Вычисления корня – Как вычислить корень третьей степени 🚩 как найти корень в третьей степени 🚩 Математика

Содержание

5 методов вычисления квадратного корня

При решении различных задач из курса математики и физики ученики и студенты часто сталкиваются с необходимостью извлечения корней второй, третьей или n-ой степени. Конечно, в век информационных технологий не составит труда решить такую задачу при помощи калькулятора. Однако возникают ситуации, когда воспользоваться электронным помощником невозможно.

К примеру, на многие экзамены запрещено приносить электронику. Кроме того, калькулятора может не оказаться под рукой. В таких случаях полезно знать хотя бы некоторые методы вычисления радикалов вручную.

Извлечение квадратного корня при помощи таблицы квадратов

Один из простейших способов вычисления корней заключается в использовании специальной таблицы. Что же она собой представляет и как ей правильно воспользоваться?

При помощи таблицы можно найти квадрат любого числа от 10 до 99. При этом в строках таблицы находятся значения десятков, в столбах — значения единиц. Ячейка на пересечении строки и столбца содержит в себе квадрат двузначного числа. Для того чтобы вычислить квадрат 63, нужно найти строку со значением 6 и столбец со значением 3. На пересечении обнаружим ячейку с числом 3969.

Поскольку извлечение корня — это операция, обратная возведению в квадрат, для выполнения этого действия необходимо поступить наоборот: вначале найти ячейку с числом, радикал которого нужно посчитать, затем по значениям столбика и строки определить ответ. В качестве примера рассмотрим вычисление квадратного корня 169.

Находим ячейку с этим числом в таблице, по горизонтали определяем десятки — 1, по вертикали находим единицы — 3. Ответ: √169 = 13.

Аналогично можно вычислять корни кубической и n-ой степени, используя соответствующие таблицы.

Преимуществом способа является его простота и отсутствие дополнительных вычислений. Недостатки же очевидны: метод можно использовать только для ограниченного диапазона чисел (число, для которого находится корень, должно быть в промежутке от 100 до 9801). Кроме того, он не подойдёт, если заданного числа нет в таблице.

Разложение на простые множители

Если таблица квадратов отсутствует под рукой или с её помощью оказалось невозможно найти корень, можно попробовать разложить число, находящееся под корнем, на простые множители. Простые множители — это такие, которые могут нацело (без остатка) делиться только на себя или на единицу. Примерами могут быть 2, 3, 5, 7, 11, 13 и т. д.

Рассмотрим вычисление корня на примере √576. Разложим его на простые множители. Получим следующий результат: √576 = √(2 ∙ 2 ∙ 2 ∙ 2 ∙ 2 ∙ 2 ∙ 3 ∙ 3) = √(2 ∙ 2 ∙ 2)² ∙ √3². При помощи основного свойства корней √a² = a избавимся от корней и квадратов, после чего подсчитаем ответ: 2 ∙ 2 ∙ 2 ∙ 3 = 24.

Что же делать, если у какого-либо из множителей нет своей пары? Для примера рассмотрим вычисление √54. После разложения на множители получаем результат в следующем виде: √54 = √(2 ∙ 3 ∙ 3 ∙ 3) = √3² ∙ √(2 ∙ 3) = 3√6. Неизвлекаемую часть можно оставить под корнем. Для большинства задач по геометрии и алгебре такой ответ будет засчитан в качестве окончательного. Но если есть необходимость вычислить приближённые значения, можно использовать методы, которые будут рассмотрены далее.

Метод Герона

Как поступить, когда необходимо хотя бы приблизительно знать, чему равен извлечённый корень (если невозможно получить целое значение)? Быстрый и довольно точный результат даёт применение метода Герона. Его суть заключается в использовании приближённой формулы:

√R = √a + (R — a) / 2√a,

где R — число, корень которого нужно вычислить, a — ближайшее число, значение корня которого известно.

Рассмотрим, как работает метод на практике, и оценим, насколько он точен. Рассчитаем, чему равен √111. Ближайшее к 111 число, корень которого известен — 121. Таким образом, R = 111, a = 121. Подставим значения в формулу:

√111 = √121 + (111 — 121) / 2 ∙ √121 = 11 — 10 / 22 ≈ 10,55.

