Дыхание физиология – Лекция 13. Физиология дыхания
Физиология дыхания человека
Атмосфера Земли состоит на 99,9% из воздуха, водяного пара, природных (действие вулканов) и промышленных газов, твердых частиц. В результате природных факторов Земли и процессов жизнедеятельности человека, состав атмосферы в том или ином регионе планеты может подвергаться незначительным изменениям. Одной из главных составных частей атмосферы является воздух. Воздух представляет собой смесь газов, основными компонентами которого являются: Азот (N2) – 78%; Кислород (О2) – 21%; Углекислый газ (СО2) – 0,03%; Инертные газы и другие вещества – до 1 %. В воздухе также присутствуют в незначительном количестве водород, оксид азота, озон, сероводород, водяной пар, инертные газы: аргон, неон, гелий, аргон, криптон, ксенон, радон, а также пыль и микроорганизмы.
Общая информация
Поступление в организм кислорода и удаление углекислого газа обеспечивает дыхательная система человека.
Транспорт газов и других необходимых организму веществ обеспечивается с помощью кровеносной системы.
Обмен О2 и CO2 между организмом и окружающей средой осуществляется благодаря ряду последовательных процессов:
- Легочная вентиляция – обмен газами между окружающей средой и легкими.
- Легочное дыхание – обмен газами между альвеолами легких и кровью.
- Внутреннее (тканевое) дыхание – обмен газами между кровью и тканями тела.
Дыхательная система – совокупность органов и тканей, обеспечивающих легочную вентиляцию и легочное дыхание.
Дыхательная система состоит из воздухоносных путей и собственно легких.
Воздухоносные пути включают в себя:
Воздух вдыхает человек, он попадает в нос и носовую полость. В носовой полости находятся обонятельные рецепторы, с помощью которых мы различаем запахи. Также в носовой полости есть волосы, предназначенное для задержки частиц пыли, поступающего вместе с воздухом из атмосферы.
Воздух, проходя через нос и носовую полость попадает в носоглотку. Носоглотка покрыта слизистой оболочкой, обогащенной кровеносными сосудами, благодаря чему осуществляется нагрев и увлажнение воздуха.
Трахея начинается у нижнего конца гортани и спускается в грудную полость где делится на левую и правую бронхи. Входя в легкие бронхи постепенно делятся на все более мелкие трубки – бронхиолы, маленькие из которых и является последним элементом воздухоносных путей.
Наименьший структурный элемент легкого – долька, которая состоит из конечной бронхиолы и альвеолярного мешочка. Стенки легочной бронхиолы и альвеолярного мешочка образуют альвеолы.
Легкие (легочные дольки) состоят: конечные бронхиолы; альвеолярные мешочки; легочные артерии; капилляры; вены легочного круга кровообращения.
Строение бронх человекаВоздух, проходя через бронхи и бронхиолы, заполняет большое количество альвеол – легочных пузырьков, в которых осуществляется газообмен между кровью и альвеолярным воздухом. Стенки альвеол состоят из тонкой пленки, которая вмещает большое количество эластичных волокон.
С помощью которых альвеолярные стенки могут расширяться, тем самым увеличивать объем альвеол. Диаметр каждой альвеолы составляет около 0,2 мм. А площадь ее поверхности около 0,125 мм. В легких взрослого человека около 700 млн. альвеол. То есть, общая площадь их поверхности составляет около 90 м2.
Таким образом, дыхательная поверхность в 60-70 раз превышает поверхность кожного покрова человека. При глубоком вдохе альвеолы растягиваются, и дыхательная поверхность достигает 250 м2, превышая поверхность тела более чем в 125 раз.
Процесс газообмена при дыхании
Сущность процесса газообмена заключается в переходе кислорода из альвеолярного воздуха в венозную кровь, которая циркулирует по легочных капиллярах (поглощение кислорода), и в переходе углекислого газа из венозной крови в альвеолярный воздух (выделение углекислого газа).
Этот обмен проходит через тонкие стенки легочных капилляров по законам диффузии, вследствие разности парциальных давлений газов в альвеолах и крови.
Обогащенная кислородом кровь из легких разносится по всей кровеносной системе, отдавая для обогащения тканям кислород и забирая от них углекислый газ. Кислород, поступающий в кровь, доставляется во все клетки организма. В клетках происходят важные для жизни окислительные процессы. Отдавая кислород клеткам, кровь захватывает углекислоту и доставляет их в альвеолы. Этот процесс и является внутренним, или тканевым дыханием.
Основные параметры процесса дыхания
Основным параметрами, характеризующими процесс дыхания человека являются:
- жизненная емкость легких;
- мертвое пространство органов дыхания;
- частота дыхания;
- легочная вентиляция;
- доза потребления кислорода.
Жизненная емкость легких – это максимальное количество воздуха (л), которую может вдохнуть человек после максимально глубокого выдоха. Этот показатель измеряется прибором, который называется спирометр. Нормальная жизненная емкость легких взрослого человека – примерно 3,5 л.
У тренированного человека занимающегося спортом, жизненная емкость легких составляет 4,7-5 л.
Общий объем легких человека состоит из жизненной емкости и остаточного объема. Остаточный объем, это количество воздуха, который всегда остается в легких человека после максимального выдоха. Этот объем составляет 1,5 л и его человек никогда не может удалить из органов дыхания.
Распределение воздуха в легких человекаКак видно из диаграммы, после спокойного вдоха в легких человека находится 3,5 л воздуха, а после спокойного выдоха остается только 3 л воздуха. Таким образом, при дыхании в спокойном состоянии человек использует при каждом вдохе только 0,5 л воздуха, называется дыхательным.
После спокойного вдоха, при желании, человек может продлить вдох и дополнительно вдохнуть еще 1,5 л воздуха. Этот воздух называется дополнительным. После спокойного выдоха человек также может дополнительно выдохнуть из легких еще 1,5 л воздуха. Этот воздух называется запасным или резервным.
Таким образом, жизненная емкость легких состоит из суммы дыхательного, дополнительного и запасного объемов воздуха.
При конструировании изолирующих аппаратов с замкнутым циклом дыхания, в которых используются емкости для приготовления и хранения дыхательной смеси (дыхательные мешки), необходимо учитывать, что их объем должен быть не менее максимальную жизненную емкость легких человека. Поэтому в современных изолирующих аппаратах используются дыхательные мешки, которые имеют объем 4,5-5 л, из расчета, что в них могут работать хорошо физически развитые люди.
Во время выдоха не весь выдыхаемый воздух выходит из организма человека в окружающею среду. Часть воздуха остается в носовой полости, гортани, трахее и бронхах. Эта часть воздуха не участвует и в процессе газообмена и пространство которое она занимает, называется мертвым пространством.
Воздух, находящийся в мертвом пространстве, содержит малую концентрацию кислорода и насыщенный углекислым газом. При вдохе, воздух мертвого пространства, вместе с воздухом вдыхаемого, попадает в легкие человека, вредно влияет на процесс дыхания. Поэтому мертвое пространство еще иногда называют вредным пространством. Объем мертвого пространства у взрослого человека составляет примерно 140 мл.
Каждый изолирующий аппарат также имеет свое мертвое пространство которое в общем прилагается к мертвому пространству органов дыхания человека. Мертвое пространство изолирующих аппаратов содержат маска и дыхательные шланги. Пространство между маской и лицом газодымозащитника (органов дыхания) называется подмасочным пространством, оно также является мертвым пространством.
Легочная вентиляция (л/мин.) – количество воздуха, вдыхаемого человеком за одну минуту.
Частота дыхания – это количество циклов (вдох-выдох), происходящих за одну минуту. Частота дыхания является не постоянной величиной и зависит от многих факторов.
Частота дыхания в зависимости от возраста человека
В зависимости от возраста человека, частота дыхания меняется и составляет:
- у только что родившихся – 60 вдохов / мин;
- у годовалого младенца – 50 вдохов / мин;
- у пятилетних детей – 25 вдохов / мин;
- у 15-летних подростков – 12-18 вдохов / мин.
С возрастом человека, частота дыхания значительно не изменяется. Однако следует отметить, что у физически хорошо развитого человека частота дыхания уменьшается до 6-8 вдохов/мин.
