Фазы рефрактерности физиология: 404 Cтраница не найдена
Период абсолютной рефрактерности совпадает с фазой. Абсолютный рефрактерный период. Соотношение фаз возбудимости с фазами потенциала действия. Рефрактерность и ее причины
Впервые Р. была обнаружена в мышце сердца Э. Мареем в 1878 г., а в нервах — Готчем и Берком (F. Gotch, С. J. Burck) в 1899 г.
Изменения возбудимости (см.) нервных и мышечных клеток связаны с изменениями уровня поляризации их мембран при возникновении процесса возбуждения (см.). При уменьшении величины мембранного потенциала возбудимость незначительно повышается, а если вслед за уменьшением мембранного потенциала возникает потенциал действия, то возбудимость полностью исчезает и мембрана клетки становится нечувствительной (рефрактерной) к каким бы то ни было воздействиям. Это состояние полной невозбудимости получило название фазы абсолютной Р. Для быстропроводящих нервных волокон теплокровных животных ее продолжительность составляет 0,4 мсек, для скелетных мышц 2,5-4 мсек, для мышц сердца — 250-300 мсек. Восстановление исходного уровня мембранного потенциала сопровождается повышением уровня возбудимости и мембрана приобретает способность реагировать на сверхпороговые раздражители (фаза относительной Р.). В нервных волокнах относительная Р. длится 4-8 мсек, в мышце сердца — 0,03 мсек. Фаза относительной Р. сменяется фазой повышенной возбудимости (экзальтационная фаза Р.), к-рая характеризуется повышением возбудимости против исходного уровня и связана со следовой деполяризацией (отрицательный следовой потенциал). Последующая следовая гиперполяризация (положительный следовой потенциал) сопровождается вторичным снижением возбудимости, к-рая затем сменяется нормальной возбудимостью при восстановлении величины потенциала покоя мембраны.
Все фазы Р. связаны с механизмами возникновения и изменения мембранных потенциалов и обусловлены кинетикой проницаемости мембран для ионов (см. Биоэлектрические потенциалы). Продолжительность фаз Р. можно определить, применяя метод парных раздражений при разных интервалах между ними.
На возбудимость и, следовательно, на продолжительность и выраженность отдельных фаз Р. могут оказывать влияние возрастные изменения, воздействие нек-рых лекарственных веществ, температурных и других факторов. Этим пользуются с целью управления возбудимостью ткани при лечении нек-рых заболеваний. Напр., удлинение фазы относительной Р. в мышце сердца приводит к снижению частоты его сокращений и устранению аритмии. Изменения Р., обусловленные нарушением ионных механизмов возникновения возбуждения, наблюдаются при ряде заболеваний нервной системы и мышц.
Библиография: Бериташвили И. С. Общая физиология мышечной и нервной системы, т. 1, М., 1959; Б p е ж e М. А. Электрическая активность нервной системы, пер. с англ., М., 1979; Оке С. Основы нейрофизиологии, пер. с англ., М., 1969; Ходоров Б. И. Общая физиология возбудимых мембран, М.
Функции сердца: рефрактерность миокарда
Рефрактерностью миокарда называется невозможность возбужденных клеток активизироваться при возникновении нового импульса. Эта особенность клеток миокарда изменяется в зависимости от периодов сердечного цикла.
Продолжительность рефрактерного периода – части сердечного цикла, в которой миокард не возбуждается или демонстрирует измененный ответ, — в разных отделах сердечной мышцы неодинакова. Наиболее короткая продолжительность этого периода – в предсердиях, а самая длинная – в предсердно-желудочковом узле.
Механизм сокращения
Сократительные белки – нити актина и миозина. Взаимодействию миозина с актином препятствуют тропонин и тропомиозин. При росте в саркоплазме Са2+ блокирующий эффект тропонин-тропомиозинового комплекса устраняется и происходит сокращение. При расслаблении сердца происходит удаление Са2+ из саркоплазмы.
Также ингибитором взаимодействия миозина и актина является АТФ. При появлении ионов Са2+ активизируются белки миозина, расщепляя АТФ и устраняя препятствие для взаимодействия сократительных белков.
Рефрактерные периоды
Абсолютным рефрактерным периодом называют такое состояние сердечной мышцы, при котором никакие раздражители не могут вызвать ее сокращение, т.е. клетки сердца рефрактерны к раздражению. Период абсолютной рефрактерности длится в течение примерно 0,27 с. Абсолютная рефрактерность сердца становится возможной по причине инактивации натриевых каналов.
Относительным рефрактерным периодом называется период, в котором сокращение сердца может вызвать более сильный, чем обычно раздражитель, а импульс при этом распространяется по миокарду медленнее, чем обычно. Этот период длится около 0,03 с.
Эффективный рефрактерный период состоит из абсолютного рефрактерного периода и периода, в котором возникает слабое активирование миокарда. Тотальный рефрактерный период состоит из эффективного и относительного рефрактерного периодов.
Период супернормальности, при котором возбудимость миокарда повышена, начинается после окончания относительного рефрактерного периода. В течение этого периода вызвать активирование миокарда и возникновение сильной аритмии может даже небольшой по силе раздражитель. После супернормального периода следует сердечная пауза, при которой порог возбудимости клеток миокарда низкий.
Что влияет на рефрактерный период?
Рефрактерный период укорачивается при учащении сокращений сердца и удлиняется при их замедлении. Сокращать продолжительность рефрактерного периода способен симпатический нерв. Увеличивать его длительность способен блуждающий нерв.
Такая способность сердца, как рефрактерность, способствует расслаблению желудочков и их наполнению кровью. Новый импульс способен заставить сокращаться миокард только после того как окончится предыдущее сокращение и произойдет расслабление сердечной мышцы. Без рефрактерности нагнетательная способность сердца оказалась бы невозможной. Кроме того, благодаря рефрактерности становится невозможной постоянная циркуляция возбуждения по миокарду.
Систола (сокращение сердца) продолжается примерно 0,3 с и совпадает по времени с рефрактерной фазой сердца. То есть при сокращении сердце практически не способно реагировать на какие-либо раздражители. Если раздражитель воздействует на сердечную мышцу во время диастолы (расслабления сердца), то может возникнуть внеочередное сокращение сердечной мышцы – экстрасистолу. Наличие экстрасистол определяется при помощи электрокардиограммы.
/ Нейрофизиология / 11 вопрос
Изменения возбудимости при возбуждении. Возникновение в нервном или мышечном волокне ПД сопровождается многофазными изменениями возбудимости. Для их изучения нерв или мышцу подвергают действию двух коротких электрических стимулов, следующих друг за другом с определенным интервалом. Первый называется раздражающим, второй — тестирующим. Регистрация возникающих в ответ на эти раздражения ПД позволила установить важные факты.
Рис. 2. Сопоставление одиночного возбуждения (/) с фазами возбудимости (//) [ 2 ]:
а — мембранный потенциал (исходная возбудимость),
б — локальный ответ, или ВПСП (повышенная возбудимость),
в — потенциал действия (абсолютная и относительная рефрактерность),
г — следовая деполяризация (супернормальная возбудимость),
д — следовая гиперполяризация (субнормальная возбудимость)
Во время локального ответа возбудимость повышена, так как мембрана деполяризована и разность между Е0 и Ек падает. Периоду же возникновения и развития пика потенциала действия соответствует полное исчезновение возбудимости, получившее название

Согласно ионной теории Ходжкина-Хаксли, абсолютная рефрактерность обусловлена вначале наличием максимальной натриевой проницаемости, когда новый стимул не может что-то изменить или добавить, а затем развитием натриевой инактивации, закрывающей Na-каналы. Вслед за этим происходит снижение натриевой инактивации, в результате чего постепенно восстанавливается способность волокна генерировать ПД. Это — состояние относительной рефрактерности.
Относительная рефрактерная фаза сменяется фазой повышенной (супернормальной ) возбудимост и , совпадающей по времени с периодом следовой деполяризации. В это время разность между Ео и Ек ниже исходной.
Период повышенной возбудимости сменяется субнормальной фазой, которая совпадает со следовой гиперполяризацией. В это время разница между мембранным потенциалом (Ео) и критическим уровнем деполяризации (Ек) увеличивается. Длительность этой фазы составляет несколько десятков или сотен мсек.
Рефрактерные периоды
В сравнении с электрическими импульсами, возникающими в нервах и скелетных мышцах, продолжительность сердечного потенциала действия значительно длиннее. Это обусловлено длительным рефрактерным периодом, во время которого мышцы невосприимчивы к повторным стимулам. Эти длительные периоды физиологически необходимы, так как в это время происходит выброс крови из желудочков и их последующее наполнение для очередного сокращения.
Как показано на рисунке 1.15, во время потенциала действия различают три уровня рефрактерности. Степень рефрактерности исходно отражает количество быстрых Na+ каналов, которые вышли из своего неактивного состояния и способны открыться. В течение фазы 3 потенциала действия увеличивается число Na+ каналов, вышедших из неактивного состояния и способных отвечать на деполяризацию. Это, в свою очередь, повышает вероятность того, что стимулы вызовут развитие потенциала действия и приведут к его распространению.
Абсолютный рефрактерный период — это период, в течение которого клетки полностью нечувствительны к новым стимулам. Эффективный рефрактерный период состоит из абсолютного рефрактерного периода, но, продолжаясь за его пределы, включает еще и короткий интервал фазы 3, в течение которого раздражитель возбуждает локальный потенциал действия, который недостаточно силен, чтобы распространиться дальше. Относительный рефрактерный период — это интервал, в течение которого раздражители возбуждают потенциал действия, который может распространяться, но характеризуется меньшей скоростью развития, более низкой амплитудой и меньшей скоростью проведения из-за того, что в момент стимуляции клетка имела менее отрицательный потенциал, чем потенциал покоя.
После относительного рефрактерного периода выделяют короткий период сверхнормальной возбудимости, в котором раздражители, сила которых ниже нормальной, могут вызывать потенциал действия.
Рефрактерный период клеток предсердия короче, чем клеток миокарда желудочков, поэтому ритм предсердий может значительно превышать ритм желудочков при тахиаритмиях
Проведение импульса
Во время деполяризации электрический импульс распространяется по кардиомиоцитам, быстро переходя на соседние клетки, благодаря тому, что каждый кардиомиоцит соединяется с соседними клетками через контактные мостики с низким сопротивлением. Скорость деполяризации ткани (фаза 0) и скорость проведения по клетке зависит от числа натриевых каналов и величины потенциала покоя. Ткани с высокой концентрацией Na+ каналов, такие как волокна Пуркинье, имеют большой быстрый входящий ток, который быстро распространяется внутри и между клетками и обеспечивает быстрое проведение импульса. В противоположность этому, скорость проведения возбуждения будет значительно ниже в клетках с менее отрицательным потенциалом покоя и большим количеством неактивных быстрых натриевых каналов (рис. 1.16). Таким образом, величина потенциала покоя сильно влияет на скорость развития и проведения потенциала действия.
Нормальная последовательность сердечной деполяризации
В норме электрический импульс, вызывающий сердечное сокращение, вырабатывается в синоатриальном узле (рис. 1.6). Импульс распространяется в мышцы предсердий через межклеточные контактные мостики, которые обеспечивают непрерывность распространения импульса между клетками.
Обычные мышечные волокна предсердий участвуют в распространении электрического импульса от СА- к АВ-узлу; в отдельных местах более плотное расположение волокон облегчает проведение импульса.
В связи с тем, что предсердно-желудочковые клапаны окружает фиброзная ткань, прохождение электрического импульса от предсердий к желудочкам возможно только через АВ-узел. Как только электрический импульс достигает атриовентрикулярного узла, происходит задержка его дальнейшего проведения (приблизительно в 0,1 секунды). Причиной задержки служит медленное проведение импульса волокнами малого диаметра в узле, а также медленный пейсмекерный тип потенциала действия этих волокон (необходимо помнить, что в пейсмекерной ткани быстрые натриевые канальцы постоянно неактивны, и скорость возбуждения обусловлена медленными кальциевыми канальцами). Пауза в проведении импульса в месте атриовентрикулярного узла полезна, так как она дает предсердиям время для их сокращения и полного освобождения от содержимого до начала возбуждения желудочков. В добавление к этому, такая задержка позволяет атриовентрикулярному узлу выполнять функцию привратника, препятствуя проведению слишком частых стимулов от предсердий к желудочкам при предсердных тахикардиях.
Выйдя из атриовентрикулярного узла, сердечный потенциал действия распространяется по быстро проводящим пучкам Гиса и волокнам Пур-кинье к основной массе клеток миокарда желудочков. Это обеспечивает координированное сокращение кардиомиоцитов желудочков.
РЕФРАКТЕРНОСТЬ
Возбудимость сердечной клетки изменяется в отдельные периоды сердечного цикла. Во время систолы сердечная клетка не возбуждается, т. е. она рефрактерна к раздражению. Во время диастолы возбудимость сердечной клетки восстанавливается. Рефрактерность-это невозможность активизированной сердечной клетки снова] активироваться при дополнительном раздражении.
Во время абсолютного рефрактерного периода сердце не может активироваться и сокращаться, независимо от силы примененного раздражения.
Во время эффективного рефрактерного периода сердце способно активироваться, но полученный электрический импульс слабый и не распространяется, вследствие чего не наступает сокращения миокарда. Эффективный рефрактерный период охватывает абсолютный рефрактерный период и тот период, в течение которого возникает слабое электрическое активирование без распространения импульса. Вовремя относительного, релятивного или, называемого еще частичным, рефрактерного периода, сердце может активироваться при раздражении, более сильном, чем обычное. Полученный электрический импульс распространяется, хотя и медленнее чем нормально, и может привести к сокращению сердечной мышцы. Сумма эффективного и относительного рефрактерных периодов дает тотальный рефрактерный период.

Внерефрактерный период соответствует диастоле фазы 4 трансмембранного потенциала. В этот период проводниковая система и сердечная мышца восстанавливают возбудимость и способны к нормальному активнрованию.
Продолжительность рефрактерного периода различна в отдельных частях проводниковой системы и сократительного миокарда. Длиннее всего рефрактерный период в атриовентрикулярном узле. Среднее место по продолжительности рефрактерного периода занимает мышца желудочков, а предсердная мускулатура имеет самый короткий рефрактерный период. Правая ножка пучка Гиса имеет более длинный рефрактерный период, чем левая.
Продолжительность рефрактерного периода не постоянная величина. Она изменяется под влиянием многих факторов, но самое большое значение среди них имеет частота сердечной деятельности и вегетативная иннервация. Ускорение сердечной деятельности сокращает рефрактерный период, а замедление ее оказывает обратный эффект. Блуждающий нерв увеличивает продолжительность рефрактерного периода атриовентрикулярного узла, но укорачивает рефрактерный период предсердий. Симпатический нерв сокращает продолжительность рефрактерного периода всего сердца.
Существуют две, сравнительно короткие, фазы сердечного цикла, во время которых возбудимость сердца повышена: уязвимый (вульнерабельный) период и сверхнормальная фаза.
Уязвимый период находится в конечной части реполяризации и представляет собой составную относительного рефрактерного периода. Во время уязвимого периода пороговый потенциал понижен, а возбудимость клетки повышена. Вследствие этого, под воздействием даже сравнительно слабых раздражителей могут возникнуть желудочковые тахиаритмии и их мерцание. Ионный механизм этого периода не выяснен. Этот период приблизительно совпадает с пиком волны Т на электрограмме и соответствует небольшой части фазы 3 клеточной реполяризации.
Сверхнормальная фаза следует непосредственно после окончания относительного рефрактерного периода, соотв. реполяризации. Она находится в начале диастолы и часто совпадает с волной U на электрокардиограмме. Возбудимость сердечной клетки в этой фазе повышена. Незначительной силы раздражители могут вызвать необычно сильное электрическое активирование и тахиаритмии. Этот период обнаруживают только при функциональной депрессии сердца.
Рефрактерность абсолютная и относительная
Еще одним важным следствием инактивации Na+-системы является развитие рефрактерности мембраны. Это явление иллюстрирует рис. 2.9. Если мембрана деполяризуется сразу после развития потенциала действия, то возбуждение не возникает ни при значении потенциала, соответствующем порогу для предыдущего потенциала действия, ни при любой более сильной деполяризации. Такое состояние полной невозбудимости, которое в нервных клетках продолжается около 1 мс, называется абсолютным рефрактерным периодом. За ним следует относительный рефрактерный период, когда путем значительной деполяризации все же можно вызвать потенциал действия, хотя его амплитуда и снижена по сравнению с нормой.
Рис. 2.9. Рефрактерность после возбуждения. В нерве млекопитающего вызван потенциал действия (слева), после чего с различными интервалами наносили стимулы. Сплошной красной линией показан пороговый уровень потенциала, а черными прерывистыми линиями-деполяризация волокна до порогового уровня. В абсолютном рефрактерном периоде волокно невозбудимо, а в относительном рефрактерном периоде порог его возбуждения превышает нормальный уровень
Потенциал действия обычной амплитуды при нормальной пороговой деполяризации можно вызвать только через несколько миллисекунд после предыдущего потенциала действия. Возвращение к нормальной ситуации соответствует окончанию относительного рефрактерного периода. Как отмечалось выше, рефрактерность обусловлена инактивацией Na+-системы во время предшествующего потенциала действия. Хотя при реполяризации мембраны состояние инактивации заканчивается, такое восстановление представляет собой постепенный процесс, продолжающийся несколько миллисекунд, в течение которых Na «»»-система еще не способна активироваться или же активируется только частично. Абсолютный рефрактерный период ограничивает максимальную частоту генерирования потенциалов действия. Если, как это показано на рис. 2.9, абсолютный рефрактерный период завершается через 2 мс после начала потенциала действия, то клетка может возбуждаться с частотой максимум 500/с. Существуют клетки с еще более коротким рефрактерным периодом, в них частота возбуждения может доходить до 1000/с. Однако большинство клеток имеет максимальную частоту потенциалов действия ниже 500/с.
Рефрактерность
В электрофизиологии рефрактерным периодом (рефрактерностью) называют период времени после возникновения на возбудимой мембране потенциала действия, в ходе которого возбудимость мембраны снижается, а затем постепенно восстанавливается до исходного уровня.
Абсолютный рефрактерный период — интервал, в течение которого возбудимая ткань неспособна сгенерировать повторный потенциал действия (ПД), каким бы сильным ни был инициирующий стимул.
Относительный рефрактерный период — интервал, в течение которого возбудимая ткань постепенно восстанавливает способность формировать ПД. В ходе относительного рефрактерного периода стимул, более сильный, чем тот, который вызвал первый ПД, может привести к формированию повторного ПД.
Причины рефрактерности возбудимой мембраны
Рефрактерный период обусловлен особенностями поведения потенциал-зависимых натриевых и потенциал-зависимых калиевых каналов возбудимой мембраны.
В ходе ПД, потенциал-зависимые натриевые (Na+) и калиевые (К+) каналы переходят из состояния в состояние.
При деполяризации мембраны во время ПД, Na+ каналы после открытого состояния (при котором и начинается ПД, формируемый входящим Na+ током) временно переходят в инактивированное состояние, а K+ каналы открываются и остаются открытыми некоторое время после окончания ПД, создавая выходящий К+ ток, приводящий мембранный потенциал к исходному уровню.
В результате инактивации Na+ каналов, возникает абсолютный рефрактерный период . Позже, когда часть Na+ каналов уже вышла из инактивированного состояния, ПД может возникнуть. Однако для его возникновения требуются очень сильные стимулы, так как, во-первых, «рабочих» Na+ каналов всё ещё мало, а во-вторых, открытые К+ каналы создают выходящий К+ ток и входящий Na+ ток должен его перекрыть, чтобы возник ПД — это относительный рефрактерный период .
Расчёт рефрактерного периода
Рефрактерный период можно рассчитать и описать графически, рассчитав предварительно поведение потенциал-зависимых Na+ и К+ каналов. Поведение этих каналов, в свою очередь, описывается через проводимость и вычисляется через коэффициенты трансфера.
Проводимость для калия
G K на единицу площадиКоэффициент трансфера из закрытого в открытое состояние для K+ каналов ;
Коэффициент трансфера из открытого в закрытое состояние для K+ каналов ;
n — фракция К+ каналов в открытом состоянии;
(1 — n) — фракция К+ каналов в закрытом состоянии
Проводимость для натрия
G N a на единицу площадиКоэффициент трансфера из закрытого в открытое состояние для Na+ каналов ;
Коэффициент трансфера из открытого в закрытое состояние для Na+ каналов ;
m — фракция Na+ каналов в открытом состоянии;
(1 — m) — фракция Na+ каналов в закрытом состоянии;
Коэффициент трансфера из инактивированного в не-инактивированное состояние для Na+ каналов ;
Коэффициент трансфера из не-инактивированного в инактивированное состояние для Na+ каналов ;
h — фракция Na+ каналов в не-инактивированном состоянии;
(1 — h) — фракция Na+ каналов в инактивированном состоянии.
Wikimedia Foundation . 2010 .
Смотреть что такое «Рефрактерность» в других словарях:
РЕФРАКТЕРНОСТЬ — (от франц. refractaire невосприимчивый) в физиологии отсутствие или снижение возбудимости нерва или мышцы после предшествующего возбуждения. Рефрактерность лежит в основе торможения. Рефрактерный период длится от нескольких десятитысячных (во… … Большой Энциклопедический словарь
рефрактерность — невосприимчивость Словарь русских синонимов. рефрактерность сущ., кол во синонимов: 1 невосприимчивость (5) Словарь синоним … Словарь синонимов
РЕФРАКТЕРНОСТЬ — (от франц. refractaire невосприимчивый), снижение возбудимости клеток, сопровождающее возникновение потенциала действия. Во время пика потенциала действия возбудимость полностью исчезает (абсолютная Р.) вследствие инактивации натриевых и… … Биологический энциклопедический словарь
рефрактерность — и, ж. refractaire adj. невосприимчивый. физиол. Отсутствие или снижение возбудимости нерва или мышцы после предшествующего возбуждения. СЭС … Исторический словарь галлицизмов русского языка
рефрактерность — (от франц. réfractaire невосприимчивый) (физиол.), отсутствие или снижение возбудимости нерва или мышцы после предшествующего возбуждения. Рефрактерность лежит в основе торможения. Рефракторный период длится от нескольких десятитысячных (во… … Энциклопедический словарь
Рефрактерность — (от франц. геfractaire невосприимчивый) кратковременное снижение возбудимости (См. Возбудимость) нервной и мышечной тканей непосредственно вслед за потенциалом действия (См. Потенциал действия). Р. обнаруживается при стимуляции нервов и… … Большая советская энциклопедия
рефрактерность — (франц. refractaire невосприимчивый) преходящее состояние пониженной возбудимости нервной или мышечной ткани, возникающее после их возбуждения … Большой медицинский словарь
РЕФРАКТЕРНОСТЬ — (от франц. refractaire невосприимчивый) (физиол.), отсутствие или снижение возбудимости нерва или мышцы после предшествующего возбуждения. Р. лежит в основе торможения. Рефракторный период длится от неск. десятитысячных (во ми. нерв. волокнах) до … Естествознание. Энциклопедический словарь
рефрактерность — рефракт ерность, и … Русский орфографический словарь
РЕФРАКТЕРНОСТЬ — [от фр. refraktaire невосприимчивый; лат. refraktarius упрямый] отсутствие или снижение возбудимости нерва или мышцы после предшествующего возбуждения. Р. лежит в основе нервного процесса торможения … Психомоторика: cловарь-справочник
Возбудимость и возбуждение. Изменение возбудимости в процессе возбуждения
Возбудимость – это способность, клетки, ткани или органа отвечать на действие раздражителя генерацией потенциала действия
Мерой возбудимости является порог раздражения
Порог раздражения – это минимальная сила раздражителя, способная вызвать распространяющееся возбуждение
Возбудимость и порог раздражения находятся в обратной зависимости.
