Трансформация ритма возбуждения – 12. Понятие о нервном центре. Особенности проведения возбуждения через нервные центры (одностороннее проведение, замедленное проведение, суммация возбуждения, трансформация и усвоение ритма).

Содержание

одностороннее проведение возбуждения, суммация, трансформация ритма, последействие, утомляемость ,окклюзия, облегчение.

Свойства нервных центров

Полисинаптические связи. Это означает, что каждый нейрон имеет множественные контакты с другими нейронами. Наличие полисинаптических (множественных) контактов между нейронами нервного центра является основным свойством нервных центров, из которого исходят прочие свойства, как следствие полисинаптических связей между нейронами. Уже на уровне нервной цепи синапсами обеспечивается одностороннее проведение возбуждения. В нервном же центре за счёт множественных контактов между нейронами возбуждение может «гулять по кругу», не выходя за пределы нервного центра, а также его можно изменять.

Наличие входов и выходов для возбуждения. В нервном центре можно различить приносящие (афферентные) входы и выносящие (эфферентные) выходы.

Одностороннее проведение возбуждения. Это свойство отдельного синапса и нервной цепи. В нервном центре может быть множество путей между входами и выходами. За счёт обратных связей возможно возвратное движение возбуждения. Но это происходит внутри нервного центра. А если рассматривать нервный центр целиком, то возбуждение приходит внего по приходящим путям, а выходит по эфферентным выходящим. Таким образом, можно говорить об одностороннем проведении возбуждения нервным центром.

Задержка (замедление) проведения возбуждения. В нервных центрах возникает задержка в проведении возбуждения, так называемый латентный (скрытый) период. Задержка обусловлена синаптической передачей возбуждения. Чем больше синапсов участвует в проведении возбуждения, тем более длительной получается задержка.

Суммация возбуждения. Если одновременно подавать возбуждение на несколько входов нервного центра, то на выходе можно получить более сильное возбуждение. Свойством суммации обладает и отдельный нейрон за счёт суммации локальных потенциалов.

Трансформация (преобразование) входящего возбуждения в иное — выходящее. Нервный центр осуществляет изменение, перекодирование поступающих в него потоков импульсов. Трансформация возбуждения — это, пожалуй, самое главное свойство нервного центра. Наиболее известное свойство из этого ряда – трансформация ритма. Нервный центр получает на входе один ритм импульсации, а на выходе дает другой (более медленный или более частый).

Последействие (облегчение). Это означает, что после возбуждения нервного центра он некоторое время ещё сохраняет повышенную возбудимость. Поэтому последующее возбуждение даёт более сильный эффект и получение эффекта от работы нервного центра облегчено.

Утомляемость и низкая лабильность. Лабильность — это предельная частота импульсации, доступная данной нервной структуре. Нервные центры могут пропускать через себя потоки возбуждения с ограниченной частотой импульсации вследствие задержки передачи возбуждения, которая происходит в многочисленных синапсах. Повышенная утомляемость нервных центров объясняется высокой утомляемостью синапсов и ухудшением метаболизма (обменнных процессов) в нейронах после нагрузки.

Тонус. Это означает, что даже без внешнего воздействия нервный центр сохраняет определённый уровень возбудимости и самостоятельно поддерживает у себя определённый уровень возбуждения.

Чувствительность к кислороду и к действию биологически активных веществ (нейротропных). Это создаёт предпосылки к хеморегуляции — химическому управлению деятельностью нервного центра. Например, усиление или ослабление кровоснабжения изменяет работу нервных центров.

Возбудимость (возбуждение). Это способность нервных центров переходить в более возбуждённое состояние, например, при внешнем воздействии на них (стимуляции) или под влиянием других нервных центров.

Торможение («тормозимость»). Это способность нервных центров переходить в менее возбуждённое состояние, например, при внешнем воздействии на них или под влиянием других нервных центров.

Иррадиация возбуждения. Это «растекание возбуждения» по нервному центру, распространение возбуждения на новые участки от места его первоначального появления.

Конвергенция (схождение). Это объединение двух или нескольких входящих потоков возбуждения в один выходящий поток. Т.е. в нервный центр входит больше потоков возбуждения, че выходит из него.

Дивергенция (расхождение). Это разделение входящего потока возбуждения на несколько выходящих потоков. За счёт дивергенции получается, что в нервный центр входит меньше потоков возбуждения, чем выходит из него.

