Сопротивление заземления – Как измерить сопротивления заземляющих устройств: проверка контура заземления

Содержание

Норма сопротивления контура заземления | Элкомэлектро

О компании » Электролаборатория » Контур заземления » Норма сопротивления контура заземления

Очень часто энергетики спорят на тему, какие должны быть нормы растекания тока контура заземления? Какова величина сопротивления контура заземления? Какое допустимое сопротивление контура заземления? Как правило, в таких спорах можно услышать разные цифры, одни называют 4 Ом, от других можно услышать 20 Ом, некоторые специалисты говорят, что сопротивление контура заземлителя не нормируется. Так какие же должны быть нормы и почему такая путаница?

Какие бывают испытания?

Начну с того, что поясню, какие бывают испытания.  Электролаборатория проводит приёмо-сдаточные или эксплуатационные испытания. Приёмо-сдаточные испытания проводятся после окончания монтирования новой электроустановки, после того как, электроустановка смонтирована и сдана в эксплуатацию, с этого момента начинаются эксплуатационные испытания. Соответственно приёмо-сдаточные испытания проводятся только один раз, после окончания электромонтажных работ, а эксплуатационные испытания проводятся периодически, в процессе эксплуатации.

И так, существуют приёмо-сдаточные и эксплуатационные испытания. Приёмо-сдаточные испытания регламентируются Правилами Устройства Электроустановок (ПУЭ), а эксплуатационные Правилами технической эксплуатации электроустановок потребителей (ПТЭЭП).

Почему спорят специалисты?

Наконец, мы подошли к самому главному. Почему спорят специалисты, почему такие разные цифры они называют?

Во первых, нужно понять о каких испытаниях идёт речь. Если разговор идёт о приёмо-сдаточных испытаниях, то ответ нужно смотреть в ПУЭ, Глава 1.8, Нормы приёмо-сдаточных испытаний, а если об эксплуатационных, то ответ ищем в ПТЭЭП, Приложение 3, Нормы испытаний электрооборудования и аппаратов электроустановок потребителей.

Во вторых нужно понять предназначение контура заземления. Контур заземления бывает для подстанций и распределительных пунктов выше 1000 Вольт, воздушных линий электропередач до 1000 Вольт и выше 1000 Вольт и электроустановок до 1000 Вольт.

Какие нормы?

1. Контур заземления для электроустановки напряжением до 1000 Вольт:

ПУЭ, п. 1.8.39, таблица 1.8.38, п. 3

гласит: при измерении в непосредственной близости к трансформаторной подстанции, сопротивление контура заземления должно быть: 15, 30 или 60 Ом, при измерении с учетом естественных заземлителей и повторных заземлителей отходящих линий: 2, 4 или 8 Ом соответственно для напряжений 660, 380 и 220 Вольт.

ПТЭЭП, Приложение № 3, таблица 36 гласит: сопротивление контура заземления — 15, 30 или 60 Ом для напряжений сети 660-380, 380-220 и 220-127 Вольт соответственно (трёхфазная/однофазная сеть), а при измерении с учётом присоединённых повторных заземлений должно быть не более 2, 4 и 8 Ом при напряжениях соответственно 660, 380 и 220 Вольт источника трехфазного тока и напряжениях 380, 220 и 127 Вольт источника однофазного тока.

2. Контур заземления для трансформаторной подстанции и распредпунктов напряжением больше 1000 Вольт:

ПУЭ, п. 1.8.39, таблица 1.8.38, п. 1 гласит: при измерении в электроустановке с глухозаземленной и эффективно заземленной нейтралью, должно быть не более 0,5 Ом.

ПТЭЭП, Приложение № 3, таблица 36 гласит: при измерении в электроустановке напряжением 110 кВ и выше, в сетях с эффективным заземлением нейтрали, сопротивление контура должно быть не более 0,5 Ом.

В электроустановке 3 — 35 кВ сетей с изолированной нейтралью — 250/Ip, но не более 10 Ом, где Ip — расчетный ток замыкания на землю.

3. Контур заземления воздушной линии электропередачи напряжением выше 1 кВ:

ПУЭ, п. 1.8.39, таблица 1.8.38, п. 2 гласит: Заземляющие устройства опор высоковольтной линии (ВЛ) при удельном сопротивлении грунта, ρ, Ом·м: 100/100-500/500-1000/1000-5000 – 10, 15, 20 и 30 Ом соответственно.

ПТЭЭП, Приложение № 31, таблица 35, п. 4 гласит:

А. Для воздушных линий электропередач на напряжение выше 1000 В: Опоры, имеющие грозозащитный трос или другие устройства грозозащиты, металлические и железобетонные опоры ВЛ 35 кВ и такие же опоры ВЛ 3 — 20 кВ в

населенной местности, заземлители оборудования на опорах 110 кВ и выше: 10, 15, 20 или 30 Ом при удельном сопротивлении грунта, соответственно: 100, 100-500, 500-1000, 1000-5000 Ом·м.

Б. Для воздушных линий электропередач на напряжение до 1000 Вольт: Опора ВЛ с грозозащитой – 30 Ом, Опоры с повторными заземлителями нулевого провода – 15, 30 и 60 Ом для напряжений питающей сети 660-380, 380-220 и 220-127 Вольт (трёхфазная/однофазная сеть) соответственно.

Подведём итог

Для электромонтажников, работающих в сетях напряжением ниже 1000 Вольт:

Сопротивление растекания контура заземления на вновь построенной электроустановке

должно быть 15, 30 или 60 Ом или 2, 4 и 8 Ом при измерении с присоединёнными естественными заземлителями и повторными заземлителями отходящих линий для напряжений питающей сети 660-380, 380-220 или 220-127 Вольт (трёхфазная/однофазная сеть) соответственно.

Сопротивление растекания контура заземления на уже эксплуатирующейся электроустановке, тоже 15, 30 и 60 Ом или 2, 4, 8 Ом при измерении с присоединёнными естественными и повторными заземлителями для напряжений сети 660-380, 380-220 и 220-127 Вольт (трёхфазная/однофазная сеть) соответственно.

Как видим, значения сопротивления контура заземления одинаковы, не зависимо от вида испытаний, но разные в зависимости от назначения контура заземления!

www.megaomm.ru

Сопротивление заземления

Сопротивление заземления (сопротивление растеканиЮ электрического тока) определяется как величина «противодействия» растеканию электрического тока в земле, поступающего в нее через заземлитель.

Измеряется в Ом и должно иметь минимально низкое значение. Идеальный случай — нулевая величина, что означает отсутствие какого-либо сопротивления при пропускании «вредных» электротоков, что гарантирует их ПОЛНОЕ поглощение землей.

Так как идеала достигнуть невозможно, все электрооборудование и электроника создаются исходя из некоторых нормированных величин сопротивления заземления = 60, 30, 15, 10, 8, 4, 2, 1 и 0,5 Ом.