Возбудимость зависит от величины потенциала покоя и уровня критической деполяризации
Потенциал покоя – это разность потенциалов между наружной и внутренней поверхностями мембраны в состоянии покоя
Уровень критической деполяризации – это та величина мембранного потенциала, которую необходимо достичь, чтобы сформировался пиковый потенциал
Разницу между значениями потенциала покоя и уровнем критической деполяризации характеризует порог деполяризации (чем меньше порог деполяризации, тем больше возбудимость)
В состоянии покоя порог деполяризации определяет исходную или нормальную возбудимость ткани
Возбуждение – это сложный физиологический процесс, который возникает в ответ на раздражение и проявляется структурными, физико-химическими и функциональными изменениями
В результате изменения проницаемости плазматической мембраны для ионов K и Na, в процессе возбужденияизменяется величина мембранного потенциала , что формирует потенциал действия . При этом мембранный потенциал изменяет свое положение относительно уровня критической деполяризации .
В результате процесс возбуждения сопровождается изменением возбудимости плазматической мембраны
Изменение возбудимости протекает по фазам , которые зависят от фаз потенциала действия
Выделяют следующиефазы возбудимости:
Фаза первичной экзальтации
Возникает в начале возбуждения , когда мембранный потенциал изменяется до критического уровня.
Соответствует латентному периоду потенциала действия (периоду медленной деполяризации). Характеризуется незначительным повышением возбудимости
2. Фаза абсолютной рефрактерности
Совпадает с восходящей частью пикового потенциала, когда мембранный потенциал изменяется от критического уровня до «спайка».
Соответствует периоду быстрой деполяризации . Характеризуется полной невозбудимостью мембраны (даже самый большой по силе раздражитель не вызывает возбуждение)
Фаза относительной рефрактерности
Совпадает с нисходящей частью пикового потенциала, когда мембранный потенциал изменяется от «спайка» к критическому уровню, оставаясь выше него. Соответствует периоду быстрой реполяризации . Характеризуется пониженной возбудимостью (возбудимость постепенно увеличивается, но остается ниже, чем в состоянии покоя).
В этот период может возникнуть новое возбуждение, но сила раздражителя должна превышать пороговую величину
Изменение возбудимости клетки при развитии возбуждения. Рефрактерность
Возбудимость в различные фазы развития одного цикла возбуждения, вообще является переменной величиной. В ходе развития одного цикла возбуждения возбудимость изменяется в сторону, как повышения, так и понижения. Повышение возбудимости называется экзальтацией , понижение – рефрактерностью.
В изменении возбудимости от момента нанесения раздражения до завершения одиночного цикла возбуждения отмечается несколько периодов (фаз). (Рис.1. Б)
В период развития местного возбуждения наблюдается некоторое повышение возбудимости, которое получило название первичной экзальтации . Каждое нанесенное в это время дополнительное раздражение, по силе даже ниже порогового, ускоряет развитие местного потенциала. Это связано с тем, что пороговый потенциал уменьшается, и открытие воротного механизма Na + -каналов облегчается.
Как только местное возбуждение достигает критической величины и переходит в потенциал действия (фаза деполяризации), возбудимость начинает быстро снижаться и в точке пика потенциала практически становится равной нулю. Это связано с полной инактивацией Na + -каналов на пике ПД.
Время, в течение которого происходит это снижение возбудимости называется абсолютной рефрактерной фазой (периодом), а само снижение возбудимости — абсолютной рефрактерностью. Раздражение любой сверхпороговой силы, нанесенное в этот период, практически не может повлиять на развитие текущего возбуждения (потенциала действия).
В фазе реполяризации возбудимость мембраны последовательно восстанавливается, до исходного уровня, за счет постепенного восстановления активности инактивированных Na + -каналов. Пока активны не все каналы – то этот период называется относительной рефрактерной фазой , а состояние, в котором находится живой объект — относительной рефрактерностью. Эта фаза продолжается до восстановления заряда мембраны до величины, соответствующей критическому уровню деполяризации. Раздражение, нанесенное в этот период, может вызвать усиление возбуждения только в том случае, если по силе оно будет больше величины порогового потенциала Длительность относительной рефрактерной фазы может быть значительно больше, чем абсолютной.
Вслед за периодом относительной рефрактерности наступает фаза экзальтации (повышенной возбудимости). Это связано с тем что мембранный потенциал снижается до величины КУД, при которой восстанавливается активность большей части Na + каналов, а разница между величиной мембранного потенциала и КУД – пороговый потенциал – минимальна. В этой фазе может возникнуть повторная волна возбуждения даже на раздражения, которые значительно ниже порогового потенциала. Фаза экзальтации длится до тех пор, пока не восстановится исходная величина мембранного потенциала – потенциал покоя, при этом восстанавливается исходная величина возбудимости.
В фазы следовой гипер- и деполяризации возбудимость меняется незначительно и связана с колебаниями порогового потенциала.
Биологический смысл фазового изменения возбудимости в ходе развития одиночной волны возбуждения заключается в следующем.
Начальная фаза повышения возбудимости обеспечивает условие, при котором каждый дополнительный раздражитель ускоряет процесс подготовки (местное возбуждение) к специфической (для данной ткани) приспособительной реакции.
Состояние абсолютной рефрактерности позволяет данной ткани «без помех» осуществлять текущую приспособительную реакцию. Если бы в этих условиях возбудимость была нормальной, то дополнительное раздражение, вызвав дополнительное возбуждение, могло бы исказить эту реакцию, превратив ее в избыточную или недостаточную для данных условий.
Абсолютная рефрактерность защищает ткань от чрезмерных энергетических трат в процессе осуществления текущей приспособительной реакции. Сходную роль играет и относительная рефрактерность, с той разницей, что в данном случае живое образование в состоянии реагировать на раздражения, требующие срочного ответа. Именно поэтому для большинства тканей и органов, работающих непрерывно и не имеющих длительных периодов физиологического покоя (например, сердце), характерна более длительная по сравнению со скелетной мускулатурой рефрактерность.
Кроме того, рефрактерность — один из факторов, определяющих максимальный (предельный) ритм импульсации клетки, что лежит в основе например кодирования и декодирования сигнала структурами нервной системы, регуляции восприятия, сокращения, обеспечении одностороннего проведения возбуждения по нервам и др.
Состояние зкзальтации создает условия готовности ткани к ответу на повторное раздражение не только прежней силы, но и более слабой.
Лабильность, или функциональная подвижность , одно из физиологических свойств живых тканей. Это свойство описано в 1892 г. Н. Е. Введенским, который установил, что скорость протекания процесса возбуждения в тканях различна. Каждая возбудимая ткань способна на раздражение отвечать только определенным количеством волн возбуждения. Так, нервное волокно способно воспроизводить до 1000 импульсов в секунду, поперечно-полосатая мышца толькоимп/с.
Мерой лабильности , по Н. Е. Введенскому, является то наибольшее количество волн возбуждения, которое возбудимая ткань может воспроизводить в 1 с в точном соответствии с ритмом наносимых раздражений без явлений трансформации (переделки) ритма, т.е. не уменьшая и не увеличивая его.
Лабильность величина подвижная и может изменяться в достаточно широких пределах. В частности, лабильность широко варьирует в процессе ритмического раздражения. В одних случаях вследствие взаимодействия волн возбуждения лабильность может повыситься, в других понизиться. Повышение лабильности может привести к тому, что недоступные ранее ритмы деятельности станут доступными. На основании этого А. А. Ухтомский сформировал представление об «усвоении ритма» , как способности ткани отвечать на раздражение более высоким или более низким ритмом возбуждения по сравнению с его исходным уровнем. Усвоение ритма зависит от текущих изменений обмена веществ в ткани во время ее деятельности
Явление усвоения ритма играет важную роль в процессах врабатывания и тренировки. Снижение лабильности, происходящее в процессе деятельности, приводит к иному результату, способность ткани к ритмической работе уменьшается. Лабильность может быть измерена косвенным путем по величине хронаксии (см. ниже) возбудимых тканей. Чем короче хронаксия, тем выше лабильность. Определение лабильности весьма важно в физиологии труда и спорта.
Проводимость- способность живой ткани проводить возбуждение, которое, возникая в рецепторе, распространяется по нервной системе и является для организма информацией, закодированной в нейроне в виде электрических или химических сигналов. Способностью к проведению возбуждения обладают практически все возбудимые ткани, но наиболее ярко она выражена в нервной ткани, для которой проводимость является одной из функций.
Подробно механизм и закономерности распространения возбуждения по мембранам возбудимых клеток рассмотрен в отдельном занятии.
Процесс возбуждения начинается с действия на возбудимую клетку какого либо раздражителя.
Раздражитель — любое изменение внешней или внутренней среды организма, воспринимаемое клетками и вызывающее ответную реакцию. По своей природе раздражители делят физические (электрические, механические, температурные, световые) и химические.
В зависимости от степени чувствительности клеток к тому или иному раздражителю их подразделяют на адекватные и неадекватные. Адекватный раздражитель — это такой раздражитель, к которому клетка обладает наибольшей чувствительностью вследствие наличия специальных структур, воспринимающих этот раздражитель. Так, адекватным раздражителем для фоторецепторов сетчатки глаза, например, являются световые волны, адекватным раздражителем нейронов являются медиаторы и электрические импульсы.
Неадекватные раздражители в естественных условиях существования организма не воздействуют на возбудимые структуры. Однако, при достаточной силе и продолжительности действия, могут вызвать ответную реакцию со стороны возбудимых тканей, например, удар в глаз при достаточной силе может вызвать ощущение вспышки света.
В условиях физиологического эксперимента в качестве раздражителя чаше всего используют электрический ток. Электрический ток легко дозировать, и он является адекватным раздражителем для возбудимых тканей, так как их функциональная активность всегда сопровождается электрическими явлениями.
Определенную зависимость между действием раздражителя и ответной реакцией возбудимой ткани отражают законы раздражения. К законам раздражения относятся:
Для возникновения возбуждения решающее значение имеет сила раздражителя. Возбуждение возникают только в том случае, если сила действующего раздражителя достигает минимальной, критической величины, которая характеризуется порогом возбуждения . По отношению к этой величине, по своей силе раздражители могут быть подпороговыми, пороговыми и надпороговыми.
Подпороговый раздражитель — это раздражитель такой силы, который не вызывает видимых изменений, но обусловливает возникновение физико-химических сдвигов в возбудимых тканях, например локального ответа. Однако степень этих сдвигов недостаточна для возникновения распространяющегося возбуждения.
Пороговый раздражитель — это раздражитель минимальной силы, который впервые вызывает минимальную измеримую ответную реакцию со стороны возбудимой ткани. Именно эту пороговую силу раздражителя называют порогом раздражения или возбуждения . Порог раздражения и является мерой возбудимости ткани. Между порогом раздражения и возбудимостью существует обратная зависимость: чем выше порог раздражения, тем ниже возбудимость, чем ниже порог раздражения, тем возбудимость выше. При достижении раздражителем величины порога, возникновение потенциала действия становится неизбежным.
Следует отметить, что порог раздражения показатель достаточно изменчивый и значительно зависит от исходного функционального состояния возбудимой ткани и практически никак не зависит от характеристик самого раздражителя
Надпороговый раздражитель — это раздражитель, сила которого выше, чем сила порогового раздражителя.
Закон силы — характеризует взаимосвязь между силой раздражителя и электрическим ответом, он может быть применен для простых и сложных систем.
Простая возбудимая система – это одна возбудимая клетка, которая реагирует на раздражитель как единое целое. Исключением является сердечная мышца, которая вся реагирует как одна клетка. Закон силы для простых возбудимых систем — подпороговые раздражители не вызывают возбуждения, а пороговые и сверхпороговые раздражители вызывают сразу максимальное возбуждение (Рис. 2).
При подпороговых значениях раздражающего тока возбуждение (электротонический потенциал, локальный ответ) носит местный (не распространяется), градуальный (сила реакции пропорциональная силе действующего стимула) характер. При достижении порога возбуждения возникает ответ максимальной силы (ПД). Амплитуда ответа (амплитуда ПД) не изменяется при дальнейшем увеличении силы раздражителя.
Закон силы для простых возбудимых систем известен как закон «все ли ничего».
Сложная возбудимая система – система, состоящая из множества возбудимых элементов (мышца включает множество двигательных единиц, нерв – множество аксонов). Отдельные элементы (клетки) системы имеют неодинаковые пороги возбуждения.
Закон силы для сложных возбудимых систем — амплитуда ответа пропорциональна силе действующего раздражителя(при значениях силы раздражителя от порога возбуждения самого легковозбудимого элемента до порога возбуждения самого трудновозбудимого элемента) (рис. 3). Амплитуда ответа системы пропорциональна количеству вовлеченных в ответ возбудимых элементов. При возрастании силы раздражителя в реакцию вовлекается все большее число возбудимых элементов.
В случае сложных систем, от силы раздражителя будет зависеть не только электрический, но и физиологический (функциональный) ответ ткани, например сила сокращения. В этом случае закон силы будет звучать следующим образом: чем больше сила раздражителя, тем выше, до определенного предела , ответная реакция со стороны возбудимой ткани. Этот предел будет определяться функциональными возможностями ткани.
Ответ минимальной силы – едва заметное сокращение — возникнет при достижении раздражителем пороговой величины. При этом сократятся мышечные волокна имеющие наименьший порог возбуждения.
Ответная реакция на надпороговый раздражитель будет выше и по мере его увеличения некоторое время также возрастает за счет вовлечения в сокращение все новых мышечных волокон, которые имеют более высокие пороги возбуждения. По достижении определенной величины раздражителя, рост силы сокращения прекратится, значит, в сокращение вовлечены все мышечные волокна. Такую ответную реакцию называют максимальной, а степени силы раздражителя, находящиеся между пороговой и максимальной – субмаксимольными.
Рефрактерность сердечной мышцы
Во время возбуждения сердечная мышца утрачивает способность отвечать второй вспышкой возбуждения на искусственное раздражение или на приходящий к ней импульс от очага автоматии. Такое состояние невозбудимости называют абсолютной рефрактерностью. Длительность периода абсолютной рефрактерности не намного короче продолжительности потенциала действия и равна 0,27 секунды при ритме работы сердца 70 в минуту (рис. 15).
Период рефрактерности сердечной мышцы продолжается столько же времени, сколько длится ее систола в ответ на одиночное раздражение. Поэтому сердечная мышца не способна отвечать на повторные частые раздражения слитным сокращением, так называемым тетанусом. При большой частоте раздражения сердечная мышца реагирует не на каждое следующее друг за другом раздражение, а лишь на каждое второе, третье или четвертое, которое придет по окончании рефрактерности сердечной мышцы. При этом будут наблюдаться одиночные сокращения, отделенные друг от друга. Слитное тетаннческое сокращение сердечной мышцы наблюдал и лишь в искусственных условиях эксперимента, когда путем некоторых воздействий на сердечную мышцу резко укорачивали период ее рефрактерности.
По окончании абсолютной рефрактерности возбудимость постепенно восстанавливается до исходного уровня. Это период относительной рефрактерности. Он длится 0,03 секунды. В это время сердечная мышца способна ответить возбуждением лишь на очень сильные раздражения, превышающие исходный порог раздражения.
За периодом относительной рефрактерности наступает короткий интервал, когда возбудимость повышена,- период супернормальной возбудимости. В это время мышца сердца отвечает вспышкой возбуждения и на допороговые раздражения.
Рис. 15. Соотношение изменений возбудимости мышцы сердца (при раздражении катодом) и потенциала действия (по Гоффману и Кренфильду): 1 — период абсолютной рефрактерности; 2 — период относительной рефрактерности; 3 — период супернормальности; 4 — период полного восстановления нормальной возбудимости.
После окончания возбуждения в нервных или мышечных клетках или, другими словами, после окончания в них потенциала действия наступает временное состояние невозбудимости – рефрактерности. После сокращения сердца очередное сокращение нельзя было вызвать в течении периода, равного десятым долям секунды независимо от амплитуды и длительности раздражающего стимула. В нервных клетках период невозбудимости оказался значительно короче.
При уменьшении интервала раздражения между двумя раздражающими электрическими стимулами величина потенциала действия в ответ на второй стимул становится все меньше и меньше. А если повторный стимул наносится во время генерации потенциала действия или сразу же после его окончания, второй потенциал действия не генерируется. Период, в течении которого, потенциал действия на второй раздражающий стимул не возникает, получил название абсолютного рефрактерного периода. Он составляет для нервных клеток позвоночных животных 1,5 – 2 мс.
После периода абсолютной рефрактерности наступает относительный рефрактерный период. Он характеризуется: 1) повышенным порогом раздражения по сравнению с исходным состоянием (т.е. для того чтобы возник повторный потенциал действия, необходим ток большей величины) 2) снижением амплитуды потенциала действия. По мере окончания периода относительной рефрактерности возбудимость повышается до исходного уровня, и величина порогового раздражения уменьшается также до первоначального значения. В период абсолютной рефрактерности наблюдается повышенная калиевая проводимость за счёт открывания дополнительных калиевых каналов и снижение натриевой проводимости за счёт инактивации натриевых каналов. Поэтому даже при больших значениях деполяризующего тока не удаётся активировать такое количество натриевых каналов, чтобы выходящий натриевый ток мог бы превысить увеличенный выходящий калиевый ток и снова запустить регенеративный процесс. Во время относительного рефрактерного периода деполяризующий сигнал достаточно большой амплитуды может активировать воротный механизм натриевых каналов так, что несмотря на большое число открытых калиевых каналов натриевая проводимость увеличивается и вновь возникает потенциал действия. Вместе с тем из-за увеличенной проводимости мембраны к ионам калия и остаточной натриевой инактивации повышение мембранного потенциала не будет уже столь близко к значению равновесного натриевого потенциала. Поэтому потенциал действия будет меньшим по амплитуде.
Далее следует фаза экзальтации – повышенной возбудимости возникающей в результате, наличия следовой деполяризации. В последующем при развитии следовой гиперполяризации наступает фаза субнормальности – характеризующаяся снижением амплитуды потенциалов действия.
Наличие рефрактерных фаз обуславливает прерывистый (дискретный) характер нервной сигнализации, а ионный механизм генерации потенциала действия обеспечивает стандартность нервных импульсов. Вследствие этого изменения внешних сигналов кодируются изменением частоты потенциалов действия. Максимально возможный ритм активности, лимитированный длительностью абсолютной рефрактерной фазы обозначают как лабильность (функциональную подвижность). У нервных волокон лабильность составляет 200 — 400 Гц, а у некоторых чувствительных нервных волокон достигает 1кГц. В случае, когда новый раздражающий импульс приходится на фазу экзальтации реакция ткани становится максимальной – развивается оптимум частоты. При попадании последующего стимулирующего импульса на фазу относительной или абсолютной рефрактерности реакция ткани ослабляется или прекращается вовсе, развивается пессимальное торможение.
Рефрактерностью миокарда называется невозможность возбужденных клеток активизироваться при возникновении нового импульса. Эта особенность клеток миокарда изменяется в зависимости от периодов сердечного цикла.
Продолжительность рефрактерного периода – части сердечного цикла, в которой миокард не возбуждается или демонстрирует измененный ответ, — в разных отделах сердечной мышцы неодинакова. Наиболее короткая продолжительность этого периода – в предсердиях, а самая длинная – в предсердно-желудочковом узле.
Механизм сокращения
Сократительные белки – нити актина и миозина. Взаимодействию миозина с актином препятствуют тропонин и тропомиозин. При росте в саркоплазме Са2+ блокирующий эффект тропонин-тропомиозинового комплекса устраняется и происходит сокращение. При расслаблении сердца происходит удаление Са2+ из саркоплазмы.
Также ингибитором взаимодействия миозина и актина является АТФ. При появлении ионов Са2+ активизируются белки миозина, расщепляя АТФ и устраняя препятствие для взаимодействия сократительных белков.
Рефрактерные периоды
Абсолютным рефрактерным периодом называют такое состояние сердечной мышцы, при котором никакие раздражители не могут вызвать ее сокращение, т.е. клетки сердца рефрактерны к раздражению. Период абсолютной рефрактерности длится в течение примерно 0,27 с. Абсолютная рефрактерность сердца становится возможной по причине инактивации натриевых каналов.
Относительным рефрактерным периодом называется период, в котором сокращение сердца может вызвать более сильный, чем обычно раздражитель, а импульс при этом распространяется по миокарду медленнее, чем обычно. Этот период длится около 0,03 с.
Эффективный рефрактерный период состоит из абсолютного рефрактерного периода и периода, в котором возникает слабое активирование миокарда. Тотальный рефрактерный период состоит из эффективного и относительного рефрактерного периодов.
Период супернормальности, при котором возбудимость миокарда повышена, начинается после окончания относительного рефрактерного периода. В течение этого периода вызвать активирование миокарда и возникновение сильной аритмии может даже небольшой по силе раздражитель. После супернормального периода следует сердечная пауза, при которой порог возбудимости клеток миокарда низкий.
Что влияет на рефрактерный период?
Рефрактерный период укорачивается при учащении сокращений сердца и удлиняется при их замедлении. Сокращать продолжительность рефрактерного периода способен симпатический нерв. Увеличивать его длительность способен блуждающий нерв.
Такая способность сердца, как рефрактерность, способствует расслаблению желудочков и их наполнению кровью. Новый импульс способен заставить сокращаться миокард только после того как окончится предыдущее сокращение и произойдет расслабление сердечной мышцы. Без рефрактерности нагнетательная способность сердца оказалась бы невозможной. Кроме того, благодаря рефрактерности становится невозможной постоянная циркуляция возбуждения по миокарду.
Систола (сокращение сердца) продолжается примерно 0,3 с и совпадает по времени с рефрактерной фазой сердца. То есть при сокращении сердце практически не способно реагировать на какие-либо раздражители. Если раздражитель воздействует на сердечную мышцу во время диастолы (расслабления сердца), то может возникнуть внеочередное сокращение сердечной мышцы – экстрасистолу. Наличие экстрасистол определяется при помощи электрокардиограммы.
Рефрактерность
В электрофизиологии рефрактерным периодом (рефрактерностью) называют период времени после возникновения на возбудимой мембране потенциала действия , в ходе которого возбудимость мембраны снижается, а затем постепенно восстанавливается до исходного уровня.
Абсолютный рефрактерный период — интервал, в течение которого возбудимая ткань неспособна сгенерировать повторный потенциал действия (ПД) , каким бы сильным ни был инициирующий стимул.
Относительный рефрактерный период — интервал, в течение которого возбудимая ткань постепенно восстанавливает способность формировать ПД . В ходе относительного рефрактерного периода стимул, более сильный, чем тот, который вызвал первый ПД , может привести к формированию повторного ПД .
Причины рефрактерности возбудимой мембраны
Рефрактерный период обусловлен особенностями поведения потенциал-зависимых натриевых и потенциал-зависимых калиевых каналов возбудимой мембраны .
В ходе ПД , потенциал-зависимые натриевые (Na+) и калиевые (К+) каналы переходят из состояния в состояние. У Na+ каналов основных состояний три — закрытое , открытое и инактивированное . У K+ каналов два основных состояния — закрытое и открытое .