Теперь проверим точность метода:

10,55² = 111,3025.

Погрешность метода составила приблизительно 0,3. Если точность метода нужно повысить, можно повторить описанные ранее действия:

√111 = √111,3025 + (111 — 111,3025) / 2 ∙ √111,3025 = 10,55 — 0,3025 / 21,1 ≈ 10,536.

Проверим точность расчёта:

10,536² = 111,0073.

После повторного применения формулы погрешность стала совсем незначительной.

Вычисление корня делением в столбик

Этот способ нахождения значения квадратного корня является чуть более сложным, чем предыдущие. Однако он является наиболее точным среди остальных методов вычисления без калькулятора.

Допустим, что необходимо найти квадратный корень с точностью до 4 знаков после запятой. Разберём алгоритм вычислений на примере произвольного числа 1308,1912.

  1. Разделим лист бумаги на 2 части вертикальной чертой, а затем проведём от неё ещё одну черту справа, немного ниже верхнего края. Запишем число в левой части, разделив его на группы по 2 цифры, двигаясь в правую и левую сторону от запятой. Самая первая цифра слева может быть без пары. Если же знака не хватает в правой части числа, то следует дописать 0. В нашем случае получится 13 08,19 12.
  2. Подберём самое большое число, квадрат которого будет меньше или равен первой группе цифр. В нашем случае это 3. Запишем его справа сверху; 3 — первая цифра результата. Справа снизу укажем 3×3 = 9; это понадобится для последующих расчётов. Из 13 в столбик вычтем 9, получим остаток 4.
  3. Припишем следующую пару чисел к остатку 4; получим 408.
  4. Число, находящееся сверху справа, умножим на 2 и запишем справа снизу, добавив к нему _ x _ =. Получим 6_ x _ =.
  5. Вместо прочерков нужно подставить одно и то же число, меньшее или равное 408. Получим 66×6 = 396. Напишем 6 справа сверху, т. к. это вторая цифра результата. Отнимем 396 от 408, получим 12.
  6. Повторим шаги 3—6. Поскольку снесённые вниз цифры находятся в дробной части числа, необходимо поставить десятичную запятую справа сверху после 6. Запишем удвоенный результат с прочерками: 72_ x _ =. Подходящей цифрой будет 1: 721×1 = 721. Запишем её в ответ. Выполним вычитание 1219 — 721 = 498.
  7. Выполним приведённую в предыдущем пункте последовательность действий ещё три раза, чтобы получить необходимое количество знаков после запятой. Если не хватает знаков для дальнейших вычислений, у текущего слева числа нужно дописать два нуля.

В результате мы получим ответ: √1308,1912 ≈ 36,1689. Если проверить действие при помощи калькулятора, можно убедиться, что все знаки были определены верно.

Поразрядное вычисление значения квадратного корня

Метод обладает высокой точностью. Кроме того, он достаточно понятен и для него не требуется запоминать формулы или сложный алгоритм действий, поскольку суть способа заключается в подборе верного результата.

Извлечём корень из числа 781. Рассмотрим подробно последовательность действий.

  1. Выясним, какой разряд значения квадратного корня будет являться старшим. Для этого возведём в квадрат 0, 10, 100, 1000 и т. д. и выясним, между какими из них находится подкоренное число. Мы получим, что 10² < 781 < 100², т. е. старшим разрядом будут десятки.
  2. Подберём значение десятков. Для этого будем по очереди возводить в степень 10, 20, …, 90, пока не получим число, превышающее 781. Для нашего случая получим 10² = 100, 20² = 400, 30² = 900. Значение результата n будет находиться в пределах 20 < n <30.
  3. Аналогично предыдущему шагу подбирается значение разряда единиц. Поочерёдно возведём в квадрат 21,22, …, 29: 21² = 441, 22² = 484, 23² = 529, 24² = 576, 25² = 625, 26² = 676, 27² = 729, 28² = 784. Получаем, что 27 < n < 28.
  4. Каждый последующий разряд (десятые, сотые и т. д. ) вычисляется так же, как было показано выше. Расчёты проводятся до тех пор, пока не будет достигнута необходимая точность.

