответ:

3). . Ответ: : .

4). . Ответ: . .

5). . Ответ: .

6). . Ответ: .

7). . Ответ: .

8). . Ответ: .

9). . Ответ: .

10). >2. Ответ: .

Неравенства вида

>

Учитывая свойство модуля =

и свойство неравенства: если обе части неравенства неотрицательны, то при возведении в квадрат получаем неравенство равносильное данному .

Неравенство > можно заменить равносильным неравенством > это >0 () ∙ (+) >0

Далее решать методом интервалов или заменить совокупностью систем

Аналогично решаются неравенства вида < .

Решите неравенства

1). . Ответ: .

2). Найти целочисленные решения неравенства .

Ответ: -8; -7; -6; … -1;0.

3). . Ответ: .

4). . Ответ: .

5). . Ответ: .

6). . Ответ: .

7). . Ответ: .

8). . Ответ: .

9). . Ответ: .

10). . Ответ: .

11). . Ответ: .

12). . Ответ: .

13). . Ответ: .

14). . Ответ: .

15). . Ответ: .

16). . Ответ: .

17). . Ответ: .

18). . Ответ: .

19). . Ответ: .

20). . Ответ: .

21). . Ответ: .

22). . Ответ: .

23). . Ответ: .

Решение неравенств вида

;

Неравенство

Доказательство:

.

Неравенство

Доказательство:

.

.

Решите неравенства

1). . Ответ: .

2). . Ответ: .

3). . Ответ: .

4). . Ответ: .

5). . Ответ: .

6). . Ответ: или .

7). . Ответ: .

8). . Ответ: ; .

9). . Ответ: .

10). . Ответ: .

11). . Ответ: .

12). . Ответ: или .

13). . Ответ: ; .

14). . Ответ: или .

15). . Ответ: .

16). . Ответ: .

17). . Ответ: .

18). . Ответ: .

19). . Ответ: .

20). . Ответ: ; .

Решение неравенств, содержащих несколько модулей методом интервалов

Суть метода состоит в следующем:

Пример:

1). Находят те значения переменной при которых выражения, стоящие под знаком модуля равно нулю.

2). Числовую ось разбивают на промежутки точками, соответствующими значениям переменной

1

3). На каждом промежутке, определяют знак выражения, стоящего под знаком модуля (берут число из промежутка, ставят в подмодульное выражение, определяют знак выражения, стоящего под знаком модуля)

— 0 + 1 +

-1 — — +

4). Берут промежуток, раскрывают каждый модуль, пользуясь определением модуля на данном промежутке, и решают неравенство

5). Проверяют, принадлежат ли найденные решения неравенства рассматриваемому промежутку; если принадлежат, то их включают в ответ

0

2

Если нет – отбрасывают. Так поступают с каждым промежутком.

6). Объединяют все решения исходного неравенства, найденные на всех промежутках, и учитывая область допустимых значений первоначального неравенства, выписывают ответ.

Ответ: -2<<3

Решите неравенство

1). Ответ:

2). Ответ:

3). Ответ:

4). Ответ:

5).Укажите целочисленные решения неравенства Ответ: 3;4

6). Ответ:

7). Ответ:

8). Ответ:

9). Ответ:

10). Ответ:

11). Ответ:

12). Ответ:

13). Ответ:

14). Ответ:

15). Ответ:

16). Ответ:

Решение неравенств, содержащих знак модуля, методом введения новой переменной.

1). Найти область значений переменной, входящей в неравенство.

2). Если в уравнении неоднократно встречается фиксированное выражение, зависящее от неизвестной величины, то имеет смысл обозначить это выражение, какой либо буквой. Когда вводится обозначение желательно сразу отбросить все или некоторые значения при которых уравнение = не имеет решений , т.е. полезно сразу указать область значений функции = .

3). Решить неравенство относительно введенной неизвестной.

4). Решить неравенство относительно исходной переменной.

5). Учитывая область допустимых значений исходного неравенства записать ответ.

Пример:

Учитывая свойство модулей имеем Пусть = , , тогда неравенство примет вид =1; =-3. f

Учитывая, что имеем

Учитывая область допустимых значений исходного неравенства Ответ:

Решите неравенства

1). Ответ:

2). Ответ:

3). Ответ:

4). Ответ:

5). Ответ:

6). Ответ:

7). Ответ:

8). Ответ:

9). Ответ:

10). Ответ:

Изображение на координатной плоскости множества точек, координаты которых удовлетворяют данному неравенству

Чтобы на координатной плоскости изобразить множество точек, координаты которых удовлетворяют неравенству надо:

1). Построить множество точек, координаты которых удовлетворяют уравнению (если неравенство строгое, то линия изображается пунктирной, если не строгое, то сплошной).

2). График или графики уравнений разбивают координатную плоскость на части.

3). Взять координаты точки, принадлежащей каждой части по очереди и поставить в неравенство. Если координаты точки удовлетворяют неравенству, то эту часть координатной плоскости заштриховать.

Пример: Изобразить на координатной плоскости множество точек, координаты которых удовлетворяют неравенству .

1). Построим график уравнения .

или

III II I

-1 0 1

Прямые и изображаем сплошными линиями, так как неравенство не строгое. Прямые разбивают координатную плоскость на три области. Неравенству удовлетворяют координаты точек, принадлежащих II части, поэтому заштриховываем II часть.

Изобразите на координатной плоскости множество точек, координаты которых удовлетворяют неравенству.

1). .

2). .

3). .

4). .

5). .

6). .

7). .

8). .

9). .

10). .

11). .

12). .

13). .

14). .

15). .

16). .

17). .

18). .

19).

20). .

21). .

22). .

23. .

24). .

Изобразите на координатной плоскости множество точек, удовлетворяющих условию

а) . б).

в) г)

д) е) .

Системы неравенств с параметрами, содержащие знак модуля

1). Найдите все значения параметра , при которых система неравенств имеет единственное решение.

а). Ответ: При .

б). Ответ: При .

2). При каких значениях параметра система неравенств имеет ровно одно решение?. Для всех таких найдите это решение.

а). Ответ: При , ;

При , .

б). Ответ: При , ;

При , .

3). При каких значениях параметра система не имеет решения.

а). Ответ: При .

б). Ответ: При .

4). Для каждого значения параметра решите систему неравенств.

а). Ответ: При , ;

При , ;

При , ;

При , .

б). Ответ: При и , ;

При , ;

При , ;

При , ;

При , .

Нестандартные уравнения и неравенства, содержащие знак модуля

К нестандартным ,обычно относятся такие уравнения и неравенства, где традиционные алгоритмы решения не проходят. Во многих случаях, решение таких уравнений и неравенств осуществляется на функциональном уровне, т.е с помощью графиков, или за счет сопоставления некоторых свойств функций, содержащихся в левой и правой частях уравнения или неравенства.

Если, например, наименьшее значение одной из функций совпадает с наибольшим значением функции , то уравнение = заменяют равносильной системой , где — наименьшее значение или наибольшее значение .

Решение системы является решением уравнения = .

1). Решите уравнение

Уравнение необходимо решить графически. Ответ:

2). Решите неравенство

. Применить метод оценки. Ответ:

3). Решите уравнение

. Решить уравнение графически. Ответ:

4). Решите уравнение

. Применить свойство: сумма неотрицательных функций равна нулю тогда и только тогда, когда все функции одновременно равны нулю. Ответ:

5). Решите уравнение

.Область допустимых значений (ОДЗ) уравнения состоит из конечного числа значений. Для решения достаточно проверить все эти значения. Ответ:

Применение свойства = для любого

при нахождении значения выражения

Вычислите:

1). Ответ: -6

2). , если t = -10; t = 127. Ответ: -8; 127

3). . Ответ: 0,125

4). . Ответ: -6

5). . Ответ: 2

6). . Ответ: 8

7). + . Ответ: 2

8). + . Ответ: 6

9). + . Ответ: 2

10). + . Ответ: 10

11). . Ответ: -3

12). . Ответ: -6

13). − 0,5. Ответ: 0

14). + . Ответ:1

15). + Ответ: 1

16). . Ответ: 8

17). Найти и , если = . Ответ: 28; -2

18). Найти и , если = . Ответ: 40; -2

19). Сравните значение выражения

с числом . Ответ:

20). Сравните значение выражения

с числом . Ответ:

21). Докажите, что выражение является корнем уравнения = 1.

22). Докажите, что выражение является корнем уравнения = 1.

23). Удовлетворяет ли число неравенству 7+58+13>0 .

Ответ: нет

24). Удовлетворяет ли число неравенству 11+26-730 .

Ответ: да

Л и т е р а т у р а

1). Алгебра: 8; 9; 10 – 11 класс.

Авторы: А.Г.Мордкович, Т.Н. Мишустина, Е.Е. Тульчинская.

2). Задания по математике для подготовки к письменному экзамену в 9 классе.

Авторы: Л.И. Звавич, Д.И.Аверьянов, Б.П. Пигарёв, Т.Н. Грушанина.

3). Сборник задач по алгебре 8 – 9 класс.

Авторы: М.Л. Галицкий,А.М. Гольдман, Л.И. Звавич.

4). Сборник для проведения письменного экзамена за курс средней школы 11 класс.

Авторы: Г.В. Дорофеев, Г.К.Муравин, Е.А.Седова.

5). Алгебраический тренажер.

Авторы: А.Г. Мерзляк,В.Б.Полонский, М.С.Якир

6). Материалы ЦТ и ЭГЭ за 2002 – 2005 годы.

7). Математика. Самостоятельные и контрольные работы 8; 9; 10 – 11 классы.

Авторы: А.П. Ершова, В.В. Голобородько.

8). Различные сборники для поступающих в В У З Ы.