  • для частных домов, с подключением к электросети 220 Вольт / 380 Вольт необходимо иметь локальное заземление с рекомендованным сопротивлением не более 30 Ом

    При подключении локального заземления к нейтрали трансформатора / генератора в системе TN суммарное сопротивление заземления (локального + всех повторных + заземления трансформатора / генератора) должно быть не более 4 Ом

    (ПУЭ 1.7.101). Данное условие выполняется без каких-либо дополнительных мероприятий при правильном заземлении источника тока (трансформатора либо генератора)

Подробнее об этом на странице «Заземление дома».

  • при подключении газопровода к дому должно выполняться стандартное требование для заземления дома. Однако из-за использования опасного оборудования необходимо выполнять локальное заземление с сопротивлением не более 10 Ом
    (ПУЭ 1.7.103; для всех повторных заземлений)

    Подробнее об этом на странице «Заземление газового котла / газопровода».


  • для заземления, использующегося для подключения молниеприемников, сопротивление заземления должно быть не более
    10 Ом
    (РД 34.21.122-87, п. 8)

    Подробнее об этом на странице «Молниезащита и заземление».


  • для источника тока (генератора или трансформатора) сопротивление заземления должно быть не более 2, 4 и 8 Ом соответственно при линейных напряжениях 660, 380 и 220 В источника трехфазного тока или 380, 220 и 127 В источника однофазного тока (ПУЭ 1.7.101)

  • для уверенного срабатывания газовых разрядников в устройствах защиты воздушных линий связи (например, локальная сеть на основе медного кабеля или радиочастотный кабель) сопротивление заземления, к которому они (разрядники) подключаются должно быть не более
    2 Ом
    . Встречаются экземпляры с требованием в 4 Ом.

  • при подключении телекоммуникационного оборудования, заземление обычно должно иметь сопротивление
    не более 2 или 4 Ом

  • для подстанции 110 кВ сопротивление растеканию токов должно быть не более 0,5 Ом (ПУЭ 1.7.90)

Приведенные выше нормы сопротивления заземления справедливы для нормальных грунтов с удельным электрическим сопротивлением
не более 100 Ом*м (например, глина / суглинки).

Если грунт имеет более высокое удельное электрическое сопротивление — то часто (но не всегда) минимальные значения сопротивление заземления повышаются на величину

0,01 от удельного сопротивления грунта.

Например, при песчаных грунтах с удельным сопротивлением
500 Ом*м минимальное сопротивление локального заземления дома с системой TN-C-S повышается в 5 раз — до 150 Ом (вместо 30 Ом).

Расчет сопротивления заземления

Для расчета сопротивления заземления существуют специальные формулы и методики, описывающие зависимости от описанных факторов. Они представлены на странице «Расчет заземления».

 

Качество заземления

Сопротивление заземления является основным качественным показателем заземлителя и напрямую зависит от:

  • удельного сопротивления грунта
  • конфигурации заземлителя, в частности: площади электрического контакта электродов заземлителя с грунтом

 

Удельное сопротивление грунта

Параметр определяет собой уровень «электропроводности» земли как проводника = как хорошо будет растекаться в такой среде электрический ток, поступающий от заземлителя. Чем меньший размер будет иметь эта величина, тем меньше будет сопротивление заземления.

Удельное электрическое сопротивление грунта (Ом*м) — это измеряемая величина, зависящая от состава грунта, размеров и плотности прилегания друг к другу его частиц, его влажности и температуры, концентрации в нем растворимых химических веществ (солей, кислотных и щелочных остатков).

Обычно используется таблица ориентировочных величин «удельное сопротивление грунта», т.к. его точное измерение возможно только в ходе проведения специальных геологических изыскательных работ.

 

Конфигурация заземлителя

Сопротивление заземления напрямую зависит от площади электрического контакта электродов заземлителя с грунтом, которая должна быть как можно большей. Чем больше площадь поверхности заземлителя, тем меньше сопротивление заземления.

Чаще всего, из-за наименьшей сложности монтажа, в роли заземлителя используется вертикальный электрод в виде стержня/трубы/уголка.

Для увеличения площади контакта заземлителя с грунтом:

  • увеличивается длина (глубина) электрода
  • используется несколько соединенных вместе коротких электродов, размещенных на некотором расстоянии друг от друга (контур заземления). В таком случае площади единичных электродов просто складываются вместе, что подробно описано на отдельной странице о расчете заземления.

www.zandz.ru

Сопротивление контура заземления — Всё о электрике в доме

Контур заземления по нормам ПУЭ

Чтобы контур заземления эффективно выполнял свои функции, необходимо использование норм, которые приведены в «Правилах устройства электроустановок». Они утверждены Министерством энергетики России, приказом от 08. 07. 2002 г. Сейчас действительной является седьмая редакция. Но перед реализацией конкретного проекта необходимо уточнить новейшие изменения. Так как далее в статье есть ссылки на этот документ, будут применяться следующие сокращения: «ПУЭ», или «Правила».

Типовые схемы контуров заземления дома

Для чего выполнять требования

Может показаться, что неукоснительное соблюдение Правил избыточно, необходимо только для прохождения официальных проверок, ввода в действие объекта недвижимости. Конечно, это не так.

Нормативы созданы на основе научных знаний и практического опыта. В ПУЭ есть следующие сведения:

  • Формулы для расчетов отдельных параметров защитной системы.
  • Таблицы с коэффициентами, которые помогают учесть электротехнические характеристики разных проводников.
  • Порядок проведения испытаний и проверок.
  • Специализированные организационные мероприятия.

Применение на практике этих нормативов позволит предотвратить поражение электрическим током людей и животных. Создание контура должно быть безупречным, в точном соответствии с Правилами. Это снизит вероятность возгораний при авариях, поможет исключить развитие негативных процессов, способных нанести ущерб имуществу.

В данной статье рассматриваются вопросы защиты частного дома. Таким образом, будут изучаться те разделы ПУЭ, которые относятся к работе с напряжением до 1 000 V.

Составные части системы

Ключевым параметром данной системы является сопротивление заземления. Сопротивление заземления должно быть настолько малым, чтобы именно по такому пути шел ток при возникновении аварийной ситуации. Это обеспечит защиту при случайном прикосновении человека к поверхности, на которую подано напряжение.

Специалисты рекомендуют подключать бытовую технику к системе заземления

Для получения необходимого результата шасси и корпуса бытовых устройств дома соединяют с главной шиной заземляющего устройства, создается внутренний контур. К нему же подключают металлические элементы конструкции здания, трубы водопровода. Подробно состав такой системы выравнивания потенциалов описан в ПУЭ (п.1.7.82). Снаружи строения устанавливается другая часть защиты, внешний контур. Его также подключают к главной шине. Для оснащения частного дома можно использовать разные схемы. Но проще всего заглубить в землю металлические стержни.