При выполнении работы с физической нагрузкой, ускоряются физико-химические процессы в организме человека и возрастает потребность в большем количестве кислорода. Согласно этому, увеличивается частота дыхания, при значительной нагрузке может достигать 40 вдохов в минуту.
Однако следует помнить, что полностью используется жизненный объем легких только при частоте дыхания 15-20 вдохов/мин. При увеличении частоты дыхания возможность использования полной емкости легких уменьшается. Дыхание становится поверхностным.
При частоте дыхания 30 вдохов / мин., Емкость легких используется только на 2/3, а при 60 вдохов/мин. всего лишь на 1/4. Количество кислорода, поглощаемого человеком из воздуха при дыхании в единицу времени, называется дозой потребления кислорода. Доза потребления кислорода человеком, величина не постоянная и зависит от частоты дыхания и легочной вентиляции.
При увеличении физической нагрузки на организм человека, увеличивается частота дыхания и легочная вентиляция. Соответственно, растет доза потребления кислорода и увеличивается концентрация углекислого газа в выдыхаемом воздухе. Интересным свойством организма является то, что при вдыхании воздуха через нос в организм попадает на 25% больше кислорода, чем при вдыхании через рот.
fireman.club
Физиология дыхания — Лекция 6
Дыхание – сложный непрерывный процесс, в результате которого постоянно обновляется газовый состав крови.
Легкие — парные дыхательные органы, расположенные в герметически замкнутой грудной полости. Их воздухоносные пути представлены носоглоткой, гортанью, трахеей. Трахея в грудной полости делится на два бронха — правый и левый, каждый из которых, многократно разветвляясь, образует так называемое бронхиальное дерево. Мельчайшие бронхи — бронхиолы на концах расширяются в слепые пузырьки — легочные альвеолы.
В дыхательных путях газообмен не происходит, и состав воздуха не меняется. Пространство, заключенное в дыхательных путях называется мертвым, или вредным. При спокойном дыхании объем воздуха в мертвом пространстве составляет 140—150 мл.
Строение легких обеспечивает выполнение ими дыхательной функции. Тонкая стенка альвеол состоит из однослойного эпителия, легко проходимого для газов. Наличие эластических элементов и гладких мышечных волокон обеспечивает быстрое и легкое растяжение альвеол, благодаря чему они могут вмещать большие количества воздуха. Каждая альвеола покрыта густой сетью капилляров, на которые разветвляется легочная артерия.
Каждое легкое покрыто снаружи серозной оболочкой — плеврой, состоящей из двух листков: пристеночного и легочного (висцерального). Между листками плевры имеется узкая щель, заполненная серозной жидкостью — плевральная полость.
Давление в плевральной полости и в средостении в норме всегда отрицательное. За счет этого альвеолы всегда находятся в растянутом состоянии. Отрицательное внутригрудное давление играет значительную роль в гемодинамике, обеспечивая венозный возврат крови к сердцу и улучшая кровообращение в легочном круге, особенно в фазу вдоха.
Расправление и спадение легочных альвеол, а также движение воздуха по воздухоносным путям сопровождается возникновением дыхательных шумов, которые можно исследовать методом выслушивания (аускультации).
В процессе дыхания различают три звена: внешнее, или легочное, дыхание, транспорт газов кровью и внутреннее, или тканевое, дыхание.
Внешнее дыхание — это газообмен между организмом и окружающим его атмосферным воздухом. Осуществляется в два этапа — обмен газов между атмосферным и альвеолярным воздухом и газообмен между кровью легочных капилляров и альвеолярным воздухом.
Аппарат внешнего дыхания включает в себя дыхательные пути, легкие, плевру, скелет грудной клетки и ее мышцы, а также диафрагму. Основной функцией аппарата внешнего дыхания является обеспечение организма кислородом и освобождение его от избытка углекислого газа. О функциональном состоянии аппарата внешнего дыхания можно судить по ритму, глубине, частоте дыхания, по величине легочных объемов, по показателям поглощения кислорода и выделения углекислого газа и т. д.
Транспорт газов осуществляется кровью. Он обеспечивается разностью парциального давления (напряжения) газов по пути их следования: кислорода от легких к тканям, углекислого газа от клеток к легким.
Внутреннее или тканевое дыхание также может быть разделено на два этапа. Первый этап — обмен газов между кровью и тканями. Второй — потребление кислорода клетками и выделение ими углекислого газа (клеточное дыхание).
Человек дышит атмосферным воздухом, который имеет следующий состав: 20,94% кислорода, 0,03% углекислого газа, 79,03% азота. В выдыхаемом воздухе обнаруживается 16,3% кислорода, 4% углекислого газа, 79,7% азота.
Альвеолярный воздух по составу отличается от атмосферного. В альвеолярном воздухе резко уменьшается содержание кислорода и возрастает количество углекислого газа. Процентное содержание отдельных газов в альвеолярном воздухе: 14,2—14,6% кислорода, 5,2—5,7% углекислого газа, 79,7—80% азота.
Дыхательный цикл состоит из вдоха, выдоха и дыхательной паузы. Длительность вдоха у взрослого человека от 0,9 до 4,7 с, длительность выдоха — 1,2—6 с. Дыхательная пауза различна по величине и даже может отсутствовать.
Дыхательные движения совершаются с определенным ритмом и частотой, которые определяют по числу экскурсий грудной клетки в 1 мин. У взрослого человека частота дыхательных движений составляет 12—18 в 1 мин.
Глубину дыхательных движений определяют по амплитуде экскурсий грудной клетки и с помощью специальных методов, позволяющих исследовать легочные объемы.
Механизм вдоха. Вдох обеспечивается расширением грудной клетки вследствие сокращения дыхательных мышц – наружных межреберных и диафрагмы. При этом увеличивается объем легких, давление заключенного в них воздуха становится ниже атмосферного, и воздух засасывается в легкие.
Механизм выдоха. Выдох (экспирация) осуществляется в результате расслабления дыхательной мускулатуры, а также вследствие эластической тяги легких, стремящихся занять исходное положение. Эластические силы легких представлены тканевым компонентом и силами поверхностного натяжения, которые стремятся сократить альвеолярную сферическую поверхность до минимума. Однако альвеолы в норме никогда не спадаются. Причина этого – наличие в стенках альвеол поверхностно-активного стабилизирующего вещества – сурфактанта, вырабатываемого альвеолоцитами.
ЛЕГОЧНЫЕ ОБЪЕМЫ. ЛЕГОЧНАЯ ВЕНТИЛЯЦИЯ.
Дыхательный объем — количество воздуха, которое человек вдыхает и выдыхает при спокойном дыхании. Его объем составляет 300 — 700 мл.
Резервный объем вдоха — количество воздуха, которое может быть введено в легкие, если вслед за спокойным вдохом произвести максимальный вдох. Резервный объем вдоха равняется 1500—2000 мл.
Резервный объем выдоха — тот объем воздуха, который удаляется из легких, если вслед за спокойным вдохом и выдохом произвести максимальный выдох. Он составляет 1500—2000 мл.
Остаточный объем — это объем воздуха, который остается в легких после максимально глубокого выдоха. Остаточный объем равняется 1000—1500 мл воздуха.
Дыхательный объем, резервные объемы вдоха и выдоха составляют так называемую жизненную емкость легких.
Жизненная емкость легких у мужчин молодого возраста составляет 3,5—4,8 л, у женщин — 3—3,5 л.
Общая емкость легких состоит из жизненной емкости легких и остаточного объема воздуха.
Легочная вентиляция — количество воздуха, обмениваемое в 1 мин.
Легочную вентиляцию определяют путем умножения дыхательного объема на число дыханий в 1 мин (минутный объем дыхания). У взрослого человека в состоянии относительного физиологического покоя легочная вентиляция составляет 6—8 л в 1 мин.
Легочные объемы могут быть определены с помощью специальных приборов — спирометра и спирографа.
ТРАНСПОРТ ГАЗОВ КРОВЬЮ.
Кровь доставляет тканям кислород и уносит углекислый газ.
Движение газов из окружающей среды в жидкость и из жидкости в окружающую среду осуществляется благодаря разности их парциального давления. Газ всегда диффундирует из среды, где имеется высокое давление, в среду с меньшим давлением.