Графики уравнений, содержащих знак модуля

Цель:

  • закрепить методы построения графика линейной функции,
  • закрепить умение учащихся задавать уравнением функцию, заданную при помощи графика,
  • познакомить учащихся с тем, каким образом влияет знак модуля на отображение графика линейной функции

Оборудование: презентация (приложение 1)

Ход урока №1

При решении многих математических задач необходимо быстро и точно строить графики любых функций, изучаемых в школьном курсе алгебры. Т.к. на уроке предстоит много построений, начинаем, вспоминая, как строить график линейной функции y = kx + b на основе анализа углового коэффициента и коэффициента смещения (слайд 2)

Сопоставляем уравнения и графики (слайд 3):

 

Построим в тетрадях в одной системе координат графики функций (y = —x; y = —x -4; y = -1/3 x – 2; y = 2x + 5; y = x + 1), проверяя себя при помощи слайда 4

Вспомним определение модуля числа x (слайд 5)

Рассматриваем, как можно построить график функции y = |x| на основании определения модуля, отбрасывая части прямых, не лежащих в полуплоскостях x < 0 и x> 0 (слайд 6)

Аналогично рассматриваем способ построения графика функции y = |x + 1| (слайд 7)

Сравнивая графики и уравнения функций (слайд 8-9),

делаем вывод о том, как можно построить график функции y = |x + a| — b смещением графика функции y = |x| (слайд 10-11)

Строим в тетрадях графики функций y = |x-3| + 3, y = |x – 3| — 2, y = |x+2| — 5, y = |x + 3| + 2 и проверяем себя при помощи слайда 12

Далее учащиеся должны на основе рисунка, представленного на слайде 13, задать функцию уравнением:

При построении графиков очень важно научить ребят анализировать область определения и множество значений функции и “переносить” указанные множества на координатную плоскость.

Заполняем таблицу (слайд 12):

  D(y) E (y)
y = |x|    
y = |x – 3|    
y = |x – 3| +2    
y = — |x|    
y = |x + 2| -5    
y = — |x +2| -5    

И рассматриваем, как множества значений можно определить на основе графиков (слайд 15)

Учащимся предлагается определить D (y) и E(y) по рисунку (слайд 16):

 

Ученики самостоятельно придумывают уравнение функции по заданным D(y) и E(y) (слайд 17):

Анализируя графики и уравнения (слайд 18), ученики делают вывод о том, как влияет знак минуса перед модульными скобками на график. И самостоятельно задают уравнение по графикам, представленным на слайде 19.

Ход урока № 2

Устно проговариваем уравнения функций по графикам (слайд 20):

 

Аналогично схеме предыдущего урока (слайд 21-27) ученики знакомятся с тем, каким образом влияет коэффициент перед аргументом функции на график. В результате они должны научиться описывать уравнением следующие графики:

 

Для закрепления полученных знаний, в тетрадях в одной системе координат ребята строят следующие графики:

y = |0,5x| при -3 < x< 3;

y = 3 при -1 < x< 1;

y = -|x + 3| + 6 при -4 < x < -2;

y = -|x — 3| + 6 при 2 < x < 4;

y = |x + 3| + 4 при -4 < x < -2;

y = |x — 3| + 4 при 2 < x ? 4;

y = -|0,5x – 1,5| + 7 при -5 < x < -1;

y = -|0,5x + 1,5| + 7 при 1 < x < 5.

Проверяют себя по слайду 29:

Домашнее задание: придумать картину, состоящую из отрезков прямых, и описать ее при помощи уравнений функций.

Ход урока № 3

Построим графики функций y = |3x| — 3 и y = |3x – 3|. Как в каждом случае связаны y(x) и y(-x)?

Наличие условия y(x) = y(-x) означает симметрию относительно …?

Приведите примеры уравнений функции, графики которых будут симметричны относительно оси ординат

Если в модульные скобки заключается переменная y, то мы получаем условие |y| = |-y|. Какую симметрию задает это условие?

На слайде 34 последовательно рассматриваем цепочку построения графиков:

y = 3x – 3, |y| = 3x – 3, |y| = |3x| — 3, |y| = |3x – 3| путем преобразований симметрии.

Выводим и запоминаем три правила:

 

Распределите, к какому типу из трех (y = f(|x|, |y| = f(x), y = |f(x)|), можно отнести каждое уравнение:

|y| = 2 – x, y = |3x — 4|, |x| + |y| = 2, |y| = 3x – 4, y = |3|x| — 4|, y = |3x| — 4, |y| = |3|x| — 4|, |y| = |3x – 4|.

Проверяем себя (слайд 35)

Строим последовательную цепочку графиков (тонкими линиями в тетрадях):

1) y = 3x – 4, y = |3x – 4|, y = |3|x| - 4|, |y| = |3|x| — 4|

2) y = 3x – 4, y = 3|x| — 4, y = |3|x| — 4|

Рассматриваем способ построения графика соответствия |x| + |y| = 2.

Самостоятельно строим график |x| — |y| = 2 и проверяем себя по слайду 39.

Домашнее задание: придумать пять уравнений соответствий с модулем, в которых встречаются все случаи, рассмотренные на уроке, и построить графики.

Постройте график функции и найдите значение k

Постройте график функции y=|x-3|-|x+3| и найдите значение k, при которых прямая y=kx имеет с графиком данной функции ровно одну общую точку.

Решение:

Разберем как строить график с модулем.

y=|x-3|-|x+3|

Найдем точки при переходе которых знак модулей меняется.
Каждое выражения, которое под модулем приравниваем к 0. У нас их два x-3 и x+3.
x-3=0 и x+3=0
x=3 и x=-3

У нас числовая прямая разделится на три интервала (-∞;-3)U(-3;3)U(3;+∞). На каждом интервале нужно определить знак под модульных выражений.

1. Это сделать очень просто, рассмотрим первый интервал (-∞;-3). Возьмем с этого отрезка любое значение, например, -4 и подставим в каждое под модульное уравнение вместо значения х.
х=-4
x-3=-4-3=-7 и x+3=-4+3=-1

У обоих выражений знаки отрицательный, значит перед знаком модуля в уравнении ставим минус, а вместо знака модуля ставим скобки и получим искомое уравнение на интервале (-∞;-3).

y=(x-3)-((x+3))=-х+3+х+3=6

На интервале (-∞;-3) получился график линейной функции (прямой) у=6

2. Рассмотрим второй интервал (-3;3). Найдем как будет выглядеть уравнение графика на этом отрезке. Возьмем любое число от -3 до 3, например, 0. Подставим вместо значения х значение 0.
х=0
x-3=0-3=-3 и x+3=0+3=3

У первого выражения x-3 знак отрицательный получился, а у второго выражения x+3 положительный. Следовательно, перед выражением x-3 запишем знак минус, а перед вторым выражением знак плюс.

y=(x-3)-(+(x+3))=-х+3-х-3=-2x

На интервале (-3;3) получился график линейной функции (прямой) у=-2х

3.Рассмотрим третий интервал (3;+∞). Возьмем с этого отрезка любое значение, например 5, и подставим в каждое под модульное уравнение вместо значения х.

х=5
x-3=5-3=2 и x+3=5+3=8

У обоих выражений знаки получились положительными, значит перед знаком модуля в уравнении ставим плюс, а вместо знака модуля ставим скобки и получим искомое уравнение на интервале (3;+∞).

y=+(x-3)-(+(x+3))=х-3-х-3=-6

На интервале (3;+∞) получился график линейной функции (прямой) у=-6

4. Теперь подведем итог.Постоим график y=|x-3|-|x+3|.
На интервале (-∞;-3) строим график линейной функции (прямой) у=6.
На интервале (-3;3) строим график линейной функции (прямой) у=-2х.
Чтобы построить график у=-2х подберем несколько точек.
x=-3 y=-2*(-3)=6 получилась точка (-3;6)
x=0 y=-2*0=0 получилась точка (0;0)
x=3 y=-2*(3)=-6 получилась точка (3;-6)
На интервале (3;+∞) строим график линейной функции (прямой) у=-6.

5. Теперь проанализируем результат и ответим на вопрос задания найдем значение k, при которых прямая y=kx имеет с графиком y=|x-3|-|x+3| данной функции ровно одну общую точку.

Прямая y=kx при любом значении k всегда будет проходить через точку (0;0). Поэтому мы можем изменить только наклон данной прямой y=kx, а за наклон у нас отвечает коэффициент k.

Если k будет любое положительное число, то будет одно пересечение прямой y=kx с графиком y=|x-3|-|x+3|. Этот вариант нам подходит.

Если k будет принимать значение (-2;0), то пересечений прямой y=kx с графиком y=|x-3|-|x+3| будет три.Этот вариант нам не подходит.

Если k=-2, решений будет множество [-2;2], потому что прямая y=kx будет совпадать с графиком y=|x-3|-|x+3| на данном участке. Этот вариант нам не подходит.

Если k будет меньше -2, то прямая y=kx с графиком y=|x-3|-|x+3| будет иметь одно пересечение.Этот вариант нам подходит.

Если k=0, то пересечений прямой y=kx с графиком y=|x-3|-|x+3| также будет одно.Этот вариант нам подходит.

Ответ: при k принадлежащей интервалу (-∞;-2)U[0;+∞) прямая y=kx с графиком y=|x-3|-|x+3| будет иметь одно пересечение.

Подписывайтесь на канал на YOUTUBE и смотрите видео, подготавливайтесь к экзаменам по математике и геометрии с нами.

Графики прямой, параболы, гиперболы, с модулем

Пошаговое построение графиков.

«Навешивание» модулей на прямые, параболы, гиперболы.


Графики — самая наглядная тема по алгебре. Рисуя графики, можно творить, а если еще и сможешь задать уравнения своего творчества, то и учитель достойно это оценит.

Для понимания друг друга введу немного «обзываний» системы координат:

Для начала построим график прямой y = 2x − 1.

Не сомневаюсь, что ты помнишь. Я напомню себе, что через 2 точки можно провести одну прямую. 

Возьмем значение X = 0 и Х = 1 и подставим в выражение y = 2x − 1, тогда соответственно Y = − 1 и Y = 1

Через данные две точки А = (0; −1) и B = (1; 1) проводим единственную прямую:

А если теперь добавить модуль y = |2x − 1|.

Модуль — это всегда положительное значение, получается, что «y» должен быть всегда положительным.

Значит, если модуль «надет» на весь график, то, что было в нижней части «−y», отразится в верхнюю (как будто сворачиваете лист по оси х и то, что было снизу, отпечатываете сверху).

Получается такая зеленая «галочка».

Красота! А как же будет выглядеть график, если надеть модуль только на «х»: y = 2|x| − 1?

Одна строчка рассуждений и рисуем:

Модуль на «x», тогда в этом случае x = −x, то есть все, что было в правой части, отражаем в левую. А то, что было в плоскости «−x», убираем.