Окклюзия (запирание). Это блокирование одним из входящих потоков возбуждения другого входящего потока. В результате выходящий поток возбуждения получается слабее, чем сумма этих входящих потоков.

Индукция (отдача). Это наведение противоволожного (возбуждённого или тормозного) состояния на другие нервные центры или на себя самого. Для понятия индукции очень важно, что данной структурой наводится именно противоположное состояние, а не то, в котором находится она сама. Так, возбуждённая структура индуцирует торможение, а заторможенная — возбуждение.

Автоматия (спонтанная активность, автономность) нервных центров. Это означает, что даже без внешнего воздействия нервный центр может самостоятельно порождать возбуждение на выходе или поддерживать свой тонус (как бы развлекать сам себя). Объясняется это свойство нервного центра существованием в нём специальных нейронов-пейсмекеров (водителей ритма). В них самопроизвольно возникает возбуждение, независимо от работы их афферентных входов. Таким образом, в нервных центрах может происходить периодическая или постоянная генерация (порождение) нервных импульсов, которые возникают даже при отсутствии входящего возбуждения. Самопроизвольная импульсация пейсмекеров обусловлена колебаниями процессов метаболизма в нейронах и действием на них гуморальных факторов.

Реципрокные (взаимоисключающие) отношения. Это означает, что возбуждение одного нейрона (или центра) подавляет работу другого, связанного с ним, нейрона (или центра).

Пластичность. Это способность перестраивать свою структуру и\или деятельность под влиянием предыдущей деятельности. Пластичность — это одно из важнейших свойств биологических систем, которое отличает их от технических систем.

Адаптация. Нервный центр способен приспосабливаться к новой нагрузке и новым условиям работы.

Компенсаторные возможности. При частичном повреждении нервный центр продолжает свою деятельность за счёт сохранившихся нейронов. Для этого он использует свои способности к пластичности и адаптации.

studfiles.net

Особенности передачи возбуждения в центральных синапсах

Одностороннее проведение. В отличие от нервного волокна, способного проводить возбуждение в обоих направлениях, в центральном синапсе оно распространяется только в одном: от рецептора через вставочные нейроны в эффектора.
Это обусловлено тем, что медиатор, уволенный пресинаптическим окончанием,. поступает в синаптическую щель, действует на рецепторы постсинаптической мембраны, вызывая там ВПСП, а затем ПД в постсинаптической структуре, т.е. синапс работает как клапан.
Замедленное проведения возбуждения. В синапсах ЦНС возбуждение проводится медленнее, чем в нервных волокнах. Это объясняется особенностями синаптической передачи (так называемая синаптическая задержка), а именно диффузией медиатора к постсинаптической мембраны, возникновением ВПСП, нарастанием его до критической величины, генерацией ПД. Точные измерения позволили установить, что для проведения возбуждения через один синапс нужно 2-3 мс. Исходя из этого, можно определить количество синапсов в нейронной сетке, через которые проходит импульс в ЦНС.
Трансформация ритма возбуждения. Способность нервных центров изменять (перерабатывать) ритм импульсов, поступающих к ним, называется трансформацией ритма. Чаще трансформация ритма проявляется в том, что в ответ на одиночный стимул раздражение нервные центры направляют в исполнительного органа
(Эффектора) целый ряд импульсов, поступающих друг за другом с определенной частотой. Этим объясняется возникновение тетанического сокращения скелетной мышцы в ответ на одиночную стимуляцию соответствующего афферентного нерва. Образно говоря, в ответ на одиночный выстрел центр отвечает пулеметной очередью. В основе этого явления лежат главным образом следовые колебания мембранного потенциала, особенно продолжительность следовой отрицательный потенциал. Если следовой отрицательный потенциал, который сопровождает ПД, большой, он может достичь критического уровня деполяризации мембраны и обусловить появление второго импульса. В ряде случаев трансформация вызывается увеличением продолжительности ВПСП, и после окончания первого ПД развиваются следующие.
Суммация возбуждений. Во суммации возбуждений на теле нейрона понимают суммации ЗПСГИ как местного потенциала. Добавление — процесс составления двух или более одинаковых реакций, в результате которого результирующая реакция будет больше по своей величине, чем каждая из ее составляющих.
Интенсивность суммации ВПСП на теле нейрона определяет, будет ли этот нейрон возбужденным, или облегченным (облегчение-длительное повышение возбудимости нейрона в корковом веществе большого мозга), а также частоту разрядов возбужденного нейрона. Частота разрядов нейрона, т.е. частота ПД в серии, которую генерирует нейрон, является важнейшей его функциональной характеристикой. Она позволяет судить об интенсивности возбуждения конкретного нейрона. Чем больше частота разрядов, тем сильнее возбужден нейрон.
Различают временную и пространственную суммация возбуждений. Если ВПСП быстрее (с интервалом около 15 мс) поступают один за одним аксоном, то они добавляются в нейроне, достигая наконец порогового уровня деполяризации, необходимого для генерации ПД. Такая суммация называется временной или последовательной. Если отдельно раздражать каждый из двух аксонов, то возникают только пороговые ВПСП. Одновременное раздражение обоих аксонов приводит суммации этих ВПСП и появление полноценного ПД, способного к распространению. Это явление называют пространственной суммации.
Однако афферентные пути, которые подходят к нейрону, является не только возбуждающими, но и тормозными. Гмпульсы, поступающих этими путями, на теле нейрона превращаются в тормозные постсинаптические потенциалы (ГГ1СП), которые сумуюгься как друг к другу, так и ВПСП (алгебраическая действие). Таким образом, в процессе жизнедеятельности на теле каждого центрального нейрона всегда одновременно осуществляется добавление ВПСП (добавление возбуждений) и ГПСП (добавление торможение). Состояние нейрона, независимо от того, будет он заторможенным или возбужденным (и насколько), всегда определяется суммирование не только ВПСП, а ВПСП и ТПСП.