Парциальное давление кислорода в атмосферном воздухе 21,1 кПа (158 мм рт. ст.), в альвеолярном воздухе — 14,4—14,7 кПа (108—110 мм рт. ст.) и в венозной крови, притекающей к легким,—5,33 кПа (40 мм рт. ст.). В артериальной крови капилляров большого круга кровообращения напряжение кислорода составляет 13,6—13,9 кПа (102—104 мм рт. ст.), в межтканевой жидкости — 5,33 кПа (40 мм рт. ст.), в тканях — 2,67 кПа (20 мм рт. ст.). Таким образом, на всех этапах движения кислорода имеется разность его парциального давления, что способствует диффузии газа.
Движение углекислого газа происходит в противоположном направлении. Напряжение углекислого газа в тканях — 8,0 кПа и более (60 и более мм рт. ст.), в венозной крови — 6,13 кПа (46 мм рт. ст.), в альвеолярном воздухе — 0,04 кПа (0,3 мм рт. ст.). Следовательно, разность напряжения углекислого газа по пути его следования является причиной диффузии газа от тканей в окружающую среду.
Транспорт кислорода кровью. Кислород в крови находится в двух состояниях: физическом растворении и в химической связи с гемоглобином. Гемоглобин образует с кислородом очень непрочное, легко диссоциирующее соединение — оксигемоглобин: 1г гемоглобина связывает 1,34 мл кислорода. Максимальное количество кислорода, которое может быть связано 100 мл крови, — кислородная емкость крови (18,76 мл или 19 об%).
Насыщение гемоглобина кислородом колеблется от 96 до 98%. Степень насыщения гемоглобина кислородом и диссоциация оксигемоглобина (образование восстановленного гемоглобина) не находятся в прямой пропорциональной зависимости от напряжения кислорода. Эти два процесса не являются линейными, а совершаются по кривой, которая получила название кривой связывания или диссоциации оксигемоглобина.
10 20 30 40 50 60 70 мм рт.ст.
Рис. 25. Кривые диссоциации оксигемоглобина в водном растворе (I) и в крови (II) при напряжении углекислого газа 5,33 кПа (40 мм рт. ст.) (по Баркрофту).
При нулевом напряжении кислорода оксигемоглобина в крови нет. При низких
Сродство гемоглобина к кислороду значительно
Переход гемоглобина в оксигемоглобин и из него в восстановленный зависит и от температуры. При одном и том же парциальном давлении кислорода в окружающей среде при температуре 37—38° С в восстановленную форму переходит наибольшее количество оксигемоглобина,
Транспорт углекислого газа кровью. Углекислый газ переносится к легким в форме бикарбонатов и в состоянии химической связи с гемоглобином (карбогемоглобин).
Ритмическая
В дыхательном центре имеются две группы нейронов: инспираторные и экспираторные. При возбуждении инспираторных нейронов, обеспечивающих вдох, деятельность экспираторных нервных клеток заторможена, и наоборот.
В верхней части моста головного мозга (
Дыхательный центр, расположенный в продолговатом мозге, посылает импульсы к мот
Регуляция деятельности дыхательного центра.
Регуляция деятельности дыхательного центра осуществляется с помощью гуморальных, рефлекторных механизмов и нервных импульсов, поступающих из вышележащих отделов головного мозга.
Гуморальные механизмы. Специфическим регулятором активности нейронов дыхательного центра является углекислый газ, который действует на дыхательные нейроны непосредственно и опосредованно. В ретикулярной формации продолговатого мозга, вблизи дыхательного центра, а также в области сонных синусов и дуги аорты обнаружены хеморецепторы, чувствительные к углекислому газу. При увеличении напряжения углекислого газа в крови хеморецепторы возбуждаются, и нервные импульсы поступают к инспираторным нейронам, что приводит к повышению их активности.
Углекислый газ повышает возбудимость нейронов коры головного мозга. В свою очередь клетки КГМ стимулируют активность нейронов дыхательного центра.
При оптимальном содержании в крови углекислого газа и кислорода наблюдаются
Избыточное содержание углекислого газа и недостаток кислорода в крови усиливают активность дыхательного центра, что обусловливает возникновение частых и глубоких дыхательных движений – гиперпноэ. Еще большее нарастание количества углекислого газа в крови приводит к нарушению ритма дыхания и появлению одышки – диспноэ. Понижение концентрации углекислого газа и избыток кислорода в крови угнетают активность дыхательного центра. В этом случае дыхание становится поверхностным, редким и может наступить его остановка – апноэ.
Механизм первого вдоха новорожденного.
В организме матери газообмен плода происходит через пупочные сосуды. После рождения ребенка и отделения плаценты указанная связь нарушается. Метаболические процессы в организме новорожденного приводят к образованию и накоплению углекислого газа, который, так же как и недостаток кислорода, гуморально возбуждает дыхательный центр. Кроме того, изменение условий существования ребенка приводит к возбуждению экстеро- и проприорецепторов, что также является одним из механизмов, принимающих участие в осуществлении первого вдоха новорожденного.
Рефлекторные механизмы.
Различают постоянные и непостоянные (эпизодические) рефлекторные влияния на функциональное состояние дыхательного центра.
Постоянные рефлекторные влияния возникают в результате раздражения рецепторов альвеол (рефлекс Геринга — Брейера), корня легкого и плевры (пульмоторакальный рефлекс), хеморецепторов дуги аорты и сонных синусов (рефлекс Гейманса), проприорецепторов дыхательных мышц.
Наиболее важным рефлексом является рефлекс Геринга — Брейера. В альвеолах легких заложены механорецепторы растяжения и спадения, являющиеся чувствительными нервными окончаниями блуждающего нерва. Любое увеличение объема легочных альвеол возбуждает эти рецепторы.
Рефлекс Геринга — Брейера является одним из механизмов саморегуляции дыхательного процесса, обеспечивая смену актов вдоха и выдоха. При растяжении альвеол во время вдоха нервные импульсы от рецепторов растяжения по блуждающему нерву идут к экспираторным нейронам, которые, возбуждаясь, тормозят активность инспираторных нейронов, что приводит к пассивному выдоху. Легочные альвеолы спадаются, и нервные импульсы от рецепторов растяжения уже не поступают к экспираторным нейронам. Активность их падает, что создает условия для повышения возбудимости инспираторной части дыхательного центра и осуществлению активного вдоха.
Кроме того, активность инспираторных нейронов
Пульмоторакальный рефлекс возникает при возбуждении рецепторов, заложенных в легочной ткани и плевре. Проявляется этот рефлекс при растяжении легких и плевры. Рефлекторная дуга замыкается на уровне шейных и грудных сегментов спинного мозга.
К дыхательному центру постоянно поступают нервные импульсы от проприорецепторов дыхательных мышц. Во время вдоха происходит возбуждение проприорецепторов дыхательных мышц и нервные импульсы от них поступают в инспираторную часть дыхательного центра. Под влиянием нервных импульсов тормозится активность вдыхательных нейронов, что способствует наступлению выдоха.
Непостоянные рефлекторные влияния на активность дыхательных нейронов связаны с возбуждением разнообразных экстеро- и интерорецепторов. К ним относятся рефлексы, возникающие при раздражении рецепторов слизистой оболочки верхних дыхательных путей, слизистой носа, носоглотки, температурных и болевых рецепторов кожи, проприорецепторов скелетных мышц. Так, например, при внезапном вдыхании паров аммиака, хлора, сернистого ангидрида, табачного дыма и некоторых других веществ происходит раздражение рецепторов слизистой оболочки носа, глотки, гортани, что приводит к рефлекторному спазму голосовой щели, а иногда даже мускулатуры бронхов и рефлекторной задержке дыхания.
При раздражении эпителия дыхательных путей накопившейся пылью, слизью, а также попавшими химическими раздражителями и инородными телами наблюдается чиханье и кашель. Чиханье возникает при раздражении рецепторов слизистой оболочки носа, кашель — при возбуждении рецепторов гортани, трахеи, бронхов.
Влияние клеток коры большого мозга на активность дыхательного центра.
По М. В. Сергиевскому, регуляция активности дыхательного центра представлена тремя уровнями.