При деполяризации мембраны во время ПД , Na+ каналы после открытого состояния (при котором и начинается ПД , формируемый входящим Na+ током) временно переходят в инактивированное состояние, а K+ каналы открываются и остаются открытыми некоторое время после окончания ПД , создавая выходящий К+ ток, приводящий мембранный потенциал к исходному уровню.
В результате инактивации Na+ каналов , возникает абсолютный рефрактерный период . Позже, когда часть Na+ каналов уже вышла из инактивированного состояния, ПД может возникнуть. Однако для его возникновения требуются очень сильные стимулы, так как, во-первых, «рабочих» Na+ каналов всё ещё мало, а во-вторых, открытые К+ каналы создают выходящий К+ ток и входящий Na+ ток должен его перекрыть, чтобы возник ПД — это относительный рефрактерный период .
Расчёт рефрактерного периода
Рефрактерный период можно рассчитать и описать графически, рассчитав предварительно поведение потенциал-зависимых Na+ и К+ каналов. Поведение этих каналов, в свою очередь, описывается через проводимость и вычисляется через коэффициенты трансфера.
Проводимость для калия
G K на единицу площадиКоэффициент трансфера из закрытого в открытое состояние для K+ каналов ;
Коэффициент трансфера из открытого в закрытое состояние для K+ каналов ;
n — фракция К+ каналов в открытом состоянии;
(1 — n) — фракция К+ каналов в закрытом состоянии
Проводимость для натрия
G N a на единицу площадиКоэффициент трансфера из закрытого в открытое состояние для Na+ каналов ;
Коэффициент трансфера из открытого в закрытое состояние для Na+ каналов ;
m — фракция Na+ каналов в открытом состоянии;
(1 — m) — фракция Na+ каналов в закрытом состоянии;
Коэффициент трансфера из инактивированного в не-инактивированное состояние для Na+ каналов ;
Коэффициент трансфера из не-инактивированного в инактивированное состояние для Na+ каналов ;
h — фракция Na+ каналов в не-инактивированном состоянии;
(1 — h) — фракция Na+ каналов в инактивированном состоянии.
Wikimedia Foundation . 2010 .
Синонимы :Смотреть что такое «Рефрактерность» в других словарях:
— (от франц. refractaire невосприимчивый) в физиологии отсутствие или снижение возбудимости нерва или мышцы после предшествующего возбуждения. Рефрактерность лежит в основе торможения. Рефрактерный период длится от нескольких десятитысячных (во… … Большой Энциклопедический словарь
Невосприимчивость Словарь русских синонимов. рефрактерность сущ., кол во синонимов: 1 невосприимчивость (5) Словарь синоним … Словарь синонимов
— (от франц. refractaire невосприимчивый), снижение возбудимости клеток, сопровождающее возникновение потенциала действия. Во время пика потенциала действия возбудимость полностью исчезает (абсолютная Р.) вследствие инактивации натриевых и… … Биологический энциклопедический словарь
рефрактерность — и, ж. refractaire adj. невосприимчивый. физиол. Отсутствие или снижение возбудимости нерва или мышцы после предшествующего возбуждения. СЭС … Исторический словарь галлицизмов русского языка
Продолжительность рефрактерного периода – части сердечного цикла, в которой миокард не возбуждается или демонстрирует измененный ответ, — в разных отделах сердечной мышцы неодинакова. Наиболее короткая продолжительность этого периода – в предсердиях, а самая длинная – в предсердно-желудочковом узле.
Механизм сокращения
Сократительные белки – нити актина и миозина. Взаимодействию миозина с актином препятствуют тропонин и тропомиозин. При росте в саркоплазме Са2+ блокирующий эффект тропонин-тропомиозинового комплекса устраняется и происходит сокращение. При расслаблении сердца происходит удаление Са2+ из саркоплазмы.
Также ингибитором взаимодействия миозина и актина является АТФ. При появлении ионов Са2+ активизируются белки миозина, расщепляя АТФ и устраняя препятствие для взаимодействия сократительных белков.
Рефрактерные периоды
Абсолютным рефрактерным периодом называют такое состояние сердечной мышцы, при котором никакие раздражители не могут вызвать ее сокращение, т. е. клетки сердца рефрактерны к раздражению. Период абсолютной рефрактерности длится в течение примерно 0,27 с. Абсолютная рефрактерность сердца становится возможной по причине инактивации натриевых каналов.
Относительным рефрактерным периодом называется период, в котором сокращение сердца может вызвать более сильный, чем обычно раздражитель, а импульс при этом распространяется по миокарду медленнее, чем обычно. Этот период длится около 0,03 с.
Эффективный рефрактерный период состоит из абсолютного рефрактерного периода и периода, в котором возникает слабое активирование миокарда. Тотальный рефрактерный период состоит из эффективного и относительного рефрактерного периодов.
Период супернормальности, при котором возбудимость миокарда повышена, начинается после окончания относительного рефрактерного периода. В течение этого периода вызвать активирование миокарда и возникновение сильной аритмии может даже небольшой по силе раздражитель. После супернормального периода следует сердечная пауза, при которой порог возбудимости клеток миокарда низкий.
Что влияет на рефрактерный период?
Рефрактерный период укорачивается при учащении сокращений сердца и удлиняется при их замедлении. Сокращать продолжительность рефрактерного периода способен симпатический нерв. Увеличивать его длительность способен блуждающий нерв.
Такая способность сердца, как рефрактерность, способствует расслаблению желудочков и их наполнению кровью. Новый импульс способен заставить сокращаться миокард только после того как окончится предыдущее сокращение и произойдет расслабление сердечной мышцы. Без рефрактерности нагнетательная способность сердца оказалась бы невозможной. Кроме того, благодаря рефрактерности становится невозможной постоянная циркуляция возбуждения по миокарду.
Систола (сокращение сердца) продолжается примерно 0,3 с и совпадает по времени с рефрактерной фазой сердца. То есть при сокращении сердце практически не способно реагировать на какие-либо раздражители. Если раздражитель воздействует на сердечную мышцу во время диастолы (расслабления сердца), то может возникнуть внеочередное сокращение сердечной мышцы – экстрасистолу. Наличие экстрасистол определяется при помощи электрокардиограммы.
РЕФРАКТЕРНОСТЬ
Возбудимость сердечной клетки изменяется в отдельные периоды сердечного цикла. Во время систолы сердечная клетка не возбуждается, т. е. она рефрактерна к раздражению. Во время диастолы возбудимость сердечной клетки восстанавливается. Рефрактерность-это невозможность активизированной сердечной клетки снова] активироваться при дополнительном раздражении. Сердечная клетка, охваченная процессом электрического возбуждения и обладающая акционным потенциалом, не может создать другое дополнительное электрическое возбуждение, другой акционный потенциал. Электрическое возбуждение полностью вовлекает в процесс систему ионов натрия клетки, вследствие чего отсутствует ионный субстрат, который мог бы ответить на дополнительное раздражение.
Различают три степени рефрактерности, соотв. периода: абсолютный, эффективный и относительный (релятивный) рефрактерный период (рис. 12).
Рефрактерность сердечной мышцы. П- относительный рефрактерный период; ВП — вульнерабельный (уязвимый) период; СНФ — супернормальная фаза.
Во время абсолютного рефрактерного периода сердце не может активироваться и сокращаться, независимо от силы примененного раздражения.
Во время эффективного рефрактерного периода сердце способно активироваться, но полученный электрический импульс слабый и не распространяется, вследствие чего не наступает сокращения миокарда. Эффективный рефрактерный период охватывает абсолютный рефрактерный период и тот период, в течение которого возникает слабое электрическое активирование без распространения импульса. Вовремя относительного, релятивного или, называемого еще частичным, рефрактерного периода, сердце может активироваться при раздражении, более сильном, чем обычное. Полученный электрический импульс распространяется, хотя и медленнее чем нормально, и может привести к сокращению сердечной мышцы. Сумма эффективного и относительного рефрактерных периодов дает тотальный рефрактерный период. Тотальный рефрактерный период соответствует интервалу Q — Т на электрокардиограмме — электрической желудочковой систоле. Он соответствует всему потенциалу действия клетки. Абсолютный рефрактерный период соответствует комплексу QRS и начальной и средней части сегмента S-T на электрокардиограмме. Он охватывает потенциал действия с самого его начала до, примерно, -50 мв реполяризации. Конец абсолютного рефрактерного периода определяется как момент реполяризации, после чего при дополнительном раздражении может возникнуть слабый, нераспространяющнйся электрический импульс. Эффективный рефрактерный период соответствует комплексу QRS и всему сегменту S-T на электрокардиограмме. Он охватывает потенциал действия от его начала до, примерно, — 60 мв реполяризации. Конец эффективного рефрактерного периода определяется как момент реполяризации, вслед за которым при дополнительном раздражении может возникнуть медленно распространяющийся электрический импульс. Следовательно, разница между абсолютным и эффективным рефрактерным периодом заключается в том, что эффективный рефрактерный период охватывает также часть реполяризации, примерно, между-50 и-60 мв, когда при дополнительном раздражении может возникнуть слабый нераспространяющийся электрический импульс.
Относительный рефрактерный период очень короткий и соответствует волне Т на электрокардиограмме. Он охватывает конечную часть реполяризации и находится приблизително между — 60 мв и концом потенциала действия.
Внерефрактерный период соответствует диастоле фазы 4 трансмембранного потенциала. В этот период проводниковая система и сердечная мышца восстанавливают возбудимость и способны к нормальному активнрованию.
Продолжительность рефрактерного периода различна в отдельных частях проводниковой системы и сократительного миокарда. Длиннее всего рефрактерный период в атриовентрикулярном узле. Среднее место по продолжительности рефрактерного периода занимает мышца желудочков, а предсердная мускулатура имеет самый короткий рефрактерный период. Правая ножка пучка Гиса имеет более длинный рефрактерный период, чем левая.
Продолжительность рефрактерного периода не постоянная величина. Она изменяется под влиянием многих факторов, но самое большое значение среди них имеет частота сердечной деятельности и вегетативная иннервация. Ускорение сердечной деятельности сокращает рефрактерный период, а замедление ее оказывает обратный эффект. Блуждающий нерв увеличивает продолжительность рефрактерного периода атриовентрикулярного узла, но укорачивает рефрактерный период предсердий. Симпатический нерв сокращает продолжительность рефрактерного периода всего сердца.
Существуют две, сравнительно короткие, фазы сердечного цикла, во время которых возбудимость сердца повышена: уязвимый (вульнерабельный) период и сверхнормальная фаза.
Уязвимый период находится в конечной части реполяризации и представляет собой составную относительного рефрактерного периода. Во время уязвимого периода пороговый потенциал понижен, а возбудимость клетки повышена. Вследствие этого, под воздействием даже сравнительно слабых раздражителей могут возникнуть желудочковые тахиаритмии и их мерцание. Ионный механизм этого периода не выяснен. Этот период приблизительно совпадает с пиком волны Т на электрограмме и соответствует небольшой части фазы 3 клеточной реполяризации.
Сверхнормальная фаза следует непосредственно после окончания относительного рефрактерного периода, соотв. реполяризации. Она находится в начале диастолы и часто совпадает с волной U на электрокардиограмме. Возбудимость сердечной клетки в этой фазе повышена. Незначительной силы раздражители могут вызвать необычно сильное электрическое активирование и тахиаритмии. Этот период обнаруживают только при функциональной депрессии сердца.
Абсолютная рефрактерность
РЕФРАКТЕРНОСТЬ (лат. refractorius невосприимчивый) — состояние возбудимых образований после предшествующего возбуждения, характеризующееся снижением или отсутствием возбудимости. Впервые Р. была обнаружена в мышце сердца Э. Мареем в 1878 г., а в нервах — Готчем и Берком (F. Gotch, С. J. Burck) в 1899 г.
Изменения возбудимости (см.) нервных и мышечных клеток связаны с изменениями уровня поляризации их мембран при возникновении процесса возбуждения (см.). При уменьшении величины мембранного потенциала возбудимость незначительно повышается, а если вслед за уменьшением мембранного потенциала возникает потенциал действия, то возбудимость полностью исчезает и мембрана клетки становится нечувствительной (рефрактерной) к каким бы то ни было воздействиям. Это состояние полной невозбудимости получило название фазы абсолютной Р. Для быстропроводящих нервных волокон теплокровных животных ее продолжительность составляет 0,4 мсек, для скелетных мышц 2,5-4 мсек, для мышц сердца — 250-300 мсек. Восстановление исходного уровня мембранного потенциала сопровождается повышением уровня возбудимости и мембрана приобретает способность реагировать на сверхпороговые раздражители (фаза относительной Р.). В нервных волокнах относительная Р. длится 4-8 мсек, в мышце сердца — 0,03 мсек. Фаза относительной Р. сменяется фазой повышенной возбудимости (экзальтационная фаза Р.), к-рая характеризуется повышением возбудимости против исходного уровня и связана со следовой деполяризацией (отрицательный следовой потенциал). Последующая следовая гиперполяризация (положительный следовой потенциал) сопровождается вторичным снижением возбудимости, к-рая затем сменяется нормальной возбудимостью при восстановлении величины потенциала покоя мембраны.
Все фазы Р. связаны с механизмами возникновения и изменения мембранных потенциалов и обусловлены кинетикой проницаемости мембран для ионов (см. Биоэлектрические потенциалы). Продолжительность фаз Р. можно определить, применяя метод парных раздражений при разных интервалах между ними. Первое раздражение называется кондиционирующим — оно вызывает процесс возбуждения в возбудимой ткани; второе — тестирующее — показывает уровень возбудимости ткани и фазу Р.
На возбудимость и, следовательно, на продолжительность и выраженность отдельных фаз Р. могут оказывать влияние возрастные изменения, воздействие нек-рых лекарственных веществ, температурных и других факторов. Этим пользуются с целью управления возбудимостью ткани при лечении нек-рых заболеваний. Напр., удлинение фазы относительной Р. в мышце сердца приводит к снижению частоты его сокращений и устранению аритмии. Изменения Р., обусловленные нарушением ионных механизмов возникновения возбуждения, наблюдаются при ряде заболеваний нервной системы и мышц.
Библиография: Бериташвили И. С. Общая физиология мышечной и нервной системы, т. 1, М., 1959; Б p е ж e М. А. Электрическая активность нервной системы, пер. с англ., М., 1979; Оке С. Основы нейрофизиологии, пер. с англ., М., 1969; Ходоров Б. И. Общая физиология возбудимых мембран, М., 1975, библиогр.; Gotch F. а. В u г с k С. J. The electrical response of nerve to two stimuli, J. Physiol. (Lond.), v. 24, p. 410, 1899.
Рефрактерность сердца
Для миокарда продолжительность периода рефрактерности имеет особое значение. Она предотвращает слишком частых повторных возбуждений миокарда. Такие возбуждения в скелетных мышцах приводят к тетануса. Но подобный ответ со стороны миокарда сделала бы невозможной нагнетательную функцию сердца. При рефрактерности желудочки успевают расслабиться и начинают заполняться кровью. Кроме того, рефрактерность «не позволяет» возбуждению бесконечно долго циркулировать по миокарда. Начавшись в предсердиях, оно снова могло бы вернуться к ним, обойдя желудочки. Но в это время предсердия находятся в стадии полной рефрактерности, а это значит, что новая волна возбуждения возникнуть в них не может.
Соответствующие разделы:
весь материал представлен для ознакомительных целей
Рефрактерность
В электрофизиологии рефрактерным периодом (рефрактерностью) называют период времени после возникновения на возбудимой мембране потенциала действия, в ходе которого возбудимость мембраны снижается, а затем постепенно восстанавливается до исходного уровня.
Абсолютный рефрактерный период — интервал, в течение которого возбудимая ткань неспособна сгенерировать повторный потенциал действия (ПД), каким бы сильным ни был инициирующий стимул.
Относительный рефрактерный период — интервал, в течение которого возбудимая ткань постепенно восстанавливает способность формировать ПД. В ходе относительного рефрактерного периода стимул, более сильный, чем тот, который вызвал первый ПД, может привести к формированию повторного ПД.
В ходе ПД, потенциал-зависимые натриевые (Na+) и калиевые (К+) каналы переходят из состояния в состояние.
При деполяризации мембраны во время ПД, Na+ каналы после открытого состояния (при котором и начинается ПД, формируемый входящим Na+ током) временно переходят в инактивированное состояние, а K+ каналы открываются и остаются открытыми некоторое время после окончания ПД, создавая выходящий К+ ток, приводящий мембранный потенциал к исходному уровню.
В результате инактивации Na+ каналов, возникает абсолютный рефрактерный период . Позже, когда часть Na+ каналов уже вышла из инактивированного состояния, ПД может возникнуть. Однако для его возникновения требуются очень сильные стимулы, так как, во-первых, «рабочих» Na+ каналов всё ещё мало, а во-вторых, открытые К+ каналы создают выходящий К+ ток и входящий Na+ ток должен его перекрыть, чтобы возник ПД — это относительный рефрактерный период .
Расчёт рефрактерного периода
Рефрактерный период можно рассчитать и описать графически, рассчитав предварительно поведение потенциал-зависимых Na+ и К+ каналов. Поведение этих каналов, в свою очередь, описывается через проводимость и вычисляется через коэффициенты трансфера.
Проводимость для калия
G K на единицу площадиКоэффициент трансфера из закрытого в открытое состояние для K+ каналов ;
Коэффициент трансфера из открытого в закрытое состояние для K+ каналов ;
n — фракция К+ каналов в открытом состоянии;
(1 — n) — фракция К+ каналов в закрытом состоянии
Проводимость для натрия
G N a на единицу площадиКоэффициент трансфера из закрытого в открытое состояние для Na+ каналов ;
Коэффициент трансфера из открытого в закрытое состояние для Na+ каналов ;
m — фракция Na+ каналов в открытом состоянии;
(1 — m) — фракция Na+ каналов в закрытом состоянии;
Коэффициент трансфера из инактивированного в не-инактивированное состояние для Na+ каналов ;
Коэффициент трансфера из не-инактивированного в инактивированное состояние для Na+ каналов ;
h — фракция Na+ каналов в не-инактивированном состоянии;
(1 — h) — фракция Na+ каналов в инактивированном состоянии.
Wikimedia Foundation . 2010 .
Смотреть что такое «Рефрактерность» в других словарях:
РЕФРАКТЕРНОСТЬ — (от франц. refractaire невосприимчивый) в физиологии отсутствие или снижение возбудимости нерва или мышцы после предшествующего возбуждения. Рефрактерность лежит в основе торможения. Рефрактерный период длится от нескольких десятитысячных (во… … Большой Энциклопедический словарь
рефрактерность — невосприимчивость Словарь русских синонимов. рефрактерность сущ., кол во синонимов: 1 невосприимчивость (5) Словарь синоним … Словарь синонимов
РЕФРАКТЕРНОСТЬ — (от франц. refractaire невосприимчивый), снижение возбудимости клеток, сопровождающее возникновение потенциала действия. Во время пика потенциала действия возбудимость полностью исчезает (абсолютная Р.) вследствие инактивации натриевых и… … Биологический энциклопедический словарь
рефрактерность — и, ж. refractaire adj. невосприимчивый. физиол. Отсутствие или снижение возбудимости нерва или мышцы после предшествующего возбуждения. СЭС … Исторический словарь галлицизмов русского языка
рефрактерность — (от франц. réfractaire невосприимчивый) (физиол.), отсутствие или снижение возбудимости нерва или мышцы после предшествующего возбуждения. Рефрактерность лежит в основе торможения. Рефракторный период длится от нескольких десятитысячных (во… … Энциклопедический словарь
Рефрактерность — (от франц. геfractaire невосприимчивый) кратковременное снижение возбудимости (См. Возбудимость) нервной и мышечной тканей непосредственно вслед за потенциалом действия (См. Потенциал действия). Р. обнаруживается при стимуляции нервов и… … Большая советская энциклопедия
рефрактерность — (франц. refractaire невосприимчивый) преходящее состояние пониженной возбудимости нервной или мышечной ткани, возникающее после их возбуждения … Большой медицинский словарь
РЕФРАКТЕРНОСТЬ — (от франц. refractaire невосприимчивый) (физиол.), отсутствие или снижение возбудимости нерва или мышцы после предшествующего возбуждения. Р. лежит в основе торможения. Рефракторный период длится от неск. десятитысячных (во ми. нерв. волокнах) до … Естествознание. Энциклопедический словарь
рефрактерность — рефракт ерность, и … Русский орфографический словарь
РЕФРАКТЕРНОСТЬ — [от фр. refraktaire невосприимчивый; лат. refraktarius упрямый] отсутствие или снижение возбудимости нерва или мышцы после предшествующего возбуждения. Р. лежит в основе нервного процесса торможения … Психомоторика: cловарь-справочник
Книги
- Электрическая стимуляция сердца, Е. Б. Бабский, Л. С. Ульянинский. Один из основных методов физиологического исследования возбудимых тканей — метод электрического раздражения — уже давно и с успехом применяется для изучения деятельности и функционального… ПодробнееКупить за 290 руб
Мы используем куки для наилучшего представления нашего сайта. Продолжая использовать данный сайт, вы соглашаетесь с этим. Хорошо
Абсолютная рефрактерность
Под абсолютным рефрактерным периодом понимают такое состояние сердца, при котором любой силы раздражитель не в состоянии вызвать активацию и сокращение сердца. При эффективном рефрактерном периоде сердце способно активироваться, но вследствие слабости электрического импульса сокращение миокарда не развивается. Эффективный рефрактерный период слагается из абсолютного рефрактерного периода и периода, в течение которого возникает слабое электрическое активирование миокарда без распространения импульса. Под относительным рефрактерным периодом понимают период, когда более сильный, чем обычно (суперпороговый), раздражитель в состоянии активировать миокард и вызвать сокращение сердца. Эффективный и относительный рефрактерные периоды суммируются в тотальный рефрактерный период. Этому периоду на электрокардиограмме соответствует интервал Q — Т (электрическая систола желудочков).
Вслед за окончанием относительного рефрактерного периода начинается период супернормальности. Он находится в начале диастолы и часто совпадает с волной U на электрокардиограмме. В этот период возбудимость миокарда повышена. Даже субпороговый (то есть незначительной силы, слабее обычного, нормального) раздражитель в состоянии вызвать сильное электрическое активирование и развитие различных тахиаритмий сердца. Следовательно, существуют два сравнительно коротких периода сердечного цикла, во время которых возбудимость сердца повышена: уязвимый и супернормальный. Эти периоды наиболее «опасны» развитием различных нарушений ритма сердца. Наконец за супернормальным периодом следует сердечная пауза (диастола), отражающая внерефрактерный период. Во время паузы порог возбудимости сердца низок, он постоянен для клеток сократительного миокарда.
Но самое большое значение среди факторов имеет частота сокращений сердца и вегетативная иннервация. При учащении сердечных сокращений укорачивается рефрактерный период, и наоборот. Симпатический нерв сокращает продолжительность рефрактерного периода, а блуждающий нерв, напротив, увеличивает его длительность.
Проводимость свойственна всем клеткам миокарда. Трансмембранный потенциал действия возникает в процессе автоматического раздражения клеток миокарда.
Потенциал действия клетки рабочего миокарда.
Быстрое развитие деполяризации и продолжительная реполяризация. Замедленная реполяризация (плато) переходит в быструю реполяризацию.
Проведение импульсов заключается в последовательном распространении потенциала действия, который возникает под влиянием импульсов, генерируемых синусовым узлом. Импульсы из синусового узла (или других источников автоматизма, электростимуляторов), воздействуя на мембраны клеток, перемещают ионы. После достижения порогового потенциала соседних клеток ионы натрия быстро движутся внутрь их. Это движение выражается потенциалом действия, деполяризующе влияющим на соседние клетки в виде цепной реакции. Цитоплазма автоматических клеток, миофибриллы, а также межклеточная жидкость обладают небольшим электрическим сопротивлением и хорошо проводят электрические (автоматические) импульсы. Через клетку проходит ток, который, воздействуя на соседние клетки, способствует дальнейшему распространению или проведению биоэлектрического возбуждения.