fiziologija.vse-zabolevaniya.ru

Трансформация ритма возбуждения — КиберПедия

(лат. transformatio преобразование, пре­вращение)

 

Синоним понятия — трансформация частоты следования импульсов.

 

Определение понятия:

Трансформация ритма возбужде­ний — одно из свойств проведения воз­буждения в нервной системе (нервном центре), заключающееся в способности нейрона изменять ритм приходя­щих импульсов.[f]

Существует мнение, что способность трансформировать ритм возбуждения есть только у нейрона, причём у сомы нейрона. А, например, у скелетного миоцита эта способность отсутствует. При этом следует помнить, что скелетный миоцит, как и другие эффекторные клетки, могут играть роль частотного фильтра, т.е воспринимать частоты возбуждения до какой-то предельной.

Например, поступает импульс, идущий с частотой 25 Гц, а нейрон в от­вет на это, возбуждаясь, генерирует 50 Гц, или наоборот, поступает 100 Гц, а выходят 40 Гц.

Особенно четко проявляется трансформация ритма возбуждения при раздражении афферентного волокна одиночными импульсами. На такой импульс нейрон отвечает пачкой импульсов. [g]

Выделяют несколько вероятных механизмов трансформации ритма возбуждения. [h]

В ряде случаев трансформация ритма возбуждения обусловлена возникновением длительного возбуждающего постсинаптического потенциала, на фоне кото­рого развивается несколько спайков. [i]

 

 

Этот механизм трансформации ритма возбуждения возникновением длительного возбуждающего постсинаптического потенциала, объясняет принцип кодирования «сила стимула кодируется частотой импульсов, а не амплитудой»

 

 

Другим механизмом[j] возникновения множественного разря­да импульсов являются следовые колебания мембранного потенциала. Когда его величина достаточно велика, следовые колебания могут привести к достижению критического уровня деполяризации мембраны и обусловливают появление вторичных спайков. [k]

 

 

Как уже отмечалось выше способность трансформировать ритм возбудения приписывают только соме и отказывают в наличии этого свойства аксону. Аксону да, но не аксонному холмику.

От состояния аксонного холмика – порога раздражения – в значительной мере может зависеть направление (урежение или учащение) и выраженность трансформации частоты следования импульсов.

 

Временная суммация

 

 

 

!!! Говоря о трансформации ритма возбуждения лучше всё же говорить не об отдельной клетке (нейроне) или отдельной её части, а о модуле (колонке для коры), ансамбле нейронов, нерном центре.