Здесь отражаем относительно оси «y».  Такая же галочка, только теперь через другую ось.

Смертельный номер: y = |2|x| − 1|.

Черную прямую y = 2x − 1 отражаем относительно оси Х, получим y = |2x − 1|. Но мы выяснили, что модуль на х влияет только на левую часть. 

В правой части: y = |2x − 1| и y = |2|x| − 1| идентичны! 


А после этого отражаем относительно оси «y» то, что мы получили справа налево:


Если ты человек амбициозный, то прямых тебе будет мало! Но то, что описано выше, работает на всех остальных графиках, значит делаем по аналогии.

Разберем по винтикам параболу y = x² + x − 2. Точки пересечения с осью «x» получим с помощью дискриминанта: x₁ = 1 и x₂ = -2.

Можно найти вершину у параболы и взять пару точек для точного построения.

А как будет выглядеть график: y = |x²| + x − 2? Слышу: «Такого мы еще не проходили», а если подумаем? Модуль на x², он же и так всегда положителен, от модуля тут толку, как от стоп-сигнала зайцу − никакого.

При y = x² + |x| − 2 все так же стираем всю левую часть, и отражаем справа налево:

А дальше что мелочиться: рассмотри сразу остальные графики с модулем!

Следующий смертельный номер: |y| = x² + x − 2, подумай хорошенько, а еще лучше попробуй нарисовать сам.

При положительных значениях «y» от модуля нет смысла − уравнения y = x² + x − 2, а при «−y» ничего не меняется, будет так же y = x² + x − 2! 

Рисуем параболу в верхней части системы координат (где у > 0), а затем отражаем вниз.

А теперь сразу комбо:

Cиний: похож на y = x² + |x| − 2, только поднят вверх. Строим график в правой части, а затем отражаем через ось Y влево.

Оранжевый: строим в правой части и отражаем относительно оси Х. Доходим до оси Y и отражаем все что было справа налево. Двойка в знаменателе показывает, что график будет «шире», расходится в бока он быстрее остальных.

Зеленый: Так же начинаем с правой части и отражаем относительно оси оси Y. Получается график y = |x² + x − 2|, но еще есть −2, поэтому опустим график на 2 вниз. Теперь параболы как бы отражается относительно Y = − 2.

Легкий и средний уровень позади, и настала пора выжать концентрацию на максимум, потому что дальше тебя ждут гиперболы, которые частенько встречаются во второй части ЕГЭ и ОГЭ.

y = 1/x — простая гипербола, которую проще всего построить по точкам, 6-8 точек должно быть достаточно:

А что будет, если мы добавим в знаменателе «+1»? График сдвинется влево на единицу:

А что будет, если мы добавим в знаменателе «−1»? График сдвинется вправо на единицу.

А если добавить отдельно «+1» y = (1/x) + 1? Конечно, график поднимется вверх на единицу!

Глупый вопрос: а если добавить отдельно «−1» y = (1/x) − 1? Вниз на единицу!

Теперь начнем «накручивать» модули: y = |1/x + 1| — отражаем все из нижней части в верхнюю.

Возьмем другой модуль, мой амбициозный друг, раз ты дошел до этогог места: y = |1/(x + 1)|. Как и выше, когда модуль надет на всю функцию, мы отражаем снизу вверх.

Можно придумывать массу вариантов, но общий принцип остается для любого графика. Принципы повторим в выводах в конце статьи.

Фиолетовый: Вычитаем из дроби −1 и сдвигаем график вниз на единицу. Ставим модуль − отражаем все, что снизу вверх.

Оранжевый: Ставим +1 в знаменателе и график смещается влево на единицу. Вычитаем из дроби −1 и сдвигаем график вниз на единицу. А после этого ставим модуль − отражаем все, что снизу вверх.

Зеленый: Сначала получим фиолетовый график. После этого ставим «−» и отражаем график по горизонтали. Сгибаем лист по оси Х и переводим его вниз. Остается добавить +1, это значит, что его нужно поднять вверх на единицу.

Модули не так уж страшны, если еще вспомнить, что их можно раскрыть по определению:

И построить график, разбив его на кусочно-заданные функции.

Например для прямой:


Для параболы с одним модулем будет два кусочно-заданных графика: 

C двумя модулями кусочно-заданных графиков будет четыре:

Таким способом, медленно и кропотливо можно построить любой график!


Выводы:

  1. Модуль — это не просто две палочки, а жизнерадостное, всегда положительное значение!
  2. Модулю без разницы находится он в прямой, параболе или еще где-то. Отражения происходят одни и те же.
  3. Любой нестандартный модуль можно разбить на кусочно-заданные функции, условия только вводятся на каждый модуль.
  4. Существует большое количество модулей, но парочку вариантов стоит запомнить, чтобы не строить по точкам:
  • Если модуль «надет» на все выражение (например, y = |x² + x − 2|), то нижняя часть отражается наверх.
  • Если модуль «надет» только на х (например, y = x² + |x| − 2), то правая часть графика отражается на левую часть. А «старая» левая часть стирается.
  • Если модуль «надет» и на х, и на все выражение (например, y = |x² + |x| − 2|), то сначала отражаем график снизу вверх, после этого стираем полностью левую часть и отражаем справа налево.
  • Если модуль «надет» на y (например, |y| = x² + x − 2), то мы оставляем верхнюю часть графика, нижнюю стираем. А после отражаем сверху вниз.
Будь в курсе новых статеек, видео и легкого математического юмора.

Чему равен модуль х 2. Как решать уравнения с модулем: основные правила

Инструкция

Если модуль представлен в виде непрерывной функции, то значение ее аргумента может быть как положительным, так и отрицательным: |х| = х, х ≥ 0; |х| = — х, х

Модуль нулю, а модуль любого положительного числа – ему . Если аргумент отрицательный, то после раскрытия скобок его знак меняется с минуса на плюс. На основании этого вытекает вывод, что модули противоположных равны: |-х| = |х| = х.

Модуль комплексного числа находится по формуле: |a| = √b ² + c ², а |a + b| ≤ |a| + |b|. Если в аргументе присутствует в виде множителя положительное число, то его можно вынести за знак скобки, например: |4*b| = 4*|b|.

Если аргумент представлен в виде сложного числа, то для удобства вычислений допускается порядка членов выражения, заключенного в прямоугольные скобки: |2-3| = |3-2| = 3-2 = 1, поскольку (2-3) меньше нуля.

Возведенный в степень аргумент одновременно находится под знаком корня того же порядка – он решается при помощи : √a² = |a| = ±a.

Если перед вами задача, в которой не указано условие раскрытия скобок модуля, то избавляться от них не нужно – это и будет конечный результат. А если требуется их раскрыть, то необходимо указать знак ±. Например, нужно найти значение выражения √(2 * (4-b)) ². Его решение выглядит следующим образом: √(2 * (4-b)) ² = |2 * (4-b)| = 2 * |4-b|. Поскольку знак выражения 4-b неизвестен, то его нужно оставить в скобках. Если добавить дополнительное условие, например, |4-b| >

Модуль нуля равен нулю, а модуль любого положительного числа – ему самому. Если аргумент отрицательный, то после раскрытия скобок его знак меняется с минуса на плюс. На основании этого вытекает вывод, что модули противоположных чисел равны: |-х| = |х| = х.

Модуль комплексного числа находится по формуле: |a| = √b ² + c ², а |a + b| ≤ |a| + |b|. Если в аргументе присутствует в виде множителя целое положительное число, то его можно вынести за знак скобки, например: |4*b| = 4*|b|.

Отрицательным модуль быть не может, поэтому любое отрицательное число преобразуется в положительное: |-x| = x, |-2| = 2, |-1/7| = 1/7, |-2,5| = 2,5.

Если аргумент представлен в виде сложного числа, то для удобства вычислений допускается изменение порядка членов выражения, заключенного в прямоугольные скобки: |2-3| = |3-2| = 3-2 = 1, поскольку (2-3) меньше нуля.

Если перед вами задача, в которой не указано условие раскрытия скобок модуля, то избавляться от них не нужно – это и будет конечный результат. А если требуется их раскрыть, то необходимо указать знак ±. Например, нужно найти значение выражения √(2 * (4-b)) ². Его решение выглядит следующим образом: √(2 * (4-b)) ² = |2 * (4-b)| = 2 * |4-b|. Поскольку знак выражения 4-b неизвестен, то его нужно оставить в скобках. Если добавить дополнительное условие, например, |4-b| > 0, то в итоге получится 2 * |4-b| = 2 *(4 — b). В качестве неизвестного элемента также может быть задано конкретное число, которое следует принимать во внимание, т.к. оно будет влиять на знак выражения.

Соблюдение Вашей конфиденциальности важно для нас. По этой причине, мы разработали Политику Конфиденциальности, которая описывает, как мы используем и храним Вашу информацию. Пожалуйста, ознакомьтесь с нашими правилами соблюдения конфиденциальности и сообщите нам, если у вас возникнут какие-либо вопросы.

Сбор и использование персональной информации

Под персональной информацией понимаются данные, которые могут быть использованы для идентификации определенного лица либо связи с ним.

От вас может быть запрошено предоставление вашей персональной информации в любой момент, когда вы связываетесь с нами.

Ниже приведены некоторые примеры типов персональной информации, которую мы можем собирать, и как мы можем использовать такую информацию.

Какую персональную информацию мы собираем:

  • Когда вы оставляете заявку на сайте, мы можем собирать различную информацию, включая ваши имя, номер телефона, адрес электронной почты и т.д.

Как мы используем вашу персональную информацию:

  • Собираемая нами персональная информация позволяет нам связываться с вами и сообщать об уникальных предложениях, акциях и других мероприятиях и ближайших событиях.
  • Время от времени, мы можем использовать вашу персональную информацию для отправки важных уведомлений и сообщений.
  • Мы также можем использовать персональную информацию для внутренних целей, таких как проведения аудита, анализа данных и различных исследований в целях улучшения услуг предоставляемых нами и предоставления Вам рекомендаций относительно наших услуг.
  • Если вы принимаете участие в розыгрыше призов, конкурсе или сходном стимулирующем мероприятии, мы можем использовать предоставляемую вами информацию для управления такими программами.