В следующем списке приведены отдельные компоненты системы и требования к ним:

  • Провода, которыми подсоединяются утюги, стиральные машины и другие конечные потребители. Они находятся внутри сетевого кабеля, поэтому необходимо только наличие соответствующей линии заземления, подключенной к розетке. В некоторых ситуациях, при установке варочных панелей, духовых шкафов, иного встроенного в мебель оборудования, требуется подсоединение корпусов отдельным проводом.
  • В качестве общей шины можно использовать не только специальный провод, но и «естественные» проводники такие, как металлические каркасы зданий. Исключения и точные правила будут рассмотрены ниже. Здесь же надо отметить, что этот участок прохождения тока надо создавать так, чтобы предотвратить механические повреждения в процессе эксплуатации.
  • Наружный контур частного дома создают из металлических элементов без изоляции. Это увеличивает вероятность разрушения процессом коррозии. Для снижения этого негативного воздействия используют цветные металлы. Места сварных соединений стальных деталей покрывают битумными смесями и другими составами аналогичного назначения.
  • Реальное сопротивление заземляющего устройства такого типа будет зависеть от характеристик грунта. Глина и сланцы хорошо удерживают влагу, а песок – плохо. В каменистых грунтах сопротивление слишком велико, поэтому понадобится искать другое место для установки, или погружать заземлитель еще глубже. В особо засушливые периоды, чтобы сохранить функциональность устройства рекомендуется регулярный полив почвы.

Почвы обладают разной проводимостью

Проводники системы заземления

Частью внутреннего контура являются изолированные провода. Их оболочки делают цветными (чередующиеся зеленые и желтые продольные полосы). Такое решение уменьшает ошибочные действия при выполнении монтажных операций. Подробно требования изложены в разделе «Защитные проводники» Правил, начиная с раздела 1.7.121.

В частности, там приведена методика простого расчета допустимой площади изолированного проводника в сечении (без поверхностного слоя). Если фазный провод меньше, или не превышает 16 мм 2. то выбирают равные диаметры. При увеличении размеров применяют иные пропорции.

Для точных расчетов используется формула из пункта 1.7.126 ПУЭ:

  • S – сечение проводника заземления в мм 2 ;
  • I – ток, проходящий по нему при коротком замыкании;
  • t – это время в секундах, за которое автомат разорвет цепь питания;
  • k – специальный комплексный коэффициент.

Величина тока должна быть достаточной для срабатывания автомата за время, не превышающее пяти секунд. Чтобы система была рассчитана с определенным запасом, выбирают ближайшее большее по типоразмеру изделие. Специальный коэффициент берут из таблиц 1.7.6. 1.7.7. 1.7.8. и 1.7.9. Правил.

Если планируется использовать многожильный алюминиевый кабель, в котором один из проводников – защитный, то применяют следующие коэффициенты с учетом разных изоляционных оболочек.

Таблица коэффициентов с учетом типа изоляционных оболочек

В качестве следующих элементов внутреннего контура частного дома допустимо применение конструкционных деталей. Подойдет металлическая арматура, которая находится внутри железобетонных изделий.

При использовании такого варианта обеспечивается непрерывность цепи, предпринимаются дополнительные меры для защиты от механических воздействий. Учитываются особенности конкретного строения, структурные деформации, которые возникают в процессе усадки.

Не разрешается использовать:

  • Части трубопроводных систем газоснабжения, канализации, отопления, газоснабжения.
  • Трубы водоснабжения из металла, если они соединяются с применением прокладок, изготовленных из полимеров, иных диэлектрических материалов.
  • Стальные струны, использующиеся для крепления светильников, гофрированные оболочки, иные недостаточно прочные проводники, либо изделия, находящиеся под относительно большой для их параметров загрузкой.

Если используется отдельный медный проводник, не входящий в состав кабеля цепи питания, или он находится не в общей изоляционной, защитной оболочке с фазными проводами, допустимо следующее минимальное сечение в мм 2 :

  • при дополнительной защите от механических воздействий – 2,5;
  • в случае отсутствия таких предохранительных средств – 4.

Этот медный проводник не защищен от случайного механического повреждения

Алюминий менее прочен по сравнению с медью. Поэтому сечение проводника из такого металла (вариант – отдельная прокладка) должно быть равно, или более следующей нормы: 16 мм 2 .

Какое должно быть сечение проводников внешнего контура заземления дома можно посмотреть в таблице ниже.

Сечение проводников внешнего контура заземления

Здесь приведены минимально допустимые нормы. Определенная величина проводника установлена с учетом большей устойчивости цветных металлов к процессам окисления, относительно небольшой механической прочности алюминия, других важных факторов.

При проходе через внешнюю толстую стену дома проще просверлить тонкое отверстие. Его изнутри можно укрепить трубкой подходящих размеров. Медный провод не сложно будет согнуть под углом для присоединения к стальной шине внешнего контура.

Допустимое сопротивление заземляющего устройства определено в п. 1.7.101 ПУЭ. Сводные нормы приведены в таблице ниже.

Нормы допустимого сопротивления заземляющего устройства

При подсоединении заземлителя к нейтрали генератора, или другого источника

Приведенные выше нормы справедливы для случаев, когда сопротивление грунта (удельное) не превышает порог R=100 Ом на метр. В противном случае допустимо увеличение сопротивления с умножением исходного значения на R*0,01. Итоговое сопротивление заземлителя не должно быть больше, чем в 10 раз исходного значения.

За городом для подключения дома часто используют воздушные линии электропередачи. Поэтому уместно упомянуть нормы ПУЭ, относящиеся к соответствующей ситуации. Если проводник одновременно выполняет функции защитного и нулевого (PEN-типа), то на концах таких линий, участках подключения потребителей устанавливают устройство повторного заземления. Как правило, такие действия обязана выполнить энергетическая компания, но хозяину дома следует сделать соответствующую проверку. В качестве заземлителя используют металлические части опор, заглубленные в грунт.

Заземление воздушной линии электропередачи

При выборе комплектующих элементов личного внешнего контура, который будет установлен в земле, используют следующие нормы ПУЭ.

Параметры комплектующих элементов внешнего контура заземления по нормам ПУЭ

Профиль
изделия в
сечении

Круглый (для
вертикальных
элементов
системы
заземления)

Круглый (для горизонтальных
элементов
системы
заземления)

Если повышен риск повреждения горизонтальных участков окислительными процессами, применяют следующие решения:

  • Увеличивают площадь сечения проводников выше нормы, указанной в ПУЭ.
  • Применяют изделия с гальваническим поверхностным слоем, либо изготовленные из меди.