 

 

Каждый модуль, или нейронный ансамбль, представ­ляет собой совокупность локальных нейронных сетей, которая об­рабатывает информацию, передает ее со своего входа на выход, подвергает трансформации, определяемой общими свойствами струк­туры и ее внешними связями.[l]

Кодирование[m]

 

!!! Говоря о трансформации ритма возбуждения лучше всё же говорить не об изменении частоты, а об изменении паттерна.

 

Принцип доминанты

 

Был открыт А.А.Ухтомским на основании опытов проведенных в 1904-1911 году.

Изучая ответы скелетной мышцы кошки на электрические раздражения коры больших полушарий, он обнаружил, что при акте дефекации ответы мышцы прекращаются. Проана­лизировав этот факт, Ухтомский пришел к мнению о нали­чии в ЦНС явления доминанты.

Речь идет о том, что среди рефлекторных актов, которые могут быть выполнены в дан­ный момент времени, имеются рефлексы, выполнение кото­рых представляет наибольший «интерес» для организма, они в данный момент времени самые важные. Поэтому эти реф­лексы реализуются, а другие — менее важные — тормозятся. А.А.Ухтомский назвал центры, участвующие в реализации до­минантных рефлексов — «доминантным очагом возбуждения».

 

«Доминантный очаг» обладает рядом важных свойств:

1. он стойкий (его сложно затормозить),

2. интенсивность его возбуждения усили­вается слабыми раздражителями:

3. этот очаг тормозит другие потенциальные доминантные очаги.

 

Банунг (нем. Bahnung) — «проторение пути» суммационный рефлекс[n]

 

Инерционность доминанты обусловлена длительными следовыми процессами, механизмы которых детально освещены.[o] В естественных условиях длительное следовое возбуждение может быть обусловлено:

1. суммацией ВПСП приходящих подпороговых импульсов,

2. синаптической потенциацией (облегчением) при ритмическом раздражении пресинаптических входов



3. изменение концентрации К+ в снаптической щели, который как деполяризатор усиливает вхождение Ca++ в пресинаптическое окончание,

4. метаболическими следами, связанными с влиянием медиаторов на циклазные системы постсинаптических клеток,

5. циклическими связями в ЦНС, способными обеспечить следовую самостимуляцию центров.

 

Отчего же именно дан­ный очаг возбуждения является доминантным? Это определя­ется состоянием организма, например, гормональным фоном. У голодного животного доминантными рефлексами являются пищевые. Развитием представления о доминанте являются работы Анохина о функциональной системе, в которой есть блок, принимающий решение. Именно на основе мотиваций и памяти (следов) происходит принятие решения («Что делать в данный момент времени») с учетом, конечно, результатов афферентного синтеза. В настоящее время идет интенсивное изучение конкретных процессов, лежащих в основе становле­ния и формирования доминантных очагов в ЦНС.

Доминанта как один из основных принципов координа­ционной деятельности ЦНС имеет важное значение в жизни человека. Например, именно благодаря доминанте возможно сосредоточение психической (внимание) и выполнение ум­ственной или физической деятельности (в данном случае — это трудовая доминанта). В период поиска пищи, поедания воз­никает пищевая доминанта. Существуют половая, оборони­тельная доминанта.

 

Синаптическая задержка

Время рефлекторной ре­акции зависит в основном от двух факторов: скорости движения возбуждения по нервным проводникам и времени распространения возбуждения с одной клетки на другую через синапс. [p] При относи­тельно высокой скорости распространения импульса по нервному проводнику основное время рефлекса приходится на синаптическую передачу возбуждения (синаптическая задержка).[q]

Синаптическая задержка — замедление скорости распространения возбуждения в синапсе (межклеточном контакте) относительно скорости распространеия возбуждения в клетках возбудимых тканей (нервных, мышечных). Относительно малую скорость распространения возбуждения в синапсе связывают с длительностью процессов вы­деления медиатора из пресинаптического окон­чания, диффузии его по синаптической щели и процесса взаимодействия его с постсинаптичес­кой мембраной. [r]

В нервных клетках высших животных и человека одна синаптическая задержка при­мерно равна 1 мс. [s]

Скорость этих процессов в 10 и более раз меньше, чем скорость распростране­ния возбуждения по нерву. С. з. в химических синапсах обычно равна 0,2—0,5 мс.