Раскрытие информации третьим лицам

Мы не раскрываем полученную от Вас информацию третьим лицам.

Исключения:

  • В случае если необходимо — в соответствии с законом, судебным порядком, в судебном разбирательстве, и/или на основании публичных запросов или запросов от государственных органов на территории РФ — раскрыть вашу персональную информацию. Мы также можем раскрывать информацию о вас если мы определим, что такое раскрытие необходимо или уместно в целях безопасности, поддержания правопорядка, или иных общественно важных случаях.
  • В случае реорганизации, слияния или продажи мы можем передать собираемую нами персональную информацию соответствующему третьему лицу – правопреемнику.

Защита персональной информации

Мы предпринимаем меры предосторожности — включая административные, технические и физические — для защиты вашей персональной информации от утраты, кражи, и недобросовестного использования, а также от несанкционированного доступа, раскрытия, изменения и уничтожения.

Соблюдение вашей конфиденциальности на уровне компании

Для того чтобы убедиться, что ваша персональная информация находится в безопасности, мы доводим нормы соблюдения конфиденциальности и безопасности до наших сотрудников, и строго следим за исполнением мер соблюдения конфиденциальности.

А вычисляется в соответствии с такими правилами:

Для краткости записи применяют |а| . Так, |10| = 10; — 1 / 3 = | 1 / 3 |; | -100| =100 и т. д.

Всякой величине х соответствует достаточно точная величина |х |. И значит тождество у = |х | устанавливает у как некоторую функцию аргумента х .

График этой функции представлен ниже.

Для x > 0 |x | = x , а для x x |= —x ; в связи с этим линия у = |x | при x > 0 совмещена с прямой у =х (биссектриса первого координатного угла), а при х у = -х (биссектриса второго координатного угла).

Отдельные уравнения включают в себя неизвестные под знаком модуля .

Произвольные примеры таких уравнений — |х — 1| = 2, |6 — 2х | =3х + 1 и т. д.

Решение уравнений содержащих неизвестную под знаком модуля базируется на том, что если абсолютная величина неизвестного числа х равняется положительному числу а, то само это число х равняется или а, или -а.

Например :, если |х | = 10, то или х =10, или х = -10.

Рассмотрим решение отдельных уравнений .

Проанализируем решение уравнения |х — 1| = 2.

Раскроем модуль тогда разность х — 1 может равняться или + 2, или — 2. Если х — 1 = 2, то х = 3; если же х — 1 = — 2, то х = — 1. Делаем подставновку и получаем, что оба эти значения удовлетворяют уравнению.

Ответ. Указанное уравнение имеет два корня: x 1 = 3, x 2 = — 1.

Проанализируем решение уравнения | 6 — 2х | = 3х + 1.

После раскрытия модуля получаем: или 6 — 2х = 3х + 1, или 6 — 2х = — (3х + 1).

В первом случае х = 1, а во втором х = — 7.

Проверка. При х = 1 |6 — 2х | = |4| = 4, 3x + 1 = 4; от суда следует, х = 1 — корен ь данного уравнения .

При x = — 7 |6 — 2x | = |20| = 20, 3x + 1= — 20; так как 20 ≠ -20, то х = — 7 не является корнем данного уравнения.

Ответ. У уравнения единственный корень: х = 1.

Уравнения такого типа можно решать и графически .

Так решим, например , графически уравнение |х- 1| = 2.

Первоначально выполним построение графика функции у = |x — 1|. Первым начертим график функции у =х- 1:

Ту часть этого графика , которая расположена выше оси х менять не будем. Для нее х — 1 > 0 и потому |х -1|=х -1.

Часть графика, которая расположена под осью х , изобразим симметрично относительно этой оси. Поскольку для этой части х — 1 х — 1|= — (х — 1). Образовавшаяся в результате линия (сплошная линия) и будет графиком функции у = |х —1|.

Эта линия пересечется с прямой у = 2 в двух точках: M 1 с абсциссой -1 и М 2 с абсциссой 3. И, соответственно, у уравнения |х — 1| =2 будет два корня: х 1 = — 1, х 2 = 3.

Одна из самых сложных тем для учащихся – это решение уравнений, содержащих переменную под знаком модуля. Давайте разберемся для начала с чем же это связано? Почему, например, квадратные уравнения большинство детей щелкает как орешки, а с таким далеко не самым сложным понятием как модуль имеет столько проблем?

На мой взгляд, все эти сложности связаны с отсутствием четко сформулированных правил для решения уравнений с модулем. Так, решая квадратное уравнение, ученик точно знает, что ему нужно сначала применять формулу дискриминанта, а затем формулы корней квадратного уравнения. А что делать, если в уравнении встретился модуль? Постараемся четко описать необходимый план действий на случай, когда уравнение содержит неизвестную под знаком модуля. К каждому случаю приведем несколько примеров.

Но для начала вспомним определение модуля . Итак, модулем числа a называется само это число, если a неотрицательно и -a , если число a меньше нуля. Записать это можно так:

|a| = a, если a ≥ 0 и |a| = -a, если a

Говоря о геометрическом смысле модуля, следует помнить, что каждому действительному числу соответствует определенная точка на числовой оси – ее координата. Так вот, модулем или абсолютной величиной числа называется расстояние от этой точки до начала отсчета числовой оси. Расстояние всегда задается положительным числом. Таким образом, модуль любого отрицательного числа есть число положительное. Кстати, даже на этом этапе многие ученики начинают путаться. В модуле может стоять какое угодно число, а вот результат применения модуля всегда число положительное.

Теперь перейдем непосредственно к решению уравнений.

1. Рассмотрим уравнение вида |x| = с, где с – действительное число. Это уравнение можно решить с помощью определения модуля.

Все действительные числа разобьем на три группы: те, что больше нуля, те, что меньше нуля, и третья группа – это число 0. Запишем решение в виде схемы:

{±c, если с > 0

Если |x| = c, то x = {0, если с = 0

{нет корней, если с

1) |x| = 5, т.к. 5 > 0, то x = ±5;

2) |x| = -5, т.к. -5

3) |x| = 0, то x = 0.

2. Уравнение вида |f(x)| = b, где b > 0. Для решения данного уравнения необходимо избавиться от модуля. Делаем это так: f(x) = b или f(x) = -b. Теперь необходимо решить отдельно каждое из полученных уравнений. Если в исходном уравнении b

1) |x + 2| = 4, т.к. 4 > 0, то

x + 2 = 4 или x + 2 = -4

2) |x 2 – 5| = 11, т.к. 11 > 0, то

x 2 – 5 = 11 или x 2 – 5 = -11

x 2 = 16 x 2 = -6

x = ± 4 нет корней

3) |x 2 – 5x| = -8 , т.к. -8

3. Уравнение вида |f(x)| = g(x). По смыслу модуля такое уравнение будет иметь решения, если его правая часть больше или равна нулю, т.е. g(x) ≥ 0. Тогда будем иметь:

f(x) = g(x) или f(x) = -g(x) .

1) |2x – 1| = 5x – 10. Данное уравнение будет иметь корни, если 5x – 10 ≥ 0. Именно с этого и начинают решение таких уравнений.

1. О.Д.З. 5x – 10 ≥ 0

2. Решение:

2x – 1 = 5x – 10 или 2x – 1 = -(5x – 10)

3. Объединяем О.Д.З. и решение, получаем:

Корень x = 11/7 не подходит по О.Д.З., он меньше 2, а x = 3 этому условию удовлетворяет.

Ответ: x = 3

2) |x – 1| = 1 – x 2 .

1. О.Д.З. 1 – x 2 ≥ 0. Решим методом интервалов данное неравенство:

(1 – x)(1 + x) ≥ 0

2. Решение:

x – 1 = 1 – x 2 или x – 1 = -(1 – x 2)

x 2 + x – 2 = 0 x 2 – x = 0

x = -2 или x = 1 x = 0 или x = 1

3. Объединяем решение и О.Д.З.:

Подходят только корни x = 1 и x = 0.

Ответ: x = 0, x = 1.

4. Уравнение вида |f(x)| = |g(x)|. Такое уравнение равносильно двум следующим уравнениям f(x) = g(x) или f(x) = -g(x).

1) |x 2 – 5x + 7| = |2x – 5|. Данное уравнение равносильно двум следующим:

x 2 – 5x + 7 = 2x – 5 или x 2 – 5x +7 = -2x + 5

x 2 – 7x + 12 = 0 x 2 – 3x + 2 = 0

x = 3 или x = 4 x = 2 или x = 1

Ответ: x = 1, x = 2, x = 3, x = 4.

5. Уравнения, решаемые методом подстановки (замены переменной). Данный метод решения проще всего объяснить на конкретном примере. Так, пусть дано квадратное уравнение с модулем:

x 2 – 6|x| + 5 = 0. По свойству модуля x 2 = |x| 2 , поэтому уравнение можно переписать так:

|x| 2 – 6|x| + 5 = 0. Сделаем замену |x| = t ≥ 0, тогда будем иметь:

t 2 – 6t + 5 = 0. Решая данное уравнение, получаем, что t = 1 или t = 5. Вернемся к замене:

|x| = 1 или |x| = 5

x = ±1 x = ± 5

Ответ: x = -5, x = -1, x = 1, x = 5.

Рассмотрим еще один пример:

x 2 + |x| – 2 = 0. По свойству модуля x 2 = |x| 2 , поэтому

|x| 2 + |x| – 2 = 0. Сделаем замену |x| = t ≥ 0, тогда:

t 2 + t – 2 = 0. Решая данное уравнение, получаем, t = -2 или t = 1. Вернемся к замене:

|x| = -2 или |x| = 1

Нет корней x = ± 1

Ответ: x = -1, x = 1.

6. Еще один вид уравнений – уравнения со «сложным» модулем. К таким уравнениям относятся уравнения, в которых есть «модули в модуле». Уравнения данного вида можно решать, применяя свойства модуля.

1) |3 – |x|| = 4. Будем действовать так же, как и в уравнениях второго типа. Т.к. 4 > 0, то получим два уравнения:

3 – |x| = 4 или 3 – |x| = -4.

Теперь выразим в каждом уравнении модуль х, тогда |x| = -1 или |x| = 7.

Решаем каждое из полученных уравнений. В первом уравнении нет корней, т.к. -1

Ответ x = -7, x = 7.