Первый уровень регуляции — спинной мозг. Здесь располагаются центры диафрагмальных и межреберных нервов, обусловливающие сокращение дыхательных мышц.
Второй уровень регуляции — продолговатый мозг. Здесь находится дыхательный центр. Этот уровень регуляции обеспечивает ритмичную смену фаз дыхания и активность спинномозговых мотонейронов, аксоны которых иннервируют дыхательную мускулатуру.
Третий уровень регуляции — верхние отделы головного мозга, включающие и корковые нейроны. Только при участии коры большого мозга возможно адекватное приспособление реакций системы дыхания к изменяющимся условиям окружающей среды.
ДЫХАНИЕ ПРИ ФИЗИЧЕСКОЙ НАГРУЗКЕ.
У тренированных людей при напряженной мышечной работе объем легочной вентиляции возрастает до 50—100 л/мин по сравнению с 5—8 л в состоянии относительного физиологического покоя. Повышение минутного объема дыхания при физической нагрузке связано с увеличением глубины и частоты дыхательных движений. При этом у тренированных людей, в основном, изменяется глубина дыхания, у нетренированных — частота дыхательных движений.
При физической нагрузке увеличивается концентрация в крови и тканях углекислого газа и молочной кислоты, которые стимулируют нейроны дыхательного центра как гуморальным путем, так и за счет нервных импульсов, поступающих от сосудистых рефлексогенных зон. Наконец, активность нейронов дыхательного центра обеспечивается потоком нервных импульсов, поступающих от клеток коры головного мозга, обладающих высокой чувствительностью к недостатку кислорода и к избытку углекислого газа.
Одновременно возникают приспо
Таким образом, система дыхания обеспечивает возрастающие потребности организма в кислороде. Системы же кровообращения и крови, перестраиваясь на новый функциональный уровень, способствуют транспорту кислорода к тканям и углекислого газа к легким.
medlecture.ru
Глава 8. Физиология дыхания. Нормальная физиология
Глава 8. Физиология дыхания
Человек и все высокоорганизованные живые существа нуждаются для своей нормальной жизнедеятельности в постоянном поступлении к тканям организма кислорода, который используется в сложном биохимическом процессе окисления питательных веществ, в результате чего выделяется энергия и образуется двуокись углерода и вода.
Дыхание – синоним и неотъемлемый признак жизни. «Пока дышу – надеюсь», утверждали древние римляне, а греки называли атмосферу «пастбищем жизни». Человек в день съедает примерно 1,24 кг пищи, выпивает 2 л воды, но вдыхает свыше 9 кг воздуха (более 10 000 л).
Дыхание – это совокупность процессов, обеспечивающих потребление организмом кислорода и выделение двуокиси углерода. В условиях покоя в организме за 1 минуту потребляется в среднем 250 – 300 мл О2 и выделяется 200 – 250 мл СО2. При физической работе большой мощности потребность в кислороде существенно возрастает и максимальное потребление кислорода (МПК) достигает у высокотренированных людей около 6 – 7 л/мин.
Дыхание осуществляет перенос О2 из атмосферного воздуха к тканям организма, а в обратном направлении производит удаление СО2 из организма в атмосферу.
Различают несколько этапов дыхания:
1. Внешнее дыхание – обмен газов между атмосферой и альвеолами.
2. Обмен газов между альвеолами и кровью легочных капилляров.
3. Транспорт газов кровью – процесс переноса О2 от легких к тканям и СО2 от тканей – к легким.
4. Обмен О2 и СО2 между кровью капилляров и клетками тканей организма.
5. Внутреннее, или тканевое, дыхание – биологическое окисление в митохондриях клетки.
Состав и свойства дыхательных сред
Дыхательной средой для человека является атмосферный воздух, состав которого отличается постоянством. В 1 л сухого воздуха содержится 780 мл азота, 210 мл кислорода и 0,3 мл двуокиси углерода (табл. 1). Остальные 10 мл приходятся на инертные газы – аргон, неон, гелий, криптон, ксенон и водород.
Таблица 1. Содержание и парциальное давление (напряжение) кислорода и углекислого газа в различных средах
Среда | Кислород | Углекислый газ | ||||
---|---|---|---|---|---|---|
% | мм рт.ст. | мл/л | % | мм рт.ст. | мл/л | |
Вдыхаемый воздух | 20,93 | 159 | 209,3 | 0,03 | 0,2 | 0,3 |
Выдыхаемый воздух | 16,0 | 121 | 160,0 | 4,5 | 34 | 45 |
Альвеолярный воздух | 14,0 | 100 | 140,0 | 5,5 | 40 | 55 |
Артериальная кровь | — | 100–96 | 200,0 | — | 40 | 560–540 |
Венозная кровь | — | 40 | 140–160 | — | 46 | 580 |
Ткань | — | 10–15 | — | — | 60 | — |
Около митохондрий | — | 0,1–1 | — | — | 70 | — |
На уровне моря нормальное атмосферное давление составляет 760 мм рт ст. Согласно закону Дальтона эта величина складывается из парциальных давлений всех газов, входящих в состав воздуха. Атмосферный воздух содержит также пары воды. В умеренном климате при температуре 22°С парциальное давление водяного пара в воздухе составляет 20 мм рт.ст. Парциальное давление водяного пара, уравновешенного в легких с кровью при атмосферном давлении 760 мм рт.ст. и температуре тела 37°С, составляет 47 мм рт.ст. Учитывая, что давление водяных паров в организме выше, чем в окружающей среде, в процессе дыхания организм теряет воду.
Поделитесь на страничкеСледующая глава >
med.wikireading.ru
Физиология дыхания
Дыханием называется комплекс физиологических процессов, обеспечивающих обмен кислорода и углекислого газа между клетками организма и внешней средой. Оно включает следующие этапы:
1. Внешнее дыхание или вентиляция. Это обмен дыхательных газов между атмосферным воздухом и альвеолами.
2. Диффузия газов в легких. Т.е. их обмен между воздухом альвеол и кровью.
3. Транспорт газов кровью.
4. Диффузия газов в тканях. Обмен газов между кровью капилляров и внутриклеточной жидкостью.
5. Клеточное дыхание. Поглощение кислорода и образование углекислого газа в клетках.
Механизмы внешнего дыхания
Внешнее дыхание осуществляется в результате ритмических движений грудной клетки. Дыхательный цикл состоит из фаз вдоха (inspiratio) и выдоха (exspiratio), между которыми отсутствует пауза. В покое у взрослого человека частота дыхательных движений 16-20 в минуту. Вдох это активный процесс. При спокойном вдохе сокращаются наружные межреберные и межхрящевые мышцы. Они приподнимают ребра, а грудина отодвигается вперед. Это ведет к увеличению сагитального и фронтального размеров грудной полости. Одновременно сокращаются мышцы диафрагмы. Ее купол опускается и органы брюшной полости сдвигаются вниз, в стороны и вперед. За счет этого грудная полость увеличивается и в вертикальном направлении. После окончания вдоха дыхательные мышцы расслабляются. Начинается выдох. Спокойный выдох пассивный процесс. Во время него происходит возвращение грудной клетки в исходное состояние. Это происходит под действием ее собственного веса, натянутого связочного аппарата и давления на диафрагму органов брюшной полости. При физической нагрузке, патологических состояниях, сопровождающихся одышкой (туберкулез легких, бронхиальная астма и т.д.) возникает форсированное дыхание. В акт вдоха и выдоха вовлекаются вспомогательные мышцы. При форсированном вдохе дополнительно сокращаются грудино-ключично-сосцевидные, лестничные, грудные и трапециевидные мышцы. Они способствуют дополнительному поднятию ребер. При форсированном выдохе сокращаются внутренние межреберные мышцы, которые усиливают опускание ребер. Т.е. это активный процесс. Различают грудной и брюшной тип дыхания. При первом дыхание в основном осуществляется за счет межреберных мышц, при втором за счет мышц диафрагмы. Грудной или реберный тип дыхания характерен для женщин. Брюшной или диафрагмальный для мужчин. Физиологически более выгоден брюшной тип, так как он осуществляется с меньшей затратой энергии. Кроме того, движения органов брюшной полости при дыхании препятствуют их воспалительным заболеваниям. Иногда встречается смешанный тип дыхания.