Скорость проведения импульсов по проводниковой системе и миокарду различна и зависит также от структурных и функциональных особенностей различных участков сердца.
Возбуждение предсердий через проводящие тракты, которые упоминались выше, распространяется в 2-3 раза быстрее, чем по миокарду предсердий.
Будем рады вашим вопросам и отзывам:
Материалы для размещения и пожелания просим присылать на адрес
Присылая материал для размещения вы соглашаетесь с тем, что все права на него принадлежат вам
При цитировании любой информации обратная ссылка на MedUniver.com — обязательна
Вся предоставленная информация подлежит обязательной консультации лечащим врачом
Администрация сохраняет за собой право удалять любую предоставленную пользователем информацию
Изменение возбудимости клетки при развитии возбуждения. Рефрактерность.
Возбудимость в различные фазы развития одного цикла возбуждения, вообще является переменной величиной. В ходе развития одного цикла возбуждения возбудимость изменяется в сторону, как повышения, так и понижения. Повышение возбудимости называется экзальтацией , понижение – рефрактерностью.
В изменении возбудимости от момента нанесения раздражения до завершения одиночного цикла возбуждения отмечается несколько периодов (фаз). (Рис.1. Б)
В период развития местного возбуждения наблюдается некоторое повышение возбудимости, которое получило название первичной экзальтации . Каждое нанесенное в это время дополнительное раздражение, по силе даже ниже порогового, ускоряет развитие местного потенциала. Это связано с тем, что пороговый потенциал уменьшается, и открытие воротного механизма Na + -каналов облегчается.
Как только местное возбуждение достигает критической величины и переходит в потенциал действия (фаза деполяризации), возбудимость начинает быстро снижаться и в точке пика потенциала практически становится равной нулю. Это связано с полной инактивацией Na + -каналов на пике ПД.
Время, в течение которого происходит это снижение возбудимости называется абсолютной рефрактерной фазой (периодом), а само снижение возбудимости — абсолютной рефрактерностью. Раздражение любой сверхпороговой силы, нанесенное в этот период, практически не может повлиять на развитие текущего возбуждения (потенциала действия).
В фазе реполяризации возбудимость мембраны последовательно восстанавливается, до исходного уровня, за счет постепенного восстановления активности инактивированных Na + -каналов. Пока активны не все каналы – то этот период называется относительной рефрактерной фазой , а состояние, в котором находится живой объект — относительной рефрактерностью. Эта фаза продолжается до восстановления заряда мембраны до величины, соответствующей критическому уровню деполяризации. Раздражение, нанесенное в этот период, может вызвать усиление возбуждения только в том случае, если по силе оно будет больше величины порогового потенциала Длительность относительной рефрактерной фазы может быть значительно больше, чем абсолютной.
Вслед за периодом относительной рефрактерности наступает фаза экзальтации (повышенной возбудимости). Это связано с тем что мембранный потенциал снижается до величины КУД, при которой восстанавливается активность большей части Na + каналов, а разница между величиной мембранного потенциала и КУД – пороговый потенциал – минимальна. В этой фазе может возникнуть повторная волна возбуждения даже на раздражения, которые значительно ниже порогового потенциала. Фаза экзальтации длится до тех пор, пока не восстановится исходная величина мембранного потенциала – потенциал покоя, при этом восстанавливается исходная величина возбудимости.
В фазы следовой гипер- и деполяризации возбудимость меняется незначительно и связана с колебаниями порогового потенциала.
Биологический смысл фазового изменения возбудимости в ходе развития одиночной волны возбуждения заключается в следующем.
Начальная фаза повышения возбудимости обеспечивает условие, при котором каждый дополнительный раздражитель ускоряет процесс подготовки (местное возбуждение) к специфической (для данной ткани) приспособительной реакции.
Состояние абсолютной рефрактерности позволяет данной ткани «без помех» осуществлять текущую приспособительную реакцию. Если бы в этих условиях возбудимость была нормальной, то дополнительное раздражение, вызвав дополнительное возбуждение, могло бы исказить эту реакцию, превратив ее в избыточную или недостаточную для данных условий.
Абсолютная рефрактерность защищает ткань от чрезмерных энергетических трат в процессе осуществления текущей приспособительной реакции. Сходную роль играет и относительная рефрактерность, с той разницей, что в данном случае живое образование в состоянии реагировать на раздражения, требующие срочного ответа. Именно поэтому для большинства тканей и органов, работающих непрерывно и не имеющих длительных периодов физиологического покоя (например, сердце), характерна более длительная по сравнению со скелетной мускулатурой рефрактерность.
Кроме того, рефрактерность — один из факторов, определяющих максимальный (предельный) ритм импульсации клетки, что лежит в основе например кодирования и декодирования сигнала структурами нервной системы, регуляции восприятия, сокращения, обеспечении одностороннего проведения возбуждения по нервам и др.
Состояние зкзальтации создает условия готовности ткани к ответу на повторное раздражение не только прежней силы, но и более слабой.
Лабильность, или функциональная подвижность , одно из физиологических свойств живых тканей. Это свойство описано в 1892 г. Н. Е. Введенским, который установил, что скорость протекания процесса возбуждения в тканях различна. Каждая возбудимая ткань способна на раздражение отвечать только определенным количеством волн возбуждения. Так, нервное волокно способно воспроизводить до 1000 импульсов в секунду, поперечно-полосатая мышца толькоимп/с.
Мерой лабильности , по Н. Е. Введенскому, является то наибольшее количество волн возбуждения, которое возбудимая ткань может воспроизводить в 1 с в точном соответствии с ритмом наносимых раздражений без явлений трансформации (переделки) ритма, т.е. не уменьшая и не увеличивая его.
Лабильность величина подвижная и может изменяться в достаточно широких пределах. В частности, лабильность широко варьирует в процессе ритмического раздражения. В одних случаях вследствие взаимодействия волн возбуждения лабильность может повыситься, в других понизиться. Повышение лабильности может привести к тому, что недоступные ранее ритмы деятельности станут доступными. На основании этого А. А. Ухтомский сформировал представление об «усвоении ритма» , как способности ткани отвечать на раздражение более высоким или более низким ритмом возбуждения по сравнению с его исходным уровнем. Усвоение ритма зависит от текущих изменений обмена веществ в ткани во время ее деятельности
Явление усвоения ритма играет важную роль в процессах врабатывания и тренировки. Снижение лабильности, происходящее в процессе деятельности, приводит к иному результату, способность ткани к ритмической работе уменьшается. Лабильность может быть измерена косвенным путем по величине хронаксии (см. ниже) возбудимых тканей. Чем короче хронаксия, тем выше лабильность. Определение лабильности весьма важно в физиологии труда и спорта.
Проводимость- способность живой ткани проводить возбуждение, которое, возникая в рецепторе, распространяется по нервной системе и является для организма информацией, закодированной в нейроне в виде электрических или химических сигналов. Способностью к проведению возбуждения обладают практически все возбудимые ткани, но наиболее ярко она выражена в нервной ткани, для которой проводимость является одной из функций.
Подробно механизм и закономерности распространения возбуждения по мембранам возбудимых клеток рассмотрен в отдельном занятии.
Процесс возбуждения начинается с действия на возбудимую клетку какого либо раздражителя.
Раздражитель — любое изменение внешней или внутренней среды организма, воспринимаемое клетками и вызывающее ответную реакцию. По своей природе раздражители делят физические (электрические, механические, температурные, световые) и химические.
В зависимости от степени чувствительности клеток к тому или иному раздражителю их подразделяют на адекватные и неадекватные. Адекватный раздражитель — это такой раздражитель, к которому клетка обладает наибольшей чувствительностью вследствие наличия специальных структур, воспринимающих этот раздражитель. Так, адекватным раздражителем для фоторецепторов сетчатки глаза, например, являются световые волны, адекватным раздражителем нейронов являются медиаторы и электрические импульсы.
Неадекватные раздражители в естественных условиях существования организма не воздействуют на возбудимые структуры. Однако, при достаточной силе и продолжительности действия, могут вызвать ответную реакцию со стороны возбудимых тканей, например, удар в глаз при достаточной силе может вызвать ощущение вспышки света.
В условиях физиологического эксперимента в качестве раздражителя чаше всего используют электрический ток. Электрический ток легко дозировать, и он является адекватным раздражителем для возбудимых тканей, так как их функциональная активность всегда сопровождается электрическими явлениями.
Определенную зависимость между действием раздражителя и ответной реакцией возбудимой ткани отражают законы раздражения. К законам раздражения относятся.
Читать «Нормальная физиология» — Агаджанян Николай Александрович — Страница 7
При развитии потенциала действия происходят фазные изменения возбудимости ткани (рис. 2). Состоянию исходной поляризации мембраны (мембранный потенциал покоя) соответствует нормальный уровень возбудимости. В период предспайка возбудимость ткани повышена. Эта фаза возбудимости получила название повышенной возбудимости (первичной экзальтации). В это время мембранный потенциал приближается к критическому уровню деполяризации, поэтому дополнительный стимул, даже если он меньше порогового, может довести мембрану до критического уровня деполяризации. В период развития спайка (пикового потенциала) идет лавинообразное поступление ионов натрия внутрь клетки, в результате чего происходит перезарядка мембраны и она утрачивает способность отвечать возбуждением на раздражители даже сверхпороговой силы. Эта фаза возбудимости получила название абсолютной рефрактерности (абсолютной невозбудимости). Она длится до конца перезарядки мембраны и возникает в связи с тем, что натриевые каналы инактивируются.
После окончания фазы перезарядки мембраны возбудимость ее постепенно восстанавливается до исходного уровня – фаза относительной рефрактерности. Она продолжается до восстановления заряда мембраны, достигая величины критического уровня деполяризации. Так как в этот период мембранный потенциал покоя еще не восстановлен, то возбудимость ткани понижена и новое возбуждение может возникнуть только при действии сверхпорогового раздражителя.
Снижение возбудимости в фазу относительной рефрактерности связано с частичной инактивацией натриевых каналов и активацией калиевых. Периоду отрицательного следового потенциала соответствует повышенный уровень возбудимости (фаза вторичной экзальтации). Так как мембранный потенциал в эту фазу ближе к критическому уровню деполяризации по сравнению с состоянием покоя (исходной поляризацией), то порог раздражения снижен и новое возбуждение может возникнуть при действии раздражителей подпороговой силы.
В период развития положительного следового потенциала возбудимость ткани понижена – фаза субнормальной возбудимости (вторичной рефрактерности). В эту фазу мембранный потенциал увеличивается (состояние гиперполяризации мембраны), удаляясь от критического уровня деполяризации, порог раздражения повышается и новое возбуждение может возникнуть только при действии раздражителей сверхпороговой величины. Рефрактерность мембраны является следствием того, что натриевый канал состоит из собственно канала (транспортной части) и воротного механизма, который управляется электрическим полем мембраны. В канале предполагают наличие двух типов «ворот» – быстрых активационных (ш) и медленных инактивационных (Л). «Ворота» могут быть полностью открыты или закрыты, например, в натриевом канале в состоянии покоя «ворота» т закрыты, а «ворота» h – открыты. При уменьшении заряда мембраны (деполяризации) в начальный момент «ворота» т и h открыты – канал способен проводить ионы. Через открытые каналы ионы движутся по концентрационному и электрохимическому градиенту. Затем инактивационные «ворота» закрываются, т. е. канал инактивируется. По мере восстановления МП инактивационные «ворота» медленно открываются, а активационные быстро закрываются и канал возвращается в исходное состояние. Следовая гиперполяризация мембраны может возникать вследствие трех причин: во-первых, продолжающимся выходом ионов калия; во-вторых, открытием каналов для хлора и поступлением этих ионов в клетку; в-третьих, усиленной работой натрий-калиевого насоса.
Законы раздражения возбудимых тканей
Эти законы отражают определенную зависимость между действием раздражителя и ответной реакцией возбудимой ткани. К законам раздражения относятся: закон силы, закон «все или ничего», закон раздражения Дюбуа-Реймона (аккомодации), закон силы-времени (силы-длительности), закон полярного действия постоянного тока, закон физиологического электротона.
Закон силы: чем больше сила раздражителя, тем больше величина ответной реакции. В соответствии с этим законом функционирует скелетная мышца. Амплитуда ее сокращений постепенно увеличивается с увеличением силы раздражителя вплоть до достижения максимальных значений. Это обусловлено тем, что скелетная мышца состоит из множества мышечных волокон, имеющих различную возбудимость. На пороговые раздражители отвечают только волокна, имеющие самую высокую возбудимость, амплитуда мышечного сокращения при этом минимальна. Увеличение силы раздражителя приводит к постепенному вовлечению волокон, имеющих меньшую возбудимость, поэтому амплитуда сокращения мышцы усиливается. Когда в реакции участвуют все мышечные волокна данной мышцы, дальнейшее повышение силы раздражителя не приводит к увеличению амплитуды сокращения.
Закон «все или ничего»: подпороговые раздражители не вызывают ответной реакции («ничего»), на пороговые раздражители возникает максимальная ответная реакция («все»). По закону «все или ничего» сокращаются сердечная мышца и одиночное мышечное волокно. Закон «все или ничего» не абсолютен. Вопервых, на раздражители подпороговой силы не возникает видимой ответной реакции, но в ткани происходят изменения мембранного потенциала покоя в виде возникновения местного возбуждения (локального ответа). Во-вторых, сердечная мышца, растянутая кровью, реагирует по закону «все или ничего», но амплитуда ее сокращения будет больше по сравнению с таковой при сокращении нерастянутой сердечной мышцы.
Закон раздражения Дюбуа-Реймона (аккомодации): стимулирующее действие постоянного тока зависит не только от абсолютной величины силы тока, но и от скорости нарастания тока во времени. При действии медленно нарастающего тока возбуждение не возникает, так как происходит приспособление возбудимой ткани к действию этого раздражителя, что получило название аккомодации. Аккомодация обусловлена тем, что при действии медленно нарастающего раздражителя в мембране происходит повышение критического уровня деполяризации. При снижении скорости нарастания силы раздражителя до некоторого минимального значения ПД не возникает, так как деполяризация мембраны является пусковым стимулом к началу двух процессов: быстрого, ведущего к повышению натриевой проницаемости и тем самым обусловливающего возникновение потенциала действия, и медленного, приводящего к инактивации натриевой проницаемости и как следствие этого – к окончанию потенциала действия. При быстром нарастании стимула повышение натриевой проницаемости успевает достичь значительной величины прежде, чем наступит инактивация натриевой проницаемости. При медленном нарастании тока на первый план выступают процессы инактивации, приводящие к повышению порога генерации ПД.
Способность к аккомодации различных структур неодинакова. Наиболее высокая она у двигательных нервных волокон, а наиболее низкая у сердечной мышцы, гладких мышц кишечника, желудка.
Исследования зависимости силы-длительности показали, что она имеет гиперболический характер. Ток меньше некоторой минимальной величины не вызывает возбуждение, как бы длительно он не действовал, и чем короче импульсы тока, тем меньшую раздражающую способность они имеют. Причиной такой зависимости является мембранная емкость. Очень «короткие» токи не успевают разрядить эту емкость до критического уровня деполяризации. Минимальная величина тока, способная вызвать возбуждение при неограниченно длительном его действии, называется реобазой. Время, в течение которого ток, равный реобазе, вызывает возбуждение, называется полезным временем.
Закон силы-времени: раздражающее действие постоянного тока зависит не только от его величины, но и от времени, в течение которого он действует. Чем больше ток, тем меньше времени он должен действовать на возбудимые ткани, чтобы вызвать возбуждение (рис. 3).
РАЗНИЦА МЕЖДУ АБСОЛЮТНЫМ И ОТНОСИТЕЛЬНЫМ ПЕРИОДОМ РЕФРАКТЕРНОСТИ | СРАВНИТЕ РАЗНИЦУ МЕЖДУ ПОХОЖИМИ ТЕРМИНАМИ — ЖИЗНЬ
Потенциал действия нервного импульса относится к явлению, при котором нервный импульс передается через нейрон. Это результат разницы в концентрации натрия (Na+) ионы калия (K+) ионы через мембрану. Ес
Ключевое отличие — абсолютное
по сравнению с относительным рефрактерным периодомПотенциал действия нервного импульса относится к явлению, при котором нервный импульс передается через нейрон. Это результат разницы в концентрации натрия (Na+) ионы калия (K+) ионы через мембрану. Есть три основных фазы потенциала действия; деполяризация, реполяризация и гиперполяризация. Рефрактерный период — это период, который следует сразу после передачи нервного импульса или потенциала действия. Это также считается характерным временем восстановления одного потенциала действия перед вторым. В физиологии есть два основных типа рефрактерных периодов; абсолютный рефрактерный период и относительный рефрактерный период. Абсолютный рефрактерный период относится к промежутку времени, в течение которого натриевые каналы остаются неактивными. Относительный рефрактерный период — это явление, при котором каналы с натриевыми воротами переходят из неактивного состояния в закрытое состояние, которое подготавливает каналы к активации. Затем мембрана получает способность инициировать второй сигнал для передачи нерва. В ключевое отличие между абсолютным и относительным периодами рефрактерности основаны на каналах, управляемых ионами натрия. Абсолютный рефрактерный период — это период, в течение которого ионные каналы, управляемые натрием, полностью неактивны, тогда как относительный рефрактерный период — это промежуток времени, когда неактивные натриевые каналы переходят в активную форму для приема второго сигнала.
1. Обзор и основные отличия
2. Что такое абсолютный рефрактерный период?
3. Что такое относительный рефрактерный период?
4. Сходство между абсолютным и относительным рефрактерным периодом.
5. Параллельное сравнение — абсолютный и относительный рефрактерный период в табличной форме
6. Резюме
Что такое абсолютный рефрактерный период?
Абсолютный рефрактерный период относится к периоду, в течение которого ионные каналы натрия полностью неактивны. Это происходит очень быстро и самопроизвольно после открытия каналов ионов натрия. Когда каналы ионов натрия подвергаются инактивации, они не могут сразу вернуться в активное состояние. Таким образом, начальное время восстановления, необходимое для активации каналов ионов натрия, описывается как период абсолютной рефрактерности. Этот процесс зависит от напряжения. Период абсолютной рефрактерности может длиться 1-2 миллисекунды, тогда как общий период восстановления длится примерно 3-4 миллисекунды.
Во время периода абсолютной рефрактерности второй потенциал действия не инициируется, потому что каналы ионов натрия полностью инактивированы. Следовательно, никаких дополнительных стимулов деполяризации в этот период не происходит. Нейроны в этот период не возбуждаются. Таким образом, возбудимость нейрона равна нулю в течение периода абсолютной рефрактерности.
Что касается частоты потенциала действия во время передачи нервного импульса, абсолютный рефрактерный период определяет максимальную частоту потенциала действия вдоль плазматической мембраны аксона. Следовательно, он отвечает за установку верхнего предела потенциала действия в любой момент времени. Это явление имеет физиологическое значение. Абсолютный рефрактерный период можно использовать для прогнозирования того, как нервная система реагирует на различные высокочастотные раздражители, и для определения их воздействия на различные эффекторные органы или мышцы.
Что такое относительный рефрактерный период?
По завершении периода абсолютной рефрактерности каналы ионов натрия начинают активироваться, что является заключительной фазой периода восстановления. Каналы ионов натрия требуют гораздо более сильного сигнала, чтобы вернуться в активную форму из полностью неактивного состояния.
Период, в течение которого принимается более сильный сигнал для активации каналов ионов натрия, называется периодом относительной рефрактерности. Это составляет более позднюю часть полного рефрактерного периода. Ионная проницаемость калия остается выше значения мембранного потенциала покоя в течение периода относительной рефрактерности. Это приведет к непрерывному потоку ионов калия из клетки. Это активирует процесс, и войдет второй сигнал.
Каковы сходства между абсолютным и относительным рефрактерным периодом?
- И абсолютный рефрактерный период, и относительный рефрактерный период являются компонентами рефрактерного периода, который имеет место во время передачи нервного импульса.
- И абсолютный рефрактерный период, и относительный рефрактерный период зависят от ионных каналов натрия и калия.
В чем разница между абсолютным и относительным рефрактерным периодом?
Абсолютный и относительный рефрактерный период | |
Абсолютный рефрактерный период относится к промежутку времени, в течение которого натриевые каналы остаются неактивными.![]() | Относительный рефрактерный период — это явление, при котором каналы с натриевыми воротами переходят из неактивного состояния в закрытое состояние, которое подготавливает каналы к активации. |
Стимул | |
В течение периода абсолютной рефрактерности стимул не будет производить второй потенциал действия. | В течение периода относительной рефрактерности стимул должен быть сильнее обычного, чтобы вызвать потенциал действия. |
Вовлечение ионных каналов | |
Каналы ионов натрия полностью неактивны в течение периода абсолютной рефрактерности. | Каналы для ионов калия активны, и поток калия из клетки происходит в течение периода относительной рефрактерности. |
Резюме — Абсолютное
по сравнению с относительным рефрактерным периодомРефрактерный период во время передачи нервного импульса характеризуется как абсолютный рефрактерный период и относительный рефрактерный период. В течение периода абсолютной рефрактерности Na+ каналы полностью неактивны и, следовательно, не могут инициировать какой-либо потенциал действия. В течение периода относительной рефрактерности Na+ каналы проходят период восстановления, в течение которого они переходят в активное состояние. Для этого процесса требуется гораздо более сильный второй стимул. В этом разница между абсолютным и относительным рефрактерным периодом.
Загрузите PDF-файл с данными об абсолютном и относительном рефрактерном периоде
Вы можете загрузить PDF-версию этой статьи и использовать ее в автономных целях в соответствии с примечанием к цитированию. Пожалуйста, скачайте PDF-версию здесь: Разница между абсолютным и относительным периодами рефрактерности
Otchyot_1 (Отчёты по физиологии человека и животных) — документ
Дворянинова Екатерина, 311 гр.
Биоэлектрические потенциалы. Компьютерная модель потенциала действия гигантского аксона кальмара.
Введение
Потенциалом покоя (ПП) называют разность электрических потенциалов между внутренней средой клетки и внешней средой. Для нервной клетки ПП составляет от -70 до -80 мВ. При этом мембрана клетки изнутри заряжена отрицательно, а снаружи – положительно.
Разность потенциалов на мембране объясняется её способностью сочетать друг с другом и регулировать осуществляющийся через неё пассивный и активный транспорт. Внутри клетки больше ионов калия (K+), а в окружающей среде – натрия (Na+). Это соотношение поддерживается за счёт систем активного транспорта в клетке – электрогенных Na+/K+-каналов.
Путём пассивного транспорта (диффузии или облегченной диффузии), по градиенту концентрации ионы K+ выходят из клетки и выносят положительный заряд. Вследствие выхода катиона на мембране возникает диффузионный потенциал – с её внутренней стороны накапливается отрицательный заряд, который формируется, за счёт крупных анионов полипептидов и белков, для которых мембрана непроницаема. Этот отрицательный заряд «притягивает» катионы K+ обратно – действие т.н. электрохимического градиента. Когда сила концентрационного градиента уравновешивается силой электрохимического градиента, говорят, что на мембране установился равновесный потенциал. Величина равновесного потенциала находится по уравнению Нернста.