Если учесть, что в реальных рефлекторных дугах имеются десятки последовательных синаптических контактов, ста­новится понятной длительность большинства рефлекторных реак­ций — десятки миллисекунд. [t]

 

cyberpedia.su

Основные свойства нервных центров

Различают девять Основные  свойства  нервных  центров:

1. Пространственная и временная суммация

Пространственная и временная суммация основана на свойстве каждого нейрона в центре к суммации как возбуждения, так и тор­можения. Поскольку каждый нервный центр имеет много параллельно расположенных афферентных или входных волокон от рецептивного поля рефлекса, слабые раздражения нескольких участков рецептивного поля, в отдельности не способные реализовать рефлекс, вызывают в нейронах центра несколько ВПСП, которые суммируются, приводя к формированию на мембране нервной клетки потенциалов действия, распространяющихся по эфферентным проводникам, вызывая рефлек­торную реакцию. Это явление называют пространственной суммацией. При увеличении частоты афферентных сигналов в единицу времени амплитуда ВПСП нарастает до критического уровня из-за повышения эффективности синаптического проведения, что также вызывает воз­буждение нейронов и рефлекторный ответ на слабые частые раздра­жения.  Это явление  называют временной  суммацией;

2. Центральная задержка рефлекса

Центральная задержка рефлекса, характеризуется временем рас­пространения  информации  в  структурах   нервного  центра,   главным образом  в синапсах,  где  скорость проведения сигнала  существенно меньше, чем в нервных проводниках.  Поэтому, центральная задерж­ка рефлекса зависит от количества синапсов между нейронами цент­ра  и  представляет собой  сумму синаптических  задержек;

3. Посттетаническая потенциация

Посттетаническая потенциация — увеличение амплитуды ВПСП после серии частых (тетанизирующих) ритмических возбуждений, что связано с временной суммацией частых ВПСП и активацией синап­тического   проведения   из-за   увеличения   числа   квантов   медиатора. Длительность   состояния   потенциации   синапсов   может   достигать нескольких часов,  что играет роль в процессах обучения  и памяти:

4. Последействие и пролонгирование возбуждения

Последействие и пролонгирование возбуждения —  связаны с длительными следовыми потенциалами в нейронах, улучшением синаптического  проведения,   наличием  кольцевых   нейронных   цепей   и реверберацией возбуждения.  Все эти процессы также играют роль в процессах  обучения  и  памяти;

5. Трансформация ритма возбуждений

Трансформация ритма возбуждений, т.е. увеличение или умень­шение частоты нервных импульсов и эфферентных проводниках  (на выходе)   по   сравнению   с   частотой   афферентной   импульсации   (на входе   центра),   что   связано   с   механизмом   синаптической   передачи (трансформация  ритма  как свойство синапса)  и  интегративной де­ятельностью  нейронов;

6. Спонтанная (фоновая) электрическая активность

Спонтанная (фоновая) электрическая активность —  периоди­ческое генерирование импульсов возбуждения (потенциалов действия) нервными клетками центра в состоянии покоя, т.е. без специфичес­ кого раздражения рецептивного поля  рефлекса.  Наличие спонтанной активности обусловлено тем, что организму не свойственно абсо­лютное отсутствие раздражителей или информационный покой, при этом за счет дивергенции и конвергенции возбуждений в нервных сетях нейроны центра всегда получают возбуждающие импульсы и от клеток других нервных центров. В происхождении спонтанной активности нейронов играют роль также метаболические сдвиги внутриклеточной среды и микроокружения клеток, а также суммация миниатюрных потенциалов постсинаптической мембраны, фор­мирующихся  из- за  «утечки»  единичных квантов  медиатора;

studfiles.net

ФИЗИОЛОГИЯ ЦЕНТРАЛЬНОЙ НЕРВНОЙ СИСТЕМЫ (ЦНС):

Нейронные сети. Принципы взаимодействия нейронов в нейронных сетях. Нервный центр. Свойства нервных центров и особенности проведения возбуждения по нервным центрам

Проф. Мухина И.В.

Лекция №7

Лечебный факультет

Нейронные сети мозга – совокупность синаптически связанных нейронов, участвующих в получении, передаче, хранении и воспроизведении информации.

ОСОБЕННОСТИ НЕЙРОННЫХ СЕТЕЙ МОЗГА

1.Активность нейронов при передаче и обработке нервных импульсов регулируется свойствами мембраны, которые могут меняться под воздействием

синаптических медиаторов.