Траншеи с горизонтальными заземлителями засыпают грунтом с однородной структурой, без мусора. Повысить сопротивление способно чрезмерное осушение грунта, поэтому в летние периоды, когда долго нет дождей, специально поливают соответствующие участки.

При прокладке контура заземления избегают соседства с трубопроводами, повышающими искусственно температуру почвы.

Какое должно быть сопротивление

Прочность металлических проводников, их электрическое сопротивление определить несложно. Если должно быть определенное сопротивление по ПУЭ, то соблюдение правил не будет чрезмерно сложным. Так, например, для заземления опор воздушных линий установлен максимально допустимый норматив 10 Ом, если эквивалентное сопротивление грунта не превышает 100 Ом*м (Таблица 2.5.19.). Целостность сварных соединений обеспечивают дополнительной защитой антикоррозийным слоем. При риске разрыва в процессе сдвижек почвы, или деформации строения, соответствующий участок делают из гибкого кабеля.

Но гораздо больше проблем возникает с землей. В этой неоднородной среде, подверженной самым разным внешним воздействиям, одинаковая величина проводимости в течение длительного времени невозможна. Именно поэтому в ПУЭ отдельный раздел посвящен устройствам заземления, которые устанавливаются в почвах с большим удельным сопротивлением (нормы по пунктам 1.7.105. – 1.7.108.).

Ниже перечислены основные рекомендации для таких случаев:

  • Используются металлические элементы (заземлители вертикального типа) увеличенной длины. В частности, допустимо подсоединение к трубам, установленным в артезианские скважины.
  • Заземлители переносят на большое расстояние от дома (не более 2000 м), туда, где сопротивление почвы (Ом) меньше.
  • В скальных и других «сложных» породах прокладывают траншеи, в которые засыпают глину или другой подходящий грунт. Туда, в свою очередь, устанавливают элементы системы заземления горизонтального типа.

Горизонтальные заземлители в системе заземления

Если удельное сопротивление грунта превышает 500 Ом на м, а создание заземлителя сопряжено с чрезмерными затратами, разрешено превышение нормы заземляющих устройств не более чем в 10 раз. Используется следующая формула для вычисления. Точное значение должно быть: R * 0,002. Здесь величина R – это удельное эквивалентное сопротивление грунта, в Ом на м.

Внутренний и внешний контур

Как правило, главную шину внутри здания устанавливают внутри устройства ввода. Ее допустимо изготавливать только из стали или из меди. Применение алюминия в данном случае не разрешено. Предпринимают меры, предотвращающие свободный доступ к ней посторонних людей. Шина размещается в запирающемся шкафчике, или в отдельном помещении.

  • металлические элементы конструкции здания;
  • проводник внешнего контура заземления;
  • проводники РE и PEN типов;
  • металлические трубопроводы и проводящие части систем водоснабжения, кондиционирования и вентиляции.

Внешний контур дома создают, учитывая перечисленные выше нормы ПУЭ по отдельным частям системы. Это позволит получить необходимое минимальное сопротивление системы заземления (Ом), которое достаточно для надежной защиты. Для повторного заземления рекомендуется использовать заземлители естественного типа.

Сопротивление (Ом) повторного заземлителя не определено четко положениями ПУЭ.

Ниже приведены некоторые важные особенности стандартного заземлителя частного дома:

  • Основную часть, вертикальные элементы, устанавливают на небольшом удалении от дома, с учетом параметров грунтов.
  • К ним прокладывают траншею глубиной до 0,8 м и не менее 0,4 м шириной, в которой устанавливаются горизонтальные участки цепи. Точной нормы нет, но размеры траншеи должны быть достаточными для беспрепятственного монтажа элементов.
  • Вертикальные заземлители длиной до 3 м устанавливают в углах равностороннего (по 3 м) треугольника. Эти размеры приведены в качестве примера. Точных нормативов по длине нет. Есть нормы только по максимально допустимому сопротивлению защитной системы.
  • Чтобы проще было забивать их в грунт, концы заостряют.
  • К выступающим частям сварным соединением крепят полосы.
  • Траншеи засыпают равномерным по структуре грунтом, не содержащим щебня.

Монтаж внешнего контура заземления частного дома

Если в цепи заземления применяются болтовые соединения, предпринимают меры против их раскручивания. Как правило, соответствующие узлы приваривают.

Видео. Заземление своими руками

Нормы для испытательных процедур изложены в главе 1.8 ПУЭ, а также в «Правилах технической эксплуатации электроустановок потребителей» (ПТЭЭП, пр. 3.1), действующих с 1.07.2003 г. на основании решения Министерства энергетики России (приказ от 13. 01. 2003 г.). Выполняется визуальный контроль, проверяется целостность соединений. По специальной методике выясняется сопротивление контура системы заземления. Измеренное значение не должно быть выше нормы (Ом). Если такое условие не выполнено, используют заземлитель большей длины или иные технологии, приведенные в данной статье.

Норма сопротивления контура заземления

Очень часто энергетики спорят на тему, какие должны быть нормы растекания тока контура заземления? Какова величина сопротивления контура заземления? Какое допустимое сопротивление контура заземления? Как правило, в таких спорах можно услышать разные цифры, одни называют 4 Ом, от других можно услышать 20 Ом, некоторые специалисты говорят, что сопротивление контура заземлителя не нормируется. Так какие же должны быть нормы и почему такая путаница?

Какие бывают испытания?

Начну с того, что поясню, какие бывают испытания. Электролаборатория проводит приёмо-сдаточные или эксплуатационные испытания. Приёмо-сдаточные испытания проводятся после окончания монтирования новой электроустановки, после того как, электроустановка смонтирована и сдана в эксплуатацию, с этого момента начинаются эксплуатационные испытания. Соответственно приёмо-сдаточные испытания проводятся только один раз, после окончания электромонтажных работ, а эксплуатационные испытания проводятся периодически, в процессе эксплуатации.

И так, существуют приёмо-сдаточные и эксплуатационные испытания. Приёмо-сдаточные испытания регламентируются Правилами Устройства Электроустановок (ПУЭ), а эксплуатационные Правилами технической эксплуатации электроустановок потребителей (ПТЭЭП).

Почему спорят специалисты?

Наконец, мы подошли к самому главному. Почему спорят специалисты, почему такие разные цифры они называют?

Во первых, нужно понять о каких испытаниях идёт речь. Если разговор идёт о приёмо-сдаточных испытаниях, то ответ нужно смотреть в ПУЭ, Глава 1.8, Нормы приёмо-сдаточных испытаний, а если об эксплуатационных, то ответ ищем в ПТЭЭП, Приложение 3, Нормы испытаний электрооборудования и аппаратов электроустановок потребителей.