Однако если считать, что равновесный потенциал определяется лишь отношением концентраций ионов K+ во внешней среде к их концентрации в цитоплазме, то мы получим для клетки постоянное значение равновесного потенциала, равное приблизительно -100 мВ, что значительно отличается от экспериментального. Это позволяет предположить, что K+ – не единственный потенциал образующий ион. Для Na+ также существует равновесный потенциал, определяемый таким же пассивным движением ионов под действием электростатической и диффузной сил. Он имеет противоположный знак (т.к. ионов Na+ снаружи больше, чем внутри) и равен приблизительно +50мВ.
Мембрана клетки – живая структура. На величину мембранного потенциала (МП) влияют также толщина и сопротивление мембраны, подвижность иона в мембране и проницаемость мембраны для конкретного иона.
Потенциал действия (ПД) — отрицательное колебание потенциала в момент возбуждения или, иначе, перезарядку мембраны. Возбуждение проявляется через деполяризацию – падение МП – достигающую порогового, или критического, уровня. Порог раздражения – минимальная сила тока, способная вызвать возбуждение.
В 1952 году была разработана математическая модель, описывающая генерацию и распространение ПД в гигантском аксоне кальмара.
Целью настоящей работы является изучение ПД, возникающего в гигантском аксоне кальмара, определение характерных особенностей и выявление закономерностей этого явления. На компьютерной модели Ходжкина-Хаксли мы:
определим порог возникновения ПД;
исследуем зависимость амплитуды ПД от силы стимула;
установим зависимость порога раздражения от длительности стимула;
определим длительность фазы относительной и абсолютной рефрактерности для гигантского аксона кальмара и различия между этими понятиями.
Методика
Определение порога возникновения ПД
Выставим амплитуду раздражающего стимула на 10 мкА, длительность на 0,5 мс (const). Отметим, развивается ли ПД.
Увеличим амплитуду стимула до 20,0 мкА. Отметим, развивается ли ПД.
Установим амплитуду 15,0 мкА. Проверим, появляется ли ПД.
Варьируя значения амплитуды стимула, установим момент начала развития ПД; зафиксируем полученный результат.
Исследование зависимости амплитуды ПД от силы стимула
Будем изменять амплитуду раздражающего стимула от величины порога до 100 мкА с шагом 10 мкА, в каждом случае измеряя амплитуду потенциала действия с помощью курсора.
Параметры напряжения (в мВ), отображенные в правой части экрана, занесём в табл. 1.
С помощью курсора определим значение латентного периода при достижении пороговой величины и при увеличении силы стимула вплоть до 100 мкА.
Установление зависимости порога раздражения от длительности стимула
Установим длительность раздражающего стимула в 0,05 мс.
Меняя амплитуду стимула, определим порог возникновения ПД при этой длительности.
Увеличивая длительность стимула в соответствии с первой строкой табл. 2, в каждом случае определим порог возникновения ПД и внесём во вторую строку табл. 2.
На основании полученных данных построим график зависимости порога раздражения от длительности стимула (рис. 1)
По графику рассчитаем величину хронаксии, реобазы и полезного времени.
Определение длительностей фаз относительной и абсолютной рефрактерности для гигантского аксона кальмара
Установим следующие параметры стимула: первый стимул – амплитуда 50 мкА, длительность 0,5 мс; интервал между импульсами 10 мс; второй стимул – амплитуда 11,2 мкА, длительность 0,5 мс.
Начнём увеличивать интервал между импульсами с шагом 1 мс до тех пор, пока не появится второй ПД.
Увеличим амплитуду стимула до 100 мкА и уменьшим интервал между стимулами до тех пор, пока не исчезнет второй ПД. При этом проследим за тем, чтобы одновременно с ПД происходило повышение натриевой и калиевой проводимости.
Результаты и обсуждение
Величина порога возникновения ПД в проведённом опыте оказалась равной 14 мкА. При выполнении измерений было обнаружено, что с увеличением амплитуды раздражающего стимула происходит сдвиг графика влево.
Теоретически это объясняется тем, что чем больше амплитуда раздражающего стимула, тем активнее идет деполяризация (тем в большем количестве и тем более синхронно открываются Na+-каналы).
Таблица 1. Зависимость амплитуды ПД от силы стимула в гигантском аксоне кальмара
Амплитуда стимула, мкА | 14 | 20 | 30 | 40 | 50 | 60 | 70 | 80 | 90 | 100 |
Амплитуда ПД, мВ | 32 | 35 | 36 | 36 | 36 | 37 | 37 | 37 | 37 | 37 |
Таблица 2. Зависимость порога возникновения ПД на гигантском аксоне кальмара от длительности стимула
Длительность стимула, мс | 0,05 | 0,1 | 0,2 | 0,4 | 0,6 | 0,8 | 1,0 | 2,0 | 3,0 | 4,0 | 5,0 | 6,0 | 7,0 | 8,0 |
Величина порога, мкА | 110,1 | 54,8 | 29,2 | 16,4 | 11,8 | 8,3 | 6,0 | 3,8 | 3,0 | 2,7 | 2,3 | 2,2 | — | — |
При увеличении длительности стимула порог раздражения снижается. Это объясняется тем, что при продолжительном электрическом раздражении постепенно открывается все большее число натриевых каналов. Для описания зависимости между длительностью стимула и величиной порога возбуждения используется термин реобаза – наименьший порог, достижимый за счет бесконечного увеличения длительности электрического стимула. Время до достижения реобазы называется полезным временем. На практике для оценки скорости перезарядки мембраны ввели понятие хронаксии – времени, в течение которого должен действовать ток, равный двум реобазам.
Р
ис. 1. зависимость величины порога от длительности воздействия стимула.
Согласно графику, получим следующие значения:
реобаза — 2,2 мкА
полезное время — 6 мс
хронаксия — 1,8 мс
4.
В реакции возбуждения важную роль играют электрически управляемые ионные каналы. Такие Na+-каналы открываются в начале фазы деполяризации и закрываются при достижении пика ПД. В фазе реполяризации из клетки начинается выход ионов K+. На стадии реполяризации Na+-каналы не могут открыться, таким образом второй электрический стимул, близко следующий за первым, не вызовет возбуждения. Промежуток времени, в который клетка теряет свою возбудимость, называется рефрактерным периодом. При абсолютной рефрактерности все каналы закрыты, а при относительной открыто сравнительно небольшое число каналов для обеспечения реакции возбуждения.
В нашем опыте длительность фазы относительной рефрактерности была равна 16 мс. При этом амплитуда второго стимула была незначительной. Увеличив амплитуду до 100 мкА, мы убедились, что второй стимул вызывает ПД, тогда как в период абсолютной рефрактерности никакой стимул не может вызвать развития ПД. Длительность фазы абсолютной рефрактерности для гигантского аксона кальмара составила 3 мс.
Выводы
при достижении электрическим стимулом критической величины в раздраженной клетке возникает ПД;
при увеличении силы стимула латентный период уменьшается, а при достижении амплитудой ПД максимального значения становится равным нулю;
при увеличении длительности стимула порог раздражения снижается;
в фазе относительной рефрактерности возможно возникновение ПД при раздражении сверхамплитудными стимулами, в фазе абсолютной рефрактерности такое невозможно.
Литература
Физиология человека/ под ред. Р. Шмидта, Г. Тевса: в 3 т. Т. 1. М.: Мир, 1996.
Руководство к практическим занятиям по физиологии человека и животных/ под ред. И. П. Ашмарина, А. А. Каменского. М.: Изд-во МГУ, 2004.
Сердечно-сосудистая система. Часть 4.
В этой части речь идет о свойствах сердечной мышцы: возбудимости и возбуждении сердечной мышцы, об особенностях рефрактерного периода сердечной мышцы, об автоматии, о механизме автоматии, о скорости проведения возбуждения в сердце, о сократимости сердечной мышцы.
Свойства сердечной мышцы.
Сердечная мышца обладает возбудимостью, способностью генерировать потенциал действия, проводить возбуждение, сокращаться и др. Одно из важнейших свойств сердечной мышцы — автоматия.
Возбудимость и возбуждение сердечной мышцы.
Возбудимость сердечной мышцы меньше, чем скелетной: она обладает более высоким порогом раздражения, более длительным латентным и рефрактерным периодами и больше величиной хронаксии.
Величина мембранного потенциала значительно отличается в разных участках сердца. В мышечных волокнах предсердий она составляет 80-90 мв, в волокнах желудочков и пучка Гисса 90 мв, а в волокнах Пуркинье — 96 мв, т.е. величина мембранного потенциала различных волокон сердечной мышцы больше величины мембранного потенциала скелетной мышцы. Для синоатриального и атриовентрикулярного узла характерна меньшая величина мембранного потенциала — 50-65 мв.
При возбуждении возникает потенциал действия скелетной мышцы. В разных структурах сердца различны его величина и форма. В среднем амплитуда потенциала действия составляет 100-120 мв.
Форма потенциала действия мышечных волокон желудочков и предсердий имеет значительные отличия от потенциала действия скелетной мышцы или нерва.
В потенциале действия сердечной мышцы различают фазу быстрой деполяризации, во время которой после достижения нулевого уровня имеет место реверсия потенциала. Фаза быстрой деполяризации сменяется фазой длительной реполяризации, в которой различают быструю реполяризацию, сменяющуюся длительно идущей фазой медленной реполяризации, или плато, переходящей в фазу конечной быстрой реполяризации. Затем наступает завершающий момент — фаза диастолического расслабления. Последняя отделяет одно сокращение от другого.
Длительность потенциала действия мышечных волокон сердца значительно больше, чем волокон скелетной мышцы. В среднем она равна 0,3 сек при 70 сокращениях сердца в минуту и изменяется с изменением частоты сердечных сокращений. При уменьшении частоты сокращений сердца длительность потенциала действия увеличивается, а при увеличении частоты сокращений она уменьшается.
Иной характер потенциала действия в синоатриальном и атриовентрикулярном узлах проводящей системы сердца. Его величина невелика (50-65 мв), в нем отсутствуют плато и фаза диастолического расслабления. В потенциале действия синусного узла выделяют две основные фазы: фазу медленной деполяризации и фазу медленной реполяризации. Характерной особенностью этого потенциала является наличие фазы спонтанной деполяризации, сменяющей фазу реполяризации. При этом в синоатриальном узле проводящей системы сердца самопроизвольно наступает деполяризация, которая достигает критического уровня и приводит к возникновению одного потенциала действия за другим.
Возникновение потенциала действия сердечной мышцы связано с изменением проницаемости мембраны. Во время диастолы увеличивается проницаемость синоатриального узла к ионам натрия и уменьшается по отношению к ионам калия. При этом происходит деполяризация мембраны. В фазу реполяризации увеличивается проницаемость мембраны по отношению к ионам калия, в результате чего восстанавливается заряд мембраны. В возникновении возбуждения в сердечной мышцы принимают участие ионы кальция. Перемещение ионов натрия и калия происходит не только пассивно вследствие разности их концентраций, но и с участием активных механизмов (большое значение имеет фермент АТФаза).
Особенности рефрактерного периода сердечной мышцы.
Сердечная мышца обладает длительным рефрактерным периодом. Абсолютный рефрактерный период длится почти весь период сокращения сердца, он соответствует систоле. При 70 сокращениях сердца в минуту длительность его равна 0,27 сек. В связи с этим раздражение, нанесенное на сердце в момент систолы, остается без ответа. Сердечная мышца отвечает на раздражение только в момент окончания систолы или в период диастолы. А поэтому она отвечает только на одиночное раздражение и в обычных условиях деятельности сердечная мышца не способна в ответ на ритмическое раздражение развивать длительное непрерывное сокращение, называемое тетанусом.
Абсолютный рефрактерный период сменяется относительным, соответствующим концу систолы, и длится 0,03 сек. Затем следует очень короткий период повышенной возбудимости — фаза экзальтации (или супернормальности), во время которой сердечная мышца может отвечать возбуждением и на подпороговое раздражение. После этого восстанавливается исходный уровень возбудимости сердечной мышцы.
Автоматия.
Автоматией называют способность клетки, ткани, органа возбуждаться без участия внешнего стимула, под влиянием импульсов, возникающих в них самих.
Показателем автоматии сердечной мышцы может быть тот факт, что изолированное сердце лягушки, удаленное из организм и помещенное в физиологический раствор, может в течение длительного времени ритмически сокращаться.
Различные отделы сердца обладают разной способностью к автоматии. Самой высокой автоматией обладает синоатриальный узел. От его активности зависит частота сердечных сокращений, в связи с чем его называют ведущим узлом сердца или водителем ритма.
Меньшей способностью к автоматии обладает атриовентрикулярный узел и еще меньшей — пучок Гисса. Способность к ритмической активности разных отделов проводящей системы сердца можно четко наблюдать в опытах Станниуса с наложением лигатур — перевязок. В опыте на лягушке с помощью лигатуры отделяется часть предсердия вместе с синоатриальным узлом от остальной части сердца. После этого все сердце перестает сокращаться, а отделенный участок предсердия продолжает сокращаться в том же ритме, что и до наложения лигатуры. Это говорит о том, что синоатриальный узел является ведущим, от него зависит частота сердечных сокращений.
Через некоторое время (20-30 мин) после наложения лигатуры на сердце лягушки проявляется автоматия атриовентрикулярного узла: сердце начинает сокращаться, но в боле редком ритме, чем до наложения лигатуры, причем предсердия и желудочки сокращаются одновременно.
Если на сердце теплокровного животного создать блок между атриовентрикулярным узлом и пучком Гисса, то верхушка сердца будет сокращаться в еще более редком ритме, который зависит от автоматии пучка Гисса или волокон Пуркинье.
Из изложенного можно сделать вывод, что способность сердца к автоматии уменьшается от венозного конца сердца к артериальному. Эта особенность была отмечена Гаскеллом и названа им законом градиента сердца.
В нормальных условиях жизнедеятельности организма проявляется автоматия только синоатриального узла и ему подчинены все другие отделы сердца, из автоматия подавляется водителем ритма.
Механизм автоматии.
Ритмической активностью в сердце обладают элементы атипической ткани и мышечные клетки. Способность к автоматии индивидуальна и закладывается в самые ранние периоды эмбрионального развития сердца. Было показано, что отдельные мышечные волокна сердца могут сокращаться в разном ритме, но, как только они объединяются морфологически, наиболее быстро сокращающаяся клетка берет на себя функцию водителя ритма.
В основе ритмической автоматии лежит способность клеток проводящей системы сердца к спонтанной деполяризации, к спонтанному изменению мембранного потенциала, которое наступает в конце фазы реполяризации и при достижении критического уровня приводит к возникновению нового потенциала действия и, соответственно, нового сокращения. Чем быстрее возникает деполяризация, тем больше частота сердечных сокращений.
В основе спонтанной диастолической деполяризации лежат до конца еще не изученные ионные механизмы проницаемости мембраны клеток — водителей ритма по отношению к ионам натрия и калия.
Скорость проведения возбуждения в сердце.
Сокращение мышечных волокон сердца вызывается импульсами, автоматически возникающими в синоатриальном узле. Возникший здесь потенциал действия распространяется на мышцы предсердий, затем к атриовентрикулярному узлу, от него — к пучку Гисса и далее по волокнам Пуркинье переходит на миокард правого и левого желудочков.
В различных участках сердца скорость проведения возбуждения неодинакова. Она зависит от количества десмосом, которые обладают малым сопротивлением (оно в 100 раз меньше, чем в сарколемме) и тем способствуют большой скорости проведения возбуждения. Десмосом в синоатриальном узле мало, и поэтому скорость проведения возбуждения в нем невелика — 0,05 м/сек. От синоатриального узла потенциал действия распространяется по волокнам правого и левого предсердий к перегородке между ними. Скорость проведения возбуждения по мышцам предсердий 1 м/сек. Оба предсердия оказываются охваченными возбуждением через 0,12 сек.
От предсердий возбуждение переходит к атриовентрикулярному узлу. Здесь оно возникает не сразу и происходит некоторая задержка в проведении возбуждения. Она имеет важное функциональное значение, так как способствует определенной последовательности сокращений различных отделов сердца. Желудочки сокращаются только после того, как закончилось сокращение предсердий. Относительно механизмов атриовентрикулярной задержки существует ряд мнений, основанных на морфологических и функциональных особенностях этого отдела сердца. С помощью микроэлектродной техники установлено, что в области атриовентрикулярного узла имеется синапс, в котором самостоятельно развивается возбуждение. Как любой синапс, синапс в атриовентрикулярном узле обладает более низкой возбудимостью, односторонним и замедленным проведением возбуждения. Вследствие небольшой возбудимости синапса импульс, приходящий к нему от предсердий, оказывается подпороговым. Необходима суммация подпороговых импульсов, для того, чтобы возникло распространяющееся возбуждение. Время суммации возбуждения (суммация подпороговой деполяризации) составляет время атриовентрикулярной задержки.
По структурам атриовентрикулярного узла возбуждение проводится со скоростью 0,08 м/сек, пучка Гисса 0 1,5 м/сек. Наибольшей скоростью проведения возбуждения обладают волокна Пуркинье — 4-5 м/сек, так как в них содержится большое количество десмосом. В мышцах желудочков скорость проведения снова уменьшается, она составляет 0,5-0,8 м/сек.
Сократимость сердечной мышцы.
Сократимостью обладают мышечные волокна сердца — миофибриллы. Сигналом к их сократительной деятельности является возникновение в них возбуждения. Возбуждение, возникнув в сарколемме мышечного волокна, распространяется по системе саркоплазматического ретикулюма внутрь волокна и вызывает его сокращение. В основе сокращения мышечных волокон сердца лежит тот же механизм, что и в основе сокращения скелетных мышц, — скольжение нитей актина и миозина.
Сердечная мышца отвечает на раздражение в соответствии с правилом «все или ничего», т.е. при достижении пороговой величины раздражения сердце отвечает максимальным сокращением и с увеличением силы раздражения величина ответа не изменяется. В этом характерная особенность ее сокращения. Правда, величина максимального ответа может быть различной и зависит от функционального состояния мышцы.
Величина сокращения сердечной мышцы зависит от первоначальной длины ее волокон. Эта зависимость выражается «законом сердца» Старлинга: сила сокращения тем больше, чем больше первоначальное растяжение мышечных волокон сердца. При увеличении притока крови к сердцу увеличивается растяжение его волокон и увеличивается сила сердечных — сердце больше выбрасывает крови за одно сокращение. Данное свойство имеет большое значение в приспособлении сердца к различным условиям деятельности при выполнении физической или спортивной нагрузки, изменении положения тела и т.д.
1.5. Изменения возбудимости при генерации потенциалов действия и механизмы возникновения рефрактерности миокарда
Исследованиями Б. Гоффмана и П. Крейнфилда, выполненными в середине XX в. на изолированных кардиомиоцитах с применением микроэлектродной техники, показано, что возбудимость миокарда изменяется в процессе развития потенциала действия. Ими было выявлено несколько фаз изменений возбудимости, которые особенно четко соотносятся с фазами потенциала действия у клеток с быстрым ответом (рис. 6).
Рис. 6. Изменение возбудимости клеток рабочего миокарда (б) в процессе сокращения (а)
Время, в течение которого кардиомиоцит неспособен генерировать потенциал действия в ответ на применение стимула любой силы, называется периодом абсолютной рефрактерности, или эффективным рефрактерным периодом (ЭРП). Он совпадает по времени с фазами быстрой деполяризации, начальной быстрой реполяризации, плато и началом фазы конечной реполяризации потенциала действия «быстрых» кардиомиоцитов. Во второй половине фазы конечной реполяризации кардиомиоцит в течение 50 мс находится в таком состоянии, когда стимул, превышающий величину порогового, может вызвать новый потенциал действия. При этом также снижена скорость распространения возбуждения по миокарду. Указанный временной интервал называется относительным рефрактерным периодом (ОРП). Суммарная продолжительность эффективного и относительного рефрактерных периодов, то есть общее время восстановления нормальной возбудимости, у «быстрых» кардиомиоцитов практически равна длительности потенциала действия (300 мс). В завершении фазы 3 – конечной реполяризации – во время возвращения мембранного потенциала к диастолическому уровню примерно в течение 50 мс возбудимость миокарда резко возрастает, и даже подпороговый стимул может вызвать генерацию потенциала действия. Этот период получил название сверхнормальной возбудимости (СНВ), а в клинической литературе он называется также уязвимым периодом.
Рефрактерность кардиомиоцитов с быстрым ответом во время генерации потенциала действия и восстановление нормальной возбудимости после его окончания обусловлены, в основном, изменениями свойств «быстрых» натриевых ионных каналов. Так, после реверсии мембранного потенциала в фазу 0 и достижения положительного заряда на мембране +20… +30 мВ натриевые каналы закрываются и инактивируются, становясь неспособными к открытию. Поэтому возникновение у них нового потенциала действия в это время, в принципе, невозможно, и кардиомиоцит находится в состоянии абсолютной рефрактерности. Другой причиной рефрактерности миокарда, его неспособности к слитному сокращению является медленный входящий ток кальция в фазу плато, благодаря чему общая длительность деполяризации рабочих кардиомиоцитов и клеток волокон Пуркинье растягивается до 400–500 мс.
Когда в процессе реполяризации мембранный потенциал достигает примерно –60 мВ, натриевые каналы переходят в реактивированное состояние, и к открытию оказывается способным такое количество Nа+-каналов, что становится возможным развитие нового потенциала действия. Однако он возникает только в ответ на более сильные, чем обычно, сверхпороговые раздражители, что и обеспечивает возникновение относительного рефрактерного периода. При достижении мембраной потенциала около –75 мВ, что имеет место при завершении фазы 3 (конечной реполяризации), вероятность открытия натриевых каналов резко возрастает. Поэтому именно в этот период отмечен период сверхнормальной возбудимости.
Сдвиги возбудимости клеток с медленным ответом обусловлены в основном инактивацией и реактивацией кальциевых каналов L-типа. При генерации потенциала действия и деполяризации мембраны до –40 мВ кальциевые каналы инактивируются и развивается абсолютная рефрактерность. Поскольку скорость реактивации у кальциевых каналов гораздо медленнее, чем у натриевых, полное восстановление возбудимости в «медленных» клетках возможно не ранее чем через 100 мс после окончания реполяризации. Таким образом, состояние абсолютной рефрактерности у клеток с медленным ответом длится не только в течение всего потенциала действия, но и некоторое время после него. Отмеченные свойства «медленных» клеток обеспечивают нормальное развитие в них спонтанной диастолической деполяризации и исключают в норме возникновение преждевременных импульсов.
Таким образом, свойство рефрактерности миокарда играет важную роль в обеспечении нормальной деятельности сердца. Рефрактерный период рабочего миокарда практически соответствует по времени всему потенциалу действия и длительности сокращения. В результате в миокарде невозможна суммация сокращений, то есть развитие тетануса, как это имеет место в скелетной мышце, что могло бы привести к нарушению сокращения и остановке сердца. Более того, даже при очень высокой частоте искусственной стимуляции миокарда частота его сокращений не может превысить уровень, определяемый длительностью рефрактерного периода. Благодаря этому сохраняется резерв времени, необходимый для расслабления камер сердца и наполнения их кровью.
Рефрактерность обеспечивает нормальную последовательность распространения возбуждения в миокарде и его электрическую стабильность при возникновении патологических участков возбуждения в проводящей системе сердца. Например, при возникновении преждевременного импульса в ножке Гиса он может распространяться не только в направлении желудочков, но и к миокарду предсердий, навстречу нормальному импульсу, исходящему из синусового узла. Однако область миокарда, по которой уже прошло электрическое возбуждение, на некоторое время становится невозбудимой, и поэтому повторный вход возбуждения в нее невозможен. Благодаря этому имеет место «взаимогашение» встречных волн возбуждения в миокарде, что препятствует, в частности, возникновению циркуляции возбуждения.