Несмотря на то, что легкие не сращены с грудной стенкой, они повторяют ее движения. Это объясняется тем, что между ними имеется замкнутая плевральная щель. Изнутри стенка грудной полости покрыта париетальным листком плевры, а легкие ее висцеральным листком. В межплевральной щели находится небольшое количество серозной жидкости. При вдохе объем грудной полости возрастает. А так как плевральная изолирована от атмосферы, то давление в ней понижается. Легкие расширяются, давление в альвеолах становится ниже атмосферного. Воздух через трахею и бронхи поступает в альвеолы. Во время выдоха объем грудной клетки уменьшается. Давление в плевральной щели возрастает, воздух выходит из альвеол. Движения или экскурсии легких объясняются колебаниями отрицательного межплеврального давления. После спокойного выдоха оно ниже атмосферного на 4-6 мм.рт.ст. На высоте спокойного вдоха на 8-9 мм.рт.ст. После форсированного выдоха оно ниже на 1-3 мм.рт.ст., а форсированного вдоха на 10-15 мм. рт. ст. Наличие отрицательного межплеврального давления объясняется эластической тягой легких. Это сила, с которой легкие стремятся сжаться к корням, противодействуя атмосферному давлению. Она обусловлена упругостью легочной ткани, которая содержит много эластических волокон. Кроме того, эластическую тягу увеличивает поверхностное натяжение альвеол. Изнутри они покрыты пленкой сурфактанта. Это липопротеид, вырабатываемый митохондриями альвеолярного эпителия. Благодаря особому строению его молекулы, на вдохе он повышает поверхностное натяжение альвеол, а на выдохе, когда их размеры уменьшаются, наоборот понижает. Это препятствует спадению альвеол, т.е. возникновению ателектаза. При генетической патологии, у некоторых новорожденных нарушается выработка сурфактанта. Возникает ателектаз и ребенок гибнет. В старости, а также при некоторых хронических заболеваниях легких, количество эластических волокон возрастает. Это явление называется пневмофиброзом. Дыхательные экскурсии затрудняются. При эмфиземе эластические волокна наоборот разрушаются и эластическая тяга легких снижается. Альвеолы раздуваются, величина экскурсий легких также уменьшается.
При попадании воздуха в плевральную полость возникает пневмоторакс. Различают его следующие виды:
1. По механизму возникновения: патологический (рак легких, абсцесс, проникающее ранение грудной клетки) и искусственный (лечение туберкулеза).
2. В зависимости от того, какой листок плевры поврежден выделяют наружный и внутренний пневмоторакс.
3. По степени сообщения с атмосферой различают открытый пневмоторакс, когда плевральная полость постоянно сообщается с атмосферой. Закрытый, если произошло однократное попадание воздуха. Клапанный, когда на вдохе воздух из атмосферы входит в плевральную щель, а на выдохе отверстие закрывается.
4. В зависимости от стороны поражения — односторонний (правосторонний, левосторонний), двусторонний.
Пневмоторакс является опасным для жизни осложнением. В результате него легкое спадается и выключается из дыхания. Особенно опасен клапанный пневмоторакс.
studfiles.net
Физиология дыхания
МИНИСТЕРСТВО СЕЛЬСКОГО ХОЗЯЙСТВА РОССИЙСКОЙ ФЕДЕРАЦИИ Федеральное государственное образовательное учреждение высшего пРофессионального образования российский государственный аграрный университет – МСха имени К.А. Тимирязева (ФГОУ ВПО ргау — МСХА имени К.А. Тимирязева) |
Реферат на тему: «ФИЗИОЛОГИЯ ДЫХАНИЯ»
Карпуненко Серафима Александровна
студентка 204 группы
зооинженерного факультета
Москва 2014
Содержание
ФИЗИОЛОГИЯ ДЫХАНИЯ 3
ВНЕШНЕЕ ДЫХАНИЕ 4
Отрицательное давление в плевральной полости. 5
ПЕРЕНОС ГАЗОВ КРОВЬЮ 8
Связывание и перенос кислорода кровью. 9
РЕГУЛЯЦИЯ ДЫХАНИЯ 11
ЗАВИСИМОСТЬ ДЫХАНИЯ ОТ ВОЗРАСТА, ВИДА ЖИВОТНЫХ И РАЗЛИЧНЫХ ФАКТОРОВ ВНЕШНЕЙ СРЕДЫ 13
Дыхание при повышенном барометрическом давлении. 16
ОСОБЕННОСТИ ДЫХАНИЯ 17
У ПТИЦ 17
ГОЛОС ЖИВОТНЫХ. 17
ВЗАИМОСВЯЗЬ ОРГАНОВ 18
ДЫХАНИЯ С ДРУГИМИ 18
СИСТЕМАМИ ОРГАНИЗМА 18
Дыхание — совокупность процессов, обеспечивающих потребление кислорода и выделение двуокиси углерода в атмосферу. В основе дыхательной функции лежат тканевые окислительно-восстановительные процессы, обеспечивающие обмен энергии в организме.
Сущность дыхания заключается в обеспечении процессов, при помощи которых животные и растительные клетки потребляют кислород, отдают двуокись углерода и переводят энергию в форму, доступную для биологического использования. Поступающий из окружающей среды кислород доставляется к клеткам, где он связывается с углеродом и водородом, которые отщепляются от высокомолекулярных веществ, включенных в цитоплазму. Конечные продукты превращений веществ, удаляемых из организма,— двуокись углерода, вода и другие соединения — содержат большую часть кислорода, поступающего в организм, остальной кислород входит в состав цитоплазмы. Кислород обеспечивает основные биохимические окислительные процессы, освобождающие энергию, поэтому нормальная жизнь и здоровье животных невозможны при недостаточном снабжении организма кислородом. При прекращении окислительных процессов животные погибают через несколько минут.
В процессе дыхания различают: обмен воздуха между внешней средой и альвеолами (внешнее дыхание или вентиляция легких), перенос газов кровью, потребление кислорода клетками и выделение ими двуокиси углерода (клеточное дыхание).
Эволюция дыхания. У одноклеточных организмов газы непосредственно проникают через оболочку клетки — диффузное дыхание. У низших многоклеточных, например червей, низших насекомых, обмен газами происходит через клетки поверхностных покровов — кожное дыхание. У низших позвоночных — рыб, амфибий, пресмыкающихся — уже есть специальные органы дыхания. У рыб органами дыхания служат жабры разнообразного строения — жаберное дыхание, у некоторых рыб, кроме жабр, имеется еще кожное и кишечное дыхание. Из кишечной трубки образован плавательный пузырь, клетки которого активно поглощают кислород, например, у щуки — 35, у морского окуня — 88 %.
У большинства насекомых снабжение организма кислородом осуществляется через тончайшие сети ветвей трахеи.
У птиц, как и у рептилий, трахея делится на два бронха, которые, проходя сквозь легкие, открываются в воздушные мешки. Легкие сращены с костальной плеврой. Воздух через легкие поступает через разветвления бронхов и бронхиол в воздухоносные мешки. Наиболее крупные из них расположены в брюшной полости, а более мелкие — в грудной. Все они имеют отростки, проникающие в трубчатые кости конечностей. Диафрагма у птиц, как и у рептилий, отсутствует. Воздухоносные мешки как резервуары воздуха улучшают воздухообмен в легких, поддерживают тело птицы в полете, на воде, способствуют его охлаждению.
Внешнее дыхание
У млекопитающих газообмен почти полностью совершается в легких. Через кожу и пищеварительный тракт он осуществляется только в пределах 1—2 %. У лошадей во время напряженной работы кожное дыхание возрастает до 8 %.
В филогенезе дыхательного аппарата важное значение имело развитие и совершенствование дыхательной мускулатуры, обеспечивающей постоянную смену воздуха в легких, поэтому респираторные мышцы
развиты хорошо. Дыхание совершается ритмически, что обеспечивает поддержание постоянства напряжения двуокиси углерода (СОг), концентрации водородных
ионов (Н + ) и напряжения кислорода (02 ) в артериальной крови. Весь процесс газообмена протекает в легочных альвеолах, тесно соприкасающихся с сосудистыми капиллярами и эритроцитами.