2.Биологические функции нейрона могут меняться и адаптироваться к условиям функционирования.

3.Нейроны объединяются в нейронные сети, основные

типы которых, а также схемы проводящих путей мозга являются генетически запрограммированными.

4.В процессе развития возможно локальное

видоизменение нейронных сетей с формированием новых соединений между нейронами.

5.Нейронные сети взаимодействуют с клетками других типов.

6.Нейронные сети могут формировать функциональные системы.

Нейрон имеет множественные синаптические контакты с другими нейронами

•Три принципа взаимодействия нейронов:

•1. Принцип дивергенции.

•2. Принцип конвергенции.

•3.Циркуляции.

•1. Дивергенция – это способность нервной клетки

устанавливать многочисленные синаптические связи с различными нервными клетками. В результате афферентная информация поступает одновременно к разным участкам ЦНС. Один нейрон может участвовать в нескольких различных реакциях, передавать возбуждение значительному числу других нейронов, обеспечивая широкую иррадиацию возбудительного процесса в

центральных нервных образованиях (кашлевой рефлекс).

•2. Конвергенция – это схождение различных импульсных потоков от нескольких нервных клеток к

одному нейрону. Интегративная функция. Мотонейрон – общий конечный путь двигательной системы (англ. физиол. Шеррингтон)

3

•3. Циркуляция — циркуляция нервного импульса по замкнутой нервной цепочке. Реверберация.

•Нервный центр – это динамическая совокупность нейронов, координированная деятельность которых обеспечивает регуляцию отдельных функций организма или определенный рефлекторный акт.

Закономерности проведения возбуждения по рефлекторной дуге

1.Одностороннее проведение;

2.Замедленное проведение;

3.Суммация подпороговых раздражений;

4.Трансформация ритма возбуждения;

5.Рефлекторное последействие;

6.Посттетаническая потенциация.

• Одностороннее проведение. Обусловлено особенностями проведения возбуждения по химическому синапсу. Медиаторы, к которым рецепторы находятся в постсинаптической мембране, выделяются только в пресинаптическом окончании.

•Замедленное проведение, обусловленное синаптической задержкой в центральной части рефлекторной дуги.Составляет 0.2-0.5 мс и определяет время рефлекса (от начала раздражения до начала ответной реакции).

Синаптическая задержка – время между

 

 

 

 

 

 

 

началом

 

пресинаптической

 

 

 

 

 

 

 

деполяризации

и

 

 

началом

 

 

 

 

 

 

 

постсинаптического потенциала.

 

 

 

 

 

 

Обусловлена:

 

 

 

 

 

 

 

 

 

 

 

 

1.

Временем,

необходимым

для

 

 

 

 

 

 

 

 

 

 

 

3

 

деполяризации нервного окончания;

 

 

 

 

 

 

1

 

2.

Временем

открывания

кальциевых

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

каналов;

временем

 

увеличения

 

 

2

 

 

 

 

внутриклеточной

 

концентрации

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

кальция, который

запускает

процесс

 

 

 

 

 

 

 

экзоцитоза;

 

 

 

 

 

 

 

 

 

 

 

 

3.

Время появления ВПСП.

 

 

 

 

 

 

 

 

 

 

Синаптическая задержка

•Суммация подпороговых раздражений.

•Два типа:

Суммация временная;

•П/п раздражение наносится на одну и ту же точку рецептивного поля. ВПСП быстро следуют друг за другом и суммируются благодаря своему относительно медленному временному ходу ( 15 мс), достигая в конце концов подпорогового уровня (Екр.) в области аксона. Временная суммация ответа обусловлена тем, что ВПСП продолжается дольше, чем рефрактерный период аксона.

Суммация пространственная (одновременная)

•П/п раздражения наносятся одновременно на несколько точек рецептивного поля, в результате конвергенции нейронных входов происходит суммация локальных ответов.

Трансформация ритма возбуждения.

•При ритмическом возбуждении нервный центр перестраивает ритм как понижая, так и повышая частоту следования импульсов.

Понижение связано с низкой лабильностью синапса (максимально – 100 имп/с).

Повышение обусловлено:

1.возникновением повторных разрядов на фоне длительной следовой деполяризации;

2.наличием полисинаптических нервных цепей;

3.циркуляцией импульсов в замкнутых нейронных цепях.