Видео

Из видео вы узнаете, как извлекать квадратные корни без использования калькулятора.

liveposts.ru

Как быстро извлекать квадратные корни

Довольно часто при решении задач мы сталкиваемся с большими числами, из которых надо извлечь квадратный корень. Многие ученики решают, что это ошибка, и начинают перерешивать весь пример. Ни в коем случае нельзя так поступать! На то есть две причины:

  1. Корни из больших чисел действительно встречаются в задачах. Особенно в текстовых;
  2. Существует алгоритм, с помощью которого эти корни считаются почти устно.

Этот алгоритм мы сегодня и рассмотрим. Возможно, какие-то вещи покажутся вам непонятными. Но если вы внимательно отнесетесь к этому уроку, то получите мощнейшее оружие против квадратных корней.

Итак, алгоритм:

  1. Ограничить искомый корень сверху и снизу числами, кратными 10. Таким образом, мы сократим диапазон поиска до 10 чисел;
  2. Из этих 10 чисел отсеять те, которые точно не могут быть корнями. В результате останутся 1—2 числа;
  3. Возвести эти 1—2 числа в квадрат. То из них, квадрат которого равен исходному числу, и будет корнем.

Прежде чем применять этот алгоритм работает на практике, давайте посмотрим на каждый отдельный шаг.

Ограничение корней

В первую очередь надо выяснить, между какими числами расположен наш корень. Очень желательно, чтобы числа были кратны десяти:

102 = 100;
202 = 400;
302 = 900;
402 = 1600;

902 = 8100;
1002 = 10 000.

Получим ряд чисел:

100; 400; 900; 1600; 2500; 3600; 4900; 6400; 8100; 10 000.

Что нам дают эти числа? Все просто: мы получаем границы. Возьмем, например, число 1296. Оно лежит между 900 и 1600. Следовательно, его корень не может быть меньше 30 и больше 40:

[Подпись к рисунку]

То же самое — с любым другим числом, из которого можно найти квадратный корень. Например, 3364:

[Подпись к рисунку]

Таким образом, вместо непонятного числа мы получаем вполне конкретный диапазон, в котором лежит исходный корень. Чтобы еще больше сузить область поиска, переходим ко второму шагу.

Отсев заведомо лишних чисел

Итак, у нас есть 10 чисел — кандидатов на корень. Мы получили их очень быстро, без сложных размышлений и умножений в столбик. Пора двигаться дальше.

Не поверите, но сейчас мы сократим количество чисел-кандидатов до двух — и снова без каких-либо сложных вычислений! Достаточно знать специальное правило. Вот оно:

Последняя цифра квадрата зависит только от последней цифры исходного числа.

Другими словами, достаточно взглянуть на последнюю цифру квадрата — и мы сразу поймем, на что заканчивается исходное число.

Существует всего 10 цифр, которые могут стоять на последнем месте. Попробуем выяснить, во что они превращаются при возведении в квадрат. Взгляните на таблицу:

Эта таблица — еще один шаг на пути к вычислению корня. Как видите, цифры во второй строке оказались симметричными относительно пятерки. Например:

22 = 4;
82 = 64 → 4.

Как видите, последняя цифра в обоих случаях одинакова. А это значит, что, например, корень из 3364 обязательно заканчивается на 2 или на 8. С другой стороны, мы помним ограничение из предыдущего пункта. Получаем:

[Подпись к рисунку]

Красные квадраты показывают, что мы пока не знаем этой цифры. Но ведь корень лежит в пределах от 50 до 60, на котором есть только два числа, оканчивающихся на 2 и 8:

[Подпись к рисунку]

Вот и все! Из всех возможных корней мы оставили всего два варианта! И это в самом тяжелом случае, ведь последняя цифра может быть 5 или 0. И тогда останется единственный кандидат в корни!

Финальные вычисления

Итак, у нас осталось 2 числа-кандидата. Как узнать, какое из них является корнем? Ответ очевиден: возвести оба числа в квадрат. То, которое в квадрате даст исходное число, и будет корнем.

Например, для числа 3364 мы нашли два числа-кандидата: 52 и 58. Возведем их в квадрат:

522 = (50 +2)2 = 2500 + 2 · 50 · 2 + 4 = 2704;
582 = (60 − 2)2 = 3600 − 2 · 60 · 2 + 4 = 3364.