2) |3 + |x + 1|| = 5. Решаем это уравнение аналогичным образом:

3 + |x + 1| = 5 или 3 + |x + 1| = -5

|x + 1| = 2 |x + 1| = -8

x + 1 = 2 или x + 1 = -2. Нет корней.

Ответ: x = -3, x = 1.

Существует еще и универсальный метод решения уравнений с модулем. Это метод интервалов. Но мы его рассмотрим в дальнейшем.

сайт, при полном или частичном копировании материала ссылка на первоисточник обязательна.

Модуль числа легко найти, и теория, которая лежит в его основе, важна при решении задач.

Свойства и правила раскрытия, используемые при решении упражнений и на экзаменах, будут полезны школьникам и студентам. Заработай деньги с помощью своих знаний на https://teachs.ru !

Что такое модуль в математике

Модуль числа описывает расстояние на числовой линии от нуля до точки без учета того, в каком направлении от нуля лежит точка. Математическое обозначение: |x|.

Иными словами, это абсолютная величина числа. Определение доказывает, что значение никогда не бывает отрицательным.

Свойства модуля

Важно помнить о следующих свойствах:

Модуль комплексного числа

Абсолютной величиной комплексного числа называют длину направленного отрезка, проведенного от начала комплексной плоскости до точки (a, b).

Этот направленный отрезок также является вектором, представляющим комплексное число a + bi , поэтому абсолютная величина комплексного числа – это то же самое, что и величина (или длина) вектора, представляющего a+ bi .

Как решать уравнения с модулем

Уравнение с модулем – это равенство, которое содержит выражение абсолютного значения. Если для действительного числа оно представляет его расстояние от начала координат на числовой линии, то неравенства с модулем являются типом неравенств, которые состоят из абсолютных значений.

Уравнения типа |x| = a

Уравнение |x| = a имеет два ответа x = a и x = –a , потому что оба варианта находятся на координатной прямой на расстоянии a от 0.

Равенство с абсолютной величиной не имеет решения, если величина отрицательная.

Если |x|

Уравнения типа |x| = |y|

Когда есть абсолютные значения по обе стороны уравнений, нужно рассмотреть обе возможности для приемлемых определений – положительные и отрицательные выражения.

Например, для равенства |x − a| = |x + b| есть два варианта: (x − a) = − (x + b) или (x − a) = (x + b).

Уравнения типа |x| = y

Уравнения такого вида содержат абсолютную величину выражения с переменной слева от нуля, а справа – еще одну неизвестную. Переменная y может быть как больше, так и меньше нуля.

Для получения ответа в таком равенстве нужно решить систему из нескольких уравнений, в которой нужно убедиться, что y – неотрицательная величина:

Решение неравенств с модулем

Чтобы лучше понять, как раскрыть модуль в разных типах равенств и неравенств, нужно проанализировать примеры.

Уравнения вида |x| = a

Пример 1 (алгебра 6 класс). Решить: |x| + 2 = 4.

Решение.

Такие уравнения решаются так же, как и равенства без абсолютных значений. Это означает, что, перемещая неизвестные влево, а константы – вправо, выражение не меняется.

После перемещения константы вправо получено: |x| = 2 .

Поскольку неизвестные связаны с абсолютным значением, это равенство имеет два ответа: 2 и −2 .

Ответ: 2 и −2 .

Пример 2 (алгебра 7 класс). Решить неравенство |x + 2| ≥ 1.

Решение.

Первое, что нужно сделать, это найти точки, где абсолютное значение изменится. Для этого выражение приравнивается к 0 . Получено: x = –2 .

Это означает, что –2 – поворотная точка.

Разделим интервал на 2 части:

  1. для x + 2 ≥ 0

[−1; + ∞).

  1. для х + 2

Общим ответом для этих двух неравенств является интервал (−∞; –3].

Окончательное решение объединение ответов отдельных частей:

x (–∞; –3] [–1; + ∞).

Ответ: x (–∞; –3] [–1; + ∞) .

Уравнения вида |x| = |y|

Пример 1 (алгебра 8 класс). Решить уравнение с двумя модулями: 2 * |x – 1| + 3 = 9 – |x – 1|.

Решение:

Ответ: x 1 = 3; x 2 = 1.

Пример 2 (алгебра 8 класс). Решить неравенство:

Решение:

Уравнения вида |x| = y

Пример 1 (алгебра 10 класс). Найти x:

Решение:

Очень важно провести проверку правой части, иначе можно написать в ответ ошибочные корни. Из системы видно, что не лежит в промежутке.

Ответ: x = 0 .

Модуль суммы

Модуль разности

Абсолютная величина разности двух чисел x и y равна расстоянию между точками с координатами X и Y на координатной прямой.

Пример 1.

Пример 2.

Модуль отрицательного числа

Для нахождения абсолютного значения числа, которое меньше нуля, нужно узнать, как далеко оно расположено от нуля. Поскольку расстояние всегда является положительным (невозможно пройти «отрицательные» шаги, это просто шаги в другом направлении), результат всегда положительный. То есть,

Проще говоря, абсолютная величина отрицательного числа имеет противоположное значение.

Модуль нуля

Известно свойство:

Вот почему нельзя сказать, что абсолютная величина – положительное число: ноль не является ни отрицательным, ни положительным.

Модуль в квадрате

Модуль в квадрате всегда равен выражению в квадрате:

Примеры графиков с модулем

Часто в тестах и на экзаменах встречаются задания, которые возможно решить, лишь проанализировав графики. Рассмотрим такие задания.

Пример 1.

Дана функция f(x) = |x|. Необходимо построить график от – 3 до 3 с шагом 1.

Решение:

Объяснение : из рисунка видно, что график симметричен относительно оси Y.

Пример 2 . Необходимо нарисовать и сравнить графики функций f(x) = |x–2| и g(x) = |x|–2.

Решение:

Объяснение: константа внутри абсолютной величины перемещает весь график вправо, если ее значение отрицательное, и влево, если положительное. Но постоянная снаружи будет передвигать график вверх, если значение положительное, и вниз, если оно отрицательное (как –2 в функции g (x)) .

Координата вершины x (точка, в которой соединяются две линии, вершина графа) – это число, на которое график сдвигается влево или вправо. А координата y – это значение, на которое график сдвигается вверх или вниз.

Строить такие графики можно с помощью онлайн приложений для построения. С их помощью можно наглядно посмотреть, как константы влияют на функции.

Метод интервалов в задачах с модулем

Метод интервалов – один из лучших способов найти ответ в задачах с модулем, особенно если в выражении их несколько.

Для использования метода нужно совершить следующие действия:

  1. Приравнять каждое выражение к нулю.
  2. Найти значения переменных.
  3. Нанести на числовую прямую точки, полученные в пункте 2.
  4. Определить на промежутках знак выражений (отрицательное или положительное значение) и нарисовать символ – или + соответственно. Проще всего определить знак с помощью метода подстановки (подставив любое значение из промежутка).
  5. Решить неравенства с полученными знаками.

Пример 1 . Решить методом интервалов.

Решение:

Графические функции абсолютных значений | Purplemath

Purplemath

Принятие абсолютного значения отрицательного числа делает его положительным. По этой причине графики функций абсолютных значений имеют тенденцию не совсем походить на графики линейных функций, которые вы уже изучили. Однако из-за того, как ведут себя абсолютные значения, важно включать отрицательные входные данные в вашу T-диаграмму при построении графиков функций абсолютных значений.Если вы не выберете значения x , которые поместят отрицательные значения внутри абсолютного значения, вы обычно будете вводить себя в заблуждение относительно того, как выглядит график.

Например, предположим, что ваш класс проходит следующую викторину:

MathHelp.com

Один из других учеников делает то, что обычно делает: он выбирает только положительные значения x для своей Т-диаграммы:

Затем он наносит на график свои очки:

Эти очки хороши, насколько они идут, но их недостаточно; они не дают точного представления о том, как должен выглядеть график.В частности, они не включают никаких «минусовых» входов, поэтому легко забыть, что эти столбцы абсолютных значений означают что-то . В результате ученик забывает учесть эти столбцы и рисует ошибочный график:

НЕПРАВИЛЬНЫЙ ОТВЕТ!

Аааааа … он просто завалил викторину.

Но вы более осторожны.Вы помните, что графики абсолютных значений включают абсолютные значения, и что абсолютные значения влияют на «минусовые» входные данные. Итак, вы выбираете значения x , которые ставят «минус» внутри абсолютного значения, и выбираете еще несколько точек. Ваш T-график выглядит примерно так:

Затем вы наносите свои очки:

… и, наконец, вы соединяете свои точки:

У вас есть правильный график:

Правильный ответ!

Ааааанд… вы только что успешно прошли викторину. Хорошая работа!


Хотя графики абсолютных значений имеют тенденцию выглядеть так, как показано выше, с «локтем» посередине, это не всегда так. Однако, если вы видите график с таким изгибом, вы должны ожидать, что уравнение графика, вероятно, включает в себя абсолютное значение. Во всех случаях вам следует позаботиться о том, чтобы вы выбрали хороший диапазон значений x , потому что три значения x , расположенные рядом друг с другом, почти наверняка не дадут вам достаточно информации, чтобы нарисовать достоверное изображение.

Примечание. Полосы абсолютных значений позволяют оценивать введенные значения как всегда неотрицательные (то есть положительные или нулевые). В результате буква «V» на приведенном выше графике появилась там, где знак внутри был равен нулю. Когда x было меньше –2, выражение x + 2 было меньше нуля, и столбцы абсолютных значений перевернули эти «минусовые» значения из-под оси x вверх. Когда x равняется –2, аргумент (то есть выражение внутри столбцов) равен нулю.Для всех значений x справа от –2 аргумент был положительным, поэтому столбцы абсолютных значений ничего не меняли.

Другими словами, графически столбцы абсолютных значений занимают этот график:

… и перевернул «минус» (зеленый на графике) снизу оси x на верхнюю. Замечание, где аргумент столбцов абсолютного значения будет равен нулю, может быть полезным для проверки правильности построения графика.


Эта функция почти такая же, как и предыдущая.