Увеличение продолжительности рефрактерного периода в отдельном участке проводящей системы может привести к однонаправленной блокаде проведения. Последнее является предпосылкой для развития нарушений нормального распространения возбуждения по типу повторного входа (англ. reentry). Выделяют макро- и микро-re-entry-механизмы. Чаще всего по механизму re-entry возникают экстрасистолы и – при наличии дополнительных путей проведения – пароксизмальная тахикардия. Возникновение множественных очагов микро-re-entry приводит к тому, что в результате возникает десинхронизация и дискоординация возбуждения и сокращения волокон миокарда. Они начинают возбуждаться и сокращаться независимо друг от друга. В клинической литературе такое состояние миокарда называется фибрилляцией.
Для обозначения фибрилляции предсердий в отечественной литературе применяется термин «мерцательная аритмия». При этом хаотическое возбуждение предсердий (с частотой от 300 до 600 имп./мин) случайным образом проводится через атриовентрикулярное соединение и далее распространяется по проводящей системе Гиса – Пуркинье к желудочкам.
Однако атриовентрикулярный узел не способен проводить более 180–200 имп./мин, а рабочему миокарду желудочков свойственна продолжительная (до 300 мс) рефрактерность. Поэтому в условиях мерцания предсердий миокард желудочков возбуждается синхронно, хотя и с разной частотой (от 80 до 160 в 1 мин), и в результате при каждом сокращении желудочков из них выбрасывается различное количество крови. Следовательно, при данной патологии насосная функция сердца позволяет в какой-то мере обеспечивать кровообращение. Нарушение внутрисердечной гемодинамики на фоне мерцательной аритмии часто приводит к формированию тромба в предсердиях, отрыв которого может привести к тромбоэмболии легочной или коронарной артерии либо мозговому инсульту.
Фибрилляция желудочков представляет собой наиболее опасное для жизни человека нарушение сердечного ритма. В этих условиях нормальная сократительная функция сердца невозможна, что приводит к остановке кровообращения и клинической смерти. Для предупреждения биологической смерти требуется проведение немедленных экстренных реанимационных мероприятий в первые четыре минуты после остановки кровообращения. Наиболее эффективно при этой патологии проведение электроимпульсной терапии, или электрической дефибрилляции, с помощью специального аппарата – дефибриллятора. При этом один из электродов может располагаться под левой лопаткой больного, а второй – прижиматься к грудной клетке над областью сердца. (Существуют и иные способы расположения электродов, о которых подробно изложено в учебниках по реаниматологии.) Короткий (десятки миллисекунд) электрический разряд дефибриллятора напряжением в 6000–7000 В и мощностью 200–360 Дж вызывает возбуждение большей части кардиомиоцитов и их синхронизацию по рефрактерности, после чего возможно восстановление нормального сердечного ритма, сократительной активности желудочков и кровообращения. При отсутствии дефибриллятора электроимпульсная терапия может быть проведена разрядом из обычной электросети напряжением 220 В. Более того, в клинической литературе отмечены случаи восстановления сердечной деятельности после резкого удара кулаком в область грудины. Наряду с этим обязательно выполняются закрытый массаж сердца и искусственная вентиляция легких. Даже при такой грозной патологии сердца, как фибрилляция желудочков, при четкой и быстрой организации реанимационных мероприятий существует высокая вероятность (до 80 %) возвращения больного к жизни.
Данный текст является ознакомительным фрагментом.
Продолжение на ЛитРес4 дайте определение понятию рефрактерность. Абсолютный рефрактерный период
Рефрактерность. Рефрактерность — временное снижение возбудимости ткани, возникающее при появлении потенциала действия. В этот момент повторные раздражения не вызывают ответной реакции (абсолютная рефрактерность). Она длится не более 0,4 миллисекунды, а затем наступает фаза относительной рефракторности, когда раздражение может вызвать слабую реакцию. Эта фаза сменяется фазой повышенной возбудимости — супернормальности. Показатель рефрактерности (рефрактерный период) — время, в течение которого возбудимость ткани снижена. Рефрактерный период тем короче, чем выше возбудимость ткани.
Процесс возбуждения сопровождается изменением возбудимости. Таков смысл свойства рефрактерности. Это слово, в переводе означающее невпечатлительность, ввел в науку Э. Ж. Марей, обнаруживший в 1876 г. угнетение возбудимости миокарда в момент его возбуждения. Позднее рефрактерность была выявлена во всех возбудимых тканях. В1908 г. Н. Е. Введенский установил, что вслед за угнетением наступает некоторое повышение возбудимости возбужденной ткани.
Выделяют три основные стадии рефрактерности, их принято называть фазами:
Развитие возбуждения вначале сопровождается полной утратой возбудимости (е = 0). Это состояние называют абсолютно рефрактерной фазой. Она соответствует времени деполяризации возбудимой мембраны. В течение абсолютно рефрактерной фазы возбудимая мембрана не может генерировать новый потенциал действия, даже если на нее подействовать сколь угодно сильным раздражителем (S„-> оо). Природа абсолютно рефрактерной фазы состоит в том, что во время деполяризации все потенциалзависимые ионные каналы находятся в открытом состоянии, и дополнительные стимулы не могут вызвать воротный процесс (им просто не на что действовать).
Относительно рефрактерная фаза – возвращает возбудимость от нуля к исходному уровню (е0). Относительно рефрактерная фаза совпадает с реполяризацией возбудимой мембраны. С течением времени во все большем числе потенциалзависимых ионных каналов завершаются воротные процессы, с которыми было связано предшествующее возбуждение, и каналы вновь обретают способность к следующему переходу из закрытого в открытое состояние под действием очередного стимула. Вовремя относительно рефрактерной фазы пороги возбуждения постепенно снижаются (S„o
Фаза экзальтации, для которой характерна повышенная возбудимость (е> е0). Она, очевидно, связана с изменением свойств сенсора напряжения во время возбуждения. За счет перестройки конформации белковых молекул изменяются их дипольные моменты, что приводит к повышению чувствительности сенсора напряжения к сдвигам мембранного потенциала (критический мембранный потенциал приближается к потенциалу покоя).
Разным возбудимым мембранам присуща неодинаковая продолжительность каждой фазы рефрактерности. Так, в скелетных мышцах АРФ длится в среднем 2,5 мс, ОРФ — около 12 мс, ФЭ — приблизительно 2 мс. Миокард отличается гораздо более продолжительной АРФ — 250-300 мс, что обеспечивает четкую ритмичность сердечных сокращений и является необходимым условием жизни. В типичных кардиомиоцитах относительно рефрактерная фаза длится около 50 мс, а в сумме продолжительность абсолютно рефрактерной и относительно рефрактерной фаз примерно равна длительности потенциала действия. Различия в длительности рефракторных фаз обусловлены неодинаковой инерционностью потенциалзависимых ионных каналов. В тех мембранах, где возбуждение обеспечивается натриевыми каналами, рефрактерные фазы наиболее быстротечны и потенциал действия наименее продолжителен (порядка единиц миллисекунд). Если же за возбуждение ответственны кальциевые каналы (например, в гладких мышцах), то рефрактерные фазы затягиваются до секунд. В сарколемме кардиомиоцитов присутствуют и те, и другие каналы, вследствие чего длительность рефрактерных фаз занимает промежуточное значение (сотни миллисекунд).
Рефрактерность.
Рефрактерный период в возбудимых клетках
В фазу деполяризации потенциала действия потенциалзависимые натриевые ионные каналы кратковременно открываются, но затем инактивируются h-ворота. В период инактивации натриевых ионных каналов возбудимые клетки не способны реагировать повышением натриевой проницаемости на повторный стимул. Поэтому во время фазы деполяризации мембрана не может генерировать потенциал действия в ответ на действие пороговых или сверхпороговых раздражителей. Это состояние называется абсолютной рефрактерностью, время которой составляет в нервных волокнах 0,5-1,0 мс, а в скелетных мышечных клетках -в среднем 2 мс. Период абсолютной рефрактерности заканчивается после того, как снижается количество инактивированных натриевых каналов и постепенно увеличивается количество натриевых каналов, находящихся в закрытом состоянии. Происходят эти процессы во время фазы реполяризации, когда уменьшению количества потенциалзависимых натриевых ионных каналов, находящихся в состоянии инактивации, соответствует период относительной рефрактерности. Период относительной рефрактерности характеризуется тем, что лишь некоторая часть потенциалзависимых натриевых ионных каналов переходит в закрытое состояние, а в силу этого порог возбудимости мембраны клетки имеет более высокие значения, чем в исходном состоянии. Поэтому возбудимые клетки в период относительной рефрактерности могут генерировать потенциалы действия, но при воздействии на них раздражителей сверхпороговой силы. Однако из-за небольшого количества потенциалзависимых натриевых ионных каналов, находящихся в закрытом состоянии, амплитуда генерируемых при этом потенциалов действия будет меньше, чем в условиях исходной возбудимости нервной или мышечной клетки.
В клетках возбудимых тканей максимальное количество генерируемых потенциалов действия в единицу времени обусловлено двумя факторами: длительностью потенциала действия и длительностью периода абсолютной рефрактерности после каждого импульса. На этом основании в физиологии формулируется современное понятие лабильности: чем меньше период абсолютной рефрактерности при возбуждении возбудимой ткани, тем выше ее функциональная подвижность или лабильность, тем больше в ней генерируется потенциалов действия в единицу времени.
При непрерывной стимуляции нерва электрическим током лабильность нерва зависит от частоты и силы раздражения. В зависимости от частоты и силы раздражения нерва сокращение иннервируемой им мышцы может быть максимальной или минимальной амплитуды. Эти явления были названы соответственно оптимумом и пессимумом (Н. Е. Введенский). Максимальное (оптимально большое) сокращение мышцы возникает в том случае, если каждый последующий электрический стимул действует на нерв в периоде его состояния супернормальной возбудимости после предыдущего потенциала действия. Минимальное (или пессимальное) сокращение мышцы возникает в том случае, если каждый последующий электрический стимул действует на нерв, находящийся в периоде относительной рефрактерности после предыдущего потенциала действия. Поэтому значения оптимальной частоты раздражения нерва всегда меньше, чем значения пессимальной частоты раздражения.
К мерам возбудимости относятся:
Порог раздражения — первая базисная мера раздражителя любой природы. Но для количественной оценки возбудимости в медицине используют не любой раздражитель, а используют электрический ток. Именно с помощью электрического тока тестируют мышцы, нервы, синапсы. Электрический ток точно дозируется — электрический ток можно легко дозировать, при чем по двум показателям: по силе и по времени действия. С другими раздражителями иначе: например, химический — можно дозировать по силе (концентрации), но нельзя — по длительности, так как для его отмывания нужно время. С помощью электрического тока получены еще 3 меры возбудимости, одна из которых используется в медицине:
Базисная мера — это реобаза — минимальная сила постоянного тока, которая, действуя длительное, но определенное время, способна вызвать ответную реакцию. Недостаток этой меры — определение времени трудно определимо — оно расплывчато.
Полезное время — то время, которое должна действовать сила тока в 1 реобазу, чтобы вызвать ответную реакцию. Но и эта мера возбудимости не нашла своего применения в медицинской практике, потому что, как показывает график, она находится на очень пологой части кривой «сила — время» и любая неточность (небольшая неточность) вела к большой ошибке.
Хронаксия — минимальное время, в течение которого должна действовать сила тока в 2 реобазы, чтобы вызвать ответную реакцию. На графике — это тот участок кривой, где зависимость между силой и временем точно прослеживается. Посредством хронаксии определяют возбудимость нервов, мышц, синапсов. Этим методом определяют, где же наступило поражение нервно-мышечной системы: на уровне мышцы, нервов, синапсов или центральных образований.
РЕФРАКТЕРНОСТЬ (лат. refractorius невосприимчивый) — состояние возбудимых образований после предшествующего возбуждения, характеризующееся снижением или отсутствием возбудимости. Впервые Р. была обнаружена в мышце сердца Э. Мареем в 1878 г., а в нервах — Готчем и Берком (F. Gotch, С. J. Burck) в 1899 г.
Изменения возбудимости (см.) нервных и мышечных клеток связаны с изменениями уровня поляризации их мембран при возникновении процесса возбуждения (см.). При уменьшении величины мембранного потенциала возбудимость незначительно повышается, а если вслед за уменьшением мембранного потенциала возникает потенциал действия, то возбудимость полностью исчезает и мембрана клетки становится нечувствительной (рефрактерной) к каким бы то ни было воздействиям. Это состояние полной невозбудимости получило название фазы абсолютной Р. Для быстропроводящих нервных волокон теплокровных животных ее продолжительность составляет 0,4 мсек, для скелетных мышц 2,5-4 мсек, для мышц сердца — 250-300 мсек. Восстановление исходного уровня мембранного потенциала сопровождается повышением уровня возбудимости и мембрана приобретает способность реагировать на сверхпороговые раздражители (фаза относительной Р.). В нервных волокнах относительная Р. длится 4-8 мсек, в мышце сердца — 0,03 мсек. Фаза относительной Р. сменяется фазой повышенной возбудимости (экзальтационная фаза Р.), к-рая характеризуется повышением возбудимости против исходного уровня и связана со следовой деполяризацией (отрицательный следовой потенциал). Последующая следовая гиперполяризация (положительный следовой потенциал) сопровождается вторичным снижением возбудимости, к-рая затем сменяется нормальной возбудимостью при восстановлении величины потенциала покоя мембраны.
Все фазы Р. связаны с механизмами возникновения и изменения мембранных потенциалов и обусловлены кинетикой проницаемости мембран для ионов (см. Биоэлектрические потенциалы). Продолжительность фаз Р. можно определить, применяя метод парных раздражений при разных интервалах между ними. Первое раздражение называется кондиционирующим — оно вызывает процесс возбуждения в возбудимой ткани; второе — тестирующее — показывает уровень возбудимости ткани и фазу Р.
На возбудимость и, следовательно, на продолжительность и выраженность отдельных фаз Р. могут оказывать влияние возрастные изменения, воздействие нек-рых лекарственных веществ, температурных и других факторов. Этим пользуются с целью управления возбудимостью ткани при лечении нек-рых заболеваний. Напр., удлинение фазы относительной Р. в мышце сердца приводит к снижению частоты его сокращений и устранению аритмии. Изменения Р., обусловленные нарушением ионных механизмов возникновения возбуждения, наблюдаются при ряде заболеваний нервной системы и мышц.
Библиография: Бериташвили И. С. Общая физиология мышечной и нервной системы, т. 1, М., 1959; Б p е ж e М. А. Электрическая активность нервной системы, пер. с англ., М., 1979; Оке С. Основы нейрофизиологии, пер. с англ., М., 1969; Ходоров Б. И. Общая физиология возбудимых мембран, М., 1975, библиогр.; Gotch F. а. В u г с k С. J. The electrical response of nerve to two stimuli, J. Physiol. (Lond.), v. 24, p. 410, 1899.
После окончания возбуждения в нервных или мышечных клетках или, другими словами, после окончания в них потенциала действия наступает временное состояние невозбудимости – рефрактерности. После сокращения сердца очередное сокращение нельзя было вызвать в течении периода, равного десятым долям секунды независимо от амплитуды и длительности раздражающего стимула. В нервных клетках период невозбудимости оказался значительно короче.
При уменьшении интервала раздражения между двумя раздражающими электрическими стимулами величина потенциала действия в ответ на второй стимул становится все меньше и меньше. А если повторный стимул наносится во время генерации потенциала действия или сразу же после его окончания, второй потенциал действия не генерируется. Период, в течении которого, потенциал действия на второй раздражающий стимул не возникает, получил название абсолютного рефрактерного периода. Он составляет для нервных клеток позвоночных животных 1,5 – 2 мс.
После периода абсолютной рефрактерности наступает относительный рефрактерный период. Он характеризуется: 1) повышенным порогом раздражения по сравнению с исходным состоянием (т.е. для того чтобы возник повторный потенциал действия, необходим ток большей величины) 2) снижением амплитуды потенциала действия. По мере окончания периода относительной рефрактерности возбудимость повышается до исходного уровня, и величина порогового раздражения уменьшается также до первоначального значения. В период абсолютной рефрактерности наблюдается повышенная калиевая проводимость за счёт открывания дополнительных калиевых каналов и снижение натриевой проводимости за счёт инактивации натриевых каналов. Поэтому даже при больших значениях деполяризующего тока не удаётся активировать такое количество натриевых каналов, чтобы выходящий натриевый ток мог бы превысить увеличенный выходящий калиевый ток и снова запустить регенеративный процесс. Во время относительного рефрактерного периода деполяризующий сигнал достаточно большой амплитуды может активировать воротный механизм натриевых каналов так, что несмотря на большое число открытых калиевых каналов натриевая проводимость увеличивается и вновь возникает потенциал действия. Вместе с тем из-за увеличенной проводимости мембраны к ионам калия и остаточной натриевой инактивации повышение мембранного потенциала не будет уже столь близко к значению равновесного натриевого потенциала. Поэтому потенциал действия будет меньшим по амплитуде.
Далее следует фаза экзальтации – повышенной возбудимости возникающей в результате, наличия следовой деполяризации. В последующем при развитии следовой гиперполяризации наступает фаза субнормальности – характеризующаяся снижением амплитуды потенциалов действия.
Наличие рефрактерных фаз обуславливает прерывистый (дискретный) характер нервной сигнализации, а ионный механизм генерации потенциала действия обеспечивает стандартность нервных импульсов. Вследствие этого изменения внешних сигналов кодируются изменением частоты потенциалов действия. Максимально возможный ритм активности, лимитированный длительностью абсолютной рефрактерной фазы обозначают как лабильность (функциональную подвижность). У нервных волокон лабильность составляет 200 — 400 Гц, а у некоторых чувствительных нервных волокон достигает 1кГц. В случае, когда новый раздражающий импульс приходится на фазу экзальтации реакция ткани становится максимальной – развивается оптимум частоты. При попадании последующего стимулирующего импульса на фазу относительной или абсолютной рефрактерности реакция ткани ослабляется или прекращается вовсе, развивается пессимальное торможение.
Рефрактерность
В электрофизиологии рефрактерным периодом (рефрактерностью) называют период времени после возникновения на возбудимой мембране потенциала действия , в ходе которого возбудимость мембраны снижается, а затем постепенно восстанавливается до исходного уровня.
Абсолютный рефрактерный период — интервал, в течение которого возбудимая ткань неспособна сгенерировать повторный потенциал действия (ПД) , каким бы сильным ни был инициирующий стимул.
Относительный рефрактерный период — интервал, в течение которого возбудимая ткань постепенно восстанавливает способность формировать ПД . В ходе относительного рефрактерного периода стимул, более сильный, чем тот, который вызвал первый ПД , может привести к формированию повторного ПД .
Причины рефрактерности возбудимой мембраны
Рефрактерный период обусловлен особенностями поведения потенциал-зависимых натриевых и потенциал-зависимых калиевых каналов возбудимой мембраны .
В ходе ПД , потенциал-зависимые натриевые (Na+) и калиевые (К+) каналы переходят из состояния в состояние. У Na+ каналов основных состояний три — закрытое , открытое и инактивированное . У K+ каналов два основных состояния — закрытое и открытое .
При деполяризации мембраны во время ПД , Na+ каналы после открытого состояния (при котором и начинается ПД , формируемый входящим Na+ током) временно переходят в инактивированное состояние, а K+ каналы открываются и остаются открытыми некоторое время после окончания ПД , создавая выходящий К+ ток, приводящий мембранный потенциал к исходному уровню.
В результате инактивации Na+ каналов , возникает абсолютный рефрактерный период . Позже, когда часть Na+ каналов уже вышла из инактивированного состояния, ПД может возникнуть. Однако для его возникновения требуются очень сильные стимулы, так как, во-первых, «рабочих» Na+ каналов всё ещё мало, а во-вторых, открытые К+ каналы создают выходящий К+ ток и входящий Na+ ток должен его перекрыть, чтобы возник ПД — это относительный рефрактерный период .
Расчёт рефрактерного периода
Рефрактерный период можно рассчитать и описать графически, рассчитав предварительно поведение потенциал-зависимых Na+ и К+ каналов. Поведение этих каналов, в свою очередь, описывается через проводимость и вычисляется через коэффициенты трансфера.
Проводимость для калия
G K на единицу площадиКоэффициент трансфера из закрытого в открытое состояние для K+ каналов ;
Коэффициент трансфера из открытого в закрытое состояние для K+ каналов ;
n — фракция К+ каналов в открытом состоянии;
(1 — n) — фракция К+ каналов в закрытом состоянии
Проводимость для натрия
G N a на единицу площадиКоэффициент трансфера из закрытого в открытое состояние для Na+ каналов ;
Коэффициент трансфера из открытого в закрытое состояние для Na+ каналов ;
m — фракция Na+ каналов в открытом состоянии;
(1 — m) — фракция Na+ каналов в закрытом состоянии;
Коэффициент трансфера из инактивированного в не-инактивированное состояние для Na+ каналов ;
Коэффициент трансфера из не-инактивированного в инактивированное состояние для Na+ каналов ;
h — фракция Na+ каналов в не-инактивированном состоянии;
(1 — h) — фракция Na+ каналов в инактивированном состоянии.
Wikimedia Foundation . 2010 .
Синонимы :Смотреть что такое «Рефрактерность» в других словарях:
— (от франц. refractaire невосприимчивый) в физиологии отсутствие или снижение возбудимости нерва или мышцы после предшествующего возбуждения. Рефрактерность лежит в основе торможения. Рефрактерный период длится от нескольких десятитысячных (во… … Большой Энциклопедический словарь
Невосприимчивость Словарь русских синонимов. рефрактерность сущ., кол во синонимов: 1 невосприимчивость (5) Словарь синоним … Словарь синонимов
— (от франц. refractaire невосприимчивый), снижение возбудимости клеток, сопровождающее возникновение потенциала действия. Во время пика потенциала действия возбудимость полностью исчезает (абсолютная Р.) вследствие инактивации натриевых и… … Биологический энциклопедический словарь
рефрактерность — и, ж. refractaire adj. невосприимчивый. физиол. Отсутствие или снижение возбудимости нерва или мышцы после предшествующего возбуждения. СЭС … Исторический словарь галлицизмов русского языка
(франц. refractaire — невосприимчивый), период половой невозбудимости у мужчин, наступающий после эякуляции.
Непосредственно по окончании полового сношения, завершившегося семяизвержением с оргазмом, у мужчины возникает абсолютная половая не возбудимость. Происходит резкий спад нервного возбуждения, и никакие виды эротической стимуляции, включая проводимые партнершей ласки половых органов, не способны тут же вызвать у мужчины повторную эрекцию.
На этой первой стадии рефрактерного периода мужчина совершенно безразличен к действию сексуальных возбудителей. Через определенное время после семяизвержения (индивидуальное для каждого) наступает следующая, более длительная стадия рефрактерного периода — относительная половая невозбудимость. Мужчине в этот период еще сложно самостоятельно настроиться на новую близость, но сексуальная активность партнерши, ее интенсивные и умелые ласки способны привести к возникновению у мужчины эрекции.
Длительность всего рефрактерного периода и его отдельных стадий существенно варьирует в зависимости от возраста мужчины и его половой конституции.