Вот и все! Получилось, что корень равен 58! При этом, чтобы упростить вычисления, я воспользовался формулой квадратов суммы и разности. Благодаря чему даже не пришлось умножать числа в столбик! Это еще один уровень оптимизации вычислений, но, разумеется, совершенно не обязательный 🙂

Примеры вычисления корней

Теория — это, конечно, хорошо. Но давайте проверим ее на практике.

Задача. Вычислите квадратный корень:

[Подпись к рисунку]

Для начала выясним, между какими числами лежит число 576:

400 < 576 < 900
202 < 576 < 302

Теперь смотрим на последнюю цифру. Она равна 6. Когда это происходит? Только если корень заканчивается на 4 или 6. Получаем два числа:

24; 26.

Осталось возвести каждое число в квадрат и сравнить с исходным:

242 = (20 + 4)2 = 576

Отлично! Первый же квадрат оказался равен исходному числу. Значит, это и есть корень.

Задача. Вычислите квадратный корень:

[Подпись к рисунку]

Здесь и далее я буду писать только основные шаги. Итак, ограничиваем число:

900 < 1369 < 1600;
302 < 1369 < 402;

Смотрим на последнюю цифру:

1369 → 9;
33; 37.

Возводим в квадрат:

332 = (30 + 3)2 = 900 + 2 · 30 · 3 + 9 = 1089 ≠ 1369;
372 = (40 − 3)2 = 1600 − 2 · 40 · 3 + 9 = 1369.

Вот и ответ: 37.

Задача. Вычислите квадратный корень:

[Подпись к рисунку]

Ограничиваем число:

2500 < 2704 < 3600;
502 < 2704 < 602;

Смотрим на последнюю цифру:

2704 → 4;
52; 58.

Возводим в квадрат:

522 = (50 + 2)2 = 2500 + 2 · 50 · 2 + 4 = 2704;

Получили ответ: 52. Второе число возводить в квадрат уже не потребуется.

Задача. Вычислите квадратный корень:

[Подпись к рисунку]

Ограничиваем число:

3600 < 4225 < 4900;
602 < 4225 < 702;

Смотрим на последнюю цифру:

4225 → 5;
65.

Как видим, после второго шага остался лишь один вариант: 65. Это и есть искомый корень. Но давайте все-таки возведем его в квадрат и проверим:

652 = (60 + 5)2 = 3600 + 2 · 60 · 5 + 25 = 4225;

Все правильно. Записываем ответ.

Заключение

Многие спрашивают: зачем вообще считать такие корни? Не лучше ли взять калькулятор и не парить себе мозг?

Увы, не лучше. Давайте разберемся в причинах. Их две:

  • На любом нормальном экзамене по математике, будь то ГИА или ЕГЭ, пользоваться калькуляторами запрещено. И за пронесенный в класс калькулятор могут запросто выгнать с экзамена.
  • Не уподобляйтесь тупым американцам. Которые не то что корни — они два простых числа сложить не могут. А при виде дробей у них вообще начинается истерика.

В общем, учитесь считать. И все будет хорошо. Удачи!

Смотрите также:

  1. Выделение полного квадрата
  2. Преобразование выражений с корнем — часть 1
  3. Тест к уроку «Десятичные дроби» (2 вариант)
  4. Сводный тест по задачам B15 (1 вариант)
  5. Какие бывают репетиторы по математике в Москве
  6. Задача B15: работаем с показательной функцией без производной

www.berdov.com

Квадратный корень — Википедия

Квадра́тный ко́рень из числа a{\displaystyle a} (корень 2-й степени, a{\displaystyle {\sqrt {a}}}) — это число x{\displaystyle x}, дающее a{\displaystyle a} при возведении в квадрат[1]. Равносильное определение: квадратный корень из числа a{\displaystyle a} — это решение уравнения x2=a.{\displaystyle x^{2}=a.} Операция вычисления значения a{\displaystyle {\sqrt {a}}} называется «извлечением квадратного корня» из числа a{\displaystyle a}.