Однако аргумент предыдущего выражения абсолютного значения был x + 2. В этом случае только x находится внутри столбцов абсолютного значения. Этот аргумент будет равен нулю, когда x = 0, поэтому я должен ожидать увидеть локоть в этой области. Кроме того, поскольку «плюс два» находится за пределами столбцов абсолютных значений, я ожидаю, что мой график будет выглядеть как обычный график абсолютных значений (представляющий собой букву «V» с коленом в начале координат), но смещенный вверх на две единицы. .

Сначала я заполню свою Т-диаграмму, выбирая по ходу несколько отрицательных значений x :

Затем нарисую точки и заполню график:


Партнер


Поскольку столбцы абсолютных значений всегда показывают неотрицательные значения, может возникнуть соблазн предположить, что графики абсолютных значений не могут опускаться ниже оси x .Но могут:

  • График
    y = — | x + 2 |

Эта функция является своего рода противоположностью первой функции (выше), потому что в выражении абсолютного значения в правой части уравнения стоит «минус». Из-за этого «минуса» все положительные значения, предоставленные столбцами абсолютных значений, будут переключены на отрицательные значения.Другими словами, я должен ожидать, что этот график будет иметь изгиб в точке (–2, 0), как и первый график выше, но остальная часть графика будет перевернута вверх дном, чтобы оказаться ниже оси x .

Сначала я заполню свою Т-диаграмму:

Затем делаю свой график:


Также не предполагайте, что какой-либо график абсолютных значений всегда будет находиться только на одной стороне оси x .Графики могут пересекаться:

  • График
    y = — | x | + 2

Моя Т-диаграмма:

… и мой график:


URL: https: // www.purplemath.com/modules/graphabs.htm

Абсолютные функции значений

Функция абсолютного значения — это функция, которая содержит алгебраическое выражение в символах абсолютного значения. Напомним, что абсолютное значение числа — это его расстояние от 0 на числовой прямой.

Родительская функция с абсолютным значением, записанная как f (x) = | x |, определяется как

f (x) = {x, если x> 00, если x = 0 — x, если x <0

Чтобы построить график функции абсолютного значения, выберите несколько значений x и найдите несколько упорядоченных пар.

x y = | х |
-2 2
-1 1
0 0
1 1
2 2

Постройте точки на координатной плоскости и соедините их.

Обратите внимание, что график имеет V-образную форму.

(1) Вершиной графа является (0,0).

(2) Ось симметрии (x = 0 или ось y) — это линия, разделяющая график на две совпадающие половины.

(3) Домен — это набор всех действительных чисел.

(4) Диапазон — это набор всех действительных чисел, больших или равных 0. То есть y≥0.

(5) Оба пересечения по оси x и y равны 0.

Вертикальный сдвиг

Чтобы перевести функцию абсолютного значения f (x) = | х | по вертикали можно использовать функцию

г (х) = е (х) + к.

Когда k> 0, график g (x) переводит k единиц вверх.

Когда k <0, график g (x) переводит k единиц вниз.

Сдвиг по горизонтали

Чтобы перевести функцию абсолютного значения f (x) = | х | по горизонтали можно использовать функцию

г (x) = f (x − h).

Когда h> 0, график f (x) переводится на h единиц вправо, чтобы получить g (x).

Когда h <0, график f (x) переводится на h единиц влево, чтобы получить g (x).

Растяжение и сжатие

Растяжение или сжатие функции абсолютного значения y = | х | определяется функцией y = a | х | где а — постоянная. График открывается, если a> 0, и открывается вниз, если a <0.

Для уравнений абсолютного значения, умноженных на константу (например, y = a | x |), если 0 1, он растягивается. Кроме того, если a отрицательно, график открывается вниз, а не вверх, как обычно.

В более общем виде уравнение для функции абсолютного значения имеет вид y = a | х-ч | + к. Также:

Функция модуля

Функция модуля y = │x│

Абсолютное значение x определяется как

Это всегда дает положительный результат.

Пример

y = 3x 2 + 6x-2 имеет график

В то время как

y = | 3x² + 6x − 2 | имеет график


Обратите внимание, как были отрицательные части
отражается по оси абсцисс.

Пример

y = | 3tanx |

y = | 3x + 2 |

Нечетные и четные функции

Нечетные функции имеют полуоборотную симметрию относительно начала координат,
поэтому f (-x) = — f (x)

Пример

y = x 3

y = x 5 −3x

Пример

Покажите, что x 5 + 3x 3 — нечетная функция.

Четные функции симметричны относительно оси y
поэтому f (-x) = f (x)

Пример

y = x 4 — 1

Пример

Является ли x 6 + 3x 2 четной функцией?

Асимптоты

Калькулятор асимптот Symbolab

Асимптота кривой — это прямая линия,
кривая приближается, но не достигает.

Пример f (x) = 1 / x

График y = 1 / x имеет вертикальную асимптоту x = 0
и горизонтальная асимптота y = 0.

Слева от прямой x = 0 f (x) стремится к — ∞
поскольку x стремится к нулю.

Справа от прямой x = 0 f (x) стремится к ∞
поскольку x стремится к нулю.

Пример f (x) = (x-3) / (x 3 +1)

График y = (x-3) / (x 3 +1) имеет вертикальную асимптоту x = -1
и горизонтальная асимптота y = 0.

Слева от прямой x = -1, f (x) стремится к ∞
поскольку x стремится к -1.

Справа от прямой x = -1, f (x) стремится к -∞
поскольку x стремится к -1.

Пример f (x) = (x + 1) (x − 3) / (x + 3) (x − 4)

График имеет вертикальные асимптоты x = -3 и x = 4
и горизонтальная асимптота y = 1

Нахождение асимптот

Вертикальные асимптоты находятся с учетом
что делает знаменатель нулевым.

Требуется горизонтальная и наклонная асимптоты
немного дальнейших действий.

Используйте алгебраическое деление, чтобы уменьшить функцию.
Частное становится асимптотой.

Пример
Найти асимптоты функции

Альтернативно: —

Можно найти асимптоты, параллельные оси x
приравнивая коэффициент максимальной мощности
x до нуля.Те, которые параллельны оси y, могут быть
найдено приравниванием максимального коэффициента
y к нулю.

Чтобы найти наклонные асимптоты, подставьте y = mx + c
в уравнение и приравняем коэффициенты
двух старших степеней x к нулю.

Пример

Построение асимптоты

Чтобы набросать функцию, которая имеет асимптоты, выполните следующие действия: —

Пример

Используя приведенный выше пример, нарисуйте функцию

Вертикальные асимптоты находятся при нулевом знаменателе:

Горизонтальные и наклонные асимптоты находятся делением на дробь:

Перехват по оси y происходит, когда x = 0

Перехват по оси x происходит, когда y = 0

Чтобы найти стационарные точки, установите первую производную
функции до нуля, затем факторизуйте и решите.

Нарисуйте график

Другой пример

набросок функции

Вертикальные асимптоты:

У — перехват:

Х — перехват:

Стационарных точек:

Найдите характер поворотных точек

Эскиз

© Александр Форрест

Абсолютное значение в алгебре

Абсолютное значение означает…

насколько число от нуля:

«6» — это 6 от нуля,
и «−6» — , а также 6 от нуля.

Таким образом, абсолютное значение 6 равно 6 ,
, а абсолютное значение −6 также равно 6

Символ абсолютного значения

Чтобы показать, что нам нужно абсолютное значение, мы помещаем «|» отмечает обе стороны (называемые «стержнями»), как в этих примерах:


Знак «|» находится чуть выше клавиши ввода на большинстве клавиатур.

Более формальный

Формально:

Что говорит о том, что абсолютное значение x равно:

  • x, когда x больше нуля
  • 0, когда x равно 0
  • -x, когда x меньше нуля (это «переворачивает» число обратно в положительное)

Итак, когда число положительное или нулевое, мы оставляем его в покое, когда оно отрицательное, мы меняем его на положительное с помощью −x.

Пример: что такое | −17 | ?

Ну, это меньше нуля, поэтому нам нужно вычислить «−x»:

— (−17) = + 17

(Потому что два минуса составляют плюс)

Полезные свойства

Вот некоторые свойства абсолютных значений, которые могут быть полезны:

  • | а | ≥ 0 всегда!

    В этом есть смысл… | а | никогда не может быть меньше нуля.

  • | а | = √ ( 2 )

    Возведение a в квадрат делает его положительным или нулевым (для a как действительного числа). Тогда извлечение квадратного корня «отменит» возведение в квадрат, но оставит его положительным или нулевым.

  • | a × b | = | а | × | b |

    Значит это то же самое:

    • абсолютное значение (a, умноженное на b), и
    • (абсолютное значение a) раз (абсолютное значение b)

    Что также может быть полезно при решении

  • | u | = a то же самое, что и u = ± a, и наоборот

    Что часто является ключом к решению большинства вопросов абсолютной ценности.

Пример: Решить | x + 2 | = 5

Использование «| u | = a то же самое, что и u = ± a «:

это: | x + 2 | = 5

то же самое, что и это: x + 2 = ± 5

Имеет два решения:

х + 2 = -5 х + 2 = +5
х = −7 х = 3

Графически

Давайте изобразим этот пример:

| x + 2 | = 5

Легче построить график, когда у нас есть уравнение «= 0», поэтому вычтем 5 с обеих сторон:

| x + 2 | — 5 = 0

Итак, теперь мы можем построить график y = | x + 2 | −5 и найти, где он равен нулю.

Вот график y = | x + 2 | −5, но ради удовольствия давайте построим график , сдвинув его примерно на :

Начать с y = | x | затем сдвиньте его влево, чтобы
получилось y = | x + 2 |
, затем сдвиньте его вниз, чтобы
получилось y = | x + 2 | −5

И два решения (в кружке): −7 и +3.

Неравенства абсолютных значений

Смешивание абсолютных ценностей и неравенств требует некоторой осторожности!

Есть 4 неравенства:

<>
менее меньше чем
или равно
больше больше чем
или равно

меньше, меньше или равно

Используя «<» и «≤», мы получаем один интервал с центром в нуле:

Пример: Решить | x |

<3

Это означает, что расстояние от x до нуля должно быть меньше 3:

.

Все, что находится между (но не включая) -3 и 3

Его можно переписать как:

−3 <х <3

В качестве интервала можно записать:

(-3, 3)

То же самое работает для «Меньше или равно»:

Пример: Решить | x | ≤ 3

Все между , включая -3 и 3

Его можно переписать как:

−3 ≤ х ≤ 3

В качестве интервала можно записать:

[−3, 3]

Как насчет более крупного примера?