Механизм вдоха и выдоха. Процесс дыхания обусловлен движением грудной клетки и растяжением легких. При спокойном дыхании, при вдохе (инспирации) вдыхательная мускулатура сокращается, все ребра, поскольку они фиксированы в суставах, описывают дугу к верху и вперед и грудная клетка расширяется в продольном и поперечном направлениях. Расширению грудной клетки спереди назад способствует и сокращение диафрагмы. При вдохе положение сухожильного центра ее остается неизменным, а увеличиваются лишь мышечные участки. Диафрагма становится конусовидной.
Прекращение вдоха создает предпосылки для выдоха (экспирации): межреберные мышцы расслабляются и грудная клетка в силу эластичности и собственной тяжести возвращается в исходное положение, а оттесненные назад диафрагмой брюшные внутренности подаются вперед, и купол диафрагмы становится выпуклым. Спадающаяся грудная клетка равномерно сдавливает легкие, выжимая из них воздух. Участие различных мышц в дыхательном акте было выяснено с помощью регистрации их биопотенциалов (электромиография).
Выдох осуществляется обычно пассивно вследствие расслабления указанной мускулатуры. Однако при форсированном выдохе сокращаются внутренние межреберные и задние нижние зубчатые мышцы, а также мышцы живота. Вдох совершается несколько быстрее, чем выдох. У коров соотношение вдоха к выдоху по зремени составляет 1:1,2.
Для регистрации дыхательных движений применяют метод реопневмографии. Он заключается в измерении электропроводности тканей, находящихся между двумя электродами: грудь — тазовая конечность В момент вдоха сопротивление тканей достигает максимума (1—2 Ом), а при выдохе — минимума. По данным реопневмограммы можно судить о частоте дыхательных движений, глубине дыхания, длительности вдоха и выдоха, что необходимо для оценки функционального состояния животного.
В механизме вдоха и выдоха большое значение имеет эластическая тяга легких, то есть постоянное
стремление легких уменьшить свой объем. Она обусловлена наличием эластических волокон в стенке альвеол и поверхностным натяжением пленки (около 2 / з эластической тяги), покрывающей внутреннюю поверхность альвеол.
Пленка состоит из нерастворимого в воде фосфолипида — сурфактана, который стабилизирует поверхностное натяжение. При вдохе молекулы сурфактана прилегают друг к другу менее плотно, что способствует усилению поверхностного натяжения. При выдохе молекулы прилегают более плотно, что снижает поверхностное натяжение жидкости и препятствует слипанию альвеол и ателектазу (спадению легких). Если бы внутренняя поверхность альвеол была покрыта водным раствором, поверхностное натяжение должно было бы быть в 5—8 раз больше. В таких условиях происходило бы полное спадение одних альвеол при перерастяжении других.
studfiles.net
Физиология дыхания
1. Общая характеристика процесса дыхания.
2. Дыхательный акт.
2.1. Отрицательное давление плевральной полости.
2.2. Механизм вдоха и выдоха.
2.3. Паттерны дыхания.
2.4. Характеристика легочной вентиляции.
3. Газообмен в легких
4. Транспорт газов кровью
4.1. Транспорт кислорода
4.2. Транспорт двуокиси углерода.
5. Транспорт кислорода и углекислого газа в тканях.
6. Регуляция дыхания.
7. Особенности дыхания в различных условиях
Морфо-функциональная характеристика дыхательной системы.
Дыхательная система состоит она из дыхательных (воздухоносных) путей и парных органов газообмена (легких). В дыхательных путях вдыхаемый воздух согревается (охлаждается), увлажняется, очищается от инородных частиц. В легких происходит газообмен между вдыхаемым воздухом и кровью. Из альвеол легких путем диффузии в кровь легочных капилляров поступает кислород, а в обратном направлении — из крови в альвеолы выходит углекислый газ.
Полость носа образована лицевыми костями, хрящами и разделена на две симметричные половины. Она выполняет двойную функцию — она является началом дыхательных путей и одновременно органом обоняния. Вдыхаемый воздух, проходя через полость носа, очищается oт чужеродных частиц, согревается, увлажняется. Находящиеся во вдыхаемом воздухе пахучие вещества раздражают обонятельные рецепторы, в которых возникают обонятельные нервные импульсы. В носовую полость открываются воздухоносные придаточные полости (пазухи) носа: лобная, верхнечелюстная (гайморова), клиновидная и решетчатые лабиринты. Воздухоносные придаточные пазухи не только уменьшают вес (массу) черепа, но и служат резонаторами звуков, голоса. В полость носа открывается носослезный канал, по которому выводится избыток слезной жидкости.
Из полости носа вдыхаемый воздух через хоаны попадает в носоглотку. Затем, пройдя через ротовую часть глотки, где пересекаются дыхательный и пищеварительный пути, воздух попадает в гортань.
Гортань, являющаяся и органом дыхания, и органом голосообразования. Скелетом гортани служат хрящи, соединенные друг с другом при помощи суставов и связок. В голосовых складках гортанной полости расположены покрытые слизистой оболочкой голосовые связки. Узкое пространство между правой и левой голосовыми складками носит название голосовой щели. При прохождении выдыхаемого воздуха через голосовую щель голосовые связки колеблются, вибрируют и воспроизводят звуки. Голосовые связки образуют только звук, сила и высота которого зависят от натяжения голосовых связок и скорости прохождения воздушной струи через голосовую щель. В формировании членораздельной речи участвуют губы, язык, зубы, полость рта и полость носа с ее придаточными пазухами.
Трахея имеет скелет в виде 16-20 хрящевых полуколец, не замкнутых сзади и соединенных друг с другом короткими кольцевыми связками. Задняя стенка трахеи, прилежащая к пищеводу, где нет хрящей, перепончатая. Она построена из соединительной ткани и гладкомышечных пучков. Слизистая оболочка трахеи покрыта мерцательным эпителием, содержит много желез и лимфоидных узелков.
На уровне V грудного позвонка трахея делится на правый и левый главные бронхи (бифуркация трахеи), каждый из которых направляется к воротам легкого. Многократное (до 23 раз) разветвление бронхов в легком называют бронхиальным деревом.
Правое и левое легкие располагаются в грудной полости, справа и слева от сердца и крупных кровеносных сосудов.
Каждое легкое покрыто серозной оболочкой — плеврой. Плевра имеет два листка — наружный и внутренний, между которыми замкнута заполненная небольшим количеством жидкости плевральная полость. Она снижает трение легкого при дыхании, и имеет решающее значение в механизме вдоха.
Структурно-функциональной единицей легкого является ацинус, куда входит одна концевая бронхиола с ее разветвлениями (дыхательными бронхиолами, альвеолярными ходами и альвеолами). В альвеолах ацинуса происходит газообмен между протекающей по капиллярам кровью и воздухом, поступающим в легкие.
В обоих легких человека имеется 600-700 млн альвеол, дыхательная поверхность которых составляет от 40 м2 при выдохе и до 120 м2 при вдохе. Легкие весят 500-600 г, их плотность с момента первого вдоха меньше плотности воды. Ткань, образующая легкие, имеет розовый оттенок, однако они темнеют (от сероватого до темно-бурого) и тем больше, чем более загрязненным воздухом дышит человек.
Функции дыхательной системы: газообмен, теплорегуляция, голосообразование, обоняние, выделение, защитная функция.
studfiles.net
9. Физиология дыхания. — Лекция 9.
Дыхание – сложный непрерывный процесс, в результате которого постоянно обновляется газовый состав крови.
Легкие — парные дыхательные органы, расположенные в герметически замкнутой грудной полости. Их воздухоносные пути представлены носоглоткой, гортанью, трахеей. Трахея в грудной полости делится на два бронха — правый и левый, каждый из которых, многократно разветвляясь, образует так называемое бронхиальное дерево. Мельчайшие бронхи — бронхиолы на концах расширяются в слепые пузырьки — легочные альвеолы.
В дыхательных путях газообмен не происходит, и состав воздуха не меняется. Пространство, заключенное в дыхательных путях называется мертвым, или вредным. При спокойном дыхании объем воздуха в мертвом пространстве составляет 140—150 мл.