Наиболее часто под x

ru.wikipedia.org

Вычисление квадратного корня из любого числа без калькулятора

Автор Сергей


Суббота, Апрель 21, 2012

Во время сдачи ЕГЭ по математике использование калькулятора, как известно, запрещено. Поэтому любой репетитор по математике всегда заставляет своих учеников считать все устно или на бумаге. Но время от времени встречаются задачи, при решении которых требуется извлекать квадратные корни из достаточно больших чисел, и на ЕГЭ по математике такие задачи тоже есть. С проблемой нахождения алгоритма вычисления квадратного корня из вещественного числа читатель может столкнуться (помимо ЕГЭ по математике) на различного рода математических конкурсах и олимпиадах. Итак, как найти квадратный корень без использования калькулятора?

Как репетитор по физике и математике, занимающийся подготовкой к ЕГЭ и ГИА, предлагаю вашему вниманию один действенный алгоритм, не претендующий на максимальную эффективность, но работающий безотказно с любыми вещественными числами. Приведенный метод может со временем стать столь же известным, как, к примеру, метод умножения двух чисел «столбиком», ведь он во многом на него похож.

Вот наглядная схема алгоритма вычисления квадратного корня из любого числа без использования калькулятора (кликабельно):

Алгоритм вычисления квадратного корня из любого вещественного числа без использования калькулятора

Однако, вопрос о том, почему данный алгоритм работает, остается пока открытым. Для того, чтобы разобраться в этом, возьмем, для примера, число, цифрами которого являются и То есть само число имеет вид Пусть корнем будет число , состоящее из цифр и То есть Выполним «столбиком» умножение

yourtutor.info

Извлечение корня. Вычисление квадратного корня

Корнем n-ой степени натурального числа a называется такое число, n-ая степень которого равна a. Корень обозначается так: . Символ √ называется знаком корня или знаком радикала, число aподкоренное число, nпоказатель корня.

Действие, посредством которого находится корень данной степени, называется извлечением корня.

Так как, согласно определению понятия о корне n-ой степени

то извлечение корня — действие, обратное возведению в степень, при помощи которого по данной степени и по данному показателю степени находят основание степени.

Квадратный корень

Квадратным корнем из числа a называется число, квадрат которого равен a.

Действие, с помощью которого вычисляется квадратный корень, называется извлечением квадратного корня.

Извлечение квадратного корня — действие обратное возведению в квадрат (или возведению числа во вторую степень). При возведении в квадрат известно число, требуется найти его квадрат. При извлечении квадратного корня известен квадрат числа, требуется по нему найти само число.

Поэтому для проверки правильности проведённого действия, можно найденный корень возвести во вторую степень и, если степень будет равна подкоренному числу, значит корень был найден правильно.

Рассмотрим извлечение квадратного корня и его проверку на примере. Вычислим или (показатель корня со значением 2 обычно не пишут, так как 2 — это самый маленький показатель и следует помнить, что если над знаком корня нет показателя, то подразумевается показатель 2), для этого нам нужно найти число, при возведении которого во вторую степень получится 49. Очевидно, что таким числом является 7, так как

7 · 7 = 72 = 49.

Значит .

Вычисление квадратного корня

Если данное число равно 100 или меньше, то квадратный корень из него можно вычислить с помощью таблицы умножения. Например квадратный корень из 25 — это 5, потому что 5 · 5 = 25.

Теперь рассмотрим способ нахождения квадратного корня из любого числа без использования калькулятора. Для примера возьмём число 4489 и начнём поэтапно вычислять.

  1. Определим, из каких разрядов должен состоять искомый корень. Так как 102 = 10 · 10 = 100, а 1002 = 100 · 100 = 10000, то становится ясно, что искомый корень должен быть больше 10 и меньше 100, т.е. состоять из десятков и единиц.
  2. Находим число десятков корня. От перемножения десятков получаются сотни, в нашем числе их 44, поэтому корень должен содержать столько десятков, чтобы квадрат десятков давал приблизительно 44 сотни. Следовательно в корне должно быть 6 десятков, потому что 602 = 3600, а 702 = 4900 (это слишком много). Таким образом мы выяснили, что наш корень содержит 6 десятков и несколько единиц, так как он находится в в диапазоне от 60 до 70.
  3. Определить число единиц в корне поможет таблица умножения. Посмотрев на число 4489, мы видим, что последняя цифра в нём 9. Теперь смотрим в таблицу умножения и видим что 9 единиц может получится только при возведении в квадрат чисел 3 и 7. Значит корень числа будет равен 63 или 67.
  4. Проверяем полученные нами числа 63 и 67 возводя их в квадрат: 632 = 3969, 672 = 4489.