Во вторых нужно понять предназначение контура заземления. Контур заземления бывает для подстанций и распределительных пунктов выше 1000 Вольт, воздушных линий электропередач до 1000 Вольт и выше 1000 Вольт и электроустановок до 1000 Вольт.

1. Контур заземления для электроустановки напряжением до 1000 Вольт:

ПУЭ, п. 1.8.39, таблица 1.8.38, п. 3 гласит: при измерении в непосредственной близости к трансформаторной подстанции, сопротивление контура заземления должно быть: 15, 30 или 60 Ом, при измерении с учетом естественных заземлителей и повторных заземлителей отходящих линий: 2, 4 или 8 Ом соответственно для напряжений 660, 380 и 220 Вольт.

ПТЭЭП, Приложение № 3, таблица 36 гласит: сопротивление контура заземления — 15, 30 или 60 Ом для напряжений сети 660-380, 380-220 и 220-127 Вольт соответственно (трёхфазная/однофазная сеть), а при измерении с учётом присоединённых повторных заземлений должно быть не более 2, 4 и 8 Ом при напряжениях соответственно 660, 380 и 220 Вольт источника трехфазного тока и напряжениях 380, 220 и 127 Вольт источника однофазного тока.

2. Контур заземления для трансформаторнойподстанции и распредпунктов напряжением больше 1000 Вольт:

ПУЭ, п. 1.8.39, таблица 1.8.38, п. 1 гласит: при измерении в электроустановке с глухозаземленной и эффективно заземленной нейтралью, должно быть не более 0,5 Ом.

ПТЭЭП, Приложение № 3, таблица 36 гласит: при измерении в электроустановке напряжением 110 кВ и выше, в сетях с эффективным заземлением нейтрали, сопротивление контура должно быть не более 0,5 Ом.

В электроустановке 3 — 35 кВ сетей с изолированной нейтралью — 250/Ip, но не более 10 Ом, где Ip — расчетный ток замыкания на землю.

3. Контур заземлениявоздушной линии электропередачи напряжением выше 1 кВ:

ПУЭ, п. 1.8.39, таблица 1.8.38, п. 2 гласит: Заземляющие устройства опор высоковольтной линии (ВЛ) при удельном сопротивлении грунта, ρ, Ом·м: 100/100-500/500-1000/1000-5000 – 10, 15, 20 и 30 Ом соответственно.

ПТЭЭП, Приложение № 31, таблица 35, п. 4 гласит:

А. Длявоздушныхлиний электропередач на напряжение выше 1000 В: Опоры, имеющие грозозащитный трос или другие устройства грозозащиты, металлические и железобетонные опоры ВЛ 35 кВ и такие же опоры ВЛ 3 — 20 кВ в
населенной местности, заземлители оборудования на опорах 110 кВ и выше: 10, 15, 20 или 30 Ом при удельном сопротивлении грунта, соответственно: 100, 100-500, 500-1000, 1000-5000 Ом·м.

Б. Длявоздушныхлиний электропередач на напряжение до 1000 Вольт: Опора ВЛ с грозозащитой – 30 Ом, Опоры с повторными заземлителями нулевого провода – 15, 30 и 60 Ом для напряжений питающей сети 660-380, 380-220 и 220-127 Вольт (трёхфазная/однофазная сеть) соответственно.

Для электромонтажников, работающих в сетях напряжением ниже 1000 Вольт:

Сопротивление растекания контура заземления на вновь построенной электроустановке должно быть 15, 30 или 60 Ом или 2, 4 и 8 Ом при измерении с присоединёнными естественными заземлителями и повторными заземлителями отходящих линий для напряжений питающей сети 660-380, 380-220 или 220-127 Вольт (трёхфазная/однофазная сеть) соответственно.

Сопротивление растекания контура заземления на уже эксплуатирующейся электроустановке, тоже 15, 30 и 60 Ом или 2, 4, 8 Ом при измерении с присоединёнными естественными и повторными заземлителями для напряжений сети 660-380, 380-220 и 220-127 Вольт (трёхфазная/однофазная сеть) соответственно.

Как видим, значения сопротивления контура заземления одинаковы, не зависимо от вида испытаний, но разные в зависимости от назначения контура заземления!

Как измерить сопротивление контура заземления – обзор методик

15.08.2016 нет комментариев 10 223 просмотров

Измерение сопротивления заземления нужно выполнять, чтобы удостовериться, что оно совпадает с требованием ПУЭ (правила устройства электроустановок) гл. 1.8. а также ПТЭЭП пр. 3,3.1. Замеры, которые проводятся в электроустановке с глухо заземленной нейтралью (напряжение которых составляет ниже 1000В) должны соответствовать следующим нормам. Неважно, зимой или летом, значение не должно превышать отметку 8, 4 и 2 Ом при напряжении 220, 380, 660 В (для источников с трехфазным током) соответственно, или 127, 220 и 380 В для источников с однофазным током. Для электроустановок, где используется изолированная нейтраль (напряжение ниже 1000В) сопротивление заземляющего контура должно соответствовать п 1.7.104 ПУЭ и рассчитывается по формуле Rз * Iз < 50 В. Ниже мы рассмотрим основные методики замеров контура, а также приборы, которые можно для этого использовать.

Обзор методик

Метод амперметра-вольтметра

Для проведения измерительных работ необходимо искусственно собрать электрическую цепь, в которой ток течет через испытуемый заземлитель и токовый электрод (его еще называют вспомогательным). Также в этой схеме задействуется потенциальный электрод, назначение которого – замер падения напряжения во время протекания электрического тока по заземлителю. Потенциальный электрод нужно расположить одинаково далеко от токового электрода и испытуемого заземлителя, в зоне с нулевым потенциалом.

Чтобы измерить сопротивление методом амперметра-вольтметра необходимо воспользоваться законом Ома. Итак, по формуле R=U/I находим сопротивление контура заземления. Такой метод хорошо подходит для измерений в частном доме. Чтобы получить нужный измерительный ток можно воспользоваться сварочным трансформатором. Также подойдут и другие виды трансформаторов, вторичная обмотка которых электрически не связана с первичной.

Использование специальных приборов

Сразу отметим, что даже для измерений в домашних условиях многофункциональный мультиметр не сильно подойдет. Чтобы измерить сопротивление контура заземления своими руками используются аналоговые приборы:

Рассмотрим, как измерить сопротивление прибором М-416. Сначала нужно убедиться, что у прибора есть питание. Проверим наличие батареек. Если их нет, нужно взять 3 элемента питания напряжением 1,5 В. В итоге получим 4,5 В. Готовый к использованию прибор нужно поставить на ровную горизонтальную поверхность. Далее калибруем прибор. Ставим его в положение «контроль» и, удерживая красную кнопку, выставляем стрелку на значении «ноль». Для измерения будем пользоваться трехзажимной схемой. Вспомогательный электрод и стержень зонда забиваем не менее чем на полметра в грунт. Подсоединяем к ним провода прибора по схеме.