Если у подростков повторная эрекция может возникнуть уже через несколько минут после эякуляции, то у пожилых мужчин период половой невозбудимости может исчисляться днями. Некоторые мужчины (преимущественно в возрасте до 30-35 лет) имеют настолько замаскированный рефракторный период, что способны проводить повторные половые акты, не извлекая половой член из влагалища после первого семяизвержения. При этом может наблюдаться очень кратковременное и лишь частичное ослабление эрекции, которая вновь быстро усиливается в процессе фрикций. Такие «сдвоенные» половые акты иногда могут затягиваться до десятков минут, поскольку вслед за первым семяизвержением происходит некоторое снижение возбудимости нервных центров, и в случае продолжения сношения повторная эякуляция наступает у мужчины уже через более длительный отрезок времени.
У женщин период рефрактерности отсутствует. Г. С. Васильченко отмечает связь указанных особенностей сексуальности мужчин и женщин с их разной биологической ролью в процессе совокупления. Половое удовлетворение с биологической точки зрения — лишь награда за действия, направленные на продление рода. Поэтому в процессе эволюции закреплялись, прежде всего, те признаки, которые способствуют эффективному оплодотворению. В этом смысле основная роль мужчины в половом акте — отдача полноценной спермы, что маловероятно при многократных половых актах из-за уменьшения количества зрелых и подвижных сперматозоидов. Отсюда понятно, что рефракторный период после каждой эякуляции служит для ограничения сексуальной активности мужчины и способствует созреванию половых клеток, повышая оплодотворяющую способность спермы. Биологическая задача женщины заключается в восприятии спермы, поэтому она, наоборот, выигрывает при отсутствии рефракторного периода. Если бы после первого оргазма продолжение женщиной полового акта становилось невозможным, это существенно уменьшило бы вероятность оплодотворения.
(Источник: Сексологический словарь)
Период полной или частичной невозбудимости нервной и мышечной ткани после предшествующего возбуждения. ср. экзальтация .
(Источник: Словарь сексуальных терминов)
Смотреть что такое «Рефрактерный период» в других словарях:
рефрактерный период — Этимология. Происходит от лат. refractio преломление. Категория. Характеристика нервного процесса. Специфика. Временной отрезок, следующий за периодом возбуждения, когда нервная или мышечная ткань находится в состоянии полной невозбудимости и… … Большая психологическая энциклопедия
— (от лат. refractio преломление) временной отрезок, следующий за периодом возбуждения, когда нервная или мышечная ткань находится в состоянии полной невозбудимости и последующей пониженной возбудимости. При этом раздражение любой силы хотя и не… … Психологический словарь
В электрофизиологии рефрактерным периодом (рефрактерностью) называют период времени после возникновения на возбудимой мембране потенциала действия, в ходе которого возбудимость мембраны снижается, а затем постепенно восстанавливается до исходного … Википедия
РЕФРАКТЕРНЫЙ ПЕРИОД — период кратковременного резкого падения возбудимости ткани (нервной, мышечной), наступающий после каждой вспышки возбуждения … Психомоторика: cловарь-справочник
— (франц. refractaire невосприимчивый; син. рефрактерная фаза) период пониженной возбудимости нервной или мышечной ткани, наступающий в процессе и после их возбуждения … Большой медицинский словарь Словарь терминов по физиологии сельскохозяйственных животных
Рефрактерный период психологический — – 1. короткий период времени в течение обработки одного стимула и реагирования на него, когда обработка второго стимула и реагирования на него замедляются; 2. в сексопатологии – период времени, в течение которого достигается способность к… … Энциклопедический словарь по психологии и педагогике
Огнеупорные периоды
Огнеупорные периоды
BYUI образ: Создано F15
Еще одна концепция, которую следует обсудить, — это огнеупорный период . По определению, рефрактерный период — это период времени, в течение которого клетка не способна повторять потенциал действия. Что касается потенциалов действия, это относится к количеству времени, которое требуется возбудимой мембране, чтобы быть готовой ответить на второй стимул, как только она вернется в состояние покоя.Есть два типа рефрактерных периодов; абсолютный рефрактерный период , , который соответствует деполяризации и реполяризации, и относительный рефрактерный период, , который соответствует гиперполяризации. Более того, абсолютный рефрактерный период — это интервал времени, в течение которого второй потенциал действия не может быть инициирован, независимо от того, насколько большой стимул применяется повторно. Относительный рефрактерный период — это интервал времени, в течение которого может быть инициирован второй потенциал действия, но для его инициирования потребуется более сильный стимул, чем раньше.Рефрактерные периоды вызваны воротами инактивации канала Na + . После инактивации канал Na + не может реагировать на другой стимул, пока ворота не будут сброшены.
Распространение потенциала действия
Потенциалы действия обычно генерируются на одном конце нейрона, а затем «распространяются», как волна, вдоль аксона к противоположному концу нейрона.
Название: Файл: Blausen 0011 ActionPotential Nerve.png; Автор: БрюсБлаус; Сайт: https://en.wikipedia.org/wiki/File:Blausen_0011_ActionPotential_Nerve.png; Лицензия: этот файл находится под лицензией Creative Commons Attribution 3.0 Unported.
На изображении выше показано, как потенциал действия мог возникнуть около клеточной сомы, и по мере того, как он распространяется вниз по аксону к противоположному концу, мембранный потенциал за движущимся потенциалом действия реполяризовался и вернулся к мембранному потенциалу покоя. Аксон перед текущей деполяризацией еще не деполяризован и также находится в состоянии покоя мембранного потенциала.Там, где возникает потенциал действия, мы обнаруживаем, что мембранный потенциал деполяризован, и внешняя часть мембраны в этом месте заряжена отрицательно по сравнению с внутренней частью мембраны в этом месте. Когда натрий проникает внутрь, он деполяризует следующее соседнее пятно на аксоне в направлении распространения потенциала действия. Причина того, что потенциал действия не деполяризует участок мембраны аксона позади (или в том направлении, откуда только что пришел потенциал действия), заключается в том, что этот участок мембраны, скорее всего, находится в рефрактерных периодах и не деполяризуется.
Название: Файл: Action Potential.gif; Автор: Лорантайлорж; Сайт: https://commons.wikimedia.org/wiki/File:Action_Potential.gif; Лицензия: Этот файл находится под лицензией Creative Commons Attribution-Share Alike 3.0 Unported.
Изображение выше представляет собой анимацию в формате «.gif» и будет воспроизводиться только в том случае, если вы видите изображение в Интернете. Просматривая эту анимацию, вы увидите, как потенциал действия движется как волна «деполяризации».
BYU-I образ: создан W15
Изображение выше — это еще одна анимация в формате .gif (должна просматриваться на компьютере, а не в печатной форме). На этой анимации показано, как потенциал действия, движущийся по аксону, похож на наступление на один конец водяного шара. В действительности волна давления в водном шаре будет уменьшаться по мере продвижения по длине, но бегущий потенциал действия (или волна деполяризации) воссоздается в каждом месте аксона, у которого есть управляемые напряжением натриевые каналы, открывающиеся на пороге.Таким образом постоянно воссоздается первоначальная сила волны деполяризации.
Название: Файл: Распространение потенциала действия по миелинизированному нервному волокну en.png; Автор: Helixitta; Сайт: https://commons.wikimedia.org; /wiki/File:Propagation_of_action_potential_along_myelinated_nerve_fiber_en.png; Лицензия: Этот файл находится под лицензией Creative Commons Attribution-Share Alike 4.0 International.
На изображении выше показан миелин на аксоне периферического нерва.Миелин состоит из отдельных шванновских клеток. Миелин покрывает аксон таким образом, что «изолирует» аксон от волн деполяризации. Таким образом, деполяризация будет происходить даже только в «Узлах Ранвье» (или областях голого аксона между отдельными сегментами миелина). Когда нервный аксон организован таким образом с миелином, распространение потенциала действия может распространяться намного быстрее (почти в 10 раз быстрее, чем немиелинизированные аксоны).
BYU-I образ: создан W15
Изображение выше другое «.gif «анимация. Она показывает, как миелинизированный аксон можно сравнить с водяным шаром с сегментированными манжетами на нем. Волна давления, генерируемая в одном сегменте, будет распространяться по длине шара и воссоздаваться в каждом» узле «. Обратите внимание, как положительно заряженный натрий, входящий в первый узел, заставляет положительные заряды перемещаться вниз по аксону, где они могут попытаться деполяризовать каждый узел. Сила волны деполяризации уменьшается с расстоянием от исходной первой области деполяризации (точно так же, как волна давления уменьшается с расстоянием от первый сегмент надавил на баллон с водой).
Миелинизированный аксон будет отличаться от баллона тем, что исходная волна деполяризации может вызвать достижение следующего узла порога и воссоздать событие деполяризации во втором узле, которое было равно первому. Рассмотрим эти две вещи:
- Исходное событие деполяризации может помочь другим узлам приблизиться к пороговому значению.
- Каждый узел, который достигает порога, воссоздает волну деполяризации, которая равна первому
- Деполяризация происходит только на голом аксоне между сегментами миелина, а не по всей поверхности аксона
Эти события вместе делают скорость, с которой распространяется, и потенциал действия намного выше.Этот «скачок» событий деполяризации потенциала действия от узла к узлу называется скачкообразной проводимостью .
СводкаИтак, у нас достаточно информации, чтобы объяснить физиологию нашего вводного абзаца? Давайте поговорим о осязании и посмотрим, есть ли у нас более глубокое понимание. Обратите внимание на кончики пальцев; существует как минимум 5 различных типов сенсорных рецепторов, которые позволяют вам ощущать различные текстуры и давления, но как они работают? Рецепторы прикосновения — это на самом деле просто причудливые нейроны, но они демонстрируют те же явления, о которых мы только что говорили.Например, в состоянии покоя они проницаемы для K +, но не для натрия, поэтому внутренняя часть мембраны отрицательна по отношению к внешней. Следовательно, белки канала Na + находятся в закрытой конформации во время покоя. Чтобы почувствовать прикосновение, нам нужно преобразовать сенсорный стимул в нечто, что мозг может обнаружить; потенциалы действия. Настоящий вопрос заключается в том, как прикосновение заставляет нейрон передавать потенциал действия? Помните, что потенциал действия вызывается движением Na + через мембрану.Таким образом, механическое воздействие прикосновения (раздражителя) вызывает изменение конформации в особой группе каналов Na +. Действие прикосновения заставляет их открываться, поскольку Na + движется по этим каналам, положительный заряд иона Na + заставляет мембрану изменяться, а другие каналы Na + (регулируемые напряжением) реагируют на изменение мембраны открытием. Это, в свою очередь, вызывает открытие других каналов, и результирующий потенциал действия отправляется в мозг в виде электрического тока (так называемого распространения потенциала действия).Затем мозг может интерпретировать потенциалы действия как физическое прикосновение в зависимости от того, откуда эти потенциалы действия возникли. Вы не поверите, но каждый внешний стимул, будь то молекулы вкуса, световые волны, звуковые волны или механическое прикосновение, преобразуется в потенциал действия. Потенциалы действия — это коммуникации тела, и мозг работает только в потенциалах действия.
** Вы можете использовать кнопки ниже, чтобы перейти к предыдущему чтению в этом модуле **
Распечатать эту страницурефрактерных периодов — потенциал нейронального действия
Потенциал действия нейронов —
Рефрактерных периодов
Рисунок 1. Абсолютные и относительные рефрактерные периоды.
Во время периода абсолютной рефрактерности второй стимул (каким бы сильным он ни был) не возбудит нейрон.В течение периода относительной рефрактерности требуется более сильный, чем обычно, стимул, чтобы вызвать возбуждение нейронов.
После периода абсолютной рефрактерности каналы Na + начинают восстанавливаться после инактивации, и если нейрон получает достаточно сильные стимулы, он может снова отреагировать, генерируя потенциалы действия. Однако в это время подаваемые стимулы должны быть сильнее, чем это было изначально необходимо, когда нейрон находился в состоянии покоя. Такая ситуация будет продолжаться до тех пор, пока все каналы Na + не выйдут из состояния деактивации.Период, в течение которого требуется более сильный, чем обычно, стимул, чтобы вызвать потенциал действия, называется относительным рефрактерным периодом (RRP) . В течение периода относительной рефрактерности, поскольку p K остается выше своего значения покоя (см. График p K во время потенциала действия), продолжающийся поток K + из ячейки будет иметь тенденцию противодействовать любая деполяризация, вызванная открытием каналов Na + , восстановившихся после инактивации.Рассматривая возбудимость нейрона после потенциала действия, можно увидеть, что нейрон вообще не возбудим в течение периода абсолютной рефрактерности, однако возбудимость нейронов восстанавливается зависимым от времени (а также зависимым от напряжения) образом после абсолютный рефрактерный период (рис. 2). Как упоминалось выше, период сразу после периода абсолютной рефрактерности до тех пор, пока возбудимость нейронов не станет аналогичной таковой для нейрона в состоянии покоя, является периодом относительной рефрактерности.Если нейрон стимулирован стимулом, достаточно сильным только для того, чтобы довести нейрон до порога в покое, нейрон будет реагировать только тогда, когда период относительной рефрактерности закончится (то есть нейрон вернется в свое состояние покоя). Однако во время относительного рефрактерного периода нейрон может быть возбужден, если применяется более сильный, чем обычно, стимул. Сила стимула, необходимого для возбуждения нейрона в течение периода относительной рефрактерности, очень высока вначале сразу после окончания периода абсолютной рефрактерности, но уменьшается в течение периода относительной рефрактерности, пока не достигнет уровня, необходимого для возбуждения нейрона в состоянии покоя (т.е., в конце относительного рефрактерного периода (рис. 3).
Рисунок 2. Восстановление возбудимости нейронов.
Во время периода абсолютной рефрактерности нейрон не может быть возбужден для генерации второго потенциала действия (независимо от того, насколько интенсивен стимул). По мере того как каналы Na + начинают восстанавливаться после инактивации, постепенно восстанавливается возбудимость. Этот период восстановления является относительным рефрактерным периодом, в течение которого требуется более сильный, чем обычно, стимул для запуска нового потенциала действия.
Рис. 3. Пороговая сила стимула, необходимая для выявления потенциала действия в течение относительного периода восстановления.
Никакой стимул, каким бы сильным он ни был, не доведет нейрон до порога в течение периода абсолютной рефрактерности. В течение периода относительной рефрактерности нейрон может быть возбужден стимулами, более сильными, чем те, которые необходимы, чтобы довести нейрон в состоянии покоя до порогового значения. Сила необходимого стимула очень высока в начале относительного рефрактерного периода и постепенно становится меньше в течение относительного рефрактерного периода по мере того, как каналы Na + восстанавливаются после инактивации и когда проницаемость K + возвращается к своему уровню покоя (см. Рисунок) .В конце периода относительной рефрактерности, когда нейрон возвращается в состояние покоя, сила стимула находится на минимальном уровне, необходимом для приведения покоящегося нейрона к пороговому значению (пунктирная линия).Таким образом, инактивация каналов Na + является единственной причиной абсолютного рефрактерного периода. И инактивация канала Na + , и значение больше, чем в состоянии покоя p K , ответственны за относительный рефрактерный период.
Абсолютный рефрактерный период отвечает за установку верхнего предела максимального количества потенциалов действия, которые могут быть созданы в течение любого заданного периода времени. Другими словами, абсолютный рефрактерный период определяет максимальную частоту потенциалов действия, которые могут генерироваться в любой точке вдоль плазматической мембраны аксона. Эта частота потенциала действия, в свою очередь, имеет важные физиологические последствия для того, как нервная система может реагировать на высокочастотные стимулы, а также для способности нервной системы при необходимости посылать высокочастотные сигналы исполнительным органам (см. нервная система).Сделаем еще одно последнее замечание о рефрактерном периоде. Как упоминалось ранее, цифры, указанные в этих лекциях для различных физиологических процессов, соответствуют тому, что было признано «нормой» или наиболее изученным примером процесса. Хотя мы сообщали, что рефрактерный период длится 3-4 мс, следует отметить, что фаза гиперполяризации может длиться до 15 мс в некоторых нейронах. Следовательно, в этих нейронах относительный рефрактерный период намного дольше.
Размещено: 5 июля 2012 г., четверг
Последнее обновление: 25 сентября 2015 г., пятница
Рефрактерный период — Эксперименты с потенциалом действия
Потенциалы действия можно условно разделить на четыре фазы:
- Деполяризация : ионы Na + устремляются в нейрон (вниз по электрохимическому градиенту для Na +), повышение мембранного потенциала нейрона до более положительных значений.
- Реполяризация : высокий мембранный потенциал вызывает инактивацию каналов Na +, а затем каналов K + открываются в зависимости от времени, позволяя K + вытекать из нейрона (вниз по его электрохимическому градиенту) и следовательно, снижение мембранного потенциала обратно до отрицательных значений.
- После гиперполяризации : каналы K + все еще открыты и продолжают выпускать K + в течение некоторого времени после нейрон достигает своего потенциала покоя, вызывая выброс или гиперполяризацию.
- Возврат к RMP : Активный насос Na + / K + перемещает K + обратно в ячейку, а Na + обратно из ячейки, постепенно возвращая мембранный потенциал обратно к исходному значению (RMP).
В течение первой миллисекунды или около того после фазы 1 управляемые по напряжению натриевые каналы все еще неактивны, что означает что они не откроются в ответ на деполяризацию. Это называется периодом абсолютной рефрактерности , и в этот период невозможно вызвать другой потенциал действия.
Между тем, управляемые по напряжению натриевые каналы медленно переходят обратно в состояние покоя, то есть закрываются, но больше не бездействует; готовится произвести новый потенциал действия, если нужное количество деполяризации. Но калиевые каналы, управляемые напряжением, закрываются медленно, а это означает, что даже после натриевые каналы снова готовы к работе, мембрана потребует большей деполяризации для достижения порога, давая начало относительному периоду рефрактерности .В этот период можно вызвать другое действие. потенциал, но для этого требуется больший стимул.
В этом моделировании мы введем два импульса тока, разделенных переменным межстимульным интервалом , и измените силу второго импульса, чтобы узнать больше о рефрактерных периодах.
10.5E: потенциал действия и распространение
- Последнее обновление
- Сохранить как PDF
- Ключевые моменты
- Ключевые термины
- Потенциал действия
Нейроны обычно посылают сигналы на большие расстояния, генерируя и распространяя потенциалы действия через возбудимую аксональную мембрану.
Цели обучения
- Опишите стадии потенциала действия и его распространение
Ключевые моменты
- Потенциал действия — это кратковременное изменение мембранного потенциала на противоположное, при котором мембранный потенциал изменяется от -70 мВ до + 30 мВ
- У потенциала действия есть три основных стадии: деполяризация, реполяризация и гиперполяризация.
- Деполяризация возникает, когда положительно заряженные ионы натрия устремляются в нейрон, открывая потенциалзависимые натриевые каналы.
- Реполяризация вызывается закрытием каналов для ионов натрия и открытием каналов для ионов калия.
- Гиперполяризация возникает из-за избытка открытых калиевых каналов и оттока калия из клетки.
Ключевые термины
- потенциал действия. : Кратковременное изменение мембранного потенциала.
- реполяризация : Также называется фазой спада,
вызвана медленным закрытием натриевых каналов и открытием потенциалзависимых калиевых каналов. - период абсолютной рефрактерности : период от открытия натриевых каналов до начала сброса натриевых каналов.
- гиперполяризация : фаза, при которой некоторые калиевые каналы остаются открытыми, а натриевые каналы сбрасываются.
- деполяризация : Также называется фазой нарастания, когда положительно заряженные ионы натрия (Na +) внезапно устремляются через открытые потенциалзависимые натриевые каналы в нейрон.
Потенциал действия
Потенциал действия — это кратковременное изменение мембранного потенциала на противоположное, при котором мембранный потенциал изменяется от -70 мВ до + 30 мВ.Когда мембранный потенциал аксонного бугорка нейрона достигает порогового значения, происходит быстрое изменение мембранного потенциала в форме потенциала действия.
Это подвижное изменение мембранного потенциала имеет три фазы. Сначала деполяризация, затем реполяризация и короткий период гиперполяризации. Эти три события происходят всего за несколько миллисекунд.
Потенциал действия : A. Схема и B. записи фактического потенциала действия.Потенциал действия — наглядный пример того, как изменения мембранного потенциала могут действовать как сигнал.
- Деполяризация, также называемая фазой нарастания, возникает, когда положительно заряженные ионы натрия (Na +) внезапно устремляются через открытые потенциалзависимые натриевые каналы в нейрон. По мере того, как внутрь проникает дополнительный натрий, мембранный потенциал фактически меняет полярность. Во время этой смены полярности мембрана действительно на мгновение развивает положительное значение (+40 милливольт).
- Реполяризация или фаза спада вызвана медленным закрытием натриевых каналов и открытием потенциалзависимых калиевых каналов.В результате проницаемость мембраны для натрия снижается до уровня покоя. По мере того, как поступление ионов натрия уменьшается, медленные калиевые каналы, управляемые напряжением, открываются, и ионы калия устремляются из клетки. Это изгнание действует, чтобы восстановить локализованный отрицательный мембранный потенциал клетки.
- Гиперполяризация — это фаза, когда некоторые калиевые каналы остаются открытыми, а натриевые каналы сбрасываются. Период повышенной проницаемости для калия приводит к чрезмерному оттоку калия до закрытия калиевых каналов.Это приводит к гиперполяризации, что видно по небольшому провалу после всплеска.
Распространение потенциала действия не зависит от силы стимула, но зависит от рефрактерных периодов. Период от открытия натриевых каналов до начала восстановления натриевых каналов называется периодом абсолютной рефрактерности. В этот период нейрон не может ответить на другой стимул, каким бы сильным он ни был.
12.5 Потенциал действия — анатомия и физиология
Функции нервной системы — ощущение, интеграция и реакция — зависят от функций нейронов, лежащих в основе этих путей.Чтобы понять, как нейроны могут общаться, необходимо описать роль возбудимой мембраны в генерации этих сигналов. В основе этого процесса лежит потенциал действия . Потенциал действия — это предсказуемое изменение мембранного потенциала, которое происходит из-за открытия и закрытия потенциалзависимых ионных каналов на клеточной мембране.
Большинство клеток тела используют заряженные частицы ( ионов, ) для создания электрохимического заряда через клеточную мембрану.В предыдущей главе мы описали, как сокращаются мышечные клетки на основе движения ионов через клеточную мембрану. Для сокращения скелетных мышц из-за связи возбуждения-сокращения они требуют ввода от нейрона. И мышечные, и нервные клетки используют клеточную мембрану, которая специализируется на передаче сигналов, чтобы регулировать движение ионов между внеклеточной жидкостью и цитозолем.
Как вы узнали из главы о клетках, клеточная мембрана в первую очередь отвечает за регулирование того, что может пересекать мембрану.Клеточная мембрана представляет собой бислой фосфолипидов, поэтому только вещества, которые могут проходить непосредственно через гидрофобное ядро, могут диффундировать без посторонней помощи. Заряженные частицы, которые являются гидрофильными, не могут проходить через клеточную мембрану без посторонней помощи (рис. 12.5.1). Определенные белки трансмембранного канала позволяют заряженным ионам перемещаться через мембрану. Несколько пассивных транспортных каналов, а также активные транспортные насосы необходимы для создания трансмембранного потенциала и потенциала действия. Особый интерес представляет белок-носитель, называемый натриево-калиевым насосом , который использует энергию для перемещения ионов натрия (Na + ) из клетки и ионов калия (K + ) в клетку, таким образом регулируя ионную концентрация на обеих сторонах клеточной мембраны.