Строение легких обеспечивает выполнение ими дыхательной функции. Тонкая стенка альвеол состоит из однослойного эпителия, легко проходимого для газов. Наличие эластических элементов и гладких мышечных волокон обеспечивает быстрое и легкое растяжение альвеол, благодаря чему они могут вмещать большие количества воздуха. Каждая альвеола покрыта густой сетью капилляров, на которые разветвляется легочная артерия.
Каждое легкое покрыто снаружи серозной оболочкой — плеврой, состоящей из двух листков: пристеночного и легочного (висцерального). Между листками плевры имеется узкая щель, заполненная серозной жидкостью — плевральная полость.
Давление в плевральной полости и в средостении в норме всегда отрицательное. За счет этого альвеолы всегда находятся в растянутом состоянии. Отрицательное внутригрудное давление играет значительную роль в гемодинамике, обеспечивая венозный возврат крови к сердцу и улучшая кровообращение в легочном круге, особенно в фазу вдоха.
Расправление и спадение легочных альвеол, а также движение воздуха по воздухоносным путям сопровождается возникновением дыхательных шумов, которые можно исследовать методом выслушивания (аускультации).
В процессе дыхания различают три звена: внешнее, или легочное, дыхание, транспорт газов кровью и внутреннее, или тканевое, дыхание.
Внешнее дыхание — это газообмен между организмом и окружающим его атмосферным воздухом. Осуществляется в два этапа — обмен газов между атмосферным и альвеолярным воздухом и газообмен между кровью легочных капилляров и альвеолярным воздухом.
Аппарат внешнего дыхания включает в себя дыхательные пути, легкие, плевру, скелет грудной клетки и ее мышцы, а также диафрагму. Основной функцией аппарата внешнего дыхания является обеспечение организма кислородом и освобождение его от избытка углекислого газа. О функциональном состоянии аппарата внешнего дыхания можно судить по ритму, глубине, частоте дыхания, по величине легочных объемов, по показателям поглощения кислорода и выделения углекислого газа и т. д.
Транспорт газов осуществляется кровью. Он обеспечивается разностью парциального давления (напряжения) газов по пути их следования: кислорода от легких к тканям, углекислого газа от клеток к легким.
Внутреннее или тканевое дыхание также может быть разделено на два этапа. Первый этап — обмен газов между кровью и тканями. Второй — потребление кислорода клетками и выделение ими углекислого газа (клеточное дыхание).
Человек дышит атмосферным воздухом, который имеет следующий состав: 20,94% кислорода, 0,03% углекислого газа, 79,03% азота. В выдыхаемом воздухе обнаруживается 16,3% кислорода, 4% углекислого газа, 79,7% азота.
Альвеолярный воздух по составу отличается от атмосферного. В альвеолярном воздухе резко уменьшается содержание кислорода и возрастает количество углекислого газа. Процентное содержание отдельных газов в альвеолярном воздухе: 14,2—14,6% кислорода, 5,2—5,7% углекислого газа, 79,7—80% азота.
Дыхательный цикл состоит из вдоха, выдоха и дыхательной паузы. Длительность вдоха у взрослого человека от 0,9 до 4,7 с, длительность выдоха — 1,2—6 с. Дыхательная пауза различна по величине и даже может отсутствовать.
Дыхательные движения совершаются с определенным ритмом и частотой, которые определяют по числу экскурсий грудной клетки в 1 мин. У взрослого человека частота дыхательных движений составляет 12—18 в 1 мин.
Глубину дыхательных движений определяют по амплитуде экскурсий грудной клетки и с помощью специальных методов, позволяющих исследовать легочные объемы.
Механизм вдоха. Вдох обеспечивается расширением грудной клетки вследствие сокращения дыхательных мышц – наружных межреберных и диафрагмы. При этом увеличивается объем легких, давление заключенного в них воздуха становится ниже атмосферного, и воздух засасывается в легкие.
Механизм выдоха. Выдох (экспирация) осуществляется в результате расслабления дыхательной мускулатуры, а также вследствие эластической тяги легких, стремящихся занять исходное положение. Эластические силы легких представлены тканевым компонентом и силами поверхностного натяжения, которые стремятся сократить альвеолярную сферическую поверхность до минимума. Однако альвеолы в норме никогда не спадаются. Причина этого – наличие в стенках альвеол поверхностно-активного стабилизирующего вещества – сурфактанта, вырабатываемого альвеолоцитами.
ЛЕГОЧНЫЕ ОБЪЕМЫ. ЛЕГОЧНАЯ ВЕНТИЛЯЦИЯ.
Дыхательный объем — количество воздуха, которое человек вдыхает и выдыхает при спокойном дыхании. Его объем составляет 300 — 700 мл.
Резервный объем вдоха — количество воздуха, которое может быть введено в легкие, если вслед за спокойным вдохом произвести максимальный вдох. Резервный объем вдоха равняется 1500—2000 мл.
Резервный объем выдоха — тот объем воздуха, который удаляется из легких, если вслед за спокойным вдохом и выдохом произвести максимальный выдох. Он составляет 1500—2000 мл.
Остаточный объем — это объем воздуха, который остается в легких после максимально глубокого выдоха. Остаточный объем равняется 1000—1500 мл воздуха.
Дыхательный объем, резервные
объемы вдоха и выдоха составляют
так называемую жизненную емкость легких.
Жизненная
емкость легких у мужчин молодого возраста составляет
3,5—4,8 л, у женщин — 3—3,5 л.
Общая емкость легких состоит из жизненной емкости легких и остаточного объема воздуха.
Легочная вентиляция — количество воздуха, обмениваемое в 1 мин.
Легочную вентиляцию определяют путем умножения дыхательного объема на число дыханий в 1 мин (минутный объем дыхания). У взрослого человека в состоянии относительного физиологического покоя легочная вентиляция составляет 6—8 л в 1 мин.
Легочные объемы могут быть определены с помощью специальных приборов — спирометра и спирографа.
ТРАНСПОРТ ГАЗОВ КРОВЬЮ.
Кровь доставляет тканям кислород и уносит углекислый газ.
Движение газов из окружающей среды в жидкость и из жидкости в окружающую среду осуществляется благодаря разности их парциального давления. Газ всегда диффундирует из среды, где имеется высокое давление, в среду с меньшим давлением.
Парциальное давление кислорода в атмосферном воздухе 21,1 кПа (158 мм рт. ст.), в альвеолярном воздухе — 14,4—14,7 кПа (108—110 мм рт. ст.) и в венозной крови, притекающей к легким,—5,33 кПа (40 мм рт. ст.). В артериальной крови капилляров большого круга кровообращения напряжение кислорода составляет 13,6—13,9 кПа (102—104 мм рт. ст.), в межтканевой жидкости — 5,33 кПа (40 мм рт. ст.), в тканях — 2,67 кПа (20 мм рт. ст.). Таким образом, на всех этапах движения кислорода имеется разность его парциального давления, что способствует диффузии газа.
Движение углекислого газа происходит в противоположном направлении. Напряжение углекислого газа в тканях — 8,0 кПа и более (60 и более мм рт. ст.), в венозной крови — 6,13 кПа (46 мм рт. ст.), в альвеолярном воздухе — 0,04 кПа (0,3 мм рт. ст.). Следовательно, разность напряжения углекислого газа по пути его следования является причиной диффузии газа от тканей в окружающую среду.
Транспорт кислорода кровью. Кислород в крови находится в двух состояниях: физическом растворении и в химической связи с гемоглобином. Гемоглобин образует с кислородом очень непрочное, легко диссоциирующее соединение — оксигемоглобин: 1г гемоглобина связывает 1,34 мл кислорода. Максимальное количество кислорода, которое может быть связано 100 мл крови, — кислородная емкость крови (18,76 мл или 19 об%).
Насыщение гемоглобина кислородом колеблется от 96 до 98%. Степень насыщения гемоглобина кислородом и диссоциация оксигемоглобина (образование восстановленного гемоглобина) не находятся в прямой пропорциональной зависимости от напряжения кислорода. Эти два процесса не являются линейными, а совершаются по кривой, которая получила название кривой связывания или диссоциации оксигемоглобина.