Переключатель на приборе устанавливается в одно из положений «Х1». Зажимаем кнопку и крутим ручку, пока стрелка на циферблате не сравняется с отметкой «ноль». Полученный результат необходимо умножить на ранее выбранный множитель. Это и будет искомое значение.

На видео наглядно демонстрируется, как измерить сопротивления заземления прибором:

Также могут быть использованы более современные цифровые приборы, которые намного упрощают работы по замерам, более точны и сохраняют последние результаты измерений. Например, это приборы серии MRU – MRU200, MRU120, MRU105 и др.

Работа токовыми клещами

Сопротивление контура заземления можно измерять также токовыми клещами. Их преимущество в том, что нет необходимости отключать заземляющее устройство и применять вспомогательные электроды. Таким образом, они позволяют достаточно оперативно вести контроль за заземлением. Рассмотрим принцип работы токовых клещей. Через заземляющий проводник (который в данном случае является вторичной обмоткой) протекает переменный ток под воздействием первичной обмотки трансформатора, которая находится в измерительной головке клещей. Для расчета величины сопротивления необходимо разделить значение ЭДС вторичной обмотки на величину тока, измеренную клещами.

В домашних условиях можно использовать токовые клещи С.А 6412, С.А 6415 и С.А 6410. Более подробно узнать о том, как пользоваться токоизмерительными клещами. вы можете в нашей статье!

Какая периодичность измерений?

Проводить визуальный осмотр, измерения, а также при необходимости частичное раскапывание грунта нужно согласно графику, который установлен на предприятии, но не реже чем один раз в 12 лет. Получается, что, когда производить замеры заземления – решать вам. Если вы живете в частном доме, то вся ответственность лежит на вас, но не рекомендуется пренебрегать проверкой и замерами сопротивления, так как от этого напрямую зависит ваша безопасность, при пользовании электрооборудованием.

При проведении работ необходимо понимать, что в сухую летнюю погоду можно добиться наиболее реальных результатов измерений, так как грунт сухой и приборы дадут наиболее правдивые значения сопротивлений заземления. Напротив, если замеры будут проведены осенью либо весной в сырую, влажную погоду, то результаты будут несколько искажены, так как мокрый грунт сильно влияет на растекаемость тока, что, в свою очередь, дает большую проводимость.

Если вы хотите, чтобы измерения защитного и рабочего заземления проводили специалисты, то необходимо обратиться в специальную электротехническую лабораторию. По окончании работы вам будет выдан протокол измерения сопротивления заземления. В нем отображается место проведения работ, назначение заземлителя, сезонный поправочный коэффициент, а также на каком расстоянии друг от друга находятся электроды. Образец протокола предоставлен ниже:

Напоследок рекомендуем просмотреть видео, в котором показывается как измеряют сопротивление заземления опоры ВЛ:

Вот мы и рассмотрели существующие методики измерения сопротивления заземления в домашних условиях. Если вы не обладаете соответствующими навыками рекомендуем воспользоваться услугами специалистов, которые все сделают быстро и качественно!

Также рекомендуем прочитать:

Источники: http://elquanta.ru/electrobezopasnost/kontur-zazemleniya-pueh.html, http://www.megaomm.ru/norma-soprotivleniya-kontura-zazemleniya.html, http://samelectrik.ru/kak-izmerit-soprotivlenie-kontura-zazemleniya.html

electricremont.ru

Сопротивление заземляющего устройства | Заметки электрика

Здравствуйте, дорогие посетители сайта заметки электрика.

Сегодня мы узнаем какое сопротивление заземляющего устройства удовлетворяет требованиям нормативных документов.

Итак, в прошлой статье мы рассмотрели как правильно выполнить монтаж контура заземления. Но для каждого контура заземления имеется свое требование к сопротивлению.

Сопротивление заземляющего устройства, еще его называют сопротивление растекания электрического тока — это величина, которая прямо пропорциональна напряжению на заземляющем устройстве, и обратно пропорциональна току растекания в «землю».

Единица измерения — Ом.

И чем меньше это значение, тем лучше.  В идеальном случае — сопротивление заземляющего устройства должно быть равно нулю. Но реально добиться такого сопротивления просто невозможно.

И как всегда, по нормам сопротивления заземлений, обратимся к нормативному документу ПУЭ 7 издания, к главе 1.7.

ПУЭ. Раздел 1. Глава 1.7.

Для каждой электроустановки и ее уровня напряжения, в ПУЭ четко определены сопротивления заземления. 

В данной статье мы рассмотрим нормативы сопротивлений только тех электроустановок, которые нам интересны, т.е. бытового напряжения 380 (В) и 220 (В).

Вышеперечисленные нормы сопротивления заземляющих устройств относятся к грунтам, идеально подходящим для монтажа контура заземления (глина, суглинок, торф).

P.S. А на десерт, интересное видео…

Если статья была Вам полезна, то поделитесь ей со своими друзьями:


zametkielectrika.ru

Сопротивление заземление: нормы, испытания. Переходное заземление

Основной характеристикой заземляющего защитного устройства является сопротивление. Сопротивление заземления включает в себя сопротивление грунта, проходящего через него тока, сопротивление заземлителя и сопротивление проводников. Две последние величины зачастую имеют малые значения по сравнению с сопротивлением растекания тока.

Заземление, которое проходит в доме требует проверки, для удостоверения в своей исправности. После окончания работ по монтажу заземления, вся защитная линия подвергается тщательному осмотру и диагностики на предмет невредимости и правильности соединения.

Нормы сопротивления заземления

Идеальное сопротивление заземления равно нулю, но таких данных добиться практически невозможно. Поэтому было создано нормирование данных величин, опубликованных в правилах устройства электроустановок (ПУЭ). Данные нормы сопротивления подходят для грунта, способствующего наилучшему растеканию электрического тока – глина, суглинок, торф. Также показатель сопротивления зависит от погоды и климата на местности монтажа защитного устройства.

Так, согласно ПУЭ для жилищ частного сектора, следует иметь заземление локализованного значения с указанными данными составляющими не более 30 Ом., при подключении электрической сети 220/380 Вольт.

В не зависимости от погодных условий значение сопротивления должно соответствовать таким показателям: 2 Ома для 380 Вольт однофазного тока и 660 Вольт трехфазного тока; 4 Ома для 220 Вольт однофазного тока и 380 Вольт трехфазного тока; 8 Ом для 127 Вольт однофазного тока и 220 Вольт трехфазного тока.

Заземлителю, проходящего вблизи от нейтрали трансформатора или генератора, должно принадлежать сопротивление: не более 15 Ом для напряжения 380 Вольт однофазного тока и 660 Вольт трехфазного тока; не более 30 Ом для напряжения 220 Вольт однофазного тока и 380 Вольт трехфазного тока; не более 60 Ом для напряжения 127 Вольт источника однофазного тока и 220 Вольт источника трехфазного тока.