Пример: Решить | 3x-6 | ≤ 12

Записать как:

−12 ≤ 3x − 6 ≤ 12

Добавить 6:

−6 ≤ 3x ≤ 18

Наконец, умножьте на (1/3).Поскольку мы умножаем на положительное число, неравенства не изменятся:

−2 ≤ х ≤ 6

Готово!

В качестве интервала можно записать:

[−2, 6]

больше, больше или равно

Это другое … мы получаем два отдельных интервала :

Пример: Решить | x | > 3

Это выглядит так:

до -3 или начиная с 3

Его можно переписать как

x <−3 или x> 3

В качестве интервала можно записать:

(−∞, −3) U (3, + ∞)

Осторожно! Не записывайте как

−3> х> 3

«x» не может быть меньше -3 и больше 3 одновременно

Это действительно:

x <−3 или x> 3

«x» меньше −3 или больше 3

То же самое работает для «Больше или равно»:

Пример: Решить | x | ≥ 3

Можно переписать как

x ≤ −3 или x ≥ 3

В качестве интервала можно записать:

(−∞, −3] U [3, + ∞)

Графики абсолютных значений функций — Центр академической поддержки

Что мне следует знать о функциях, использующих абсолютные значения, прежде чем я начну работать над проблемой?

Абсолютные значения

Взятие абсолютного значения числа или количества — это математическая функция, которая описывает, насколько далеко это количество от нуля на числовой строке.Когда мы оцениваем абсолютные значения, мы упрощаем все внутри полосок абсолютных значений, а затем делаем результат положительным числом.

Простейшая функция абсолютного значения может быть записана

y = | x |

и можно прочитать: « y равно абсолютному значению x ».

Функции с абсолютным значением будут отображены в виде буквы V. Точка буквы V называется вершиной функции. У нас есть общее уравнение, описывающее вершину как в точке ( h, k ).Значения h и k зависят от переводов, выполненных в исходной функции.

Вертикальный перевод

Перевод сдвигает график вокруг декартовой координатной плоскости. Мы можем переводить наши графики по вертикали (вверх и вниз), по горизонтали (влево и вправо) или по обоим направлениям посредством сложения или вычитания.

Чтобы перевести функцию абсолютного значения вверх или вниз, вы добавляете число после столбцов абсолютного значения.Если добавленное вами число положительное, график сдвинется вверх. Если добавляемое число отрицательное, график сдвинется вниз. Мы используем букву k для обозначения вертикального переноса в нашем общем уравнении. Значение k также является значением y вершины.

Функция абсолютного значения с вертикальным перемещением

y = | x | + к

Горизонтальный перевод

Чтобы перевести функцию абсолютного значения влево или вправо, вы вычитаете число из переменной внутри столбцов абсолютного значения.Мы используем букву h для обозначения горизонтального переноса в нашем общем уравнении. Значение h также является значением x вершины.

Абсолютное значение с горизонтальным переносом

y = | x — h |

Помните: при нахождении значения h необходимо использовать напротив знака, используемого внутри столбцов абсолютного значения. Например, в уравнении

y = | x + 2 |

значение h равно -2.Если вы не уверены в реальном значении h , вы можете найти правильное число, установив все между полосами абсолютного значения равными нулю, а затем вычислив переменную. Это еще один способ найти h , поскольку h — это значение вершины x .

Мы можем решить приведенный выше пример описанным выше способом, если значение h не легко определить. Величина x + 2 находится внутри столбцов абсолютных значений выше, поэтому мы можем начать с установки этого количества равным нулю.

х + 2 = 0

x = -2, поэтому h = -2

Оба перевода

Если вершина не находится на одной из осей, значит, график был перемещен как по вертикали, так и по горизонтали. Мы можем написать общее уравнение для этой ситуации, объединив два правила, которые у нас были раньше: вертикальные переводы добавляются за пределы столбцов абсолютных значений, а горизонтальные перемещения вычитаются внутри.

y = | x — h | + к

Как построить график функции абсолютного значения?

Самый простой способ построить график функции абсолютного значения — найти вершину ( h, k ), а затем построить диаграмму значений x- и y .Вы можете определить значения x для добавления в диаграмму, добавив -2, -1, 1 и 2 к h .

Например:

Постройте график функции y = | x — 4 | — 2

· Шаг 1: Определите значения h и k , затем постройте свою вершину.

o Внутри столбцов абсолютных значений мы видим « x — 4», поэтому h = 4

o За пределами столбцов абсолютных значений мы видим «- 2», поэтому k = -2

( ч, ​​к ) = (4, -2)

Функция модуля | Исчисление | Графики | Примеры | Решения

Функция модуля дает величину числа независимо от его знака.Ее также называют функцией абсолютного значения.

В этом мини-уроке мы узнаем об определении модульной функции, вычислении модуля для чисел, переменных и многочленов, а также о решаемых примерах и вопросах о модульной функции.

Попробуйте калькулятор функции mod, чтобы найти модуль числа!

План урока


Что такое функция модуля?

Модуль функции, который также называется абсолютным значением функции, дает величину и абсолютное значение числа независимо от того, положительное или отрицательное число.Он всегда дает неотрицательное значение любого числа или переменной.

Представляется как

\ (\ begin {align} y = | x | \ end {align} \)

или

\ (\ begin {align} f (x) = | x | \ end {align} \)

, где \ (\ begin {align} f: R \ rightarrow R \ end {align} \) и \ (\ begin {align} x \ in R \ end {align} \)

\ (\ begin {align} | x | \ end {align} \) — это модуль \ (\ begin {align} x \ end {align} \), где \ (\ begin {align} x \ end { align} \) — неотрицательное число.

Если \ (\ begin {align} x \ end {align} \) положительное значение, то \ (\ begin {align} f (x) \ end {align} \) будет иметь то же значение \ (\ begin {align } х \ конец {выравнивание} \).Если \ (\ begin {align} x \ end {align} \) отрицательное значение, то \ (\ begin {align} f (x) \ end {align} \) будет величиной \ (\ begin {align} х \ конец {выравнивание} \).

Подводя итог вышеприведенным строкам,

Это означает, что если значение \ (\ begin {align} x \ end {align} \) больше или равно 0, то функция модуля принимает фактическое значение, но если \ (\ begin {align} x \ end {align} \) меньше 0, тогда функция берет минус фактического значения ‘x’.


Как рассчитать функцию модуля?

Шаги по вычислению функций модуля приведены ниже.

, если \ (\ begin {align} x = -3 \ end {align} \), то

\ (\ begin {align} y = f (x) = f (-3) = — (-3) = 3 \ end {align} \), здесь \ (\ begin {align} x \ end {align} \) меньше 0

, если \ (\ begin {align} x = 4 \ end {align} \), то

\ (\ begin {align} y = f (x) = f (4) = 4 \ end {align} \), здесь \ (\ begin {align} x \ end {align} \) больше 0

, если \ (\ begin {align} x = 0 \ end {align} \), то

\ (\ begin {align} y = f (x) = f (0) = 0 \ end {align} \), здесь \ (\ begin {align} x \ end {align} \) равно 0

Подводя итог, можно сказать, что модуль отрицательного числа и положительного числа — это одно и то же число.


График функции модуля

Теперь давайте посмотрим, как построить график для функции модуля и найти ее домен и диапазон.

Рассмотрим x как переменную, принимающую значения от -5 до 5

x-5 -4 -3-2–1 0 1 2 3 4 5
y = f (x) 5 4 3 2 1 0 1 2 3 4 5

При вычислении модуля упругости для положительных значений ‘x’ линия на графике имеет вид ‘y = x’

, а для отрицательных значений «x» линия на графике имеет вид «y = -x».

Обратите внимание, что мы можем применить модуль к любому действительному числу. Диапазон функции модуля — это набор неотрицательных целочисленных переменных, который обозначается как \ (\ begin {align} (0, \ infty) \ end {align} \), а область определения функции модуля — R (где R относится к набору всех положительных действительных чисел)

Поскольку мы обсуждали модуль — это неотрицательное значение, и в соответствии с этой интерпретацией мы также можем сказать, что модуль — это квадратный корень из квадрата переменной. 2} \ end {align} \)

Есть несколько других неотрицательных выражений, которые перечислены ниже.{2n} \ end {align} \) где \ (\ begin {align} n \ in Z \ end {align} \)

\ (\ begin {align} y = 1 — sin \: x; y = 1 — cos \: x \: as \: sin \: x ≤1 \: и \: cos \: x ≤1 \ end { align} \)


Функция Signum

Signum функция определяется как математическая функция, которая дает знак действительного числа. Сигнум-функция выражается следующим образом.

График сигнум-функции выглядит следующим образом.


Модуль комплексного числа

Комплексное число — это число, имеющее форму \ (\ begin {align} a + bi \ end {align} \), где ‘a’ и ‘b’ — действительные числа, а ‘i’ — мнимая единица.2} \ end {align} \)


Важные свойства функции модуля

Свойство 1:

Модуль и равенство

Функция модуля всегда возвращает неотрицательное число для всех действительных значений «x». Также некорректно приравнивать функцию модуля к отрицательному числу.

\ (\ begin {align} | f (x) | = a; \: a> 0⇒f (x) = ± a \\ | f (x) | = a; \: a = 0⇒f (x ) = 0 \\ | f (x) | = a; a <0 \ end {align} \)

Свойство 2:

Модуль и неравенство

Случай 1: (Если a> 0)

Неравенство отрицательного числа

\ (\ begin {align} | f (x) | 0 \ Rightarrow -a

Неравенство для положительного числа

\ (\ begin {align} | f (x) |> a; a> 0 \ Rightarrow -a a \ end {align} \)

Случай 2: (Если <0)

\ (\ begin {align} | f (x) |

\ (\ begin {align} | f (x) |> a; a <0 \ Rightarrow \ end {align} \) - это действительно для всех реальных значений f (x).