Рисунок 12.5.1 — Клеточная мембрана и трансмембранные белки: Клеточная мембрана состоит из фосфолипидного бислоя и имеет множество трансмембранных белков, включая различные типы канальных белков, которые служат ионными каналами.Натриево-калиевый насос требует энергии в виде аденозинтрифосфата (АТФ), поэтому его также называют насосом АТФазы. Как объяснялось в главе о ячейках, концентрация Na + выше вне ячейки, чем внутри, а концентрация K + выше внутри ячейки, чем снаружи.Таким образом, этот насос работает против градиентов концентрации ионов натрия и калия, поэтому он требует энергии. Насос Na + / K + ATPase поддерживает эти важные градиенты концентрации ионов.
Ионные каналы — это поры, которые позволяют определенным заряженным частицам пересекать мембрану в ответ на существующий электрохимический градиент. Белки способны проникать через клеточную мембрану, включая ее гидрофобное ядро, и могут взаимодействовать с заряженными ионами из-за различных свойств аминокислот, обнаруженных в определенных областях белкового канала.Гидрофобные аминокислоты находятся в областях, которые примыкают к углеводородным хвостам фосфолипидов, где гидрофильные аминокислоты подвергаются воздействию жидкой среды внеклеточной жидкости и цитозоля. Кроме того, ионы будут взаимодействовать с гидрофильными аминокислотами, которые будут селективными в отношении заряда иона. Каналы для катионов (положительных ионов) будут иметь отрицательно заряженные боковые цепи в порах. Каналы для анионов (отрицательных ионов) будут иметь в порах положительно заряженные боковые цепи.Диаметр поры канала также влияет на конкретные ионы, которые могут проходить через него. Некоторые ионные каналы избирательны по заряду, но не обязательно по размеру. Эти неспецифические каналы позволяют катионам, особенно Na + , K + и Ca 2+ , проходить через мембрану, но исключают анионы.
Некоторые ионные каналы не позволяют ионам свободно диффундировать через мембрану, но вместо этого закрыты . Управляемый лигандом канал открывается, потому что молекула или лиганд связывается с внеклеточной областью канала (Рисунок 12.5.2).
Рис. 12.5.2. Каналы, управляемые лигандом: Когда лиганд, в данном случае нейромедиатор ацетилхолин, связывается с определенным местом на внеклеточной поверхности белка канала, поры открываются, позволяя отобрать ионы. Ионы в данном случае представляют собой катионы натрия, кальция и калия.Канал с механическим затвором открывается из-за физического искажения клеточной мембраны. Многие каналы, связанные с осязанием, закрываются механически.Например, когда к коже прикладывается давление, открываются механически закрытые каналы подкожных рецепторов, позволяя ионам проникать (рис. 12.5.3).
Рисунок 12.5.3 — Каналы с механическим закрытием: Когда в окружающей ткани происходит механическое изменение (например, давление или растяжение), канал физически открывается, и ионы могут перемещаться по каналу вниз по градиенту их концентрации.Управляемый по напряжению канал — это канал, который реагирует на изменения электрических свойств мембраны, в которую он встроен.Обычно внутренняя часть мембраны находится под отрицательным напряжением. Когда это напряжение становится менее отрицательным и достигает значения, специфичного для канала, он открывается и позволяет ионам пересекать мембрану (рисунок 12.5.4).
Рисунок 12.5.4 — Каналы с ограничением по напряжению: Каналы с ограничением по напряжению открываются, когда вокруг них изменяется трансмембранное напряжение. Аминокислоты в структуре белка чувствительны к заряду и заставляют поры открываться для выбранного иона.Канал утечки имеет случайную стробировку, что означает, что он открывается и закрывается случайным образом, отсюда и ссылка на утечку.Нет фактического события, открывающего канал; вместо этого он имеет внутреннюю скорость переключения между открытым и закрытым состояниями. Каналы утечки вносят вклад в трансмембранное напряжение покоя возбудимой мембраны (рис. 12.5.5).
Рисунок 12.5.5 — Каналы утечки: Эти каналы открываются и закрываются случайным образом, позволяя ионам проходить через них, когда они открыты.Мембранный потенциал — это распределение заряда через клеточную мембрану, измеряемое в милливольтах (мВ).Стандарт заключается в сравнении внутренней части клетки и внешней среды, поэтому мембранный потенциал представляет собой величину, представляющую заряд на внутриклеточной стороне мембраны (относительно нуля на внешней стороне; рис. 12.5.6).
Рисунок 12.5.6 — Измерение заряда через мембрану с помощью вольтметра: Регистрирующий электрод вставлен в ячейку, а электрод сравнения находится вне ячейки. Путем сравнения заряда, измеренного этими двумя электродами, определяется трансмембранное напряжение.Принято выражать это значение для цитозоля относительно внешней среды.Обычно существует общий чистый нейтральный заряд между внеклеточной и внутриклеточной средой нейрона. Однако небольшая разница в заряде возникает прямо на поверхности мембраны как внутри, так и снаружи. Это различие в этой очень ограниченной области, которая обладает способностью генерировать электрические сигналы, включая потенциалы действия, в нейронах и мышечных клетках.
Когда клетка находится в состоянии покоя, ионы распределяются по мембране очень предсказуемым образом.Концентрация Na + вне клетки в 10 раз больше, чем концентрация внутри. Кроме того, концентрация K + внутри клетки больше, чем снаружи. Цитозоль содержит высокую концентрацию анионов в форме фосфат-ионов и отрицательно заряженных белков. С ионами, распределенными по мембране при этих концентрациях, разница в заряде описывается как , потенциал мембраны покоя . Точное значение, измеренное для мембранного потенциала покоя, варьируется от клетки к клетке, но обычно сообщается значение -70 мВ.Это напряжение на самом деле было бы намного ниже, если бы не вклад некоторых важных белков в мембрану. Каналы утечки позволяют Na + медленно перемещаться в клетку или K + медленно перемещаться наружу, а насос Na + / K + восстанавливает их градиенты концентрации через мембрану. Это может показаться пустой тратой энергии, но каждый из них играет определенную роль в поддержании мембранного потенциала.
Потенциал действия
Мембранный потенциал покоя описывает устойчивое состояние клетки, которое представляет собой динамический процесс, уравновешивающий ионы, утекающие вниз по градиенту их концентрации, и ионы, перекачиваемые обратно вверх по градиенту их концентрации.Без какого-либо внешнего воздействия мембранный потенциал покоя будет поддерживаться. Чтобы подать электрический сигнал, мембранный потенциал должен стать более положительным.
Это начинается с открытия потенциал-управляемых каналов Na + в мембране нейрона. Поскольку концентрация Na + выше вне ячейки, чем внутри ячейки в 10 раз, ионы будут устремляться в ячейку под действием как химических, так и электрических градиентов. Поскольку натрий — это положительно заряженный ион, при попадании в клетку он сразу же изменяет относительное напряжение внутри клеточной мембраны.Мембранный потенциал покоя составляет примерно -70 мВ, поэтому катион натрия, попадающий в клетку, заставляет мембрану становиться менее отрицательной. Это известно как деполяризация , что означает, что мембранный потенциал приближается к нулю (становится менее поляризованным). Градиент концентрации Na + настолько велик, что он будет продолжать поступать в клетку даже после того, как мембранный потенциал станет нулевым, так что напряжение непосредственно вокруг поры тогда начинает становиться положительным.
Когда мембранный потенциал достигает +30 мВ, в мембране открываются более медленные, управляемые по напряжению калиевые каналы.Электрохимический градиент также действует на K + . Когда K + начинает покидать ячейку, унося с собой положительный заряд, мембранный потенциал начинает возвращаться к своему напряжению покоя. Это называется реполяризацией , что означает, что мембранное напряжение возвращается к значению -70 мВ потенциала покоя мембраны.
Реполяризация возвращает мембранный потенциал к значению потенциала покоя -70 мВ, но превышает это значение. Ионы калия достигают равновесия, когда напряжение на мембране ниже -70 мВ, поэтому возникает период гиперполяризации, когда каналы K + открыты.Эти каналы K + закрываются с небольшой задержкой из-за этого короткого выброса.
Здесь был описан потенциал действия, который представлен в виде графика зависимости напряжения от времени на рисунке 12.5.7. Это электрический сигнал, который нервная ткань генерирует для общения. Изменение мембранного напряжения от -70 мВ в состоянии покоя до +30 мВ в конце деполяризации представляет собой изменение на 100 мВ.
Рисунок 12.5.7 — График потенциала действия: График зависимости напряжения, измеренного на клеточной мембране от времени, потенциал действия начинается с деполяризации, за которой следует реполяризация, которая переходит за потенциал покоя в гиперполяризацию, и, наконец, мембрана возвращается в состояние покоя.Внешний веб-сайт
То, что происходит через мембрану электрически активной ячейки, представляет собой динамический процесс, который трудно визуализировать с помощью статических изображений или текстовых описаний. Просмотрите эту анимацию, чтобы узнать больше об этом процессе. В чем разница между движущей силой Na + и K + ? А что общего в движении этих двух ионов?
Мембранный потенциал будет оставаться на уровне напряжения покоя, пока что-то не изменится.Чтобы начать потенциал действия, мембранный потенциал должен измениться от потенциала покоя приблизительно -70 мВ до порогового напряжения -55 мВ. Как только клетка достигает порога, потенциалзависимые натриевые каналы открываются, и предсказуемые изменения мембранного потенциала описываются выше как потенциал действия. Любая подпороговая деполяризация, которая не изменяет мембранный потенциал до -55 мВ или выше, не достигает порога и, следовательно, не приводит к потенциалу действия. Кроме того, любой стимул, который деполяризует мембрану до -55 мВ или выше, вызовет открытие большого количества каналов и возникнет потенциал действия.
Из-за предсказуемых изменений, которые происходят при достижении порога, потенциал действия обозначается как «все или ничего». Это означает, что либо возникает потенциал действия и повторяется по всей длине нейрона, либо потенциал действия не возникает. Более сильный стимул, который может деполяризовать мембрану далеко за порог, не приведет к «большему» потенциалу действия. Либо мембрана достигает порога, и все происходит, как описано выше, либо мембрана не достигает порога, и больше ничего не происходит.Все потенциалы действия достигают пика при одинаковом напряжении (+30 мВ), поэтому один потенциал действия не больше другого. Более сильные стимулы быстрее инициируют множественные потенциалы действия, но отдельные сигналы не больше.
Как мы видели, деполяризация и реполяризация потенциала действия зависят от двух типов каналов (потенциал-зависимый канал Na + и потенциал-управляемый канал K + ). Управляемый по напряжению канал Na + фактически имеет два затвора.Одним из них является активационный вентиль , который открывается, когда мембранный потенциал превышает -55 мВ. Другой вентиль — это вентиль инактивации , который закрывается через определенный период времени — порядка долей миллисекунды. Когда ячейка находится в состоянии покоя, ворота активации закрыты, а ворота дезактивации открыты. Однако при достижении порога активирующие ворота открываются, позволяя Na + ворваться в ячейку. В момент пика деполяризации ворота инактивации закрываются.Во время реполяризации в клетку больше не может попасть натрий. Когда мембранный потенциал снова превышает -55 мВ, активирующий вентиль закрывается. После этого ворота инактивации снова открываются, делая канал готовым к повторному запуску всего процесса.
Управляемый по напряжению канал K + имеет только один затвор, чувствительный к мембранному напряжению -50 мВ. Однако он не открывается так быстро, как закрытый по напряжению канал Na + . Для открытия канала K + после достижения этого напряжения требуется доли миллисекунды, что точно совпадает с моментом пика потока Na + .Таким образом, закрытые по напряжению каналы K + открываются так же, как закрытые по напряжению каналы Na + деактивируются. Когда мембранный потенциал переполяризуется и напряжение снова достигает -50 мВ, каналы K + начинают закрываться. Калий продолжает покидать клетку в течение короткого времени, и мембранный потенциал становится более отрицательным, что приводит к превышению гиперполяризации. Затем каналы K + закрываются, и мембрана возвращается в состояние покоя из-за продолжающейся активности каналов утечки и насоса АТФазы Na + / K + .
Все это происходит примерно за 2 миллисекунды (рисунок 12.5.8). Пока потенциал действия активен, другой не может быть инициирован. Этот эффект называется рефрактерным периодом . Существует две фазы огнеупорного периода: абсолютный огнеупорный период и относительный огнеупорный период . В течение периода абсолютной рефрактерности другой потенциал действия не запускается. Это происходит из-за затвора инактивации управляемого по напряжению канала Na + .Как только канал Na + возвращается в состояние покоя, новый потенциал действия может быть запущен во время фазы гиперполяризации, но только более сильным стимулом, чем тот, который инициировал текущий потенциал действия.
Рисунок 12.5.8 — Этапы потенциала действия: График зависимости напряжения, измеренного на клеточной мембране, от времени, события потенциала действия могут быть связаны с конкретными изменениями мембранного напряжения. (1) В состоянии покоя напряжение на мембране составляет -70 мВ. (2) Мембрана начинает деполяризоваться при приложении внешнего раздражителя.(3) Напряжение на мембране начинает быстро расти до +30 мВ. (4) Напряжение на мембране начинает возвращаться к отрицательному значению. (5) Реполяризация продолжается после напряжения покоя мембраны, что приводит к гиперполяризации. (6) Напряжение на мембране возвращается к исходному значению вскоре после гиперполяризации.Распространение потенциала действия
Потенциал действия инициируется в начале аксона, в так называемом начальном сегменте ( триггерная зона) . Здесь может происходить быстрая деполяризация из-за высокой плотности потенциалзависимых каналов Na + .Спускаясь по длине аксона, потенциал действия распространяется, потому что по мере распространения деполяризации открывается больше потенциал-управляемых каналов Na + . Это распространение происходит из-за того, что Na + проникает через канал и движется по внутренней части клеточной мембраны. Когда Na + перемещается или проходит небольшое расстояние вдоль клеточной мембраны, его положительный заряд деполяризует немного больше клеточной мембраны. По мере того, как эта деполяризация распространяется, открываются новые потенциалозависимые каналы Na + , и все больше ионов устремляется в клетку, немного расширяя деполяризацию.
Поскольку управляемые по напряжению каналы Na + инактивируются на пике деполяризации, они не могут быть открыты снова на короткое время (период абсолютной рефрактерности). Из-за этого положительные ионы, распространяющиеся обратно к ранее открытым каналам, не имеют никакого эффекта. Потенциал действия должен распространяться от триггерной зоны к окончанию аксона.
Распространение, как описано выше, применимо к немиелинизированным аксонам. Когда присутствует миелинизация, потенциал действия распространяется по-другому и оптимизирован для скорости прохождения сигнала.Ионы натрия, которые входят в клетку в триггерной зоне, начинают распространяться по длине сегмента аксона, но до первого узла Ранвье нет управляемых по напряжению каналов Na + . Поскольку эти каналы вдоль сегмента аксона не открываются постоянно, деполяризация распространяется с оптимальной скоростью. Расстояние между узлами — это оптимальное расстояние, чтобы мембрана оставалась деполяризованной выше порога в следующем узле. Когда Na + распространяется по внутренней части мембраны сегмента аксона, заряд начинает рассеиваться.Если бы узел находился дальше по аксону, эта деполяризация упала бы слишком сильно для того, чтобы управляемые по напряжению каналы Na + были активированы в следующем узле Ранвье. Если бы узлы были ближе друг к другу, скорость распространения была бы ниже.
Распространение по немиелинизированному аксону обозначается как с непрерывной проводимостью ; По длине миелинизированного аксона он обозначается как скачкообразной проводимости . Непрерывная проводимость является медленной, потому что всегда открываются управляемые по напряжению каналы Na + , и все больше и больше Na + устремляется в ячейку.Солевое проведение происходит быстрее, потому что потенциал действия «прыгает» от одного узла к другому (saltare = «прыгать»), а новый приток Na + обновляет деполяризованную мембрану. Наряду с миелинизацией аксона диаметр аксона может влиять на скорость проводимости. Подобно тому, как вода течет быстрее в широкой реке, чем в узком ручье, деполяризация на основе Na + распространяется быстрее по широкому аксону, чем по узкому. Эта концепция известна как сопротивление и в целом верна для электрических проводов или водопровода, так же как и для аксонов, хотя конкретные условия отличаются в масштабах электронов или ионов по сравнению с водой в реке.
Гомеостатический дисбаланс — Концентрация калия
Глиальные клетки, особенно астроциты, отвечают за поддержание химической среды ткани ЦНС. Концентрации ионов во внеклеточной жидкости являются основой того, как устанавливается мембранный потенциал и изменяются электрохимические сигналы. Если баланс ионов нарушен, возможны тяжелые исходы.
Обычно концентрация K + выше внутри нейрона, чем снаружи.После фазы реполяризации потенциала действия каналы утечки K + и насосы Na + / K + гарантируют, что ионы возвращаются в свои исходные положения. После инсульта или другого ишемического события уровни внеклеточного K + повышаются. Астроциты в этой области оборудованы для удаления излишков K + , чтобы помочь помпе. Но когда уровень далеко не сбалансирован, последствия могут быть необратимыми.
Астроциты могут стать реактивными в подобных случаях, что снижает их способность поддерживать локальную химическую среду.Глиальные клетки увеличиваются, и их отростки набухают. Они теряют свою буферную способность K + , и это влияет на работу насоса или даже обращается вспять. Одним из первых признаков клеточного заболевания является «утечка» ионов натрия в клетки организма. Этот дисбаланс натрия / калия отрицательно влияет на внутреннюю химию клеток, препятствуя их нормальному функционированию.
Внешний веб-сайт
Посетите этот сайт, чтобы увидеть виртуальную нейрофизиологическую лабораторию и понаблюдать за электрофизиологическими процессами в нервной системе, где ученые непосредственно измеряют электрические сигналы, производимые нейронами.Часто потенциалы действия возникают так быстро, что смотреть на экран, чтобы увидеть, как они возникают, бесполезно. Динамик приводится в действие сигналами, записанными от нейрона, и он «выскакивает» каждый раз, когда нейрон запускает потенциал действия. Эти потенциалы действия срабатывают так быстро, что по радио это звучит как статика. Электрофизиологи могут распознать закономерности в статике, чтобы понять, что происходит. Почему модель пиявки используется для измерения электрической активности нейронов, а не людей?
Определение рефрактерного периода в физиологии.
Примеры тугоплавкого периода в следующих топиках:
Потенциал действия и распространение
- Сначала деполяризация, затем реполяризация и короткий период гиперполяризации.
- Период повышенной проницаемости для калия приводит к чрезмерному оттоку калия до закрытия калиевых каналов.
- Распространение потенциала действия не зависит от силы стимула, но зависит от рефрактерных периодов .
- Период от открытия натриевых каналов до начала сброса натриевых каналов называется абсолютным рефрактером периодом .
- В течение этого периода нейрон не может ответить на другой стимул, каким бы сильным он ни был.
Мужской сексуальный ответ
- После оргазма и эякуляции обычно следует рефрактерный период , характеризующийся потерей эрекции, снижением сексуального прилива, снижением интереса к сексу и чувством расслабления, связанным с действием нейрогормонов окситоцина и пролактина. .
- Интенсивность и продолжительность огнеупорного периода может быть очень короткой у сильно возбужденного молодого человека в очень возбуждающей ситуации, возможно, даже без заметной потери эрекции.
Передача нервного импульса в нейроне: потенциал действия
- Каналы Na + закрываются, начиная рефрактерный периода нейрона .
- Гиперполяризованная мембрана изготовлена из огнеупора периода и не может стрелять.(5) Каналы K + закрываются, и транспортер Na + / K + восстанавливает потенциал покоя.
Пенис
- A рефрактерный период следует за эякуляцией, а сексуальная стимуляция предшествует ей.
Этапы потенциала действия
- Огнеупор Фаза.
- Фаза огнеупора имеет место в течение короткого периода времени после стадии деполяризации.
- Во время фазы рефрактерности эта конкретная область мембраны нервной клетки не может быть деполяризована.
- Следовательно, нейрон не может достичь потенциала действия в течение этого «периода покоя ».
Механика потенциала действия
- Огнеупор Фаза.
- Фаза огнеупора представляет собой короткий период времени после стадии реполяризации.
- Во время фазы рефрактерности эта конкретная область мембраны нервной клетки не может быть деполяризована; клетка не может быть возбуждена.
Тяжесть и продолжительность заболевания
- При инфекционном заболевании инкубационный период — это время между заражением и появлением симптомов.
- Латентный период Период — это время между заражением и возможностью распространения болезни на другого человека, которое может предшествовать, следовать или одновременно с появлением симптомов.
- В течение этого времени он может присутствовать постоянно или может перейти в ремиссию и периодически, рецидивы.
- Рефрактерное заболевание — это заболевание, которое не поддается лечению, особенно индивидуальный случай, который сопротивляется лечению больше, чем обычно для конкретного рассматриваемого заболевания.
- Обсудите тяжесть и различные типы продолжительности заболевания, включая: острое, хроническое, обострение, рефрактерное , прогрессирующее, ремиссию и излечение
Подошвенный фасциит
- Обычно это связано с длительными периодами длительных нагрузок.
- Варианты лечения подошвенного фасциита включают покой, массаж, растяжку, потерю веса, ночные шины, кроссовки с контролем движения, физиотерапию, холодовую терапию, тепловую терапию, ортопедические стельки, противовоспалительные препараты, инъекции кортикостероидов и хирургическое вмешательство в рефрактерных случаи.
Гомеостатические реакции на шок
- На стадии , рефрактерной, жизненно важные органы вышли из строя, и шок уже не может быть отменен.
Производство стали и рафинирование
- Процесс называется «основным» из-за pH огнеупоров и оксида кальция и оксида магния, которые покрывают емкость для защиты от высокой температуры расплавленного металла.
- Печь состоит из огнеупорного сосуда с футеровкой , который часто имеет водяное охлаждение и закрывается раздвижной крышей.
- Он действует как тепловое одеяло, останавливая чрезмерные потери тепла и помогая уменьшить эрозию огнеупорной футеровки .
Клеточный механизм функционального рефрактерного периода в мышце желудочка
Потенциал преждевременного действия, возникающий в мышце желудочка во время функционального рефрактерного периода предыдущего потенциала действия, требует повышенной интенсивности стимула для успешного распространения. Мы измерили клеточную основу для этого относительного снижения возбудимости тканей во время фазы восстановления, выполнив параллельные эксперименты на левой сосочковой мышце кролика и изолированных клетках желудочка кролика в дополнение к проведению теоретических исследований с численным моделированием инициации потенциала действия.Для каждой экспериментальной подготовки протокол стимуляции состоял из серии из 10 стимулов (S1) с интервалом S1-S1 в 500 мсек с преждевременным стимулом (S2) с переменными интервалами S1-S2 после десятого потенциала действия S1. Затем был измерен порог стимула для инициирования потенциала действия S2 (I2) как функция времени появления стимула S2 относительно времени 95% реполяризации десятого потенциала действия S1 (время задержки стимула [SD]). . В препарате ткани I2 резко увеличивался для времени SD менее 0 мс до значения, которое было на 100% выше порога стимула S1 для времени SD = -5 +/- 2.4 мс (n = 8). Подобные эксперименты на изолированной желудочковой клетке не показали увеличения I2 в зависимости от времени стандартного отклонения, но довольно значительно уменьшили как амплитуду потенциала действия (APA), так и максимальную скорость повышения потенциала действия (Vmax) потенциала действия S2. . APA и Vmax для потенциала действия S2 были уменьшены до 50% от значений потенциала действия S1 для времени SD = -5,2 +/- 2,1 мс и времени SD = 0,3 +/- 1,6 мс, соответственно (n = 8).