Какое должно быть сопротивление заземления

Одним из основных критериев продуктивности любого помещения защитного заземления является сопротивление заземления. Это значение показывает противодействие беспрепятственному распространению электрического тока в слоях земли, поступающего в грунт через защитное устройство – заземлитель.

В лучшем случае этот показатель сопротивления равен нулю. При данной величине электрический ток поглощается полностью. В практическом плане такого показателя добиться невозможно. Для правильной работы электрооборудования и надежной защиты граждан допускается конечное значение 0,5 Ом для всего защитного устройства.

Переходное сопротивление заземления

Схема заземления включает в себя множество элементов, соединенных между собой. В случае обрыва, распайки швов или окисления соединений данный показатель начинает увеличиваться, что приводит к ухудшению эффективности защитной системы. При существовании большой массы потребителей и наличие значимых соединений в заземляющей схеме данная величина возрастает.

В промежутках соединений элементов заземления определяют переходное сопротивление. Для контактирующего соединения допускается максимальное значение 0,05 Ом. В случаях, когда данный показатель выше 0,05 Ом, это говорит о неработоспособности системы. Такие неисправности необходимо устранять, так как увеличенное сопротивление, делает защитные функции системы ничтожными.

Переходное сопротивление в заземляющем устройстве называется металлосвязью. Она характеризует соединение в цепи между заземляющим устройством и заземляемым электрооборудованием. Дефекты, возникающие в металлосвязи, ведут к короткому замыканию. Цель замеров сопротивления металлосвязи — определение наличия повреждения на отрезке участка электрооборудования и заземляющего устройства.

Основной характеристикой металлосвязи является сопротивление измеряемой части заземляющей системы, которое должно соответствовать 0,05 Ом. В ходе проверки исследуются надежность и правильность соединений посредством визуального осмотра. Качество сварочных швов проверяется ударом тяжелого молотка. В ПУЭ оговаривается, что заземляющие проводники должны быть надежно скреплены, что обеспечивает целостность электрической линии.

Заземляющие проводники, сделанные из стали, требуется соединять при помощи сварки. Данные участки должны быть расположены так чтобы предоставить беспрепятственный доступ для осуществления проверок, измерений, осмотров в дальнейшем времени.

Согласно требованиям ПУЭ соединения проводников и нейтралей присоединяются посредством сварки или болтов. Для присоединения электроприборов, которые постоянно монтируются, употребляются гибкие проводники.

Испытания сопротивления заземления

Существуют приемо-сдаточные и эксплуатационные испытания.

Первые на основании ПУЭ проводятся после окончания работ по установке защитного заземления. Эксплуатационным испытаниям, регламентируемым ПТЭЭП, подвергаются электроустановки, которые сданы в эксплуатацию. При данном виде испытаний, обследования проводятся на протяжении всего периода работы защитного устройства.

В соответствии с правилами измерение сопротивления заземляющей конструкции должно осуществляться один раз в шесть лет. Если есть подозрение на повреждение заземляющего устройства, такое испытание проводится чаще.

Замеры переходного сопротивления проходят не менее одного раза в год.

Кроме измерения сопротивления также при испытаниях должен происходить тщательный осмотр всех видимых частей заземляющего устройства.

Раз в 12 лет необходимо проводить детальный осмотр с частичным вскрытием грунта в местах наиболее вероятного появления коррозии. Если грунт в данном районе ведет себя агрессивно, то количество таких осмотров увеличивается.

Также один раз в шесть лет проводится проверка состояния предохранителей.

Если в результате проверки было выявлено более 50% повреждений, такую защитную конструкцию следует заменить в обязательном порядке.

uzotoka.ru

что это такое, чем и как его измерять

Что такое заземление.

Заземление – это намеренное соединение частей и узлов электрооборудования, не находящихся в нормальном состоянии под напряжением с электродом, установленном в земле. При этом необходимо обозначить такое понятие как сопротивления растеканию.

При замыкании на землю, по мере удаления от электрода потенциал будет падать и, в конце концов, станет нулевым. Таким образом, сопротивление растеканию заземлителя – это параметр характеризующий сопротивление земли в месте установки электрода. Понятие сопротивления растеканию особенно актуально в сетях выше 1000 В.

Для чего нужно заземление.

Заземление необходимо для предотвращения поражения человека воздействием электрического тока, в случае его появления там, где при нормальных условиях его не должно быть. При касании корпуса прибора, находящимся под напряжением, сила тока, проходящего через тело человека, может оказаться смертельной.

Необходимостью снижения разности потенциалов и обусловлено применение защитного заземления. Кроме этого, замыкание на землю приводит к увеличению силы тока и, как следствие, к срабатыванию защитных устройств. Нормы сопротивления защитного заземления регламентируются ПУЭ, а также документом называемым «Правила и нормы испытания электрооборудования».

Конструкция заземления.

Заземление – это комплекс технических устройств защитного типа, состоящий из:

  1. Заземлителя — одного или нескольких вертикальных проводников (стержней), имеющих электрический контакт с землей и связанных между собой.
  2. Заземляющего проводника (путь для тока замыкания), соединяющего заземляемый объект и заземлитель.

 

На каждое заземление составляется паспорт. В паспорт заносится схема заземляющего устройства (длина, и схема расположения электродов контура), тип, удельное сопротивление грунта, а также результаты замера сопротивления заземления. Обязательным приложением к паспорту является акт на скрытые работы. Данный акт необходим в связи с тем, что большая часть заземляющего устройства находится под землей и этот акт представляет собой схему расположения элементов заземляющего устройства. В случае, если паспорт на заземление отсутствует, эксплуатация объекта запрещена.

Методика измерения сопротивления защитного заземления.

Для проверки сопротивления заземления используется метод амперметра-вольтметра, заключающийся в том, что через измеряемое сопротивление течет ток определенной величины и одновременно измеряется падение напряжения. Разделив значение тока на величину падения напряжения, получаем значение сопротивления. В принципе, под понятием измерения сопротивления заземления, подразумевается измерение сопротивления растеканию. Правила и нормы испытаний электрооборудования задают минимальное сопротивление заземления, рассчитанные с точки зрения безопасности. Нормы различаются в зависимости от типов электроустановок (глухозаземленная или изолированной нейтралью). Класс использованного напряжения также влияет на нормы сопротивления.

Приборы для измерения заземления.

Бытовой тестер для такой проверки использовать нельзя, так как он не способен генерировать достаточно высокое напряжение. Для измерений используется, как приборы уже давно выпускающиеся (МС-08, М-416 и др.), так и новые средства измерения, выполненные на современной электронной базе и характеризующиеся малым потреблением тока от источника питания. В настоящее время измерение защитного заземления можно выполнить также цифровым мультиметром или специальным тестером.