10 20 30 40 50 60 70 мм рт.ст.
Рис. 25. Кривые диссоциации оксигемоглобина в водном растворе (I) и в крови (II) при напряжении углекислого газа 5,33 кПа (40 мм рт. ст.) (по Баркрофту).
При нулевом напряжении
кислорода оксигемоглобина в
крови нет. При низких
Сродство гемоглобина
к кислороду значительно
Переход гемоглобина в оксигемоглобин и из него в восстановленный зависит и от температуры. При одном и том же парциальном давлении кислорода в окружающей среде при температуре 37—38° С в восстановленную форму переходит наибольшее количество оксигемоглобина,
Транспорт углекислого газа кровью. Углекислый газ переносится к легким в форме бикарбонатов и в состоянии химической связи с гемоглобином (карбогемоглобин).
Ритмическая
В дыхательном центре имеются две группы нейронов: инспираторные и экспираторные. При возбуждении инспираторных нейронов, обеспечивающих вдох, деятельность экспираторных нервных клеток заторможена, и наоборот.
В верхней части
моста головного мозга (
Дыхательный центр,
расположенный в продолговатом
мозге, посылает импульсы к мот
Регуляция деятельности дыхательного
центра.
Регуляция деятельности дыхательного центра осуществляется с помощью гуморальных, рефлекторных механизмов и нервных импульсов, поступающих из вышележащих отделов головного мозга.
Гуморальные механизмы. Специфическим регулятором активности нейронов дыхательного центра является углекислый газ, который действует на дыхательные нейроны непосредственно и опосредованно. В ретикулярной формации продолговатого мозга, вблизи дыхательного центра, а также в области сонных синусов и дуги аорты обнаружены хеморецепторы, чувствительные к углекислому газу. При увеличении напряжения углекислого газа в крови хеморецепторы возбуждаются, и нервные импульсы поступают к инспираторным нейронам, что приводит к повышению их активности.
Углекислый газ повышает возбудимость нейронов коры головного мозга. В свою очередь клетки КГМ стимулируют активность нейронов дыхательного центра.
При оптимальном содержании
в крови углекислого газа и
кислорода наблюдаются
Избыточное содержание углекислого газа и недостаток кислорода в крови усиливают активность дыхательного центра, что обусловливает возникновение частых и глубоких дыхательных движений – гиперпноэ. Еще большее нарастание количества углекислого газа в крови приводит к нарушению ритма дыхания и появлению одышки – диспноэ. Понижение концентрации углекислого газа и избыток кислорода в крови угнетают активность дыхательного центра. В этом случае дыхание становится поверхностным, редким и может наступить его остановка – апноэ.
Механизм первого вдоха новорожденного.
В организме матери газообмен плода происходит через пупочные сосуды. После рождения ребенка и отделения плаценты указанная связь нарушается. Метаболические процессы в организме новорожденного приводят к образованию и накоплению углекислого газа, который, так же как и недостаток кислорода, гуморально возбуждает дыхательный центр. Кроме того, изменение условий существования ребенка приводит к возбуждению экстеро- и проприорецепторов, что также является одним из механизмов, принимающих участие в осуществлении первого вдоха новорожденного.
Рефлекторные механизмы.
Различают постоянные и непостоянные (эпизодические) рефлекторные влияния на функциональное состояние дыхательного центра.
Постоянные рефлекторные влияния возникают в результате раздражения рецепторов альвеол (рефлекс Геринга — Брейера), корня легкого и плевры (пульмоторакальный рефлекс), хеморецепторов дуги аорты и сонных синусов (рефлекс Гейманса), проприорецепторов дыхательных мышц.
Наиболее важным рефлексом является рефлекс Геринга — Брейера. В альвеолах легких заложены механорецепторы растяжения и спадения, являющиеся чувствительными нервными окончаниями блуждающего нерва. Любое увеличение объема легочных альвеол возбуждает эти рецепторы.
Рефлекс Геринга — Брейера является одним из механизмов саморегуляции дыхательного процесса, обеспечивая смену актов вдоха и выдоха. При растяжении альвеол во время вдоха нервные импульсы от рецепторов растяжения по блуждающему нерву идут к экспираторным нейронам, которые, возбуждаясь, тормозят активность инспираторных нейронов, что приводит к пассивному выдоху. Легочные альвеолы спадаются, и нервные импульсы от рецепторов растяжения уже не поступают к экспираторным нейронам. Активность их падает, что создает условия для повышения возбудимости инспираторной части дыхательного центра и осуществлению активного вдоха.
Кроме того, активность
инспираторных нейронов
Пульмоторакальный рефлекс возникает при возбуждении рецепторов, заложенных в легочной ткани и плевре. Проявляется этот рефлекс при растяжении легких и плевры. Рефлекторная дуга замыкается на уровне шейных и грудных сегментов спинного мозга.
К дыхательному центру постоянно поступают нервные импульсы от проприорецепторов дыхательных мышц. Во время вдоха происходит возбуждение проприорецепторов дыхательных мышц и нервные импульсы от них поступают в инспираторную часть дыхательного центра. Под влиянием нервных импульсов тормозится активность вдыхательных нейронов, что способствует наступлению выдоха.
Непостоянные рефлекторные влияния на активность дыхательных нейронов связаны с возбуждением разнообразных экстеро- и интерорецепторов. К ним относятся рефлексы, возникающие при раздражении рецепторов слизистой оболочки верхних дыхательных путей, слизистой носа, носоглотки, температурных и болевых рецепторов кожи, проприорецепторов скелетных мышц. Так, например, при внезапном вдыхании паров аммиака, хлора, сернистого ангидрида, табачного дыма и некоторых других веществ происходит раздражение рецепторов слизистой оболочки носа, глотки, гортани, что приводит к рефлекторному спазму голосовой щели, а иногда даже мускулатуры бронхов и рефлекторной задержке дыхания.
При раздражении эпителия дыхательных путей накопившейся пылью, слизью, а также попавшими химическими раздражителями и инородными телами наблюдается чиханье и кашель. Чиханье возникает при раздражении рецепторов слизистой оболочки носа, кашель — при возбуждении рецепторов гортани, трахеи, бронхов.
Влияние клеток коры большого мозга на активность дыхательного центра.
По М. В. Сергиевскому, регуляция активности дыхательного центра представлена тремя уровнями.
Первый уровень регуляции — спинной мозг. Здесь располагаются центры диафрагмальных и межреберных нервов, обусловливающие сокращение дыхательных мышц.
Второй уровень регуляции — продолговатый мозг. Здесь находится дыхательный центр. Этот уровень регуляции обеспечивает ритмичную смену фаз дыхания и активность спинномозговых мотонейронов, аксоны которых иннервируют дыхательную мускулатуру.
Третий уровень регуляции — верхние отделы головного мозга, включающие и корковые нейроны. Только при участии коры большого мозга возможно адекватное приспособление реакций системы дыхания к изменяющимся условиям окружающей среды.
ДЫХАНИЕ ПРИ ФИЗИЧЕСКОЙ НАГРУЗКЕ.
У тренированных людей при напряженной мышечной работе объем легочной вентиляции возрастает до 50—100 л/мин по сравнению с 5—8 л в состоянии относительного физиологического покоя. Повышение минутного объема дыхания при физической нагрузке связано с увеличением глубины и частоты дыхательных движений. При этом у тренированных людей, в основном, изменяется глубина дыхания, у нетренированных — частота дыхательных движений.
При физической нагрузке увеличивается концентрация в крови и тканях углекислого газа и молочной кислоты, которые стимулируют нейроны дыхательного центра как гуморальным путем, так и за счет нервных импульсов, поступающих от сосудистых рефлексогенных зон. Наконец, активность нейронов дыхательного центра обеспечивается потоком нервных импульсов, поступающих от клеток коры головного мозга, обладающих высокой чувствительностью к недостатку кислорода и к избытку углекислого газа.
Одновременно возникают приспо
Таким образом, система
дыхания обеспечивает возрастающие
потребности организма в кислороде. Системы
же кровообращения и крови, перестраиваясь
на новый функциональный уровень, способствуют
транспорту кислорода к тканям и углекислого
газа к легким.
medlecture.ru