Таким образом мы находим, что .

naobumium.info

Простой расчёт квадратного корня — Всё самое интересное!

В разделе: Интересности | и в подразделах: число. | Автор-компилятор статьи: Лев Александрович Дебаркадер

Продолжаем раздел «Интересности» и подраздел «Нумерология» статьёй «Простой расчёт квадратного корня«. Замечали ли вы, что на калькуляторе есть значок квадратного корня, его нажал — и корень получился из любого числа. Но что делать, если такого значка нет? А вы в поле, и вам нужно срочно найти, чему равна гипотенуза (для правильной разметки участка для строительства, например)? Обычно пользуются перебором — наугад находят цифры.

«Простой» расчёт квадратного корня можно найти по интересной ссылке http://comp-science.narod.ru/DL-AR/koren.html или http://hijos.ru/2012/04/25/krasivaya-modifikaciya-metoda-izvlecheniya-kvadratnogo-kornya/ или http://oldskola1.narod.ru/Kiselev07/K07.htm Похожий способ — на видео:

Но, как ни странно, есть ещё более простой способ найти квадратный корень (на этот раз без кавычек). И при этом получить такую степень точности, какая нужна, столько знаков после запятой, сколько нужно. И это без значка «квадратный корень» на калькуляторе.

Всё, что нужно — знать, что такое среднее арифметическое. Это сумма чисел, разделённая на их количество. В нашем случае понадобится среднее арифметическое двух чисел: (а + б) / 2

Алгоритм простейшего расчёта квадратного корня с любой точностью:

Первый шаг. Берём число, из которого нужно извлечь корень. Допустим, 1378

Второй шаг. Делим это число на любое число, меньшее 1378. Возьмём самое далёкое — число 2.

1378 / 2 = 689

Третий шаг: находим среднее арифметическое из 2 и 689:

(2 + 689) / 2 = 345,5

Четвёртый шаг, аналогичный второму — делим 1378 на результат третьего шага:

1378 / 345,5 = 3,988

Оно же 4

Пятый шаг, аналогичный третьему: среднее арифметическое 4 и 345,5:

(4 + 345,5) / 2 = 174,75

Шестой шаг, такой же, как четвёртый — делим 1378 на 174,75:

1378 / 174,75 = 7,89

Он же 8

Седьмой шаг, такой же, как пятый — среднее арифметическое 8 и 174,75 =  91,375

Восьмой шаг, такой же, как четвёртый и шестой — делим 1378 на 91,375 = 15

Девятый шаг — среднее арифметическое 15 и 91,375 = 53,19

Десятый шаг — делим 1378 на 53,19 = 25,9

Шаг 11. Среднее арифметическое 25,9 и 53,19 = 39,545

Шаг 12. Делим 1378 на 39,545 = 34,85

Чувствуете, мы уже близко!

Шаг 13. Среднее арифметическое цифр  39,545 и 34,85 = 37,2

Шаг 14. Делим 1378 на 37,2 = 37,04

Вот, почти нашли!

Шаг 15. Среднее арифметическое 37,2 и 37,04 = 37,12

Шаг 16. Делим 1378 на 37,12 = 37,123

Для практических целей точности до 2 знаков после запятой вполне достаточно, так что мы закончим.

Квадратный корень из 1378 это 37,12

Для этого нам понадобилось всего 16 шагов. И начали мы от самой дальней цифры. А если бы мы начали от цифры более близкой? Например, вспомнили бы, что 30 * 30 = 900, что близко к нашему числу. И стали работать с цифры 30…

У нас бы ушло меньше 10 повторений и всего пара минут времени. Согласитесь, такие расчёты можно сделать и в столбик, причём с какой угодно погрешностью.

Конечно, есть и другие алгоритмы, приведённые по ссылкам выше. Но они, как ни странно, в некоторой степени сложнее. Ведь в статье описан просто железобетонный способ из двух повторяющихся действий. Всё-то и нужно помнить, что если корень умножить сам на себя, то получится исходное число.