Порядок проведения измерения заземления (сопротивления растеканию заземлителя).

Для проведения проверки необходимо помимо прибора иметь два электрода (токовый и потенциальный) с проводами достаточной длины, как образец, можно предложить отрезок гладкой арматуры или трубы круглого сечения.
В зависимости от сложности конструкции заземлителя, измерение сопротивления проводят по двум разным схемам:

  1. Простой (одиночный) заземлитель.
    Применяется «линейная» схема подключения электродов. Потенциальный электрод устанавливают  на расстоянии не менее 20 м. от заземлителя, а токовый не менее, чем в 10-12 м. от потенциального.
  2. Сложный заземлитель.
    Используется, когда простая схема неприменима, ввиду того, что при расчетах сопротивление заземления она не будет соответствовать минимально допустимым нормам. Представляет собой несколько вертикальных стержней вбитых в землю, электрически связанных между собой (электросваркой, чтобы снизить переходное сопротивление). Такое устройство называется контуром заземления. В этом случае необходимо определить наибольшее расстояние (диагональ) защитного контура заземления. Потенциальный электрод нужно вбивать на расстоянии равным пяти диагоналям от места присоединения заземляющего проводника. Токовый зонд забивается не менее, чем в 20 м. от потенциального. Измерительный прибор необходимо располагать как можно ближе к выводу заземления.

Порядок проведения измерений.

Так как в настоящее время самый распространенный прибор для проведения измерения является измеритель сопротивления заземления М-416, в дальнейшем, как образец, будет рассматриваться именно это средство измерений. Данный прибор относится к системе, в которой принцип измерений основан на компенсационном методе.
Запрещается для проверки пользоваться приборами, не имеющих действующего клейма о поверке, результаты которой должны заноситься в паспорт на средство измерения.

  1. Проверить наличие элементов питания в батарейном отсеке, убедившись, что их напряжение находится в пределах нормы;
  2. Откалибровать прибор, установив переключатель диапазонов в положение 5 Ом (контроль), ручкой реохорда установить стрелку как можно ближе к нулевой отметке. При этом на шкале должны быть показания 5 Ом;
  3. Отсоединить контур от заземляющего проводника;
  4. Присоединить прибор к соответствующим электродам;
  5. Тщательно зачистив вывод измеряемого заземлителя (для того чтобы исключить влияние, которое может оказать на конечный результат переходное сопротивление), присоединить к нему прибор.

Примечание: В зависимости от планируемых показателей сопротивления заземления измерение прибор нужно подключать по двух- или четырехпроводной схеме. Первая применяется, если предполагаемое сопротивление более 5 Ом, а вторая для измерения более низких значений (при этом разделяются пути прохождения тока и измерения разности потенциалов, для исключения влияния сопротивления присоединяемых проводов при измерении). В этом случае присоединение к заземлителю осуществляется двумя проводниками. Паспорт прибора содержит наглядные рисунки, которые позволят произвести подключения без ошибок.

  1. Установить переключатель диапазонов в положение, соответствующее наибольшей чувствительности (Х1), нажав кнопку «Измерение», регулятором установить стрелку на нуль. При этом на шкале реохорда будет отражен искомый результат проверки сопротивления заземлителя. Если стрелка не устанавливается на нуль, необходимо переключателем выбрать другой диапазон и показания реохорда умножить на соответствующий множитель.

Примечание: Если измерение проводится тестером или мультиметром, необходимость выбора множителя отпадает — эти приборы обладают функцией автоматического выбора предела шкалы.
ВАЖНО! После проведения измерений, если сопротивление заземления в пределах нормы необходимо вновь присоединить заземляющий проводник к заземлителю!

Оформление результатов измерений (протокол).

После окончания измерений нужно оформить протокол результата замера. Протокол представляет собой бланк определенной формы, в котором отражаются наименование объекта, схема установки заземляющих стержней и их соединений (для этого понадобится паспорт объекта и акт на скрытые работы). Также протокол должен отражать схему контура заземления и метод, по которому проводилось измерение. В протокол необходимо включить графу, в которой указан прибор или тестер (его тип, заводской номер и пр.), которым проводилось испытание. Результаты, полученные при измерении, заносятся в паспорт заземляющего устройства.
Отдельно представляется протокол испытания переходных сопротивлений. Переходное сопротивление (также, его еще называют металлосвязью) – это возможные потери на пути прохождения тока, связанные со сварочными, болтовыми и др. соединениями всего контура заземления. Это испытание проводится специальным тестером – микроомметром.

ВАЖНО! Проводить испытания и выдавать протокол измерения сопротивления заземления может только испытательная лаборатория, аккредитованная в системе органов стандартизации.
После окончания измерений составляется соответствующий акт, и заземляющее устройство считается годным к эксплуатации.

electry.ru

Нормы сопротивлений заземляющих устройств. | ЭЛЕКТРОлаборатория

Доброе время суток, дорогие друзья.

Сегодня я вернусь к заземляющим устройствам, а именно представлю в этой статье, нормы сопротивлений заземляющих устройств. 

Сразу отмечу, что все работы в электроустановках в России подчиняются двум правилам: ПУЭ (Правила устройства эксплуатации) —  к ним обращаются на этапе проектирования, строительства  и сдачи объектов в эксплуатацию; ПТЭЭП (Правила технической эксплуатации электроустановок потребителей) – к ним обращаются в процессе эксплуатации электроустановок.

Так вот согласно ПУЭ глава 1.8 допустимые значения сопротивлений заземляющих устройств указаны в таблице 1.8.38

Что же касается ПТЭЭП, то здесь допустимые значения сопротивлений заземляющих устройств для воздушных линий и электрооборудования разделены на две таблицы 35 и 36 приложение 3.1

 

* Для опор высотой более 40 м на участках ВЛ, защищенных тросом, сопротивление заземлителей должно быть в 2 раза меньше указанных в таблице.

** Ip — расчетный ток замыкания на землю, в качестве которого принимается:

в сетях без компенсации емкостного тока замыкания на землю – ток замыкания на землю;

в сетях с компенсацией емкостного тока замыкания на землю:

— для электроустановок, к которым присоединены компенсирующие аппараты, — ток, равный 125% номинального тока наиболее мощного из этих аппаратов;

— для электроустановок, к которым не присоединены компенсирующие аппараты, — ток замыкания на землю, проходящий в данной сети при отключении наиболее мощного из компенсирующих аппаратов.

*** При удельном эквивалентном сопротивлении грунта более 100 Ом·м допускается увеличение приведенных значений в 0,01r раз, но не более десятикратного.

Надеюсь, статья окажется полезной.

На сегодня все. Успехов.

elektrolaboratoriy.ru