Свойство 3:

Если x, y — действительные переменные, то

\ (\ begin {align} | -x | = | x | \ end {align} \)

\ (\ begin {align} | x − y | = 0⇔x = y \ end {align} \)

\ (\ begin {align} | x + y | ≤ | x | + | y ​​| \ end {align} \)

\ (\ begin {align} | x − y | ≥ || x | — | y || \ end {align} \)

\ (\ begin {align} | xy | = | x | \ times | y | \ end {align} \)

\ (\ begin {align} | \ dfrac {x} {y} | = \ dfrac {| x |} {| y |}; | y | \ neq 0 \ end {align} \)

Теперь давайте рассмотрим некоторые решенные вопросы о модульных функциях, чтобы лучше понять их.

  1. Функция модуля также называется функцией абсолютного значения и представляет собой абсолютное значение числа. Обозначается он | x |.
  2. Область модульных функций — это набор всех действительных чисел.
  3. Диапазон функций модуля — это набор всех действительных чисел, больших или равных 0.
  4. Вершина графа модулей y = | x | равно (0,0).

Найдите модуль x для

Решение

а) х = -4

\ (\ begin {align} | x | = | -4 | = — (-4) = 4 \ end {align} \)

б) х = 6

\ (\ begin {align} | x | = | 6 | = 6 \ end {align} \)

Для x = -4, \ (\ begin {align} | -4 | = 4 \ end {align} \)

и

для x = 6 \ (\ begin {align} | 6 | = 6 \ end {align} \)

Решить \ (\ begin {align} | x + 3 | = 8 \ end {align} \)

Решение

Сформируем два уравнения следующим образом.

Корпус 1:

Значение функции модуля отрицательное.

\ (\ begin {align} | x + 3 | = 8 \ end {align} \)

\ (\ begin {align} — | x + 3 | = 8 \ end {align} \)

\ (\ begin {align} x + 3 = -8 \ end {align} \)

\ (\ begin {align} x = -8 — 3 \ end {align} \)

\ (\ begin {align} x = -11 \ end {align} \)

Корпус 2:

Значение функции модуля положительное.

\ (\ begin {align} | x + 3 | = 8 \ end {align} \)

\ (\ begin {align} x + 3 = 8 \ end {align} \)

\ (\ begin {align} x = 8 — 3 \ end {align} \)

\ (\ begin {align} x = 5 \ end {align} \)

Следовательно, возможные значения x в модульной функции:

\ (\ begin {align} x = 5, -11 \ end {align} \)

x может иметь значения \ (\ begin {align} x = 5, -11 \ end {align} \)

Нарисуйте график для \ (\ begin {align} y = | x +2 | \ end {align} \)

Решение

Согласно определению функции модуля, у нас есть

\ (\ begin {align} y = | x + 2 | = x + 2, если \: x \ geq 1 \\ — 2 — x, если \: x <1 \ end {align} \)

Изобразим таблицу с положительными и отрицательными значениями ‘x’.

x y = | x + 2 |
-7 | -7 + 2 | = | -5 | = 5
-6 | -6 + 2 | = | -4 | = 4
-5 | -5 + 2 | = | -3 | = 3
-4 | -4 + 2 | = | -2 | = 2
-3 | -3 + 2 | = | -1 | = 1
-2 | -2 + 2 | = | 0 | = 0
-1 | -1 + 2 | = | 1 | = 1
0 | 0 + 2 | = | 2 | = 2
1 | 1 + 2 | = | 3 | = 3
2 | 2 + 2 | = | 4 | = 4
3 | 3 + 2 | = | 5 | = 5
4 | 4 + 2 | = | 6 | = 6

Построение графика с различными значениями \ (\ begin {align} x \ end {align} \) и \ (\ begin {align} -x \ end {align} \) мы получаем график для модуля функция, как показано ниже,

Это график для функции модуля x + 2

Решить \ (\ begin {align} | 2x — 4 | = 5 — x \ end {align} \)

Решение

Согласно определению функции модуля имеем

В зависимости от функции модуля могут быть две возможности.

Корпус 1:

\ (\ begin {align} — | 2x — 4 | = 5 — x \ end {align} \)

\ (\ begin {align} 2x — 4 = — (5 — x) \ end {align} \)

\ (\ begin {align} 2x — 4 = -5 + x \ end {align} \)

\ (\ begin {align} 2x — x & = -5 + 4 \\ x & = -1 \ end {align} \)

Корпус 2:

\ (\ begin {align} | 2x — 4 | = 5 — x \\ 2x — 4 = 5 — x \\ 2x + x = 5 + 4 \\ 3x = 9 \ x = 3 \ end {align} \)

\ (\ begin {align} x = -1 \: and \: x = 3 \ end {align} \)

  1. Модуль неотрицательного числа и отрицательного числа положительный.| -5 | 5 и | 5 | тоже 5.
  2. Для решения уравнений модуля типа | x-2 | = 5, составьте два уравнения типа x-2 = -5 & и x — 2 = 5, чтобы найти решение.

Интерактивные вопросы

Вот несколько занятий для вас. Выберите / введите свой ответ и нажмите кнопку «Проверить ответ», чтобы увидеть результат.


Подведем итоги

Урок был посвящен увлекательной концепции модульной функции, ее области и диапазона.Надеюсь, вам понравилось их изучать. Просматривая решенные примеры и решая неэффективные вопросы, вы получите больше знаний по предмету. Вы также можете попробовать калькулятор функции модуля, чтобы проверить модуль числа.

О компании Cuemath

В Cuemath наша команда математиков стремится сделать обучение интересным для наших любимых читателей, студентов!

Благодаря интерактивному и увлекательному подходу к обучению-обучению-обучению учителя исследуют тему со всех сторон.

Будь то рабочие листы, онлайн-классы, сеансы сомнений или любые другие формы отношений, мы в Cuemath верим в логическое мышление и интеллектуальный подход к обучению.


Часто задаваемые вопросы по модульной функции

1. Что такое уравнение модуля?

Уравнение, которое дает модуль или величину данного числа, называется уравнением модуля. Обозначается как y = | x |.

2. Что означает модуль?

Модуль означает нахождение положительного или отрицательного числа.

3. Как вы решаете проблемы модуля?

Применение модуля к неотрицательному и отрицательному числу всегда приводит к одному и тому же числу.

4. Как нарисовать функцию модуля?

Взяв отрицательные значения, такие как (-1, -2, -3), и положительные значения, такие как (1,2,3), в соответствии с заданным уравнением модуля, мы можем нарисовать функцию модуля.

5. Почему мы используем Mod?

Функция модуля используется для определения величины положительного или отрицательного числа.

6. Всегда ли модуль упругости положителен?

Модуль положительного числа положителен. Модуль отрицательного числа получается игнорированием знака минус. Таким образом, модуль всегда положителен.

7. Какова производная функции модуля?

Производная функции модуля равна x / | x |.

8. Каков диапазон функции модуля?

Диапазон функции модуля — это набор всех неотрицательных чисел или просто (0, бесконечность).

Алгебра: необычные графики абсолютных значений

Причудливые графики абсолютных значений

Последнее слово о графическом отображении линейных уравнений, прежде чем я завершу этот раздел. Помните, в разделе «Решение основных уравнений» вы узнали, что уравнения, содержащие x в абсолютных значениях, требуют немного другого метода решения, чем обычные уравнения неабсолютных значений? Чтобы получить ответ, вам пришлось разбить уравнение на две части. Что ж, вам нужно изобразить их немного иначе, чем обычные линейные уравнения.В то время как график нормального линейного уравнения выглядит как линия, график линейного уравнения абсолютного значения выглядит как «V». По сути, это линия с изломом, острая точка (или вершина ), где график меняет направление.

На рис. 5.8 я нарисовал графики y = x — 3 и y = | x — 3 |. Оба графика имеют одинаковые координаты для их значений x больше 3.

Однако, когда x меньше 3, левый график опускается ниже оси x (это означает, что его значения y отрицательны. ).Видите, как правый график делает резкий поворот, чтобы вообще не опускаться ниже оси x ? Это потому, что уравнение, показанное на правом графике, устанавливает y равным абсолютному значению! Помните, что абсолютные значения никогда не могут быть отрицательными, и график отражает это, избегая отрицательных значений y, таких как чума.

Рисунок 5.8 График y = | x — 3 | принимает решительные меры, чтобы избежать отрицательных значений, в отличие от y = x — 3.

Лучший способ построить график линейного абсолютного значения — это точно определить, где находится его вершина, построить ее, а затем построить одну точку вправо и одну точку слева от него, чтобы вы могли нарисовать ветви графика.

Предостережения Келли

Если вы рисуете график абсолютных значений, и он опускается ниже оси x , это не обязательно означает, что вы сделали это неправильно! Некоторые линейные уравнения абсолютных значений будут иметь по-прежнему с отрицательными значениями y . Например, если вы подставите x = 2 в уравнение y = | x | — 5, получится y = -3.

Пример 5 : Постройте уравнение y = — 1 2 | x + 4 | — 3.

Решение : Чтобы найти вершину графа, установите только содержимое абсолютных значений равным 0 и решите относительно x .

Теперь найдите соответствующее значение для y , когда x = — 4, чтобы получить пару координат для вершины. (Вставьте x = — 4 обратно в исходное уравнение.)

  • y = 1 2 | (-4) + 4 | — 3
  • y = — 1 2 (0) — 3
  • y = -3

Рисунок 5.9 График y = — 1 2 | x + 4 | — 3, решение примера 5. Обратите внимание, что эта координатная плоскость смещена, чтобы выделить квадрант III.

У вас проблемы

Задача 5. Постройте уравнение y = | 2 x — 4 | + 1.

Вершина графика находится в точке (- 4, -3), поэтому нанесите эту точку на координатную плоскость. Теперь выберите одно значение x слева от вершины и одно справа (другими словами, выберите одно значение x , которое меньше -4, и другое, которое больше), и вставьте их оба в исходное уравнение.Я выбрал x = — 6 и x = -2.

  • y = — 1 2 | (-6) + 4 | -3 y = 1 2 | (-2) + 4 | — 3
  • y = 1 2 | -2 | — 3 y = 1 2 | 2 | — 3
  • y = 1 2 (2) — 3 y = — 1 2 (2) — 3
  • y = -1 — 3 y = — 1-3
  • y = -4 y = -4

Постройте полученные пары координат, (-6, -4) и (-2, -4), каждый раз рисуя линию, начинающуюся в вершина и проходит через одну из точек, как показано на рисунке 5.