Между прочим, этот же алгоритм легко адаптируется для извлечения кубических, четвертических и любых других корней, чего не скажешь о прочих методах.

Вывод:

Описанный метод нахождения квадратного корня действительно прост по многим параметрам.

Удачных расчётов!

interesko.info

Как вычислить корень? — Полезная информация для всех

  • Если способ(очень простой) будет quot;схваченquot;, то вот он. Сначала берется quot;на

    глазquot; первое приближение, потом делим подкоренное число на первое приближение и если частное отличается от первого приближения на допустимую погрешность, то находится среднее арифметическое делителя и частного, это, более точное- второе приближение искомого корня.Коль, умело выбрано первое приближение, второе дает 3- 4 верные цифры. Для большей точности, снова, делим подкоренное число на второе приближение и там количество цифр- удвоится. И так далее, пока не получится желаемый результат.Здесь правильные вычисления не допустят ошибок, только, медленно.

    (Быстро- таблица или инженерный калькулятор…)))

  • А можно еще вычислить с помощью таблицы квадратов. Достаточно, как правило, таблицы квадратов от 10 до 99.

  • AlexRock,

    квадратный корень из числа моментально вычисляет программа-калькулятор, встроенная в комп, или онлайн калькулятор.

    Без компа эта процедура осуществляется вручную, что не так быстро, но займет пару минут.

  • Вычислить квадратный корень из числа можно согласно его определения.

    То есть, чтобы вычислить квадратный корень их числа , нужно найти такое число, чтобы возведя его в квадрат, получить подкоренное число.

    Например, корень из 25 равно 5, так как 5 в квадрате будет 25.

  • Как известно, квадратным корнем числа x называется такое число, который бы при возведении в квадрат давало бы число x.

    Чтобы его найти, можно воспользоваться таблицей квадратов натуральных чисел.

    Если этого числа нет в таблице, то значение корня будет представлять себя число в виде бесконечной десятичной дроби, то есть такой корень можно будет вычислить лишь приблизительно.

    Для этого существуют следующие варианты:

    1) графический способ — строим график функции квадратного корня и опускаем перпендикуляр на график от оси абсцисс. Затем от того места, куда упал перпендикуляр проводим линию к оси ординат и смотрим приблизительное значение.

    2) калькулятор

    3) таблицы Брадиса

    4) электронные таблицы Microsoft Excel — в них есть специальная формула quot;КОРЕНЬquot;.

  • Можно посчитать корень вручную, используя итерацию..

    Вс просто: есть число, из которого надо извлечь корень..

    Прикидываете квадрат какого числа даст порядок этого числа: например если число порядка нескольких сотен, например 572, 10^2=100, а 100^2=10000, значит грубо искомое число будет находиться между 10 и 100, причм ближе к 10..

    Возьмм число 30 и возведм в квадрат = 900, значит искомое число будет между 10 и 30; возьмм число 20^2=400, значит искомое число будет между 20 и 30..

    Возьмм 23^2=529, чуть меньше искомого; тогда 24^2=576, тогда возьмм 23,8^2=566,44..Это близко к 572, значит корень из 572 примерно 23,8..

    И далее продолжая подобные действия можно вычислить корень квадратный из любого числа с требуемой точностью, а также можно вычислить при желании и кубический корень и пр..

  • Конечно,удобно для вычисления квадратного корня использовать таблицу квадратов,но помнить эту таблицу желательно,но не обязательно,да и не все это могут помнить.Конечно квадраты до 30 желательно знать,то есть:чтобы вычислить корень из 3-хзначных чисел.

    Пусть нужно вычислить корень V 105625.

    Сразу обратим внимание на 25 в конце-значит,в ответе- в конце 5.Всегда делим число на цифры по две:10 56 25,число 6-значное,значит,корень скорее всего число 3-хзначное.Первую цифру вычислим из первых двух цифр:

    V (10)>3,то есть корень начинается с цифры 3 ,и заканчивается цифрой 5.

    Далее можно выделять полный квадрат:305^2+2*305*x+ x^2=93025+610x+x^2=

    =105625.Тогда:

    610х+x^2=12600, проанализировав найдм,что 2-я цифра= 2 или 20 в виде 2-х десятков.Для каждого случая своя методика,но разбивать число на двойки -это метод.

  • info-4all.ru