Рефлекторное последействие – продолжение рефлекторной реакции после окончания действия раздражителя. Механизмы те же, что и механизмы повышающей трансформации.

Ритмическая активация синапса часто сопровождается значительным увеличением амплитуды синаптических потенциалов

•Облегчение или потенциация — усиление рефлекторного ответа во время частотного раздражения.

Посттетаническая потенциация – это усиление рефлекторного ответа после тетанических раздражений. Длительность посттетанической потенциации может составлять от нескольких минут до нескольких часов. С функциональной точки зрения посттетаническая потенциация представляет

собой процесс облегчения в ЦНС, связанный с приобретением опыта, т.е. процесс научения, памяти.

•Депрессия – угнетение рефлекторного ответаво время частотного раздражения

СВОЙСТВА НЕРВНЫХ ЦЕНТРОВ:

1.Низкая лабильность (50-100имп/с). Обусловлена скоростью развития синаптической передачи импульса в химическом синапсе.

studfiles.net

12. Понятие о нервном центре. Особенности проведения возбуждения через нервные центры (одностороннее проведение, замедленное проведение, суммация возбуждения, трансформация и усвоение ритма).

Нервный центр — сложное сочетание, “ ансамбль” нейронов, согласованно включающийся в регуляцию определенной функции или в осуществление рефлекторного акта. Клетки нервного центра связаны между собой синаптическими контактами и отличаются огромным разнообразием и сложностью внешних и внутренних связей. В соответствии с выполняемой функцией выделяют чувствительные центры, центры вегетативных функций, двигательные центры и др. Различные нервные центры характеризуются определенной топографией в пределах ЦНС.

в физиологическом смысле нервный центр — это функциональное объединение группировок нервных элементов с целью выполнения сложных рефлекторных актов.

Нервные центры состоят из множества нейронов, связанных между собой еще большим множеством синаптических связей. Это обилие синапсов определяют основные, свойства нервных центров: односторонность проведения возбуждения, замедление проведения возбуждения, сум-мацию возбуждений, усвоение и трансформацию ритма возбуждений, следовые процессы и легкую утомляемость.

Односторонность проведения возбуждения в нервных центрах связана с тем, что в синапсах нервные импульсы проходят только в одном направлении — от синаптиче-ского окончания аксона одного нейрона через синаптиче-скую щель на клеточное тело и дендриты других нейронов. Замедление движения нервных импульсов связано с тем, что «телеграфный», т. е. электрический, способ передачи нервных импульсов в синапсах сменяется химическим, или медиаторным, скорость которого в тысячу раз меньше. Время этой так называемой синаптической задержки импульсов складывается из времени прихода импульса в синаптическое окончание, времени диффузии медиатора в синаптическую щель и его движения к постсинаптической мембране, времени изменения ионной проницаемости мембраны и возникновения потенциала действия, т. е. нервного импульса. В действительности в осуществлении какой-либо реакции человека участвуют сотни и тысячи нейронов и суммарное время задержки проведения нервных импульсов, называемое центральным временем проведения, увеличивается до сотен и более миллисекунд. Например, время реакции водителя с момента включения красного света светофора до начала его ответных действий будет составлять не менее 200 мс. Таким образом, чем больше синапсов на пути движения нервных импульсов, тем больше проходит времени от начала раздражения до начала ответной реакции. Это время называют временем реакции или латентным временем рефлекса. У детей время центральной задержки больше, оно увеличивается также при различных воздействиях на организм человека. При утомлении водителя оно может превышать 1000 мс, что приводит в опасных ситуациях к замедленным реакциям и дорожным авариям. Суммация возбуждений была открыта И. М. Сеченовым в 1863 г. В настоящее время различают пространственную и временную суммацию нервных импульсов. Первая наблюдается при одновременном поступлении к одному нейрону нескольких импульсов, каждый из которых в отдельности является подпороговым раздражителем и не вызывает возбуждение нейрона. В сумме же нервные импульсы достигают необходимой силы и вызывают появление потенциала действия. Временная суммация возникает при поступлении к постсинаптической мембране нейрона серии импульсов, в отдельности не вызывающих возбуждение нейрона. Сумма этих импульсов достигает пороговой величины раздражения и вызывает возникновение потенциала действия. Явление суммации можно наблюдать, например, при одновременном подпороговом раздражении нескольких ре-цепторных зон кожи или при ритмическом подпороговом раздражении одних и тех же рецепторов. И в том и другом случае подпороговые раздражения вызовут ответную рефлекторную реакцию. Усвоение и трансформация ритма возбуждений в нервных центрах были изучены известным русским и советским ученым А. А. Ухтомским (1875—1942) и его учениками. Сущность усвоения ритма возбуждений заключается в способности нейронов «настраиваться» на ритм поступающих раздражений, что имеет большое значение для оптимизации взаимодействия различных нервных центров при организации поведенческих актов человека. С другой стороны, нейроны способны трансформировать (изменять) поступающие к ним ритмические раздражения в свой собственный ритм. После прекращения действия раздражителя активность нейронов, составляющих нервные центры, не прекращается. Время этого последействия, или следовых процессов, сильно варьирует у различных нейронов и в зависимости от характера раздражителей. Предполагают, что явление последействия имеет важное значение в понимании механизмов памяти. Непродолжительное последействие до 1 ч, вероятно, связано с механизмами краткосрочной памяти, а более длительные следы, хранящиеся в нейронах многие годы и имеющие большое значение в обучении детей и подростков, связаны с механизмами долговременной памяти. Наконец, последняя особенность нервных центров — их быстрая утомляемость — также связана в значительной степени с «деятельностью синапсов. Существуют данные, что длительные раздражения приводят к постепенному истощению в синапсах запасов медиаторов, к снижению. чувствительности к ним постсинаптической мембраны. В результате рефлекторные ответные реакции начинают ослабевать и в конечном итоге полностью прекращаются.

studfiles.net

ФИЗИОЛОГИЯ ЦЕНТРАЛЬНОЙ НЕРВНОЙ СИСТЕМЫ (ЦНС):

Нервные центры имеют ряд общих свойств, определяемых наличием синаптических образований и структурой нейронных сетей, образующих эти центры:

• Низкая лабильность (50-100имп/с). Обусловлена скоростью развития синаптической передачи импульса в химическом синапсе.

• Высокая утомляемость. Утомление – временное снижение работоспособности в результате проведенной работы, которое исчезает после отдыха. Причины: а) истощение и несвоевременный синтез медиатора; б) адаптация постсинаптического рецептора к медиатору; в) инактивация рецепторов в результате длительной деполяризации постсинаптической мембраны.

• Высокая чувствительность к недостатку кислорода. Мозг в 22 раза больше потребляет кислорода, чем мышечная ткань. Необратимые изменения наступают в коре через4-5мин, в стволовых клетках – через15-20мин.

• Высокая чувствительность к ацидозу и алкалозу. Снижение рН до 7.0 может вызвать развитие коматозного состояния (диабетическая кома). Повышение рН до7.8-8.0повышает возбудимость нейронов (эпилепсия).

• Высокая чувствительность к фармакологическим веществам(блокаторы нервно-мышечной передачи, психомиметические средства), ядам:

• Токсин Cl. вotulinum – блокада высвобождения возбуждающего медиатора.

• Столбнячный токсин – блокада высвобождения тормозного медиатора.

• Удаление Са2+ или замещение на Мg2+ — блокада высвобождения медиатора

• Гемихолиний – нарушение синтеза медиатора.

• Бунгаротоксин – необратимое связывание сАХ-рецепторами

• Яд кураре – конкурентное связывание сАХ-рецепторами.

• Стрихнин – конкурентное связывание сглицин-рецепторами.

• Бикулин, пикротоксин (судорожные яды), пенициллин – конкурентное связывание сГАМК-рецепторами.

• Фосфоорганические соединения – угнетение холинэстеразы и вследствие этого продолжительная субсинаптическая деполяризация и инактивация рецепторов.

•Релаксанты (сукцинилхолин) – аналоги АХ, но не расщепляющиеся АХЭ, продолжительная деполяризация субсинаптической мембраны и инактивация рецепторов.

•Алкоголизм, привыкание, наркомания.

•Пластичность – способность нервных элементов к перестройке функциональных свойств. Основа:

изменение структуры и функции синапсов. Пластичность обуславливает такие функции ЦНС как научение и память, Свойство пластичности лежит в основе компенсации функции при нарушении за счет формирования новых нейронных связей, синтеза специфических белков.

studfiles.net